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We examine the transmission of small and moderately large internal gravity wavepackets through
uniformly and nonuniformly stratified fluids using fully nonlinear numerical simulations. The
simulations of finite-amplitude waves in a uniformly stratified fluid show that the weakly nonlinear
theory developed for horizontally periodic wavepackets extends well to the dynamics of
wavepackets with horizontal extent comparable to the horizontal wavelength. In simulations of
small-amplitude wavepackets in a nonuniformly stratified fluid the transmission coefficient is found
to be comparable to that computed analytically for horizontally periodic waves that radiate
continuously �nontransiently� on a reflection level. Simulations of finite-amplitude waves in a
nonuniformly stratified fluid show little dependence of transmission coefficient on the wavepacket
extent. However, for a wide range of incident wave frequencies the simulations exhibit a monotonic
increase in the transmission coefficient as a function of the incident wave amplitude. © 2008
American Institute of Physics. �DOI: 10.1063/1.2993168�

I. INTRODUCTION

Driven by buoyancy forces, internal gravity waves
propagate both vertically and horizontally through stratified
fluids, transporting energy and momentum away from their
source. In a dry adiabatic atmosphere, the stratification is
prescribed by the rate of increase with height of the potential

temperature, �̄�z�. Internal waves can propagate vertically
provided their intrinsic �Doppler-shifted� frequency � is less

than the buoyancy frequency, given by N= �g�̄� /��1/2, in
which the prime denotes a z-derivative. Where ��N the
waves are said to be evanescent. Even if generated at a small
amplitude, the wave can become weakly nonlinear either as
it approaches a critical level, where � approaches zero, or as
it grows in amplitude with height due to anelastic effects.
The latter results from the increase in amplitude as the wave
moves upward into a less dense fluid—a consequence of mo-
mentum conservation.

At a sufficiently large amplitude the waves become un-
stable, thus depositing energy and momentum to the back-
ground flow. Breaking internal waves in the atmosphere are
an important factor in determining the structure of the mean
winds and thus atmospheric circulation patterns. Parametri-
zations of gravity wave drag are necessary for accurate nu-
merical weather predictions and global climate models.1–4

Presently, operational efficiency requires that a heuristic
adaption of linear theory be employed to predict at what
altitude the waves break. However, because the process of
breaking is inherently nonlinear, it is important to understand
how nonlinear dynamics modify the evolution of the waves
so that inclusion of these effects may ultimately improve
gravity wave drag parametrization schemes.

It is not the purpose of this study to examine the process

of wave breaking �though see Refs. 5–7�. Rather, we exam-
ine the influence of nonlinear effects on the evolution of
internal waves before they reach breaking amplitudes. Ulti-
mately the goal of this research program is to predict not
how but where momentum is deposited by internal waves
through consideration of nonlinear effects on wave propaga-
tion.

Although parametric subharmonic instability is one
mechanism for the breakup of an internal wavepacket,8,9

fully nonlinear numerical simulations10 have shown that the
weakly nonlinear evolution of a horizontally periodic, verti-
cally compact internal wavepacket is dominated initially by
interactions between the waves and the wave-induced mean
flow �analogous to the Stokes drift for surface waves�. This
was confirmed by the derivation and analysis of a nonlinear
Schrödinger equation governing the evolution of horizontally
periodic internal wavepackets.11,12 The equation, which fil-
tered the wave-wave interactions associated with parametric
subharmonic instability, captured well the simulated fully
nonlinear evolution of the waves for over 15 buoyancy
periods.10,12

If of sufficiently large amplitude, the wave-induced
mean flow significantly Doppler shifted the waves, changing
their structure and consequently changing the response of the
wave-induced mean flow. Cumulatively this weakly nonlin-
ear effect enhanced the dispersion of low-frequency waves.
Conversely, the amplitude envelope of high-frequency large-
amplitude waves, with 2−1/2N���N, was found to narrow
and grow in peak magnitude. These waves were also found
to propagate more slowly than the vertical group velocity
predicted by linear theory.

Clearly, these results put into question the reliability of
linear theory in predicting where the waves grow to such
large amplitude that they break. For example, as low-
frequency waves grow to weakly nonlinear amplitudes, their
enhanced dispersion means that the waves can propagate to
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much larger altitudes than predicted before breaking. Like-
wise, high-frequency waves will break at lower altitudes than
predicted by linear theory.

One purpose of the present study is to extend these re-
sults to internal wavepackets of finite horizontal extent. In
this case the wave-induced mean flow acts locally only over
the wavepacket extent and not over the horizontal extent of
the domain. Nonetheless, as we will show, the weakly non-
linear behavior observed for horizontally periodic waves
likewise occurs for horizontally localized wavepackets.

The other purpose of this study is to extend the predic-
tions of internal wave tunneling for small-amplitude horizon-
tally periodic waves to horizontally localized wavepackets of
small and finite amplitudes. Tunneling refers to the partial
transmission and partial reflection of internal waves from a
vertically confined region where the waves are evanescent.
Linear theory has been used13,14 to derive analytic predic-
tions of wave transmission across idealized piecewise-linear

profiles of N and background flow Ū. The result was gener-
alized to predict the transmission of waves across domains

with arbitrarily specified N and Ū profiles through integra-
tion of the Taylor–Goldstein equation. These studies were
restricted to the Boussinesq approximation, in which the
background density changes by a small fraction of itself over
the vertical extent of the domain. A companion paper to this
one15 further extended these results to include anelastic ef-
fects but was still restricted to the study of small-amplitude
waves.

As a first step toward understanding finite-amplitude ef-
fects on tunneling, we restrict ourselves here to a two-
dimensional Boussinesq fluid with no background shear and
we initialize the simulations with either small- or moderately
large-amplitude waves. We thus form direct comparisons
with the results of horizontally periodic finite-amplitude
waves in a uniformly stratified fluid12 and small-amplitude
waves in a nonuniformly stratified fluid.14 The latter study
computed the transmission coefficient for upward-
propagating incident waves continuously forced through the
bottom of the domain. Here we must develop new diagnostic
tools to account for the transient passage of the simulated
wavepacket. We show that the results for small-amplitude
waves are consistent with the theoretical prediction.

In Sec. II we briefly review the relevant linear theory for
internal wave tunneling and the weakly nonlinear theory for
horizontally periodic internal wavepackets. The numerical
code used to solve the fully nonlinear equations is described
in Sec. III along with the methods used to determine trans-
mission coefficients. The results of simulations of waves in
uniform and nonuniformly stratified fluids are presented in
Sec. IV followed by conclusions in Sec. V.

II. THEORETICAL PRELIMINARIES

Although this work has been motivated in part by the
study of waves that become weakly nonlinear as a result of
anelastic growth, we restrict ourselves here to the Boussinesq
approximation. Thus weakly nonlinear effects result not due
to the growth of small-amplitude waves but due to the evo-
lution of waves that are initialized to be moderately large

amplitude. The study of nonlinear anelastic waves is cur-
rently under investigation and is beyond the scope of the
present work.

In the Boussinesq approximation, the equations of mo-
tion for a gas and a liquid are effectively identical. For con-
ceptual convenience we work here using density � rather
than potential temperature � to characterize the stratification
of the fluid. In particular, the buoyancy frequency defined in
terms of the background density, �̄�z�, is N= �−g�̄� /�0�1/2, in
which �0 is the characteristic density.

A. Small-amplitude wave transmission

The propagation of small-amplitude waves through arbi-
trarily specified background profiles of squared buoyancy

frequency, N2�z�, and horizontal flow, Ū�z�, can be deter-
mined by ray tracing methods �e.g., see Ref. 16� where os-
cillatory solutions must be matched to Airy functions at re-
flection levels. Ray theory assumes that the waves have
vertical wavelength much smaller than the scale of vertical
variation of the background profiles �the WKB approxima-
tion�. However, it is possible to compute the structure of the
waves without this assumption through direct integration of
the Taylor–Goldstein equation.15,17

In special circumstances, explicit analytic solutions can
be determined for the structure of the waves and from these
a formula for the transmission coefficient can be found. This
has been done for the transmission across a hyperbolic tan-
gent shear profile,18 for which solutions were found in terms
of hypergeometric functions. More recently, the transmission
coefficient has been found for waves propagating through
piecewise-linear background profiles.13,14 The profiles were
chosen so that the structure of the waves were either sinu-
soidal or exponential in each layer. The determination of the
transmission coefficient was thus straightforward though al-
gebraically intensive.

The results presented here in part comprise an extension
to large-amplitude waves of the prediction by Sutherland and
Yewchuk13 for the transmission of small-amplitude waves in

a stationary flow �Ū=0� that propagate across an
“N2-barrier” of depth L prescribed by

N2�z� = �N0
2, �z� �

L

2
,

0, �z� �
L

2
.� �1�

This background state has the simplest mathematical form
for the study of the partial transmission and partial reflection
of the waves.

The transmission coefficient is generally defined to be
the ratio of the pseudoenergy flux of the transmitted to inci-
dent waves,14 this ratio being equivalent to the ratio of the
transmitted to incident flux of wave activity. In the absence
of background shear, the transmission coefficient is equiva-
lent to the ratio of transmitted to incident wave energy.

For waves crossing the N2-barrier defined by Eq. �1�, the
transmission coefficient was found to be13
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Tlin = �1 + 	 sinh�kL�
sin 2�


2�−1

. �2�

The corresponding reflection coefficient is R=1−T. Here
�=tan−1�kz /kx� �so that ���=cos−1�� /N0�� is the angle from
the vertical of lines of constant phase �equivalent to the angle
from the vertical of the group velocity�. Result �2� shows that
for waves at a fixed relative horizontal wavenumber, kL, the
maximum transmission occurs for waves with �=45° ��
=N /�2�.

This result assumed that the small-amplitude waves were
horizontally periodic with a fixed horizontal wavenumber k
and were periodic with a fixed frequency �. In linear theory,
a horizontal wavepacket can be Fourier decomposed in
�k ,�� space and the transmission coefficient determined for
each mode. Thus the transmission of any small-amplitude
wavepacket can be determined.

We will examine here the limitation of the linear theory
predictions for moderately large-amplitude waves, and we
extend the definition of the transmission coefficient to ac-
count for the transient interaction of a vertically compact
wavepacket incident upon an N2-barrier.

B. Weakly nonlinear effects

When waves grow to moderately large amplitudes, the
superposition principle of linear theory is no longer strictly
applicable. Large-amplitude effects change the manner in
which internal waves evolve even in a uniformly stratified,
stationary fluid. Heuristically, such effects become important
if the vertical displacement amplitude of nonhydrostatic
waves is greater than about 2% of the horizontal
wavelength.19

The dominant weakly nonlinear influence that acts ini-
tially on a horizontally periodic, vertically compact wave-
packet is through interactions between the waves and their
wave-induced mean flow. This is the mean horizontal advec-
tion of fluid resulting from wave-wave interactions. The
Stokes drift is much smaller than the horizontal group veloc-
ity of deep water waves, even for those close to breaking
amplitude, and so weakly nonlinear interactions between the
waves and the wave-induced mean flow can be ignored in
this case. For internal waves, however, the wave-induced
mean flow can be greater than the horizontal group velocity
cgx for waves well below overturning amplitudes. For over-
turning waves, the magnitude of the vertical density gradient
associated with the waves exceeds the background vertical
density gradient,

�

�z
��x,z,t� � −

d

dz
�̄�z� . �3�

In terms of the maximum amplitude A� of the vertical dis-
placement field, the overturning condition is

A�

	x
�

1

2

cot � , �4�

in which 	x is the horizontal wavelength.
Even if the initial wavepacket is statically stable, nonlin-

ear interactions between the waves and the wave-induced

mean flow can distort the wavepacket so that it evolves to
become overturning.19 Explicitly, the wave-induced mean
flow associated with a horizontally periodic wavepacket is
given in terms of the horizontally averaged correlation of the
vertical displacement field � and the vorticity � associated
with the waves,


M� = − 
��� = −
1

	x
�

0

	x

��dx . �5�

Using linear theory to relate the vorticity field to the vertical
displacement field, the wave-induced mean flow is given by

U0 =
�


4

N0

k
�A�k�2sec � . �6�

The condition for the wave-induced mean flow to drive
the waves so they becoming overturning, the so-called self-
acceleration condition, is �M��cgx. Explicitly, this condi-
tion predicts that the wavepacket will evolve nonlinearly to
become statically unstable if

A�

	x
�

1

2
�2
�sin 2�� . �7�

Self-acceleration is the dominant mechanism for wave
breaking19 if �
65.5° ���0.41N, �m�
2.2�k��.

Even if condition �7� is not met, weakly nonlinear inter-
actions between the waves and the wave-induced mean flow
may nonetheless dominate the dynamics governing the evo-
lution of a vertically compact wavepacket.12 Subharmonic
parametric instability, in which the primary waves interact
nonlinearly with subharmonically excited waves, dominates
the initial evolution of the waves only if they are both verti-
cally and horizontally periodic.20 One consequence of the
weakly nonlinear dynamics is that the amplitude envelope of
vertically compact wavepackets grows faster than predicted
by linear theory and the vertical group velocity slows if
���
35.3° ��m�
0.71�k�� provided the amplitude is suffi-
ciently large.12 Conversely, lower frequency large-amplitude
waves disperse and the amplitude envelope decreases more
rapidly than linear theory predicts.

An outstanding question is whether these results extend
to wavepackets that are compact in both the horizontal and
vertical directions. In this case the wave-induced mean flow
acts only over the horizontal extent of the wavepacket and
not over the entire horizontal domain.

Here we show that it is appropriate to define the effects
of wave-wave interactions locally, producing an induced
mean flow by superimposing on the initial disturbance field a
perturbation horizontal velocity prescribed by

u�x,z,t = 0� = M0 � − ��x,z,0���x,z,0� . �8�

The wave-induced mean flow, computed by averaging u over
one wavelength, reduces to Eq. �5� if the waves are horizon-
tally periodic.

In this study we are concerned with the propagation of
waves whose amplitudes are large enough that nonlinear ef-
fects are non-negligible but are not so large that the waves
eventually break during the simulation time. This restriction
is particularly important regarding the computation of trans-
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mission coefficients in simulations of waves incident on an
N2-barrier. If the waves break during the simulation, then the
difference of the transmitted pseudoenergy flux at the top and
bottom of the domain will not equal the incident pseudoen-
ergy flux because energy will be deposited within the do-
main.

Thus we only perform numerical simulations where nei-
ther the overturning nor self-acceleration conditions, Eqs. �4�
and �7�, respectively, are satisfied. The use of these stability
conditions effectively creates an upper limit on the amplitude
range that will be studied.

III. NUMERICAL METHOD

A. Fully nonlinear simulation

The numerical method21 used solves the discretized form
of the following coupled, fully nonlinear equations of the
total vorticity �T and perturbation density � fields,

D�T

Dt
=

g

�0

��

�x
+ ��2� , �9a�

D�

Dt
= − w

d�̄

dz
+ ��2� . �9b�

Here, D /Dt is the material derivative, w is the vertical ve-
locity, � is the kinematic viscosity, and � is the diffusivity.

The simulations are initialized with prescribed back-
ground fields upon which are superimposed a quasimono-
chromatic wavepacket and its corresponding wave-induced
horizontal flow.

The background horizontal flow is constant. In practice,

we set Ū=−cgx, in which cgx is the horizontal group velocity.
Thus small-amplitude waves stay centered horizontally in the
domain. The background stratification is set to be uniform
�N�z�=N0� or is prescribed with a thin unstratified layer at
the center of the domain as given by Eq. �1�.

Superimposed on the background is a horizontally and
vertically compact Gaussian wavepacket centered a distance
of �z0� below the middle of the domain. In terms of the
streamfunction, this is prescribed by

��x,z,t = 0� = A�e−�1/2���x/�x�2+��z − z0�/�z�
2� cos�kx + mz� ,

�10�

where �x and �z, respectively, set the horizontal and vertical
extents of the wavepacket and k and m are the horizontal and
vertical wavenumbers. The waves are quasimonochromatic
in the sense that we require ��xk��1 and ��zm��1. Thus we
approximate the initial perturbation vorticity and density
fields by �= �k2+m2�� and �=−��0 /g�N�k2+m2�1/2�, respec-
tively. The wavenumbers and phase relationship between �
and � are set so the wavepacket moves upward through the
domain and rightward into the opposing wind with speed cgx.

For large-amplitude waves, it is necessary to superim-
pose an initial horizontal velocity perturbation that is a con-
sequence of wave-wave interactions inducing a local mean

flow. This is given by Eq. �8�, with � defined as above and
�=−��k2+m2�1/2 /N��. We then superimpose on the vorticity
field the vertical gradient of M0. �Although one could con-
tinue iteratively to use the new � to recompute M0, the cor-
rection is negligibly small for moderately large-amplitude
waves.�

Although linear theory has been used to relate �, �, and
� in terms of �, control simulations demonstrate that the
formulas suffice even for moderately large-amplitude waves:
As the waves propagate upward, the horizontally averaged
flow moves upward with the waves leaving behind no re-
sidual stationary mean flow.

In practice, the length and time scales of simulations are
set so that k=1.0 and N0=1.0. However, throughout this pa-
per we report results explicitly in terms of k and N0 or, where
convenient, the horizontal wavelength, 	x=2
 /k, and buoy-
ancy period, TB=2
 /N0.

We have run several simulations varying the vertical
wavenumber, the wavepacket extent, and the amplitude. In
simulations with nonuniform stratification, we additionally
examine the effect of changing the depth L of the unstratified
layer of fluid which is centered about z=0. In most simula-
tions �x=�z=10k−1, large enough so the waves are quasimo-
nochromatic but still far from being horizontally periodic. In
nearly all simulations the wavepacket is initially centered at
z0=−3�z. We examine vertical wavenumbers of m=−0.4k,
−0.7k, −1.0k, and −1.4k. These span the range of modula-
tionally stable ��m��2−1/2k� and unstable ��m��2−1/2k�
wavepackets at sufficiently large amplitudes.

Control simulations were run for waves with very small
initial amplitudes in order to provide a check on linear theory
for waves in a uniformly stratified fluid and for waves inci-
dent on an N2-barrier. In the latter case, the typical barrier
depth was set to be L=1.0k−1. In terms of the vertical dis-
placement amplitude, the simulations were run by setting A
=10−4	x. In subsequent simulations the initial wavepacket
amplitude was increased to values above which the wave-
packets were observed to break. This limit changed depend-
ing on the value of m /k. The largest value corresponded to
vertical displacement amplitude A�0.1	x.

In all simulations the viscosity and diffusion parameters
were chosen to be so small that they negligibly influenced
the wave dynamics but nonetheless ensured that the code
remained numerically stable. Explicitly, we set �=�
=10−4N0k−2, corresponding to a Reynolds number of 10 000
and a Schmidt number of 1.0.

The domain is a horizontally periodic channel with free-
slip conditions on the upper and lower boundaries. The ex-
tent of the domain is set to be much larger than the extent of
the wavepacket itself so that interactions with the boundaries
are negligible. A domain height of 204.8k−1 was used so that
the amplitude of waves at both boundaries remained small
over the duration of simulations. Typically, the horizontal
extent of the domain was Lx=16	x ��100.5k−1� for wave-
packets initialized with �x=10k−1. The domain was propor-
tionally larger in simulations with �xk=20 and 40. The basic
state fields were represented at evenly spaced vertical levels
of 0.05k−1 by spectral coefficients of the horizontal structure.
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This vertical resolution accurately represents vertical wave-
numbers of up to approximately 15.5k. The horizontal reso-
lution was set to resolve waves with horizontal wavenumbers
up to 8k. Simulations proceeded by advancing 0.01N0

−1 in
time using a leap frog method with an Euler backstep taken
at regular intervals of 0.2N0

−1. Typical simulations ran to
times tmax=250N0

−1 or until the waves encountered the upper
or lower boundaries. Simulations with increased resolutions
and domain sizes were run and show negligible quantitative
change in the resulting wavepacket evolution.

B. Wave-induced mean-flow analysis

For horizontally periodic waves, the wave-induced mean
flow is given by Eq. �5�. This is a function of z and t alone.
The corresponding flow associated with a horizontally com-
pact wavepacket depends on horizontal space as well as z
and t. Pointwise, it is given initially by Eq. �8�. The average
horizontal flow induced by waves over the extent of the
wavepacket as it evolves in time is estimated to be


M���z,t� =
Lx

2�x
� 1

Lx
�

0

Lx

�− ���dx� . �11�

The magnitude of 
M�� can be compared with the horizontal
group velocity cgx as a measure of the degree of nonlinearity
of the wavepacket.

Here, we examine how the vertical structure of the
wavepacket evolves over time using Eq. �11�. We are prima-
rily interested in whether the amplitude envelope is modula-
tionally stable or unstable in the same manner as horizontally
periodic waves. Some results are thus presented in terms of
the relative wave-induced mean flow, 
M�� /U0, in which
U0, given by Eq. �6�, is the maximum wave-induced mean
flow at t=0. This normalization means that the choice of
coefficient to the integral in Eq. �11� is irrelevant to the
analyses of the wavepacket structure.

C. Transmission analysis

In the tunneling theory reviewed in Sec. II A, it was
assumed that the incident waves were generated continu-
ously at the lower extreme of the domain. However, in simu-
lations of waves incident on an N2-barrier a vertically com-
pact wavepacket transiently reflects from and partially
transmits through an unstratified layer of fluid.

To draw the connection between the theory and the
simulations, we define two different measures of the trans-
mission coefficient. The first method defines the transmission
coefficient as the ratio of spatially integrated pseudoenergies:

TE�t� =
Etrans

Etotal
, �12�

where

Etrans�t� = �
L/2

� �
−�

�

E�x,z,t�dxdz �13a�

and

Etotal�t� = �
−�

� �
−�

�

E�x,z,t�dxdz �13b�

are the spatially integrated pseudoenergy fields, respectively,
in the transmission region �everywhere above the tunneling
region� and in the entire domain.

The second method defines the transmission coefficient
as the ratio of time integrated pseudoenergy fluxes,14

TF�t� =
Ftrans

Ftotal
, �14�

where

FTrans�t� = �
0

tmax �
−�

�

Fz	x,
L

2
,�
dxd� �15�

is the time integrated vertical flux of pseudoenergy through
the vertical level above the N2-barrier at z=L /2.

The difficulty with the second method is in the determi-
nation of Ftotal because the entire wavepacket does not pass
through a single vertical level before the leading edge has
begun to reflect off the N2-barrier and propagate in the op-
posite direction. To find this quantity a second control simu-
lation is run with identical parameters to the first except that
the background buoyancy frequency is constant �N�z�=N0�
and Ftotal is defined as in Eq. �15�.

Using either method the transmission varies as the wave-
packet interacts with the tunneling region but eventually
reaches a constant value once the bulk of the wavepacket has
either reflected or transmitted. In all cases both methods give
consistent results, to within 1% of each other.

IV. RESULTS

A. Propagation in a uniform stratification

Here we extend the study of weakly nonlinear horizon-
tally periodic wavepackets12 to the study of horizontally and
vertically compact waves. We examine the evolution of the
wavepacket structure by computing 
M���z , t� according to
Eq. �11�. The results are then transformed to a frame of ref-
erence moving at the vertical group speed predicted by linear
theory. That is, the vertical coordinate is given by Z=z−z0

−cgzt. This permits us to focus on the change in the structure
of the amplitude envelope and on deviations of the vertical
propagation speed from linear theory.

Figure 1 shows time-series plots of 
M���Z , t� /U0 as
computed in six different simulations. These plots are pre-
sented in a way that they can be compared directly with the
corresponding plots computed for horizontally periodic
wavepackets12 �i.e., in the limit �xk→��.

Figure 1�a� shows the results of simulations in which the
initial wavepacket is prescribed with vertical wavenumbers
of m=−0.4k, −0.7k, and −1.4k and an initial amplitude of
A�=0.01	x. In all three simulations the wave-induced mean
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flow peaks along the level Z=0, confirming that small-
amplitude wavepackets propagate upward at the vertical
group speed. As the waves propagate, the vertical extent of
the wavepacket broadens and the peak amplitude decreases
due to linear dispersion. The dispersion is greatest in the case
with m=−0.4k because ��zm�=4 is small. In the cases with
larger �m�, the wavepacket is closer to being monochromatic
and disperses less.

Larger amplitude simulations with A�=0.08	x �Fig. 1�b��
show a qualitatively different behavior. In the left panel
where m=−0.4k the wavepacket narrows beginning at t
�100N0

−1 so that the maximum value of M� nearly triples
the initial value ��2.95U0=2.78cgx�. The vertical group
speed also decreases at this time. In the right panel, for
which m=−1.4k, the wavepacket continues to propagate at
the vertical group speed. Here the wave-induced mean flow
broadens more quickly and the maximum value drops by
more than one-half due to nonlinear dispersive effects. The
center panel shows aspects of both behaviors at the critical
value of m=−0.7k �����35°� where the vertical group ve-
locity is largest.

These results are consistent with simulations of horizon-
tally periodic wavepackets12 that demonstrated that the ob-
served weakly nonlinear dynamics occurred due to interac-
tions between waves and the wave-induced mean flow and
not due to parametric subharmonic instability. The difference
between the nonlinear evolution of horizontally compact and
horizontally periodic waves is that the latter depart from lin-
ear behavior at earlier times, t�50N0

−1. This delay of the
onset of weakly nonlinear dynamics for horizontally compact
waves occurs because the peak wave-induced mean flow oc-
curs only at the center of the wavepacket and decreases both
horizontally and vertically away from the center.

B. Tunnelling: Wavepacket evolution

We now turn to the examination of wavepackets in non-
uniform stratification for which N2 is given by Eq. �1�. First
we study how weakly nonlinear effects change the wave-
packet structure and in Sec. IV C we show how this changes
the transmission characteristics.

The partial transmission and reflection of a wavepacket
from an unstratified layer of finite depth significantly alter
the evolution of a moderately large-amplitude wavepacket.
The superposition of the incident and reflected wavepackets
causes the maximum amplitude to increase by 1+�R, where
R is the reflection coefficient. Consequently the wave-
induced mean flow M� increases by �1+�R�2. In particular,
for a perfectly reflected wavepacket, the wave amplitude
doubles and so the amplitude of the wave-induced mean flow
quadruples.

Figure 2 shows the evolution of a small- and large-
amplitude wavepackets with m=−1.0k as they interact with
an N2-barrier. Snapshots of the vertical displacement field are
shown at times t=0, 85N0

−1, and 170N0
−1 �t�0, 13.5TB, and

27TB� for wavepackets initialized with A�=0.01	x �Fig. 2�a��
and A�=0.08	x �Fig. 2�b��.

The two leftmost panels show the initial vertical dis-
placement field for both simulations. These appear identical
because the grayscale contours span a range that is eight
times larger for the large-amplitude case. The wavepacket
remains approximately centered in the domain during its
evolution because the background wind moves at the speed
of the negative horizontal group speed, −cgx.

At the end of both simulations the wavepacket has split
into two parts: an upward-propagating transmitted portion
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FIG. 1. The time evolution of the wave-induced mean
flow, M� /U0 given by Eq. �8�, for fully nonlinear nu-
merical simulations of a horizontally compact wave-
packet in uniform background stratification. The verti-
cal coordinate is set to translate at the vertical group
speed: Z=z−z0−cgzt. Wavepackets are initialized with
�x=�z=10k−1, and m=−0.4k, −0.7k, and −1.4k in the
left, center, and right panels, respectively. The initial
amplitudes are prescribed by �a� A�=0.01	x and �b�
A�=0.10	x.
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and a downward-propagating reflected portion. The direction
of propagation is made apparent by the tilt of the phase lines.

Focusing on the small-amplitude simulation, the center
panel shows the wavepacket midway through reflecting off
and tunneling through the N2-barrier. The superposition of
the incident and reflected wavepackets results in a crosshatch
pattern with the maximum amplitude of vertical displace-
ments nearly doubled. The superposition is such that heights
with no vertical displacement occur at intervals of 1

2	z and
columns with no vertical displacement are separated by 1

2	x.
The right panel shows the wavepacket after separating into
the two portions. Both portions have propagated vertically at
a speed nearly equal to the vertical group speed, which in
this case is �cgz��0.35N0k−1, so that the transmitted portion
is centered at z�30k−1 and the reflected portion returns ap-
proximately to its initial height after t=170N0

−1.
As well as the decrease in amplitude of the transmitted

and reflected waves, the most obvious change from the initial
state is the increased horizontal spread of the wavepackets.
This increase is caused by the linear dispersion of the inter-
nal waves as they propagate. Unlike their horizontal extent,
the vertical extent of the wavepacket is relatively unchanged,
indicating that linear dispersion has a greater effect in the
horizontal direction than in the vertical direction for waves

with ���=45°. This effect is opposite for wavepackets with
propagation angles smaller than ����35° �not shown�.

The finite-amplitude simulation in Fig. 2�b� shows sev-
eral differences from the small-amplitude simulations. The
partially reflected wavepacket in the center panel has a
slightly different structure. The pattern remains crosshatch-
like, although the shapes that make up the pattern appear
more triangular than square. There are still heights with no
vertical displacement at intervals of 1

2	z. However, there are
no longer horizontal columns with no vertical displacement.
This is caused by horizontal phase shifting of the incident
and reflected wavepackets due to the presence of a larger
wave-induced mean flow.

Horizontal slices of the normalized vertical displacement
field are shown in Fig. 3. The horizontal cross sections are
taken from simulations at time t=85N0

−1 �t�13.5TB� when
the center of the initial wavepacket reaches the N2-barrier. In
Fig. 3�a� the initial amplitude is A��4.5�10−4	x whereas in
Figs. 3�b� and 3�c� the initial amplitude is A��0.081	x. The
upper panel of each figure shows grayscale contours of ver-
tical displacement near the reflection level and the height at
which the horizontal slice is taken is indicated by a dashed
line.

The profiles in both Figs. 3�a� and 3�b� are for simula-
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FIG. 2. Results of fully nonlinear numerical simula-
tions of a wavepacket given initially by Eq. �10� im-
pinging on an N2-barrier of width L=1.0k−1, as depicted
by the gray center at z=0. Wavepackets are initialized
with m=−1.0k, �x=�z=10k−1, and �a� A�=0.01	x and
�b� A�=0.08	x. Grayscale contours are of the normal-
ized vertical displacement field, � /	x, at t=0, 85N0

−1,
and 170N0

−1 in the left, center, and right panels, respec-
tively. The background wind moves with speed −cgx so
that small-amplitude wavepackets should remain ap-
proximately centered in the horizontal.
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tions with m=−1.0k−1 and are taken at a height of z=− 3
8	z

which is below the N2-barrier in the reflection region. This
value is chosen to lie between the heights with the maximum
and minimum vertical displacement values. The small-
amplitude profile shows that the horizontal wavepacket en-
velope maintains an approximately Gaussian envelope. The
envelope remains symmetric and has a relative maximum
vertical displacement of �max /A�=0.81 and a relative mini-
mum vertical displacement of �min /A�=−0.80.

The large-amplitude profile in Fig. 3�b� shows a different
wavepacket structure. The envelope is no longer symmetric
although both the upper and lower halves retain a Gaussian
shape. At the level where z=− 3

8	z the troughs of the waves
are deeper and the crests less tall. Specifically, the maximum

relative vertical displacement is �max /A�=0.51, only 63% of
the maximum measured in the small-amplitude simulation.
The minimum relative vertical displacement is �min /A�

=−1.14, 43% lower that of the small-amplitude simulation.
The symmetry breaking was examined further by per-

forming a simulation of a downward-propagating large-
amplitude wavepacket initially centered 3�z above the
N2-barrier. The structure of this wavepacket above the reflec-
tion level is shown in Fig. 3�c�. The structure at z= 3

8	z is a
reflection of the corresponding upward-propagating wave-
packet structure shown in Fig. 3�b�: The crests are taller and
the troughs are shallower.

In both large-amplitude simulations, the crest at the
middle of the wavepacket is situated near x=0, a rightward
phase shift from the corresponding crest in the small-
amplitude simulation. This is a consequence of the wave-
induced mean flow advecting the center of the large-
amplitude wavepackets in the direction of the horizontal
phase speed.

Finally we examine the structure of the initially upward-
propagating large-amplitude wavepacket after it has reflected
from the N2-barrier as shown in the right panel of Fig. 2�b�.
The vertical extent of the transmitted wavepacket has spread,
its trailing edge propagating at a slower vertical group speed.
The reflected portion has separated into distinct wavepack-
ets. The finite-amplitude wavepacket has undergone signifi-
cant vertical and horizontal dispersions due to nonlinear
effects.

The differences in wavepacket structure at large ampli-
tudes are partially explained by examining profiles of the
wave-induced mean flow given by Eq. �8� at various times.
Figures 4�a� and 4�b� show the normalized wave-induced
mean flow for the small- and finite-amplitude simulations
examined in Fig. 2. The left panels are of the initial wave-
induced mean flow given explicitly by Eq. �6�. The middle
panels display the largest values of the wave-induced mean
flow during the simulations. This occurs just as the center of
the wavepacket reaches the N2-barrier so that the superposi-
tion of the incident and reflected wavepackets generates the
largest wave amplitudes. In the small-amplitude case the
maximum value is �
M���=0.02cgx so the effect of self-
acceleration is negligible. The maximum value of the finite-
amplitude flow is �
M���=0.81cgx, which is large enough
that self-acceleration effects cause the horizontal dispersion
of the reflected wavepacket at later times.

One might expect the maximum amplitude of the wave-
induced mean flow in the finite-amplitude case to have in-
creased by a factor equal to the square of the wavepacket
amplitude increase, in this case a factor of 64. The maximum
amplitude has increased by a smaller factor than this for two
reasons. The first is that the transmission coefficient is higher
and therefore the reflection coefficient is smaller. The second
is that the maximum amplitude of the incident wavepacket
has already decreased due to dispersion by the time the
wavepacket reaches the barrier. Another important feature of
these profiles is the large shear due to the crosshatch pattern
of the superimposed wavepackets. This shear is even greater
for waves with larger ��� and therefore smaller vertical
wavelengths.
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FIG. 3. Horizontal slices of the normalized vertical displacement field, � /A�,
at t=85N0

−1, for several simulations of a wavepacket impinging on an
N2-barrier of width L=1.0k−1. Wavepackets are prescribed by Eq. �10� with
�x=�z=10k−1. Profile �a� is taken at height z=− 3

8	z for a wavepacket ini-
tialized with A��4.5�10−4	x, m=−1.0k, and z0=−3�z. Profile �b� is the
same as �a� except A��0.081	x. Profile �c� is from a downward-propagating
wavepacket at height z= 3

8	z with A��0.081	x, m=1.0k, and z0=3�z.
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The right panels of the figure are of the wave-induced
mean flow after the wavepacket has interacted with the
N2-barrier. The dashed lines represent an idealized wave-
induced mean flow calculated as

T
M���z − cgzt,t� + R
M���− z − cgzt,t� , �16�

where M��z� is given by Eq. �11� and T and R=1−T are the
transmission and reflection coefficients with T given by Eq.
�2�. Comparing this idealized flow with the calculated wave-
induced mean flow in the small-amplitude case shows only a
slight decrease in the maximum amplitude and a small in-
crease in the vertical extent, confirming the lack of vertical
spread due to linear dispersion. Nonlinear effects clearly en-
hance the dispersion, as is evident by the finite-amplitude
simulation. The vertical extent of the wavepacket envelope
has increased and no longer retains a Gaussian shape, al-
though the leading edges of both the transmitted and re-
flected wavepackets do appear to have a Gaussian shape.
This suggests that the increased vertical dispersion due to
large-amplitude effects occurs beginning at the center of the
wavepacket where the amplitude is largest.

The late time normalized wave-induced mean flow com-
puted in simulations with other initial vertical wavenumbers
is shown in Fig. 5. The profiles are taken at t=190N0

−1,

155N0
−1, and 220N0

−1 for wavepackets with m=−0.4k, −0.7k,
and −1.4k in the left, center, and right panels. The times are
chosen so that cgzt�6�z. Again, the dashed lines show an
idealized wave-induced mean-flow given by Eq. �16�. Simu-
lations for wavepackets with m=−0.4 and −0.7k have trans-
mitted and reflected amplitude envelopes with nearly Gauss-
ian shape centered at heights predicted by linear theory. The
peaks of each envelope in these cases are slightly lower and
slower moving than the idealized prediction. Each amplitude
envelope has broadened due to dispersion although the left
panel shows the peak of the reflected wavepacket envelope
steepening even though the maximum remains less than that
of the idealized flow. This is the same behavior shown for
wavepackets with m=−0.4k in a uniformly stratified back-
ground. The right panel, with m=−1.4k, shows a qualita-
tively different behavior than the other two. The leading por-
tions of the transmitted and reflected amplitude envelopes
retain a Gaussian shape although they are faster moving than
linearly predicted. The middle and trailing portions of both
amplitude envelopes have broadened considerably from the
Gaussian. The second peak of the transmitted amplitude en-
velope directly below the N2-barrier is likely caused by
strong shear in the wave-induced mean flow during the re-
flection process. Because the vertical wavelength of waves in
this wavepacket is smaller than for waves with m=−1.0k, the
gradient of the flow is even steeper than seen in the center
panels of Fig. 4 and therefore the shear is larger. The strong
shear contributes to the breakup of the reflected wavepacket,
leaving slower moving portions near the reflection level,
leading to the second peak in the wave-induced mean flow.

C. Transmission: Amplitude effects

Using Eq. �12� to calculate the fraction of the energy
transmitted across the N2-barrier for the simulation shown in
Fig. 2�a�, the transmission coefficient for the small-amplitude
wavepacket is found to be T=42.3%, approximately 0.7%
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FIG. 4. The wave-induced mean flow given by Eq. �8� at various times for
fully nonlinear numerical simulations. The small- and large-amplitude simu-
lations used in �a� and �b�, respectively, are the same as those used in Fig. 2.
The dashed lines in the right panels represent an idealized M� if the trans-
mitted and reflected wavepackets retained Gaussian shapes.
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FIG. 5. The wave-induced mean flow given by Eq. �8� at late times for three
simulations with varying vertical wavenumbers. Wavepackets are initialized
with �a� A�=0.045	x and m=−0.4k, �b� A�=0.06	x and m=−0.7k, and �c�
A�=0.06	x and m=−1.4k. In all simulations �x=�z=10k−1 and L=1.0k−1.
Profiles are taken at t=190N0
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−1, and 220N0

−1 in �a�, �b�, and �c�,
respectively. The dashed lines represent an idealized M� where the trans-
mitted and reflected wavepackets are Gaussian.
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greater than the linear theory prediction for horizontal plane
waves �Eq. �2��. Thus Eq. �2� provides a good estimate of
transmission even for quasimonochromatic horizontal wave-
packets with �x as small as 10k−1.

The transmission coefficient for the corresponding finite-
amplitude wavepacket simulation �Fig. 2�b�� is T=51.6%,
which is 22% larger than that measured for the small-
amplitude wavepackets simulation and 23% larger than the
linear theory prediction.

This trend, in which the transmission increases as the
amplitude increases, is observed in all simulations we have
performed. The transmission coefficients computed in simu-
lations run with a range of initial amplitudes and vertical
wavenumbers are plotted in Figs. 6 and 7. In all cases the
barrier depth is fixed at L=1.0k−1 and the initial wavepacket
extent is given by �x=�z=10k−1. Each line on the plot in
Fig. 6 represents results computed for different initial verti-
cal wavenumbers, as indicated on the plot. The values of m
were chosen to straddle the critical value �m�=21/2k below
which weakly nonlinear effects can lead to growth and nar-
rowing of the amplitude envelope and above which lead to
enhanced dispersion. They also span a range about �m�=k,
for which the transmission is predicted to be largest for a
small-amplitude wavepacket. Each curve is plotted over a
range of amplitudes for which the wavepacket does not break
during a simulation. The self-acceleration condition, Eq. �7�,
dictates that waves are stable at largest amplitudes if �m�=k,
hence why the curve corresponding to this wavenumber
spans the largest range of A�. This is also seen in Fig. 7
which shows the relative transmission as a function of wave-
number for wavepackets with fixed initial amplitudes.

For sufficiently small-amplitude waves, the computed
transmission coefficient is close to the linear theory predic-
tion, suggesting that even though the wavepackets are hori-

zontally compact with �xk=10, the plane wave prediction is
satisfactory. The discrepancies between the observed trans-
mission and the prediction of linear theory can be attributed
in part to numerical errors involved with the calculation of
the transmitted wavepacket energy and due to the fact that
the incident waves in the simulations are not plane waves but
transient wavepackets.

The relative increase in transmission as a function of
amplitude is small for A�
0.02	x, being within 1.5% of
T /Tlin=1. The relative transmission rapidly increases at
larger amplitudes, the deviation being as much as 25% for
wavepackets with m=−1.0k.

The reason for the relative increase in transmission co-
efficient for all wavenumbers is unclear. However, one can
gain an insight as to why the peak transmission occurs for
�m� moderately greater than k by considering the weakly non-
linear dynamics of internal waves. For finite-amplitude
waves, the wave-induced mean flow acting over the horizon-
tal extent of the wavepacket acts to Doppler shift the waves12

as though locally they were moving through a background
with increased flow moving in the direction of k. Effectively
this decreases the frequency of the incident waves. Thus
waves are Doppler shifted so that ���=cos−1�� /N� increases.
Because linear theory, given by Eq. �2�, predicts that the
transmission of incident plane waves is greatest if �=45°,
incident finite-amplitude waves are anticipated to have larg-
est transmission if � initially is moderately smaller than 45°,
that is, if �m� is moderately larger than k.

Although this reasoning provides some insight into the
observed behavior, a corresponding analytic prediction of the
transmission is difficult to make. This is because the process
of partially reflecting and transmitting from an N2-barrier
results in a complicated structure of the wave-induced mean
flow as shown, for example, in Fig. 4.
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FIG. 6. Wavepacket transmission values plotted against initial amplitude for
horizontally localized wavepackets prescribed initially by Eq. �10� imping-
ing on an N2-barrier of width L=1.0k−1. The computed transmission values
are normalized by the linearly predicted transmission values for horizontal
plane waves, Tlin, given by Eq. �2�. Wavepackets are initialized with �x

=�z=10k−1 and m=−0.4k �solid line�, m=−0.7k �dotted line�, m=−1.0k
�dashed-dotted line�, and m=−1.4k �dashed line�.
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FIG. 7. As in Fig. 6 but plotting relative transmission against the relative
vertical wavenumber for horizontally localized wavepackets with four dif-
ferent initial vertical displacement amplitudes, as indicated.
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D. Transmission: Wavepacket extent effects

In addition to amplitude, other initial parameters were
varied to determine their impact on transmission. The effect
of the extent of the wavepacket is used to determine how
small a wavepacket envelope can be before results signifi-
cantly deviate from the linear theory prediction for incident
plane waves.

Figure 8 shows normalized transmission values calcu-
lated using Eq. �12� plotted against various wavepacket ex-
tents for several vertical wavenumbers. In all cases the initial
wavepacket has a small amplitude of A��5�10−3	x. In Fig.
8�a� the horizontal extent is varied so that �x=5k−1, 10k−1,
20k−1, and 40k−1 while �z=10k−1 is kept constant. In Fig.
8�b� the vertical extent is varied so that �z=5k−1, 10k−1, and
15k−1 while �x=10k−1 is kept constant.

The plots show that for wavepackets with �x and �z

�10k−1 the transmission values are within 1% of the linearly
predicted values for plane waves. The difference is larger for
�x or �z=5k−1. This result justifies the use of �x=�z=10k−1

in other simulations because the results are consistent with
plane wave solutions at small amplitudes. The first plot also
shows that for �x
10k−1 the transmission values are greater
than the plane wave predictions, whereas for �x�20k−1

transmission values are less than plane wave predictions.
This is reversed in the second plot where �z
5k−1 leads to
transmission values that are less than the plane wave predic-
tions, whereas for �z�10k−1 transmission values are greater
than plane wave predictions.

For small wavepacket extents, normalized transmission
values are largest for small ��xm�. For all wavepacket sizes
the smallest vertical wavenumber leads to the greatest devia-
tion in transmission. For example, the wavepacket with the
longest vertical wavelength �m=−0.7k, 	z�1.4	x� has an in-
crease of 2.9% in transmission with �x=5k−1.

In all cases, we expect a greater discrepancy between the
analytic linear theory for plane waves and the observed
transmission of small-amplitude transient wavepackets if the
spatial extent of the wavepacket is comparable to the wave-
length of the waves. This is because the spectral peak of the
wavepacket is broader and so rigorously one would need to
compute the transmission of each component of the spectrum
and then form a weighted sum of the resulting transmitted
energies. Research into establishing such an algorithm is cur-
rently in progress.

E. Transmission: Barrier extent effects

So far in the present work the barrier depth has been
held constant at L=1.0k−1. A range of simulations was run
for other values of L that show consistent results with linear
predictions. The values of L that were studied were limited
by the vertical resolution. For the vertical resolution of
0.05k−1 the smallest gap examined was L=0.5k−1 which only
resolves nine vertical levels within the gap.

The transmission results for a vertical wavenumber of
m=−1.0k−1 and gap depths of L=0.5k−1, 1.0k−1, and 1.5k−1

are shown in Fig. 9. Several amplitudes are depicted and
show only a small divergence from the linear predictions.
Simulations with an amplitude of A�=0.08	x show the larg-
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FIG. 8. Wavepacket transmission values through an N2-barrier of width L
=1.0k−1 plotted against �a� the horizontal and �b� the vertical extent of the
wavepackets for values of the vertical wavenumber as indicated. Computed
transmission values are normalized by the linearly predicted transmission
values for horizontal plane waves, Tlin, given by Eq. �2�. Wavepackets are
initially prescribed by Eq. �10� with A�=0.02N0k−2 �or A��5�10−3	x� and
in �a� �z=10k−1 while in �b� �x=10k−1.
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est increases of 5%, 23%, and 58% in transmission values
for gap widths of 0.5k−1, 1.0k−1, and 1.5k−1, respectively. In
simulations with A�=0.07	x the transmission increases by
4%, 16%, and 34% for barrier depths of L=0.5k−1, 1.0k−1,
and 1.5k−1, respectively. These results are consistent with
earlier results that show higher transmission for larger am-
plitude waves. The discrepancy is larger as the barrier depth
increases.

V. DISCUSSION AND CONCLUSIONS

We have extended the predictions of linear theory to
examine how transient and weakly nonlinear effects change
the structure and transmission characteristics of horizontally
and vertically compact wavepackets.

Simulations of moderately large wavepackets in a uni-
formly stratified fluid show that they evolve qualitatively in
the same manner as horizontally periodic waves: The vertical
amplitude envelope of wavepackets with small relative ver-
tical wavenumber �m /k�
0.7 narrows and grows, whereas
dispersion is nonlinearly enhanced if �m /k��0.7. This dem-
onstrates that the dynamics are dominantly governed by
weakly nonlinear interactions between the waves and the
wave-induced mean flow, even though this flow acts only
over the extent of the wavepacket and not over the domain as
a whole. As with horizontally periodic, vertically compact
internal wavepackets,10 parametric subharmonic instability
does not play an important role during the early evolution of
the wavepacket.

Both the spatially integrated pseudoenergy and the time
integrated pseudoenergy flux were used to quantify the trans-
mission of transient wavepackets incident on an N2-barrier.
With length and time scales set by k and N0, respectively, we
computed the transmission as a function of the vertical wave-
number m, the wavepacket extent given by �x and �z, the
vertical displacement amplitude A�, and the barrier depth L.

For small-amplitude wavepackets with spatial extents as
small as �x=�z=5k−1, we found that the computed transmis-
sion agreed to within 3% of the values predicted for incident
plane waves. Excellent agreement was found for �x=�z

�10k−1. This provides promising evidence that theory for
incident plane waves can straightforwardly be applied to
transient waves.

Of primary interest was the dependence of transmission
on m and A�. Linear theory predicts that maximum transmis-
sion occurs for �m /k�=1 and weakly nonlinear theory
predicts19 that waves are stable at the largest amplitude if
�m /k�=1. Thus we have focused on vertical wavenumbers
having magnitudes close to k. A range of amplitudes was
examined up to values on the cusp of wave breaking.

The structure of finite-amplitude wavepackets was found
to disperse significantly after interacting with the barrier. The
dispersion was greatest for wavepackets with large relative
vertical wavenumbers, �m /k��1. Nonlinear effects enhanced
the dispersion of such waves as they propagated both in the
uniformly stratified regions and also near the N2 barrier
where the superposition of the incident and reflected waves
increased the amplitude of the disturbance and so greatly
increased the magnitude of the wave-induced mean flow.

In all simulations the transmission coefficient increased
as the amplitude of the incident waves increased. The dis-
crepancy was most pronounced for waves with �m /k� mod-
erately greater than unity and for wider barrier depths.

The reason for this relative increase in transmission is
not entirely clear. In part, a change is expected as a conse-
quence of the wave-induced mean flow near the barrier act-
ing to Doppler shift the waves initially to higher intrinsic
frequencies and then lower frequencies at the packet reflects.
The peak transmission of small-amplitude wavepackets oc-
curs for waves with �m /k�=1 ���0.7N�. Hence, for incident
large-amplitude waves with ��0.7N, the wave-induced
mean flow would Doppler shift the frequency to values
closer to 0.7N and so enhance their transmission. But this
does not explain why large-amplitude waves with low fre-
quency, �m /k��1, likewise exhibit enhanced transmission. A
proper treatment of this problem requires the study of a non-
linear Schrödinger equation for internal wavepackets in non-
uniform media, a study that is currently under investigation.

In brief, this study has shown that a significantly greater
proportion of a finite-amplitude wavepacket is expected to
penetrate through a weakly stratified region if it is nonhydro-
static with �m /k��1 and if its amplitude A��0.03	x. Be-
cause enhanced transmission is not substantial for �m /k�
moderately larger than unity, we expect that linear theory
could adequately be used in general circulation models to
predict the transmission of hydrostatic waves �with �m��k�.

One should keep in mind, however, that these simula-
tions have been restricted to waves that remain below break-
ing amplitudes during their evolution. Simulations of wave
propagation in a uniformly stratified fluid have shown that
hydrostatic internal waves disperse faster than linearly and so
they are expected to break at higher altitudes than predicted
by linear theory. Future work will examine the effect on
transmission of a nonuniform background flow as well as
nonuniform stratification. Ultimately, the intent will be to
include anelastic effects so that one can examine the propa-
gation of small-amplitude waves that become nonlinear as
they move upward through a realistic atmosphere. Thus we
intend to develop heuristics that can be used in general cir-
culation models to predict more accurately where internal
waves deposit their momentum.
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