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1.15.1 Representation of plane waves

Any small-amplitude disturbance can be represented by a superposition of perfectly
sinusoidal waves and its evolution can be described by tracking the individual
progress of each sinusoid. If the disturbance is a single sinusoidal wave that extends
to infinity, it is called a ‘plane wave’ or sometimes a ‘monochromatic wave’, a
metaphor referring to light waves of one frequency and, hence, one colour.

Mathematically a plane wave can be prescribed, for example, by

η(�x, t)= A0 cos(�k · �x−ωt), (1.104)

η(�x, t)= A0 sin(�k · �x−ωt), (1.105)

η(�x, t)=A0 exp[ı(�k · �x−ωt)], (1.106)

η(�x, t)= 1

2
A0 exp[ı(�k · �x−ωt)]+ cc. (1.107)

Here η could represent displacement or fluctuations of velocity components,
density, pressure, etc.

In all these forms, �x can be a vector in one, two or three dimensions depend-
ing upon the geometry of the waves under consideration. The quantities ω and
�k represent the frequency and wavenumber vector, respectively. In the first two
expressions A0 is the wave amplitude. In the last two expressions, A0 is a complex
number which is a measure of both amplitude and phase. The abbreviation cc in
the last expression denotes the ‘complex conjugate’ of the preceding term.

Frequency is measured in units of radians per unit time (e.g., s−1 for radians per
second). In terms of the wave period T , the (angular) frequency is ω= 2π/T . For a
frequency, ν, measured in cycles per unit time (e.g., cps for cycles per second), we
would replace ωt with 2πνt to describe the time-variation of η. To avoid writing
2π explicitly in the arguments to cos and sin, it is typical to write frequency in
terms of radians per time.

In three dimensions �k = (kx,ky,kz) in which kx, ky and kz are the components of
thewavenumber vector in the x-, y- and z-directions, respectively.Thewavenumber,
with units of radians per distance, measures the spatial extent of a periodic wave.
For example, kx ≡ 2π/λx, in which λx is the wavelength (the distance between
two successive crests) in the x-direction. Generally, the wavelength λ = 2π/|�k|
is the shortest distance between successive crests. Hence the magnitude of the
wavenumber |�k| is small for long waves and is large for short waves.

Typically, a positive frequency ω > 0 indicates that the waves advance forward
in time and the orientation of the wavenumber vector indicates the direction in
which the waves propagate through space. In particular, for ω > 0 waves move
rightwards in the x-direction if kx > 0 and move leftwards if kx < 0. However,
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there is some ambiguity in the description of waves: one could instead describe
leftward-moving waves by settingω< 0 and kx > 0. Effectively this corresponds to
observing rightward-propagatingwavesmoving backwards in time. By convention,
we will assume ω ≥ 0 when possible and use the wavenumber vector to denote
the propagation direction. We will see that in some cases we cannot do this. For
example, with deep interfacial waves in a two-layer fluid (see Section 2.3) we must
fix the sign of kx to be positive and describe rightward- and leftward-propagating
waves by ω > 0 and ω < 0, respectively.

The term ‘amplititude’ is sometimes used ambiguously to mean either the value
of the field at some position �x and time t or, specifically, the maximum value of
the field. Here we use ‘amplitude’ to mean the latter. In (1.104) and (1.105), A0

is the real-valued amplitude of η which, for example, could represent maximum
displacement or maximum fluctuation pressure. The two representations differ in
the phase of the waves they describe. In (1.104) the wave peaks at the origin at time
t = 0, whereas the wave given by (1.105) has zero value at that position, reaching
a peak a quarter-cycle later. This is illustrated in Figure 1.24a.

In (1.106) A0 is complex-valued and it is understood that the actual amplitude
(the value of η at any position �x and time t) is the real part of η. Thus if A0 =
A0r + ıA0i, the actual structure of η is A0r cos(�k · �x−ωt)−A0i sin(�k · �x−ωt). It is
more illuminating, however, to write A0 in polar form as

A0 = A0 exp(ıφ0), (1.108)

in which the magnitude A0 ≡ |A0| = (A0r
2 + A0i

2)1/2 is the amplitude, and the
argument

φ0 ≡ tan−1(A0i/A0r) (1.109)

x

A0 cos(kx) A0 sin(kx)

Re(A0e
ikx) = |A0| cos(kx + φ)

a)
A0i

A0r

φ

|A0|

b)

Fig. 1.24. a) Sketch ofwaves at time t= 0 represented by cosine, sine and complex
exponential functions. b) Representation of complex amplitude A0 = A0r + ıA0i
in complex Cartesian and polar co-ordinates.
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is the phase. Strictly speaking, if we treat (A0r ,A0i) as a vector in the complex
plane, then φ0 is the angle formed between this vector and the positive x-axis, as
shown in Figure 1.24b. Using (1.108), the structure of η given by the real-part of
the right-hand side of (1.106) is

η= A0 cos(�k · �x−ωt+φ0). (1.110)

In particular, if A0 = A0 is real and positive, then (1.109) shows that φ0 = 0 (or an
integer multiple of 2π ). If A0 = ıA0 with A0 real and positive, then φ0 = π/2 and
(1.110) becomes (1.105).

Although using (1.106) to describe waves seems unintuitive at first, its form is
preferable to (1.104) and (1.105) because it makes no explicit assumption about
the phase of the wave. The form (1.107) is more cumbersome but provides a useful
compromise between describing the wave field explicitly as a real function, while
still using a notation that does not explicitly prescribe the phase of the waves.
Summing a complex number with its complex conjugate gives twice the real part
of the number. Thus the definition of (1.107) is identical to taking the real part
of (1.106).

Instead of (1.107), some texts write η = A0 exp[ı(�k · �x − ωt)] + cc. In this
notation |A0| is the ‘quarter peak-to-peak amplitude’. Here, we consistently define
η by either (1.106) or (1.107), in which case |A0| is the more conventional ‘half
peak-to-peak amplitude’.

The complex representation also has the advantage that linear operators commute
with the process of taking real and imaginary parts while not changing the form
of the function upon which �x and t depend. For example, the x-derivative of the
real part of exp(ıkx) is d cos(kx)/dx =−k sin(kx). This equals the real part of the
x-derivative of exp(ıkx): �{ık exp(ıkx)} = −k sin(kx).

We will see that this is useful in solving coupled linear partial differential
equations in which the relative phases of the different fields in the equations are
unknown. This is particularly useful when computing the polarization relations,
which interrelate fields associated with waves. For example, the vertical veloc-
ity field, w, is related to the vertical displacement field, ξ , by w = ∂tξ . Assuming
ξ =Aξ exp[ı(kx−ωt)] andw=Aw exp[ı(kx−ωt)], the differential relation imme-
diately givesAw=−ıωAξ . Because−ı= exp(−ıπ/2), we see thatw lags in phase
by 90◦ from ξ and the amplitude of the vertical velocity field is |Aξ |ω.

The operation of taking the product ofwavefields (aswould be done, for example,
to compute cross-correlations or to derive equations for moderately large amplitude
waves) is nonlinear and so the representation of waves by (1.106) is inappropriate
and can lead to incorrect computations (see Section 1.15.8). Instead, it is useful to
represent their structure by (1.107).
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1.15.2 The dispersion relation

For all waves, the frequency depends upon the wavenumber through what is called
a dispersion relation. This describes how a wavepacket spreads, and hence dis-
perses, if waves of different wavelength travel at different speeds. If the waves
are sufficiently large amplitude that nonlinear effects cannot be neglected, then ω
is additionally a function of amplitude. In most of the discussion below we will
consider only small-amplitude waves.

Waves that travel at the same speed for all wavelengths are ‘nondispersive’.
Examples of such waves include light waves, sound waves and long waves on
shallowwater. The evolution of these waves is prescribed by the well-known ‘wave
equation’:

∂2η

∂t2
= c2∇2η. (1.111)

Here c is a constant and η(�x, t) represents the amplitude of the wave at position �x
and time t. The symbol∇2≡∇ ·∇ is the Laplacian operator, sometimes denoted by
the symbol �. In three-dimensional Cartesian co-ordinates ∇2 ≡ ∂x

2+ ∂y
2+ ∂z

2.
Straightforward substitution of (1.106) into (1.111), which amounts to taking a
Fourier transform, gives the dispersion relation for nondispersive waves

ω2 = c2|�k|2. (1.112)

We will see that short interfacial waves and internal waves in continuously strat-
ified fluid are dispersive. Their dispersion relation is not given by (1.112), but more
generally by

ω= ω(�k). (1.113)

For example, surface waves in deep water have the dispersion relation

ω2 = g|�k|, (1.114)

in which �k = (kx,ky).
As in (1.112) and (1.114), the dispersion relation forwaves in otherwise stationary

fluid is often given in terms of the squared frequency ω2. This indicates that two
types of waves are captured by the dispersion relations: those that propagate both
forwards and backwards in time.

1.15.3 Phase velocity

By definition, the speed at which wave crests move is called the phase speed. Of
course, there is nothing special about the wave crests: the motion of the trough or
of any point of constant phase suffices in the definition of phase speed. The phase
velocity describes the direction as well as speed of propagation.
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For a one-dimensional wave having structure in the x-direction alone, the phase
speed is cp ≡ ω/k = λ/T , meaning the crest moves one wavelength λ in the time
of one wave period T .

For waves having structure in two or three dimensions, the phase velocity can be
represented in one of twoways. In the first definition, which is standard, we imagine
we are sitting on a wave crest moving with the wave in a direction perpendicular
to the along-crest direction. In this perspective, the phase velocity is

�cp ≡ ω

|�k| k̂ =
ω

|�k|2
�k, (1.115)

in which k̂ ≡ �k/|�k| is the unit vector pointing in the direction of �k, as illus-
trated in Figure 1.25a. In particular, the x-component of the phase speed for a
two-dimensional wave is

cpx = ω
kx

kx
2+ ky

2
.

The phase speed is just the magnitude cp ≡ |�cp| = ω/|�k|.

y

x

2π
ky

2π
kx

�cp

k̂ = �k

|�k|

a) Snapshot

t

x

2π
ω

2π
kx

cPx = ω
kx

b) Time series

Fig. 1.25. a) Snapshot of plane waves with crests illustrated by solid lines and
troughs by dashed lines. The wavelengths in the x and y directions are indicated
by double-headed arrows; the unit wavenumber vector k̂, indicated by the single
arrow, is perpendicular to the crests; the phase velocity �cp, indicated by the double-
tailed arrow, is parallel to �k. b) A time series constructed by examining how the
flow evolves within the horizontal window indicated by the thin box in a). The
x-component of the phase speed, �cPx = ω/kx, is not necessarily equal to the x-
component of �cp.
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If instead we imagine we are sitting at a fixed position with wave crests moving
past, the speeds of the crests in the x, y, and z directions are, respectively

cPx = ω

kx
, cPy = ω

ky
, and cPz = ω

kz
. (1.116)

Here we have used an upper-case ‘P’ in the subscript to distinguish this definition
from that in (1.115). The definitions in (1.116) are useful when analysing time series
data either from observations or numerics, as illustrated in Figure 1.25b. It does
not make sense to compose the vector �cP from the components in (1.116) because
|�cP| does not equal the appropriate value for the phase speed, cp = ω/|�k|. This is
only the case for one-dimensional waves.

Using the dispersion relation, the phase speed can be expressed explicitly in terms
of the wavenumber alone. For example, using (1.112), one-dimensional shallow
water waves have phase speed cp = ±c, a constant for all wavenumbers. The
plus and minus signs correspond to rightward and leftward propagating waves,
respectively. For one-dimensional deep water waves with a dispersion relation
given by (1.114), the phase speed is cp = ±(g/k)1/2. So long waves (small k)
travel at faster speeds.

1.15.4 Group velocity

More dynamically important yet more difficult to perceive than the phase velocity
is the group velocity, �cg .This is the velocity at which energy is transported by
small-amplitude waves. The magnitude and direction of the group velocity are not
necessarily the same as those of the phase velocity, as illustrated in Figure 1.26. So
one should not look at the direction of propagation of wave crests to infer where the
energy is being transported. In particular, Section 3.3.4 shows that the group and
phase velocities of internal waves have different directions as well as magnitudes.

In Section 1.15.6 we will develop the mathematics used to describe the evolution
of the amplitude envelope of a spatially localized packet of waves. There we will
show that cg = |�cg| is the speed of the group of waves.

Elementary texts derive the group speed of one-dimensional waves by con-
sidering a superposition of two waves having wavenumbers k0 and k0 + k� and
respective frequencies ω0 ≡ ω(k0) and ω0+ω�. Assuming |k�| � |k|, the differ-
ence in frequencies is found from the second term of the Taylor-series expansion
of ω about k0:

ω� � ω′(k0)k�, (1.117)

in which the prime denotes the k derivative of ω.
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Fig. 1.26. a) The vector �cp indicates the speed and direction at which crests (solid
lines) and troughs (dotted lines) propagate within a wavepacket (enclosed by
dashed lines). This is not necessarily the same as the group velocity, �cg , which
indicates the speed and direction at which the wavepacket as a whole moves, as
illustrated in b).

Taking the amplitudes to be the same and arbitrarily matching their initial phase
at x= 0, the disturbance amplitude of the two waves is given by

η= A0 cos(k0x−ω0t)+A0 cos[(k0+ k�)x− (ω0+ω�)t]
� A0

{
1+ cos[k�(x−ω′(k0)t)]

}
cos(k0x−ω0t). (1.118)

In deriving the second expression, we have used (1.117) and a double-angle trigono-
metric identity to write the cosine of two angles as the sum of a product of cosines
and sines. The term involving a product of sines has been neglected under the
assumption that k� is small.

Equation 1.118 shows that the superposition of waves acts like a plane wave
of wavenumber k0 and frequency ω0, but whose amplitude changes in space and
time as

A(x, t)= A0
{
1+ cos[k�(x−ω′(k0)t)]

}
. (1.119)

This is the so-called ‘amplitude envelope’ of the wave. Thus we have shown that
the superposition of the two waves gives a disturbance in which crests move at the
phase speed cp = ω0/k0, but for which the peak of the amplitude envelope moves
at speed cg = ω′(k0), the group speed.

More generally, the group velocity determines how a wavepacket travels in one,
two or three dimensions. Mathematically, it is given by

�cg ≡∇�k ω, (1.120)
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Fig. 1.27. Time series showing the phase lines (solid and dotted) moving within
a wavepacket (dashed lines) for waves that are a) nondispersive and b) dispersive
with cg < cp.

in which ∇�k is the gradient operator that takes derivatives with respect to each

component of the wavenumber vector, �k. For example, the x-component of the
group velocity is cgx = ∂ω/∂kx.

For nondispersive waves, the group and phase velocity are identical: the
wavepackets move in the same direction and at the same speed as the wave crests,
as shown in Figure 1.27a. This is not the case for dispersive waves. For example,
the group velocity of one-dimensional, rightward-propagating deep water waves is
cg = (g/k)1/2/2= cp/2. In this case, the group moves in the same direction as the
wave crests but at half the speed. Crests advance from the back to the front of a
wavepacket during its propagation, as shown in Figure 1.27b.

1.15.5 Representation of wavepackets

A ‘wavepacket’ is a localized wavy disturbance. Typically this is a superposition
of waves having frequencies in a range about a central value, and phases are set so
that the amplitude of the wavepacket drops to negligibly small values away from
its centre. Such wavepackets are said to be ‘quasi-monochromatic’ because they
behave similarly to (monochromatic) plane waves with single frequency.

For example, a one-dimensional, small-amplitude wavepacket as it evolves over
time from a known initial condition can be written as the superposition of plane
waves by

η(x, t)=
∫ ∞

−∞
η̂(k)eı(kx−ωt) dk. (1.121)

Here, η̂(k) is the amplitude (per unit wavenumber) of waves with wavenumber k.
This can be determined explicitly from the initial conditions by the inverse Fourier
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transform

η̂(k)= 1

2π

∫ ∞

−∞
η(x,0)e−ıkx dx. (1.122)

Alternately, the spatial structure of the waves as established from known
variations of the amplitude at a boundary (x= 0, say) may be represented by

η(x, t)=
∫ ∞

−∞
η̂(ω)eı(kx−ωt) dω, (1.123)

in which

η̂(ω)= 1

2π

∫ ∞

−∞
η(0, t)eıωt dt. (1.124)

In these equations, we have defined the transforms so that a constant factor, in
this case 1/2π , appears only in the formulae for the inverse transforms (1.122)
and (1.124). To exploit symmetry, mathematicians sometimes define the transform
pairs with constant factors (2π)−1/2 leading each integral. We do not do this here
so that we can associate η̂ more directly with the half peak-to-peak amplitude of
the waves.

In some idealized studies, a wavepacket is conveniently represented by the prod-
uct of a plane wave with a smooth, non-negative function which is the ‘amplitude
envelope’. For example, a one-dimensional ‘Gaussian wavepacket’with peak value
at the origin is represented by

η(x,0)=A0 exp

[
− x2

2σ 2

]
eık0x. (1.125)

This is sketched in Figure 1.28. Here σ measures the width of the wavepacket
envelope consisting of waves with wavenumber k0. If the amplitude A0 = A0 is a

λx = 2π/k0

σ

A(x, 0)

η(x, 0)

a)
1/σ

k0

η̂(k)

b)

Fig. 1.28. a) A Gaussian wavepacket with initial amplitude envelope A(x,0) =
|A|exp(−x2/2σ 2) containing waves with wavenumber k0. b) The Fourier trans-
form of this wavepacket is peaked about wavenumber k = k0. The width of the
peak narrows as σ increases but the area under the curve remains constant.
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real number, then the actual structure of η, given by the real part of the right-hand
side of (1.125), is a Gaussian times a cosine function.

This wavepacket can be thought of as a superposition of waves having non-
negligible amplitude only for a range of wavenumbers near k0. This is revealed by
the inverse Fourier transform of η(x,0) through (1.122):

η̂(k)= (
√
2πσ)A0 exp

[
−1

2
σ 2(k− k0)

2
]
. (1.126)

The range ofwavenumberswith significant amplitude ismeasured by 1/σ , as shown
in Figure 1.28b. In the limitσk0→∞, thewavepacket is a planewave inwhich only
waves with wavenumber equal to k0 have significant amplitude. The corresponding
Fourier transform (1.126) becomes a Dirac delta function: η̂(k) = A0 δ(k − k0).
Substituting this into (1.121) gives η=A0 exp[ı(k0x−ω(k0)t)], as expected.

For σk0� 1, thewavepacketmore closely resembles a ‘wave-pulse’than a group
of waves. Such waves are not quasi-monochromatic and are usually not considered
in the theory of wavepacket propagation.

1.15.6 Plane wave and wavepacket evolution equations

Knowing the dispersion relation, we can formulate a differential equation that
describes the evolution of the waves. More generally, one can determine how
the amplitude envelope of a quasi-monochromatic wavepacket translates and dis-
perses in time. The equation that describes the latter process for dispersive waves
is known as ‘Schrödinger’s equation’. Although best known for its application
in quantum mechanics, generally it is a formula that describes the evolution of
dispersive wavepackets.

We begin by showing how to derive a differential equation for the evolution
of plane waves given the dispersion relation. This amounts to transforming the
equations from frequency space (in ω and �k) to real space (in t and �x). For waves
in the form (1.106), we see that time derivatives give ∂tη = −ıωη and spatial
derivatives give ∇η= ı�kη. So, in going from real space to wavenumber space, we
can simply replace derivatives with algebraic quantities: ∂t →−ıω and ∇ → ı�k.
We follow the same procedure going backwards to convert a dispersion relation into
a differential equation: ω→ ı∂t and �k →−ı∇. Thus for one-dimensional waves
with dispersion relation ω = ω(kx), the differential equation describing the time
evolution of the waves is given by[

ı
∂

∂t

]
η=

[
ω

(
−ı ∂

∂x

)]
η, (1.127)

in which η(x, t) represents the structure of the waves in real space.
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For example, the one-dimensional analogue of (1.112) gives the dispersion rela-
tion of nondispersive waves: ω=±ckx. The upper sign corresponds to rightward-
propagating waves and the lower sign to leftward-propagating waves. Then (1.127)
gives the differential equation describing their evolution: ı∂tη=±c(−ı∂x)η. This
is simplified to give

∂η

∂t
± c

∂η

∂x
= 0. (1.128)

This advection equation is the one-dimensional analogue of (1.111), separately
describing waves propagating rightwards with speed +c and leftwards with
speed −c.

Next we derive an equation for the evolution of a wavepacket in an unbounded
domain. We suppose the structure in terms of η can be written as the Fourier
transform

η(x, t)=
∫ ∞

−∞
η̂(k)eı(kx−ωt) dk. (1.129)

To ensure η is real, we insist that η̂(−k) = η̂!(k), in which the star denotes the
complex conjugate.

Initially, the structure of η can be represented by

η(x,0)=A(x,0)eık0x, (1.130)

in which A is the possibly complex-valued amplitude envelope containing waves
with wavenumber k0. For example, A(x,0)=A0 exp[−x2/2σ 2] for the Gaussian
wavepacket in (1.125). Here it is understood that η is given by the real part of the
expression on the right-hand side of (1.130).

The initial condition (1.130) together with (1.129) implicitly defines η̂ through

A(x,0)=
∫ ∞

−∞
η̂(k)eı(k−k0)x dk. (1.131)

As before, η̂ can be written explicitly in terms of A(x,0) by the inverse Fourier
transform except with k replaced by k− k0.

For example, Figure 1.28 shows a Gaussian wavepacket and its Fourier
transform. The initial amplitude is A0 = |A(0,0)| and its width is σ . For quasi-
monochromatic waves, we assume σk0� 1. In this case the Fourier transform of
(1.130) is sharply peaked about wavenumbers with k � k0.

If the waves are quasi-monochromatic initially, we may assume they remain
quasi-monochromatic as the wavepacket evolves. Only the amplitude envelope,
A(x, t), will change, albeit slowly compared with the wave period. We therefore
wish to develop an equation describing the evolution of A(x, t) from which the
structure η(x, t) of the waves can then be determined from

η(x, t)=A(x, t)eı[k0x−ω(k0)t]. (1.132)
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Substituting (1.132) into (1.129) and multiplying both sides by exp{−ı[k0x−
ω(k0)t]} gives an integral equation for A:

A(x, t)=
∫ ∞

−∞
η̂(k)eı[(k−k0)x−(ω(k)−ω(k0))t] dk. (1.133)

Because the Fourier transform, η̂(k), of the wavepacket is sharply peaked about
wavenumbers k � k0, the integrand of (1.133) is non-negligible only in a small
range about k0.Thuswe need only be concernedwith the behaviour of the dispersion
relation near k � k0, which can be found through a Taylor-series expansion:

ω(k)� ω(k0)+ω′(k0)(k− k0)+ 1

2
ω′′(k0)(k− k0)

2. (1.134)

Here, the primes denote k-derivatives of ω, and we have chosen to truncate the
Taylor series in ω at second order in (k− k0).

Substituting (1.134) into (1.133), taking x- and t-derivatives, and comparing
terms we arrive at the following approximate equation for A:

∂A
∂t
�−ω′ ∂A

∂x
+ ı

1

2
ω′′ ∂

2A
∂x2

. (1.135)

The first term on the right-hand side of (1.135) indicates that the wavepacket
translates at the group speed cg =ω′(k0). Typically, (1.135) is further simplified by
a change of co-ordinates to a frame translating at speed cg , which has the effect of
eliminating this term. Explicitly defining X = x− cgt, (1.135) becomes

∂A
∂t
�+ ı

1

2
ω′′ ∂

2A
∂X 2

. (1.136)

This is Schrödinger’s equation.
The right-hand side of (1.136), or equivalently the last term on the right-hand

side of (1.135), represents the leading-order effect of dispersion. This describes
how the wavepacket may change shape as it propagates because waves with dif-
ferent wavenumbers propagate at different speeds if they are dispersive. Typically,
dispersion has the effect of widening the wavepacket while its maximum amplitude
gradually decreases.

The discussion in this section has been confined to small-amplitude waves. Con-
sequently, equation (1.136) is sometimes called the linear Schrödinger equation,
emphasizing that the equation is linear and also that it captures only the linear
dispersion of small-amplitude waves. The extension of this equation to include
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moderately large-amplitude effects results in the nonlinear Schrödinger equation.
Its derivation and interpretation are described in Section 4.2.3.

1.15.7 Wave modes

The complex-exponential representation of waves given by (1.106) is appropriate
particularly for propagatingwaves in an unboundedmedium. If physical boundaries
or ambient conditions (as in a wave duct) confine the waves to a finite-sized region,
it is often more useful to describe the waves in terms of modes. Wave modes are
sometimes called ‘standing waves’, meaning that as the crests move up and down
the positions of the nodes between them remain stationary.

One-dimensional, horizontally propagating wave modes can be thought of as the
superposition of two propagatingwaves both having the same frequency and spatial
structure, but moving in opposite directions with locked-in phase at the boundaries.
Thus, for example, the superposition of rightward- and leftward-propagating waves
represented by (1.104) in one dimension is the wave mode

Acos(kx−ωt)+Acos(−kx−ωt)= 2Acos(ωt)cos(kx). (1.137)

This represents a stationary wave with spatial structure given by cos(kx) but whose
amplitude changes in time according to 2Acos(ωt). The variations in time and space
have explicitly been separated.

A one-dimensional wave mode is generally represented by

η(x, t)= η(x)cos(ωt+φ0), (1.138)

in which η is a real function describing the spatial structure and amplitude of the
wave and φ0 is an arbitrary but constant phase factor. One could describe the dis-
placement of waves by Acos(kx), for example, in which A represents the maximum
vertical displacement of the surface. The wavenumber k varies continuously if the
domain is infinitely large, but it can hold only a discrete set of values if the domain
is constrained by requiring 0 ≤ x ≤ L. In this case, the allowable values of k are
kn= nπ/L for n= 1,2, . . . The zeroth mode of cosine-shaped waves is constant and
so is neglected.

The dispersion relation ω ≡ ω(k) is the same whether or not the domain is
bounded. Because k = kn can hold only a discrete set of values in a bounded
domain the frequency ωn ≡ ω(kn) is likewise discrete-valued.

With the co-ordinate system set up with the origin at one of the boundaries,
cosine functions are appropriate if the slope of the field is required to be zero at
the boundary. These are called Neumann boundary conditions, and are used, for
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Fig. 1.29. Lowest wave-like modes of one-dimensional waves in a finite-sized
domain. Their structure, η(x), is represented by cosine functions if the side-wall
boundary condition requires zero slope (zero Neumann boundary conditions). It is
represented by sine functions if the boundary condition requires zero value (zero
Dirichlet boundary conditions).

example, to describe the vertical displacement of small-amplitude waves in a box.
Sine functions are appropriate for Dirichlet boundary conditions, which require the
value of the field to be zero at the boundary. These would be used, for example, to
describe the horizontal velocity field of laterally bounded waves.

The left-hand column of Figure 1.29 shows mode 1 and 2 for laterally bounded
cosine-shapedwaves and the right-hand column shows thesemodes for sine-shaped
waves. The lowest mode has a wavelength that is twice the extent of the domain
while exactly one wavelength of mode-2 waves fills the domain.

Any disturbance in a bounded domain can be written as a sum of modes. If the
disturbance must have zero slope conditions at the boundaries, it is written as a
superposition of cosine functions using the Fourier cosine series. If the disturbance
is necessarily zero at the boundaries, then the Fourier sine series is used.

In our discussion of internal waves in Section 3.5, we will see that in a domain
with sloping sides the description of waves as a superposition of modes is not so
practical and the use of attractors gives a more useful description.

1.15.8 Cross-correlations

Cross-correlations help to diagnose the transport properties of waves. For exam-
ple, the vertical transport of mass by waves is characterized by computing the
cross-correlation between the density field, ρ, and the vertical velocity field, w:
if this correlation is zero, the waves do not transport mass; if positive, mass is
transported upwards; if negative, mass is transported downwards.
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For spatially periodic one-dimensional waves, the cross-correlation between
fields η and ξ is denoted by 〈ηξ〉 in which

〈ηξ〉 ≡ 1

λ

∫ λ

0
η(x)ξ(x)dx. (1.139)

Here λ= 2π/k is the horizontal wavelength corresponding to wavenumber k. For
example, if η = Aη cos(kx) and ξ = Aξ cos(kx), the correlation of the two fields is
〈ηξ〉 = AηAξ /2.

Although (1.139) is given as a spatial average, the cross-correlation canbedefined
as an average over one period rather than one wavelength. For plane waves defined
in space and time, it turns out that it does not matter whether the averaging is done
over a wavelength or over a period; the result is the same. Putting η= Aη cos(kx−
ωt) and ξ = Aξ cos(kx−ωt) in (1.139) still gives the correlation 〈ηξ〉 = AηAξ /2.

If η and ξ represent the same field, (1.139) is called the autocorrelation. Its square
root is the root-mean-square average from which one can determine the amplitude
of the field by multiplying by 21/2.

Some shortcuts are possible in the computation of (1.139). For example, suppose
η and ξ are the real parts of Aη exp(ıkx) and Aξ exp(ıkx), respectively. Then

〈ηξ〉 = 1

λ

∫ λ

0

[
1

2

(
Aηeıkx+ cc

)][
1

2

(
Aξeıkx+ cc

)]
dx

= 1

4λ

∫ λ

0
AηAξe2ıkx+AηAξ

!+Aη
!Aξ +Aη

!Aξ
!e−2ıkx dx. (1.140)

Here cc and the star superscript denote the complex conjugate. Note that we need
to represent the fields explicitly as real quantities through (1.107) because taking
the product of fields is a nonlinear operation: the real part of their product is not
the product of the real parts.

The first and last expressions in the integrand are periodic in x with period λ

and so their integral is zero. The middle two terms are constant (in fact, one is the
complex conjugate of the other) and so these can be pulled outside the integral.
Thus, without resorting to applying trigonometric identities in the integrand, we
immediately arrive at a succinct formula for the correlation of two fields associated
with a plane wave:

〈ηξ〉 = 1

4

(AηAξ
!+ cc

)= 1

2
�(AηAξ

!
)= 1

2
�(Aη

!Aξ

)
, (1.141)

in which �(Z) takes the real part of Z.
One immediate consequence of (1.141) is that the cross-correlation is zero

between two fields that are out of phase by 90◦. In particular, if η =
�{Aη exp(ıkx)} ∝ cos(kx) and ξ =�{−ıAξ exp(ıkx)} ∝ sin(kx), then 〈ηξ〉 = 0.


