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We perform fully nonlinear simulations in two dimensions of a horizontally periodic,
vertically localized, anelastic internal wavepacket in order to examine the effects of
weak and strong nonlinearity upon wavepackets approaching a reflection level in
uniform retrograde shear. Transmission, reflection, and momentum deposition are
measured in terms of the horizontal momentum associated with the wave-induced
mean flow. These are determined in part as they depend upon the initial wavenum-
ber vector, �k = (k, m), which determines the modulational stability (if |m/k| � 0.7)
or instability (if |m/k| � 0.7) of moderately large amplitude quasi-monochromatic
internal wavepackets. Whether modulationally stable or unstable, the evolution of
the wavepacket is determined by the height of the reflection level predicted by linear
theory, zr, relative to the height, z�, at which weak nonlinearity becomes significant,
and the height, zb > z�, at which linear theory predicts anelastic waves first overturn
in the absence of shear. If zr < z�, the amplitude remains sufficiently small and the
waves reflect as predicted by linear theory. If zr is moderately larger than z�, a frac-
tion of the momentum associated with the wavepackets transmits past the reflection
level. This is because the positive shear associated with the wave-induced mean flow
can partially shield the wavepacket from the influence of the negative background
shear enhancing its transmission. The effect is enhanced for weakly nonlinear mod-
ulational unstable wavepackets that narrow and grow in amplitude faster than the
anelastic growth rate. However, as nonlinear effects become more pronounced, a
significant fraction of the momentum associated with the wavepacket is irreversibly
deposited to the background below the reflection level. This is particularly the case
for modulationally unstable wavepackets, whose enhanced amplitude growth leads
to overturning below the predicted breaking level. Because the growth in the ampli-
tude envelope of modulationally stable wavepackets is retarded by weakly nonlinear
effects, reflection is enhanced and transmission retarded relative to their modulation-
ally unstable counterparts. Applications to mountain wave propagation through the
stratosphere in the winter hemisphere are discussed. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4864104]

I. INTRODUCTION

Internal waves, driven by buoyancy forces, exist ubiquitously in the stratified atmosphere. When
generated by wind forcing over topography, they propagate upward through the troposphere into
the middle atmosphere. In doing so, these waves transport horizontal momentum vertically upward
until being deposited at high altitudes where wave breaking occurs.1

Internal waves in the atmosphere have small length scales compared to the large-scale circula-
tion. However, the momentum carried by the waves, and subsequent momentum deposition at high
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altitudes where waves become unstable, has been found cumulatively and non-negligibly to affect
mean zonal winds and corresponding temperatures associated with the general circulation.2–4

Being small scale, it is computationally prohibitive to resolve internal wave dynamics in general
circulation models (GCMs).5 As a method to include internal waves without resolving their dynamics,
the momentum transport and drag associated with internal waves are parameterized in general
circulation models. In part, these gravity wave drag parameterization schemes attempt to capture
momentum deposition due to wave breaking at critical levels.4, 6, 7 In a shear flow, this is where the
horizontal phase speed of the waves matches the background flow speed or, equivalently, where
the Doppler-shifted frequency of the waves is zero.8, 9 The breaking of internal gravity waves
induces an energy cascade which creates disturbances at smaller and smaller scales.10 Eventually
the energetic scales become so small that they dissipate due to viscosity and thermal diffusion.
Concurrently, the wave momentum flux divergence results in momentum that is deposited irreversibly
to the background flow providing an acceleration in the direction of the phase speed relative to the
background wind.11

Because the background density of the atmosphere decreases significantly with height, the
amplitudes of waves grow as they propagate upward, thus providing another mechanism for wave
breaking. The gravity wave drag parameterization scheme proposed by Lindzen6 used linear anelastic
theory to estimate where wave breaking occurs and, consequently, where momentum is deposited.
This scheme has improved the accuracy of GCMs.2–4 Wave breaking, however, is an inherently
nonlinear process and so the accuracy of linear theory to predict momentum deposition due to
anelastic growth and breaking is questionable.

Sutherland12 developed a weakly nonlinear theory of Boussinesq internal waves which, through
comparison with fully nonlinear simulations, was shown accurately to model the evolution of large-
amplitude waves. The onset of nonlinear dynamics was shown to result from “self-acceleration,” in
which the wavepacket established a wave-induced mean flow which, in turn, altered the structure of
the wavepacket.13, 14 Even without the presence of a background flow, the wave-induced mean flow
(analogous to the Stokes drift for surface waves) acted to Doppler-shift the frequency of an internal
wavepacket—a significant effect for sufficiently large-amplitude waves. In particular, it was observed
that when the vertical wavenumber, m, was sufficiently small relative to the horizontal wavenumber, k
(specifically |m/k| < 2−1/2) the vertical structure of the wavepacket envelope narrowed and steepened
through modulational instability. For wavepackets containing larger vertical wavenumber waves, the
envelope broadened faster than predicted by linear dispersion through modulational stability.12

The Boussinesq study was followed by the development of weakly nonlinear theory for internal
waves in a non-Boussinesq liquid15 and in an anelastic gas.16 Consistent with Boussinesq theory,
anelastic waves were found to be either modulationally stable at high vertical wavenumbers or
unstable at low vertical wavenumbers, with marginal stability occurring for waves propagating at
the fastest vertical group velocity.16

The weakly nonlinear effects of modulational stability and instability were shown to change the
height of overturning significantly when compared with linear theory predictions:16 modulationally
unstable wavepackets, which narrow and peak, overturned well below the breaking level predicted by
linear theory; modulationally stable wavepackets, which broaden quickly, overturned well above the
breaking level predicted by linear theory. In some cases, the difference of observed and linear-theory
predicted breaking heights was tens of kilometers.

These studies were performed for waves with zero or uniform background wind. There are few
studies of large-amplitude internal waves in non-uniform background flows. Sutherland17 presented
a fully nonlinear numerical study of the evolution of Boussinesq internal waves in a uniform shear
flow with uniform stratification.18 The shear flow was oriented with flow speed increasing with
height, its direction oriented opposite to the horizontal phase speed of the incident wavepacket. For a
rightward, upward-propagating wave, the negative shear was established so that, according to linear
theory, at a certain height, wave reflection would occur due to Doppler-shifting by the background
wind. Explicitly, this occurred where the Doppler-shifted wave frequency matched the background
buoyancy frequency.19

Consistent with linear theory, small-amplitude waves propagated upward to the reflection
level and then propagated downward. However, for moderately large-amplitude waves, significant
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momentum was found to transmit across the reflection level. This was shown to result from the
positive shear associated with the wave-induced mean flow canceling the negative background
shear.

Being restricted to the Boussinesq approximation, the study by Sutherland17 of moderately
large-amplitude waves in retrograde, uniform shear did not allow for anelastic growth as in Dosser
and Sutherland,16 though the latter study did not include shear. As the next step in developing an
understanding of momentum transport by atmospheric internal waves, in this study we synthesize
Sutherland17 and Dosser and Sutherland16 to study the evolution and momentum transport by
anelastic waves approaching a reflection level in retrograde shear.

Specifically, we assess the proportion of momentum associated with the incident wavepacket
that transmits above, reflects from, or is deposited moderately below the reflection level. Of particular
physical and theoretical interest is the evolution of incident nearly hydrostatic wavepackets. These
are modulationally stable and so weakly nonlinear effects should retard the wavepacket growth sug-
gesting substantial reflection according to linear theory. However, when approaching the reflection
level the Doppler-shifted wavepacket becomes modulationally unstable, suggesting the possibility
of enhanced transmission or overturning. We examine how this behavior changes as it depends upon
the predicted height of the reflection level relative to the predicted height at which weakly nonlinear
effects are expected become important.

Section II reviews the theoretical background for small-amplitude anelastic waves, wave prop-
agation in shear and weakly nonlinear theory. Section III presents the numerical method used to
solve the fully nonlinear anelastic equations. Section IV presents qualitative results of anelastic wave
propagation in shear, and quantitative results for transmission, reflection, and momentum deposition
are given in Sec. V. Conclusions including a discussion on the application of this work to momentum
transport in the atmosphere are given in Sec. VI.

II. THEORY

For simplicity, we consider an isothermal atmosphere with temperature T0. From the ideal gas
law and hydrostatic balance, the background density, ρ̄, and pressure, p̄, decrease with height, z,
exponentially as

ρ̄ = ρ0 exp(−z/Hρ) (1)

and

p̄ = p0 exp(−z/Hρ), (2)

where ρ0 is the reference density, p0 = ρ0RaT0 is the reference pressure, Ra is the gas constant for
air, and Hρ is the density scale height. In an isothermal atmosphere, the density scale height is

Hρ = RaT0

g
, (3)

in which g is gravity. The background potential temperature is

θ̄ = θ0ez/Hθ , (4)

where θ0 = T0 is the potential temperature at z = 0, and

Hθ = κ−1 Hρ, (5)

where κ � 2/7 for a diatomic gas. The stratification of the atmosphere is represented by the squared
buoyancy frequency,

N 2 ≡ g

θ̄

d θ̄

dz
. (6)

In particular, in uniform stratification N2 = g/Hθ is constant.



026601-4 L. Eberly and B. R. Sutherland Phys. Fluids 26, 026601 (2014)

TABLE I. The polarization relations for anelastic waves in a uniformly
stratified fluid in terms of the mass streamfunction, psi, defined so that �u =
1
ρ̄
∇ × (ψ ŷ). The phase is represented by φ = kx + mz − ωt and K 2 = k2 +

m2 + 1/(4H2
ρ ). Derivatives of the dispersion relation used in the Schrödinger

equation are given for anelastic internal waves in a uniformly stratified fluid.
The horizontal and vertical wavenumbers are k and m, respectively.

Field Relation to Aψ0

ψ = Re(ρ0 Aψ0eıφe−z/2Hρ ) Aψ0

u = Re(Au0eıφez/2Hρ ) Au0 =
(
−ım + 1

2Hρ

)
Aψ0

w = Re(Aw0eıφez/2Hρ ) Aw0 = ık Aψ0

ζ = Re(Aζ0eıφez/2Hρ ) Aζ0 = K2Aψ0

ξ = Re(Aξ0eıφez/2Hρ ) Aξ0 = − K
N Aψ0

θ = Re(Aθ0eıφez/2Hρ ) Aθ0 = θ̄ ′ K
N Aψ0

ρ = Re(Aρ0eıφe−z/2Hρ ) Aρ0 = − ρ0
Hθ

K
N Aψ0

Dispersion relation and m-derivatives
ω = Nk/K
cgz = ωm = −Nkm/K3

ωmm = −N(3m2 − K2)k/K5

In zero background flow, small-amplitude, two-dimensional anelastic plane waves of horizontal
and vertical wavenumber k and m, respectively, satisfy the dispersion relation19

ω2 = N 2 k2

k2 + m2 + 1
4H 2

ρ

. (7)

This shows that anelastic internal waves are propagating only if the intrinsic frequency, ω, is less
than N. The vertical group speed, cgz = ∂ω/∂m, polarization relations, and other properties of
small-amplitude anelastic internal waves are summarized in Table I.

Our study focuses upon the evolution of horizontally periodic, vertically localized, quasi-
monochromatic wavepackets whose vertical structure is given in terms of an amplitude envelope,
A(z, t). For example, the vertical displacement field is

ξ = Aξ (z, t)ei(kx+mz−ωt)ez/2Hρ , (8)

where the second exponential captures the anelastic growth predicted by linear theory and it is
understood that the actual displacement is the real part of the right-hand side of (8). The horizontal
and vertical velocity fields, u and w, respectively, likewise exhibit exponential growth as exp (z/2Hρ).
Because the horizontally averaged vertical flux of horizontal momentum is defined by

FM = ρ̄〈uw〉, (9)

in which the angle brackets denote horizontal averaging, we see that FM does not grow exponentially.
Because the waves are horizontally periodic, one can attribute horizontal momentum to the

waves (an exception to the “wave momentum myth” paradigm20). Their momentum is ρ̄U in which
U is the wave-induced mean flow, given explicitly by14, 19, 21

U (z, t) ≡ −〈ξζ 〉, (10)

in which ζ is the spanwise vorticity. Using the polarization relations in Table I, it can be shown that

U = 1

2
N K |Aξ |2ez/Hρ , (11)

in which K 2 = k2 + m2 + 1/
(
4H 2

ρ

)
. It can also be shown that the momentum flux is related to the

momentum by

FM = cgz (ρ̄U ) , (12)
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which is analogous to the relationship between energy flux and energy. (This analogy is explained
in detail in Fig. 3.7 and associated text of Sutherland.19)

Waves overturn where the total potential temperature gradient is negative:

d θ̄

dz
+ ∂θ

∂z
< 0, (13)

in which θ is the fluctuation potential temperature. For plane, anelastic waves with vertical dis-
placement amplitude Aξ0 at z = 0, (13) gives the linear theory prediction for the breaking height:16

zb = 2Hρ ln

(
1

|m Aξ0|
)

. (14)

This prediction assumes that there is no background shear.
As a small-amplitude wavepacket moves vertically through a background wind, the extrinsic

(Doppler-shifted) frequency, �, changes according to

� = ω − Ūk. (15)

In particular, if Ū decreases with height, the extrinsic frequency increases. Waves reflect where the
extrinsic frequency of a wavepacket matches the background buoyancy frequency, N. In the specific
case of linearly decreasing background horizontal velocity Ū = −s0z, in which −s0 < 0 is the
constant background shear, linear theory predicts that the reflection height is situated at

zr = N − ω

ks0
. (16)

Unlike the background flow, Ū , the wave-induced mean flow, U, evolves transiently as the
wavepacket evolves. Although the Stokes-drift of surface waves is relatively small even for waves
near breaking amplitudes, the wave-induced mean flow of the internal waves can be substantial.14

For example, using (14) in (11), the value of U at the breaking height is (1/2)NK/m2. This can exceed
the horizontal phase speed of the waves, N/K, and certainly does so for non-hydrostatic waves with
m ≈ 0, which is the case for waves near the reflection height. In reality, below the breaking height
U acts weakly nonlinearly through Doppler-shifting the waves, which in turn changes the structure
of U.

These nonlinear feedback effects are well-modeled by the nonlinear Schrödinger equation (NLS)
that describes the evolution of the amplitude envelope of anelastic internal gravity waves in zero
background wind:16

At + cgz Az = ı
1

2
ωmm Azz − ıkU A, (17)

in which U is given by (11) and, for writing convenience, we have defined A ≡ Aξ to be the
amplitude envelope of the vertical displacement field, as in (8). The first term on the right-hand side
of (17) denotes linear dispersion and the second (nonlinear) term denotes Doppler-shifting by the
wave-induced mean flow, given by (11), which is strictly positive and proportional to |A|2.

In general, the modulational stability or instability of a wavepacket is assessed by the relative
signs of the coefficients of the dispersion and nonlinear terms.22 Marginal stability occurs if ωmm =
0, corresponding to waves moving with the fastest vertical group velocity. This occurs for vertical
wavenumber mc such that

|mc/k| = 2−1/2

[
1 + 1

(2k Hρ)2

]1/2

. (18)

In the special case of kHρ 
 1, the relative vertical wavenumber of marginally stable anelastic waves
is identical to that for Boussinesq waves:12 |mc/k| = 1/

√
2.

If m < mc < 0 then ωmm > 0 and the wavepacket is modulationally stable. Hence, the wavepacket
widens at a rate faster than that due to linear dispersion and anelastic growth of the amplitude is
reduced. This is because the wave-induced mean flow Doppler-shifts the waves to larger vertical
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wavenumbers which move with faster vertical group speed, causing the wavepacket to spread out.
For mc < m < 0, ωmm < 0 and the wavepacket is modulationally unstable; the Doppler-shifted
waves move with slower vertical group speed causing the wavepacket to narrow and steepen.

Dosser and Sutherland16 estimated the height, z�, at which the weakly nonlinear effects become
sufficiently large for the effects of modulational stability or instability to become non-negligible:

z� = 2Hρ ln

(
1

Aξ0 K 2

√
2�|m|

σ

)
, (19)

where � ≈ 1 represents the magnitude of the ratio of the leading nonlinear term to the advection term
in (17), and σ is the vertical extent of the wavepacket. In uniform flow, modulationally unstable waves
were found to overturn between z� and zb due to the accentuated amplitude growth. Modulationally
stable waves were found to propagate well above zb because their anelastic growth rate was reduced
by the enhanced spreading of the wavepacket. In fact, for larger |m/k|, waves were able to propagate
many density scale heights above the breaking height predicted by linear theory.16

Sutherland17 found that when Boussinesq waves approached a reflection level, their ampli-
tude doubled as the incident, upward-propagating waves combined with the reflected, downward-
propagating waves. This in turn quadrupled the wave-induced mean flow which caused sufficiently
large amplitude waves to be Doppler-shifted to higher frequencies and, thus, begin to reflect at
heights below zr. However, as the trailing edge of the wavepacket approached the reflection level,
the amplitude of the incident and reflected waves decreased causing a shift to lower frequency and
thus a portion of the wavepacket transmitted through the reflection level. These transmitted waves
eventually either reflected or dissipated at high levels due to continual Doppler-shifting by the back-
ground wind. That study provided criteria for when significant transmission would occur. But it did
not assess relative transmission and reflection of momentum above and below zr.

III. METHODS

The equations used in the code were non-dimensionalized by using the time scale, N−1. For
all cases, N remained fixed. Likewise, the length scale, k−1, was fixed in all simulations. In what
follows, the equations and analyses are given in units of k and N. All simulations were done using
a fully nonlinear, 2D, anelastic code that implicitly solved for spanwise vorticity, ζ , and potential
temperature, θ . For now excluding viscosity and diffusion, the vorticity equation is16

Dζ

Dt
= − 1

Hρ

wζ − g

θ̄

∂θ

∂x
, (20)

and the internal energy equation is

Dθ

Dt
= −w

d θ̄

dz
. (21)

Particularly to avoid the exponential growth of small-scale disturbances near the top of the
domain, the code solved the equations of motion written in terms of variables that filtered out the
anelastic growth predicted by linear theory. For example, the anelastic-filtered (“hatted”) variables
representing spanwise vorticity, vertical displacement, and horizontal and vertical velocities are given
implicitly by (ζ, ξ, u, w) = (ζ̂ , ξ̂ , û, ŵ)ez/2Hρ . The details of the transformation of (20) and (21) to
anelastic-filtered variables are provided in the Appendix.

Thus, with the inclusion of diffusion terms, (20) and (21) are

∂

∂t
ζ̂ = −Ū ζ̂x + ez/2Hρ

[
−ûζ̂x − ŵζ̂z − 3

2Hρ

ŵζ̂

]
+ N 2ξ̂x + Cζ∇2ζ̂ , (22)

∂

∂t
ξ̂ = −Ū ξ̂x + ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ

+ 1

Hθ

)
ŵξ̂

]
+ ŵ + Cθ∇2ξ̂ , (23)



026601-7 L. Eberly and B. R. Sutherland Phys. Fluids 26, 026601 (2014)

in which the advective terms of the material derivative, including the background mean flow, have
been put on the right-hand side of the equations. Also, (21) has been recast in terms of the approximate
vertical displacement using ξ ≡ −θ/(d θ̄/dz). The anelastic-filtered streamfunction, ψ̂ , is implicitly
related to vorticity using (A3) and (A10) to give

ζ̂ = −∇2ψ̂ + 1

4H 2
ρ

ψ̂. (24)

This is inverted to find ψ̂ for given ζ̂ . The anelastic-filtered velocities are found from (A1) and (A2):

û = −∂ψ̂

∂z
+ 1

2Hρ

ψ̂, (25)

ŵ = ∂ψ̂

∂x
. (26)

In order to ensure numerical stability, but not at the expense of excessive wave damping, the
coefficients Cζ and Cθ of the dissipation terms Cζ∇2ζ̂ and Cθ∇2ξ̂ were chosen to be zero throughout
the domain for waves with horizontal wavenumber k < 17. For larger horizontal wavenumbers, Cζ

= Cθ = 10−4N/k2 throughout most of the domain. Hence, small-scale noise was sufficiently damped
throughout wave propagation and breaking. To inhibit downward propagating disturbances from the
top of the domain, Cζ and Cθ were enhanced over the top 20% of the domain. This also acted as
a sponge layer to damp out noise that tended to grow more rapidly where the background density
was small. From the bottom of the sponge layer to the upper bound of the domain, viscosity linearly
increased a hundredfold from its background viscosity. Equations (22) and (23) were solved using
a mixed spectral, finite-difference scheme. The code advanced in time by a leap-frog method with
Euler back-steps performed every 20 time steps.23

The vertical extent of the domain ranged from z = −30k−1 to between 120k−1 and 300k−1 with
larger values chosen in simulations with greater expected height of wave reflection. This ensured
that the wavepacket remained far from both boundaries during its evolution. Free-slip boundary
conditions were used on both the top and bottom of the domain. The domain was resolved with
a vertical grid spacing of �z = 0.02k−1. Horizontally, the domain was periodic and set to resolve
wavenumbers up to 16k. Doubling the vertical spatial and horizontal wavenumber resolution had no
significant effect on the observed wave dynamics.

The code was initialized with constant background stratification, exponentially decreasing
background density ρ̄ = ρe−z/Hρ , and uniform background shear Ū = U0 − s0z with U0 and s0

constant, as described below. Additionally, simulations were conducted with a range of background
density scale heights ranging from Hρ = 10k−1 to 30k−1. Most simulations examined the case with
kHρ = 20, corresponding to mesoscale atmospheric internal waves with a horizontal wavelength of
approximately 2.5 km.

Superimposed on this background was an anelastic, horizontally periodic, vertically Gaus-
sian, quasi-monochromatic wavepacket centered at z = 0. The amplitude envelope was initialized
according to

ξ̂ (x, z, 0) = 1

2
A0 exp

(−z2/2σ 2) ei(kx+mz) + c.c., (27)

in which c.c. denotes the complex conjugate. The vertical extent of the wavepacket was σ = 10k−1

which ensured the wavepacket was quasi-monochromatic. The initial wavepacket was set to have
amplitude A0 = 0.05k−1, which was small enough that the polarization relations of linear theory
could be applied to initialize the other fields and was large enough that weakly nonlinear effects
were expected to develop shortly after the wavepacket began to move upward and grow anelastically.
Making use of the polarization relations (Table I), the initial anelastic-filtered vorticity was given as
in (27) but with A0 replaced by −NKA0. Even at the initial time step, there was some flow induced
by the waves themselves, U = −〈ξζ 〉. However, it was small. The background flow at z = 0 was
set to be U0 = −cpx where cpx = ω/k represents the initial intrinsic horizontal phase speed of the
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−0.5 0.5x/λx
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ξ/λx

(a) m=-0.4k, Nt=0

−0. .5x/λx
−0.5 05 0.5

−0.01 0 0.01
ξ̂/λx

(b) m=-0.4k, Nt=0

0
ρ̄/ρ0

0 5

0

5

10

z/
λ

x

(c) ρ̄

−1.5 −0.5
Ū/cpx

−1.5 −0.5

(d) Ū

0 0.003
U/cpx

(e) U = ξζ

−1.5 −0.5
UT /cpx

−1.5 −0.5

(f) UT

FIG. 1. Both (a) and (b) show a snapshot of anelastic waves for m = −0.4k, zr = Hρ waves at Nt = 0. The displacement field,
ξ , is given in (a) and the density-scaled displacement field, ξ̂ , is shown in (b). (c) An example background density profile, ρ̄,
and (d) a background velocity profile, Ū . The wave-induced mean flow is shown in (e) and the superposition of (d) and (e),
giving UT, is shown in (f).

waves. This ensured that while the waves had small amplitude, their horizontal phase did not change
in time, which helped to visualize Doppler-shifting effects particularly when examining movies of
the simulations.

An example of the initial state is shown in Figure 1. The displacement field, ξ , is shown in
Fig. 1(a). Although these waves are vertically confined to less than one density scale height, it is
evident that the anelastic-filtered ξ̂ field in Fig. 1(b) has smaller amplitude at the leading edge of the
wavepacket due to the smaller background density. Likewise, ξ̂ is larger than ξ at the trailing edge.
This difference between ξ and ξ̂ became more obvious when waves propagated upward over many
density scale heights such that ‖ξ‖ grew exponentially and

∥∥ξ̂
∥∥ remained constant until weakly

nonlinear effects became important.
Figure 1(c) shows a typical background density profile and Fig. 1(d) shows the background wind

for a case where reflection occurs at zr = Hρ . Figure 1(e) shows the initial wave-induced mean flow, U
= −〈ξζ 〉. The total flow, UT = Ū + U , is the superposition of the wave-induced mean flow and the
background shear, as shown in Figure 1(f). The addition of U to Ū is barely distinguishable from Ū
alone (see Figure 1(d)), consistent with the condition that the initial wavepacket had small-amplitude.

In an effort to investigate the behavior of modulationally stable, marginally stable, and mod-
ulationally unstable waves, our simulations focused primarily upon a range of wavepackets that
had initial wavenumbers of m = −1.4k, −0.7k, and −0.4k, respectively. Waves were allowed to
propagate to various reflection heights ranging from zr = Hρ to zr = 8Hρ , as set by the value of
the background shear through (16). The initial vertical extent of the wavepacket was also varied to
ensure that the wavepacket was initially quasi-monochromatic. In most cases σ = 10k−1, but we
also set σ = 3k−1 in large |m/k| simulations.

The simulation run time was estimated from the reflection height and the vertical group speed,
cgz. The time for the wavepacket to reach the reflection level was roughly estimated using tr = zr/cgz

and simulations were run up to time 4tr. Time steps of �t = 0.005N−1 were used.
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The profile of horizontal momentum associated with the waves was calculated by multiplying the
difference of the total and background horizontal mean flow by the background density. We denote
the result by ρ̄〈u〉 ≡ ρ̄(UT − Ū ). Consistent with Dosser and Sutherland,16 we confirmed that 〈u〉
= U (=−〈ξζ 〉) for all z and t up to the point of wave dissipation. When the waves grew so large that
they dissipated, the associated momentum became irreversibly deposited to the background.

Whether or not the waves dissipated, the total momentum

MT =
∫ zmax

zmin

ρ̄〈u〉dz (28)

was conserved.
This fact was used to measure the transmission, reflection, and deposition of momentum by

waves in retrograde shear. We define the vertically integrated momentum in the upper, middle, and
lower parts of the domain by

MU =
∫ zmax

zr

ρ̄〈u〉dz, (29)

MM =
∫ zr

Hρ

ρ̄〈u〉dz, (30)

and

ML =
∫ Hρ

zmin

ρ̄〈u〉dz, (31)

respectively.
Here, the lower bound of the upper region is zr (the linear-theory predicted reflection height)

and the upper bound of the lower region is Hρ , one density scale height above z = 0. The upper
bound of the lower region was chosen to ensure that nearly all the momentum associated with the
initial wavepacket was contained in the lower region at initial times and that the waves were able to
propagate back into this region at late times. The transmission, reflection, and dissipation of waves
were assessed by evaluating MT, MU, MM, and ML at late times in simulations when they were found
to be near steady state. It was found that tmax = 4tr was a good assumption for the attainment of
steady state as measurements of transmission and reflection became constant after t � 2.5tr. These
late-time integrated total, upper-region, and lower-region momenta are denoted by M∞

T , M∞
U , and

M∞
L , respectively. The transmission of waves across the reflection level is thus defined in terms of

the transmission coefficient

T ≡ M∞
U

M∞
T

. (32)

Similarly, the reflection coefficient is defined to be

R ≡ M∞
L

M∞
T

. (33)

The relative deposition of momentum below the reflection level (between the upper and lower
regions) is given by

1 − (T + R). (34)

IV. QUALITATIVE RESULTS

As a test of the code, simulations are run for the case where waves are predicted to reflect at
zr = Hρ . Because the waves propagated only one density scale height before reaching the reflection
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FIG. 2. Wavepacket evolution in simulations with zr = Hρ and kHρ = 20 for ((a)–(c)) m = −0.4k and ((d)–(e)) m = −1.4k.
Results are shown for three times in each case, as indicated. Each plot shows (left) the anelastic-filtered vertical displacement
field normalized by horizontal wavelength, ξ̂ /λx (grayscale) and plots (right) of the wave-induced mean flow, U (black line)
compared with the horizontally averaged flow, 〈u〉 (gray line). The dashed lines indicate the predicted reflection height, zr,
and the dotted lines indicate the height, z�, at which weakly nonlinear effects are expected to become important. Explicitly,
z� = 3.2Hρ for m = −0.4k and z� = 2.6Hρ for m = −1.4k. The corresponding overturning heights in the absence of shear
as predicted by linear theory are (not shown) zb = 8.0Hρ and 5.5Hρ .

level, their amplitude is expected to remain sufficiently small that they should evolve according to
linear theory.

The results of simulations with m = −0.4k and m = −1.4k are shown in Figures 2(a)–2(c) and
2(d)–2(f), respectively. In both cases, Hρ = 20k−1. The initial states for the simulation results in
Figures 2(a)–2(c) are shown in Figure 1.

In both cases, zr (indicated by the dashed line) is below the height, z�, given by (19), at which
weakly nonlinear effects are expected to become significant (dotted line). Because z� > zr in both
simulations the wavepacket evolution is well-predicted by linear theory. In the case m = −0.4k,
as the waves approach the reflection level, the phase lines of the vertical displacement field tilt
upward (Figure 2(b)), and then tilt downward to the right after reflection (Figure 2(c)). The wave-
induced mean flow, U, and the difference of the horizontally averaged flow and the background,
〈u〉 ≡ UT − Ū , is shown to the right of each displacement field plot. In all cases, U and 〈u〉 are
small compared to cpx, indicating that there is insignificant Doppler-shifting of the waves by the
wave-induced mean flow. That both curves are close to overlapping initially is consistent with the
assertion that 〈u〉 is well represented by the correlations U ≡ −〈ξζ 〉. Upon reflection, the profile of
〈u〉 lies moderately above the profile of U because the wavefield is composed of a superposition of the
upward and downward waves. When the waves propagate well below the reflection level (not shown)
the curves come close to overlapping once more. Thus negligible momentum is irreversibly lost to
the background flow. The discrepancy between the wave-induced mean flow and the horizontally
averaged background flow at late times is due to viscosity which, though small, still dissipated the
waves to small degree.

If the reflection level is situated above the height at which weakly nonlinear effects be-
come important, the evolution of the wavepackets is qualitatively different. This is illustrated in
Figure 3, which shows the counterpart of the simulations in Figure 2 but with zr = 4Hρ . In both
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FIG. 3. ((a)–(f)) As in Fig. 2 but for simulations in which the background shear is weaker such that zr = 4Hρ . The values of
z� and zb are the same as those given in the caption of Fig. 2.

simulations, the reflection level is located above z� but is below the overturning level zb. Explicitly, in
Figs. 3(a)–3(c) for which m = −0.4k, z� = 3.2Hρ < zr = 4Hρ < zb = 8.0Hρ and in Figs. 3(d)–3(f)
for which m = −1.4k, z� = 2.6Hρ < zr = 4Hρ < zb = 5.3Hρ .

As the wavepacket with m = −0.4k approaches the reflection level (Figure 3(b)), the phase
lines tilt somewhat toward the vertical but, because the wavepacket is modulationally unstable, the
wavepacket narrows and grows in amplitude. The magnitude of the wave-induced mean flow grows
substantially, increasing to 0.16 cpx � 0.15 N/k over a distance of Hρ . From (16), the background
shear in this case is −s0 = −(N − ω)/(4kHρ) � −0.018N/(kHρ), which is smaller in magnitude
than the characteristic shear, ||dU/dz||, associated with the wave-induced mean flow. Thus the
wave-induced mean flow partially shields the wavepacket from the influence of the background
shear, permitting it to propagate above the reflection level. This becomes clear by time Nt = 600
(Figure 3(c)) when a relatively small portion of the wavepacket has reflected but the rest has
transmitted across the reflection level. At this time the horizontally averaged flow, 〈u〉, peaks well
above the reflection level with values comparable to cpx. U is small compared to 〈u〉 at this time
indicating that the difference in the mean horizontal flow from the background is due to irreversible
deposition of momentum from the wave to the background.

The corresponding simulation for a modulationally stable wavepacket is shown in
Figures 3(d)–3(f). Even though the amplitude envelopes of modulationally stable wavepackets
spread and do not grow as fast as predicted by linear anelastic theory, only a small portion of the
wavepacket reflects and undergoes downward propagation. Instead, the shear associated with the
wave-induced mean flow peaks just below the reflection level (Figure 3(e)) with a small portion of the
wavepacket transmitting and continuing upward propagation. The wave-induced mean flow below
zr at this time peaks at 0.49 cpx � 0.28/ N/k, changing over half a density scale height. The shear
associated with this is approximately equal to the background shear of magnitude s0 � 0.10N/(kHρ),
but not so large that the wavepacket is shielded from the effects of the background flow as in
Figs. 3(a)–3(c). Unlike the previous case, the wavepacket does not peak and continue upward
propagation. Long after reflection (Figure 3(f)) the majority of the momentum associated with the
wavepacket is irreversibly deposited to the background with an increase to the background mean
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FIG. 4. Time series of vertical profiles of the normalized mean flow, 〈u〉/cpx, from simulations with zr = Hρ and (a) m =
−0.4k, (b) m = −0.7k, and (c) m = −1.4k and with zr = 4Hρ and (d) m = −0.4k, (e) m = −0.7k, and (f) m = −1.4k. In all
cases kHρ = 20. Dashed and dotted lines represent the heights, zr and z�, respectively. The linear theory predicted breaking
heights (in the absence of nonuniform shear) are ((a) and (d)) zb = 8.0Hρ , ((b) and (e)) zb = 7.0Hρ , and ((c) and (f)) zb =
5.5Hρ . The breaking level is shown in (f) as the short-dashed line.

flow just below the reflection level due to the leading portion of the reflected wavepacket combining
with the upward-propagating trailing portion.

The transport and deposition of momentum is clearly illustrated by vertical time series 〈u〉, as
shown in Figure 4. Figures 4(a)–4(c) show three simulations for the case in which zr = Hρ < z�

so that weakly nonlinear effects remain insignificant. In particular, the time series in Figures 4(a)
and 4(c) correspond to the simulations shown in Figures 2(a)–2(c) and 2(d)–2(f), respectively.
Figures 4(d)–4(f) show corresponding time series from simulations with zr = 4Hρ > z�, with
Figures 4(d) and 4(f) corresponding to the simulations shown in Figures 3(a)–3(c) and 3(d)–3(f), re-
spectively. Figures 4(b) and 4(e) show the results from simulations of a marginally stable wavepacket
with m = −0.7k and zr = Hρ and 4Hρ , respectively.

In the simulations with z = Hρ , for which the waves remain small amplitude while reflecting,
the mean flow grows as the wavepacket approaches zr and then returns approximately to its initial
value after reflecting and returning to its initial height. Some asymmetry in the mean flow associated
with the upward- and downward-propagating wavepacket is observed in the case with m = −0.4k
as a result of linear dispersion (Fig. 4(a)): because the vertical extent of the incident wavepacket is
σ = 10k−1 = 4|m|−1 the wavepacket is more broad-banded, as compared to simulations with |m| =
0.7k and 1.4k.

In the three simulations with zr = 4Hρ , momentum is deposited to the background resulting
in irreversible acceleration of the mean flow in each case. In the modulationally unstable case with
m = −0.4k (Figure 4(d)), momentum deposition occurs shortly after the wavepacket crosses the
reflection level, though still well below the predicted breaking level (at zb = 8.0Hρ). The acceleration
of the background increases as the wavepacket continues to propagate upward into the lower-density
background until most of its associated momentum has dissipated. The maximum increase in flow
speed occurs near z = 5.5Hρ .

These results differ from those for simulations with m = −0.4k in the Boussinesq study of
Sutherland,17 in which large-amplitude wavepackets deposited their momentum near but below zr.
Here, because the waves grow anelastically, the increasing amplitude of the disturbance above the
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reflection level allows for the continual deposition of momentum with consequent increasing mean
flow speeds with height.

In the marginally stable case with m = −0.7k (Fig. 4(e)), the evolution of the mean flow is
similar to the modulationally unstable case except the height of the maximum mean flow deposition
occurs at a moderately lower height, z � 5Hρ . This is to be expected because, as the wavepacket
approaches the reflection level, the waves are Doppler-shifted to lower vertical wavenumbers and so
become modulationally unstable.

In the modulationally stable case with m = −1.4k, both momentum deposition and reflection
are evident after propagating above z� and reflecting at zr, as shown in Figure 4(f). In this case, some
background flow acceleration occurs near the reflection level but below the predicted breaking height
of zb = 5Hρ . Even though this wavepacket is modulationally stable, as the wavepacket reflects, the
leading edge of the wavepacket is superimposed upon the upward-propagating trailing edge and thus
amplitude is doubled at this location. Nonlinear effects are enhanced at the reflection level which
drives the wavepacket to breaking amplitudes.

V. QUANTITATIVE RESULTS

We crudely characterize the location of momentum deposition in simulations run with wide-
ranging parameters by considering the vertically integrated momentum measurements in three
domain regions according to (28), (29), and (31). Figure 5 shows how these change in time during a
simulation in which Hρ = 20k, m = −1.4k and (a) zr = 2Hρ and (b) zr = 4Hρ .

As expected from momentum conservation, MT (dotted line) remains constant for the duration of
the simulations. In both cases, the vertically integrated momentum in the lower domain, ML (dashed
line), is initially equal to MT because the entire wavepacket is in this region. As time progresses and
the wavepacket propagates upward toward the reflection level, momentum leaves the lower domain
and ML decreases while the momentum MM in the middle region increases.

For the simulation results in Figure 5(a), the wavepacket reaches the reflection level around Nt
= 100. At this time, a portion of the wavepacket extends evanescently across the reflection level
resulting in an increase of the vertically integrated momentum in the upper region, MU (solid line).
During reflection, MU and ML do not sum to MT. The difference is associated with the momentum
between the upper and lower regions (Hρ ≤ z ≤ zr). After reflection the wavepacket propagates
downward into the lower region once more as evident by the increase in ML and decrease in MU.
After Nt = 300, the vertically integrated momenta in each domain have reached steady state with
MT = M∞

T , ML = M∞
L , and MU = M∞

U for the remainder of the simulation. Even after propagating
over only two density scale heights, the waves grow sufficiently in amplitude that weakly nonlinear
effects became important. The wavepacket mostly reflects (similar to the fully linear simulation
with zr = Hρ , Figure 2(c)). However, at late times some momentum is permanently deposited
above the reflection level as indicated by the non-zero value of M∞

U = 0.78M∞
T . Furthermore,

M∞
U + M∞

L = 0.84M∞
T is less than M∞

T , indicating that 16% of the total momentum was deposited
between z = Hρ and zr.

For the results in Figure 5(b) (corresponding to the simulations shown in Figures 3(d)–3(f) and
4(f)) the wavepacket reflection level is zr = 4Hρ > z�, in which case anelastic growth to weakly non-
linear amplitudes is significant before the wavepacket reaches the reflection level. As in Figure 5(a),
when the wavepacket reaches the reflection level, a portion of the wavepacket extends across z =
zr. Here, however, the portion of the wavepacket that has crossed the reflection level irreversibly
deposits its momentum to the background locally accelerating the background winds. At late times,
M∞

U = 0.05MT is non-zero indicating permanent deposition of momentum above the reflection
level. In the lower region, M∞

L only reaches 25% of its original value. The non-zero difference,
M∞

T − (M∞
L + M∞

U ) = 0.61, is the fraction of incident momentum irreversibly deposited to the
background flow below the reflection level.

From the values of M∞
U , M∞

L , and M∞
T determined for a wide range of simulations, we compute

the transmission and reflection coefficients using (32) and (33), respectively. These are plotted in
Figure 6 along with values of 1 − (T + R), which is the relative amount of momentum lost to the
background between Hρ and zr. In all cases where zr = Hρ , T � 0 and R � 1. In these low zr/Hρ cases,
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upper domain – MU (solid) related to total momentum at Nt = 0, MT0, shown as a function of time for simulations with kHρ

= 20, m = −1.4k and the reflection height at (a) zr = 2Hρ and (b) zr = 4Hρ .

both z� and zb are significantly higher than the maximum amplitude reached by the wavepacket, as
seen in Figures 2 and 4(a)–4(c).

Figure 6(a) shows that in weaker shear (so that waves propagate higher before encountering
a reflection level and so become increasingly nonlinear due to anelastic growth), less momentum
is returned to the lower domain at late times. Instead, the wavepacket either transmits above the
reflection level or dissipates between z = Hρ and zr. Whether significant transmission above zr

occurs (Figure 6(b)) or momentum is deposited moderately below zr (Figure 6(c)) depends upon the
initial vertical wavenumber, as indicated by the different symbols on each curve.

Of the four relative vertical wavenumbers examined, the steepest decrease in the reflection
coefficient with increasing zr/Hρ occurs for the modulationally unstable case (m = −0.4k), with
only a small amount of reflection occurring for zr � 6Hρ . Up to 60% of the momentum is transmitted
above the reflection level (for zr = 4Hρ), but as the shear weakens and zr increases, the transmission
coefficient decreases and most momentum is deposited below the reflection level for z � 6Hρ .
Similar behavior is observed for the marginally stable case with m = −0.7k.
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FIG. 6. Coefficients of (a) reflection and (b) transmission, and (c) the fraction of wave momentum deposited to the background
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zr > zb. Different symbols are plotted for simulations with different values of m, as indicated in the legend in (a).

In the simulations with modulationally stable waves (m = −1.4k and −3k), the reflection
decreases less rapidly for m = −1.4k and much less rapidly for m = −3k. Transmission re-
mains small as zr/Hρ increases. The enhanced spreading and relative decrease in the wavepacket
amplitude gives a result closer to that predicted by linear theory. The decrease in reflection co-
efficient with increasing zr/Hρ is accounted for by increasing deposition of momentum moder-
ately below zr. In part this occurs because the breaking level, zb, predicted by linear theory in
the absence of shear also occurs below zr if zr/Hρ � 4Hρ . Dosser and Sutherland16 showed that
weakly nonlinear effects result in modulationally stable wavepackets breaking well above zb. But
this effect combined with wave reflections due to background shear results in momentum depo-
sition and heights near zr with more reflection and less momentum deposition occurring as |m/k|
increases.
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and zb � 5.3Hρ . In (b) z� � 2.1Hρ and zb � 3.8Hρ .

Further simulations were also run to examine how the horizontal wavelength relative to density
scale height affects transmission in the modulationally stable cases with m = −1.4k and m = −3k. In
the latter case we set the wavepacket width to be σ = 3k−1, which still ensures that the wavepacket is
quasi-monochromatic. kHρ ranged from 25 to 3 corresponding to the relative horizontal wavelength,
λx/Hρ , ranging from 0.3 to 2.

Figure 7 shows the computed reflection and transmission coefficients from simulations with the
reflection height fixed at zr = 6Hρ . Figure 7(a) shows the reflection and transmission coefficients
determined for simulations where σ = 10k−1 and m = −1.4k (as indicated by the upward triangles
in Figure 6 for the specific case with zr = 6Hρ). As k decreases (λx increases) relative to Hρ , greater
reflection but less transmission is observed. For a narrower wavepacket with σ = 3k−1 and m =
−3k, similar behavior was observed. In these cases the reflection coefficient is smaller indicating
that what does not transmit for the long wavelength cases deposits momentum near the reflection
level.
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VI. DISCUSSION AND CONCLUSIONS

The fully nonlinear anelastic equations were solved to examine the evolution of quasi-
monochromatic internal wavepackets in background uniform retrograde shear. If the reflection level
was situated at sufficiently low altitude that the wave amplitude remained small as it approached
the level, the wavepacket entirely reflected as predicted by linear theory. However, if it was situated
above the height, z�, at which weakly nonlinear effects become important, then the wavepacket
partially transmitted across the reflection level and some portion of the wavepacket permanently
deposited momentum to the background flow below the reflection level. If zr was well above z�,
all momentum for nonhydrostatic waves with |m| � 0.7k was deposited below zr even though zr <

zb. When waves are modulationally unstable, the wave-induced mean flow becomes so large that it
effectively shields the wavepacket from the effect of the background flow which, in turn, allows a
significant portion of the wavepacket to transmit through the reflection level and continue upward
propagation until anelastic growth becomes so large that the wave overturns. Conversely, when
waves are stable, the wavepacket either reflects linearly (when zr < z�) or deposits a significant
portion of momentum to the background flow just below the reflection level (when z� < zr < zb) due
to wave superposition. The wave-induced mean flow, its influence upon the modulational stability of
the wavepacket, and its transient modification of the background wind determined the transmission,
reflection, and relative momentum deposition coefficients.

Transmission was enhanced for modulationally unstable and marginally stable wavepackets
whose amplitude envelope narrowed and grew sufficiently to counteract the Doppler-shifting influ-
ence of the background wind. Waves that transmitted continue to be Doppler-shifted and deposited
their momentum over a vertical range above zr. If zr was very large, though still smaller than zb,
anelastic growth was so significant that waves dissipated before reaching the reflection level.

While Dosser and Sutherland16 showed that modulationally stable waves (with large |m/k|)
broke well above the breaking level predicted by linear theory, this study of waves in retrograde
shear showed enhanced reflection and deposition below zb even if zb > zr. This was due to transient
amplitude growth as the leading, downward-propagating flank of the wavepacket superimposed upon
the trailing, upward-propagating flank.

In order to make a more direct comparison between our numerical results and (more significantly
energy-containing) atmospheric internal waves, we examined the impact of momentum transmis-
sion, reflection and deposition upon increasing relative horizontal wavelength expressed through
decreasing kHρ . For kHρ � 6, corresponding to horizontal wavelengths λx � 8 km, reflection was
negligible with up to 20% of the momentum transmitting across the reflection level and the remainder
being deposited moderately below the reflection level.

At mid-latitudes in the northern hemisphere winter24 the typical shear and stratification in
the stratosphere is |s0| � 0.0018 s−1 and N ∼ 0.01 s−1. Taking Hρ = 8.4 km and considering
a wavepacket with initial vertical displacement amplitude approximately 1% of the horizontal
wavelength, corresponding approximations can be made for R and T, and for the altitude, zd, at
which peak acceleration of the background flow occurs due to momentum deposition from either
wave superposition or large-scale anelastic growth. These results are given in Table II.

For example, first consider an internal wave with m = −3k (ω � 0.003 s−1) at the tropopause.
If the horizontal wavelength is λx = 25 km, the predicted reflection height is 15 km above. Our
simulations show that all of the momentum will be reflected back toward the troposphere. Analogous
to the simulations shown in Figs. 2 and 6, the wavepacket in this scenario has not undergone sufficient
anelastic growth for nonlinear effects to become significant. Hence it is reasonable to predict that
no portion of the wavepacket will transmit above the reflection level.

Next, consider a wavepacket with m = −1.4k and λx = 84 km. Here, zr lies above z� but below
zb—similar to the simulation shown in Figs. 3(d)–3(f). Anelastic amplitude growth has become
significant and nonlinear effects are expected to take hold. As seen in Figs. 3(d)–3(f), 6, and 7,
little transmission or reflection is expected—in this case, only 14% transmission and 20% reflection.
Major momentum deposition is expected to take place just below zr due to superpositioning of
the wavepacket as it undergoes reflection. This can be clearly seen in a similar simulation in
Fig. 3(f). Hence, it would be expected that 66% of the wave momentum will be deposited 34 km
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TABLE II. Predicted reflection height (zr), predicted breaking height (zb), predicted height at which nonlinear effects are
expected to become significant (z�), estimated height of maximum irreversible mean flow acceleration due to overturning
(zd), estimated reflection coefficient (R), and transmission coefficient (T), given for a range of λx and for m = −1.4k and
m = −3k. Values of R and T are estimated by scaling the results plotted in Figures 6 and 7 to match typical stratospheric
conditions in northern hemisphere winter, for which s0 = 0.0018 s−1 and N = 0.01 s−1. In all cases the vertical extent of
the wavepacket is σ = 3k−1 and the wave amplitude at the bottom of the stratosphere (taken to be z = 0) is A = 0.05k−1 �
1% λx. No value of zd is given if no overturning and hence no irreversible mean flow acceleration occurs.

m = −1.4k m = −3k
λx (km) zr (km) zb (km) z� (km) zd (km) R T zr (km) zb (km) z� (km) zd (km) R T

25 9 45 31 1.0 0.0 15 32 17 1.0 0.0
42 16 45 31 16 0.90 0.01 25 32 17 25 0.78 0.01
59 23 45 30 23 0.61 0.05 36 32 17 32 0.23 0.10
84 35 44 28 34 0.20 0.14 51 32 16 32 0.05 0.03
101 44 44 26 44 0.17 0.05 62 32 16 32 0.0 0.01
118 53 44 26 44 0.05 0.0 73 32 15 32 0.0 0.0

above the tropopause, 20% will be reflected back toward the tropopause, and 14% will continue
upward propagation toward the stratopause.

Finally, consider a wavepacket with m = 3k and λx = 101 km. In this scenario, zb < zr indicating
that the wavepacket will become unstable well below the expected reflection height of 62 km. Similar
to simulations presented in Fig. 6 where zr = 8Hρ , it is expected that the wavepacket will become
unstable below zr and momentum deposition will take place near zb. In this case, it would be expected
that the wavepacket will deposit its momentum roughly 32 km above the tropopause with only a
small amount (1%) continuing to propagate upward.

While the reflection of internal waves can well be represented by 2D simulations, wave breaking
is an inherently three-dimensional phenomenon. However, 2D simulations have been shown to well-
capture the wave dynamics even during the early stages of wave breaking.25 The results do not
attempt to interpret, in detail, the dynamics of wave breaking but rather wave dynamics prior to
breaking and consequent momentum deposition.

The buoyancy frequency and shear was uniform for all simulations. However, in the atmosphere,
these change dramatically over very large amplitudes. Further research will use a fully nonlinear
numerical code to analyze wavepacket interactions in non-uniform background shear and with
non-uniform stratification. This research aims ultimately to provide more physically justifiable
wave drag parameterization schemes through measurements of momentum deposition heights and
strengths determined from fully resolved simulations of propagation and breaking.

APPENDIX: DERIVATION OF SCALED ANELASTIC EQUATIONS

Here we derive the formulae for the basic state fields solved by the numerical model. From the
anelastic approximation to the continuity equation, ∇ · (ρ̄u) = 0, it follows that one can write the
velocity components in terms of a mass streamfunction, ψ , according to

u = − 1

ρ̄

∂ψ

∂z
(A1)

and

w = 1

ρ̄

∂ψ

∂x
. (A2)

The spanwise vorticity is

ζ = ∂u

∂z
− ∂w

∂x
= − 1

ρ̄

[
∇2ψ + 1

Hρ

∂ψ

∂z

]
, (A3)

in which Hρ = −
(

ρ̄ ′
ρ̄

)−1
is the density scale height.
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Neglecting viscosity, the fully nonlinear momentum equations for an anelastic gas are

Du

Dt
= − ∂

∂x

(
p

ρ̄

)
(A4)

and

Dw

Dt
= − ∂

∂z

(
p

ρ̄

)
+ g

θ̄
θ. (A5)

Taking the curl of the momentum conservation equations, the equation for evolution of
vorticity is

Dζ

Dt
= − 1

Hρ

wζ − g

θ̄

∂θ

∂x
. (A6)

Neglecting thermal diffusion, the internal energy equation is

Dθ

Dt
= −w

d θ̄

dz
. (A7)

Rather than work with θ , we cast the internal energy equation more intuitively in terms of ξ ,
defined implicitly by

θ = −d θ̄

dz
ξ. (A8)

The quantity ξ well approximates the vertical displacement field if the displacement is much smaller
compared with the potential temperature scale height, Hθ . Likewise, we approximate d θ̄/dz as
locally constant upon substituting (A8) into (A7) to give

Dξ

Dt
= w. (A9)

Due to the exponential decrease of ρ̄, the basic state fields are expected to change exponentially
at leading order in linear theory. Accounting for this, we work with variables that do not exhibit such
exponential changes. These “hatted” variables are defined implicitly by

ζ (x, z, t) = ζ̂ (x, z, t)ez/2Hρ ,

�u(x, z, t) = �̂u(x, z, t)ez/2Hρ ,

θ (x, z, t) = θ̂ (x, z, t)ez/2Hρ ez/Hθ ,

ψ(x, z, t) = ψ̂(x, z, t)e−z/2Hρ ,

ξ (x, z, t) = ξ̂ez/2Hρ .

(A10)

Relationships for the above variables to the streamfunction can be found in Table I.
By applying the scalings in (A10) to (A6) and (A9), the evolution equations for ζ̂ and ξ̂ are

∂ζ̂

∂t
= ez/2Hρ

[
−ûζ̂x − ŵζ̂z − 3

2Hρ

ŵζ̂

]
+ N 2ξ̂x (A11)

and

∂ξ̂

∂t
= ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ

+ 1

Hθ

)
ŵξ̂

]
+ ŵ. (A12)

The final step is to include the background flow, Ū , in (A11) and (A12) giving

∂

∂t
ζ̂ = −Ū ζ̂x + ez/2Hρ

[
−ûζ̂x − ŵζ̂z − 3

2Hρ

ŵζ̂

]
+ N 2ξ̂x (A13)
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and

∂

∂t
ξ̂ = −Ū ξ̂x + ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ

+ 1

Hθ

)
ŵξ̂

]
+ ŵ. (A14)

Including diffusion in (A13) and (A14) gives (22) and (23), which are explicitly solved by the
numerical code.
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