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On the other hand, if the term inside the square root is negative, then cg
A is

complex-valued, meaning that weakly nonlinear effects cause the wavepacket enve-
lope to grow exponentially in time. Such waves are said to be ‘modulationally
unstable’.

The formula (4.35) is used to give a mathematical definition for modulational
stability:

modulationally stable waves: ω2
∂2ω0

∂k2
> 0

modulationally unstable waves: ω2
∂2ω0

∂k2
< 0.

(4.36)

The criterion depends upon the rate of change with the wavenumber of the group
velocity predicted by linear theory and upon the order-amplitude-squared correction
to the dispersion relation.

Modulational instability does not imply wave breaking. It means only that weakly
nonlinear effects act initially within a wavepacket to increase the maximum value of
its amplitude envelope. The consequent evolution depends upon the fully nonlinear
dynamics of the waves in question. For example, depending upon the disper-
sion relation and the initial wave amplitude, finite-amplitude waves can transfer
energy back and forth between different frequencies, through what is known as the
‘Fermi–Pasta–Ulam’recurrence phenomenon or, for deep water waves in particular,
‘Benjamin–Feir’ instability.

4.3 Weakly nonlinear interfacial waves

In Section 2.3.2 we examined the structure and dispersion relation associated with
small-amplitude waves at the interface of a two-layer fluid with infinitely deep
upper and lower layers. Here we will apply the general approach outlined above
to examine how the structure and dispersion relation is modified when the wave
amplitude is not negligibly small.

4.3.1 Theory for interfacial waves in infinitely deep fluid

As in Section 2.3.2, we suppose the background density profile is given by

ρ̄(z)=
{
ρ1 z ≥ 0
ρ2 z < 0,

(4.37)

and we let ϕ and φ represent the velocity potentials in the upper and lower layers,
respectively, as shown in Figure 4.1. The vertical displacement of the interface is
represented by η.
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η

ϕ , ρ1

φ , ρ2

z

Fig. 4.1. Schematic illustrating the displacement η of the interface between two
infinitely deep layers of fluid. The upper fluid has density ρ1 with a velocity
potential φ1, and the lower fluid has density ρ2 with a velocity potential φ2.

The motion within each layer due to the passage of finite-amplitude interfacial
waves is governed by Laplace’s equations (2.72). We seek solutions in the x–z
plane that are horizontally periodic with wavenumber k and which are bounded
as z → ±∞. Although the partial differential equations are linear, finite amplitude
effects are captured by the nonlinear interface conditions (2.73) and (2.74), here
with φ1 replaced by ϕ and φ2 replaced by φ.

Isolating η in the first of these conditions gives

g(ρ2 − rho1)η=
[
ρ1

(
∂ϕ

∂t
+ 1

2
|∇ϕ|2

)
−ρ2

(
∂φ

∂t
+ 1

2
|∇φ|2

)] ∣∣∣∣
z=η

. (4.38)

The remaining interface condition gives two equations:

∂ϕ

∂z

∣∣∣∣
z=η

= ∂φ

∂z

∣∣∣∣
z=η

(4.39)

and

∂φ

∂z

∣∣∣∣
z=η

=
(
∂

∂t
+∇φ · ∇

)
η

∣∣∣∣
z=η

. (4.40)

Another condition could be posed by replacing φ with ϕ in (4.40), but this adds no
new information.

Assuming that η is small but not negligibly so, we perform a Taylor-series expan-
sion about η = 0 for each of the interface conditions (4.38), (4.39) and (4.40).
Generally, for a function f (x,z, t) which is smooth near z = 0 we can write

f |z=η � f |z=0 + η
∂f

∂z

∣∣∣∣
z=0

+ 1

2
η2 ∂

2f

∂z2

∣∣∣∣
z=0

+ . . . (4.41)

In particular,
φ(x,η, t)� φ(x,0, t)+ηφz(x,0, t)+ . . . (4.42)

Following the methodology described in Section 4.2.2, we now use perturbation
theory for differential eigenvalue problems to determine how the structure and
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frequency of the waves vary with amplitude. We expand η, ϕ, φ and the squared
frequency ω2 as power series in A0 using (4.13) so that

η= A0

(
η0 + A0η1 + A0

2η2 + . . . ,
)

,

ϕ = A0

(
ϕ0 + A0ϕ1 + A0

2ϕ2 + . . . ,
)

,

φ = A0

(
φ0 + A0φ1 + A0

2φ2 + . . . ,
)

,

ω2 = ω0
2
(

1 + A0
2σ2 + . . .

)
.

(4.43)

Arbitrarily, we can treat A0 as the vertical displacement amplitude. Though it would
be more rigorous to use the nondimensional amplitude α= kA0 as our perturbation
parameter, it is sufficient here to use A0 and then extract terms in successive powers
of A0, as done in Section 4.2.2. The functions ηi, ϕi and φi are defined to be
independent of A0 so that these functions and their derivatives are of order unity.

Substituting the expansions for ϕ and φ into Laplace’s equation for the upper and
lower layers and extracting terms at successive powers of A0 gives the sequence of
partial differential equations ∇2ϕi = 0 and ∇2φi = 0. The subscript i = 0,1,2, . . .
corresponds to successive orders in the perturbation expansion.

At leading order, for which terms are of order A0, we seek horizontally periodic,
vertically bounded solutions of ∇2ϕ0 = 0 and ∇2φ0 = 0, subject to the leading-
order terms of the interface conditions (4.38), (4.39) and (4.40). Eliminating η0

from these gives a matrix operator equation in ϕ0 and φ0 alone:

L0 �φ0

∣∣∣
z=0

= 0, (4.44)

in which

L0 ≡
(

∂z −∂z

ρ1ω0
2 ρ2(g′∂z −ω0

2)

)
and �φ0 ≡

(
ϕ0

φ0

)
. (4.45)

The first row comes from (4.39) after expanding ϕ and φ using (4.41). The second
row comes from combining the linearized forms of (4.38) and (4.40) to eliminate η.
The second time derivatives in the result are replaced with −ω2 and this is expanded
using the last expression in (4.43).

From (4.38), the leading-order equation defining the vertical displacement in
terms of �φ0 is

η0 = − 1

ρ2g′

[
ρ1
∂ϕ0

∂t
−ρ2

∂φ0

∂t

] ∣∣∣∣
z=0

. (4.46)
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Just as we found in Section 2.3, the eigensolutions for small-amplitude interfacial
waves are given by

η0 = cos(kx −ωt)

ϕ0 = −ω
k

e−kz sin(kx −ωt), z > 0

φ0 = ω

k
ekz sin(kx −ωt), z < 0,

(4.47)

in which

ω2 = ω0
2 = ρ2 −ρ1

ρ1 +ρ2
gk. (4.48)

Here the structure of the waves is represented by the actual values rather than
as complex exponentials and the phase has been chosen so that η = A0η0 has its
maximum value A0 at x = t = 0.

At the next highest order the interface conditions can be written

L0 �φ1

∣∣∣
z=0

= �N1(ϕ0,φ0,η0)

∣∣∣
z=0

, (4.49)

in which L0 is defined as in (4.45) and the forcing due to quadratic interactions
between the leading-order fields is given by

�N1 =
⎛
⎜⎝

−η0∂z[∂zϕ0 − ∂zφ0]
−η0∂z[ρ1ω0

2ϕ0 +ρ2(g′∂z −ω0
2)φ0] +

ρ1∇ϕ0 · ∇ϕ0t −ρ2∇φ0 · ∇φ0t +ρ2g′∇φ0 · ∇η0

⎞
⎟⎠ . (4.50)

From (4.44) and (4.45), it follows immediately that both terms within square brack-
ets in (4.50) are zero. Furthermore, with substitution of the leading-order solutions
of (4.48) into the remaining nonlinear terms in (4.50), we find that both expressions
in the vector are identically zero. Therefore, �φ1 is independent of �φ0, and so we set

ϕ1 = φ1 = 0. (4.51)

However, η1 is not independent of �φ0. At this order of A0, the power series
expansion of (4.38) gives

ρ2g′η1 =
[
ρ1

(
η0∂ztϕ0 + 1

2
|∇ϕ0|2

)
−ρ2

(
η0∂ztφ0 + 1

2
|∇φ0|2

)]∣∣∣∣
z=0

.

Using (4.47), we find

η1 = 1

2
k
ρ2 −ρ1

ρ1 +ρ2
cos2(kx −ωt). (4.52)
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The next order in the perturbation expansion introduces the order A0
2 correction

to the squared frequency. Thus, by analogy with (4.20), the interface conditions are
written [

L0 �φ2 + L2 �φ0

]∣∣∣
z=0

= �N2(ϕ0,φ0,η0,η1)

∣∣∣
z=0

, (4.53)

in which

L2(σ2)≡
(

0 0
ρ1ω0

2σ2 −ρ2ω0
2σ2

)
. (4.54)

The nonlinear terms in �N2 are either cubic in the leading-order terms or involve
products of η1 with the leading-order terms. As in the simplification of (4.50), some
of the terms can immediately be set to zero. After extensive algebra the remaining
terms can be written as a superposition of functions involving sin(kx−ωt), cos(kx−
ωt), sin 3(kx −ωt) and cos3(kx −ωt).

The terms proportional to sin(kx −ωt) and cos(kx −ωt) are resonant with the
linear term L0φ2 and would result in the unphysical growth of the waves over
time. But these secular terms can be eliminated with the appropriate choice of σ2.
Explicitly, we find the correct choice that gets rid of the secular terms is

σ2 = ρ1
2 +ρ2

2

(ρ1 +ρ2)2
A0

2k2. (4.55)

Therefore, to this order accuracy the dispersion relation is

ω2 = gk
ρ2 −ρ1

ρ2 +ρ1

(
1 + ρ1

2 +ρ2
2

(ρ1 +ρ2)2
A0

2k2
)

. (4.56)

We next compute the correction to ϕ, φ and η at this order. In particular, together
with (4.47) and (4.52), the interfacial displacement accurate to amplitude-cubed is

η= A0 cos(kx −ωt)+ 1

2
A0

2k
ρ2 −ρ1

ρ1 +ρ2
cos2(kx −ωt)

+ 3

8
A0

3k2
(
(ρ2 −ρ1)

2 − 4ρ1ρ2/3

(ρ1 +ρ2)2

)
cos3(kx −ωt).

(4.57)

The following sections examine the structure and dispersion of weakly nonlinear
interfacial waves in the limit of deep surface waves and of Boussinesq interfacial
waves.

4.3.2 Deep water waves

Because the density of air is much less than that of water, the dispersion relation
and structure of deep water waves is found by taking the limit ρ1 → 0 in (4.56) and
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(4.57), respectively. Explicitly, their dispersion relation is given by

ω2 = gk
(

1 + A0
2k2
)

. (4.58)

As for small-amplitude waves, it is understood that k > 0 in (4.58) and that the
directionality of the waves is set by the sign of ω. Without loss of generality,
we assume ω > 0 corresponding to rightward-propagating waves. Explicitly, ω �√

gk
(
1 + A0

2k2/2
)
.

If A0k � 1, (4.58) reduces to the dispersion relation of small-amplitude deep
water waves as given by (2.18). The frequency and phase speed of the waves
increases with amplitude. The group velocity is modified according to (4.35) in
whichω0 = (gk)1/2 andω2 = (gk5)1/2/2. But computing the term inside the square
root on the right-hand side of (4.35), we find

ω2ω0
′′ = −1

8
gk. (4.59)

Because k is strictly positive this expression is always negative. Therefore deep
water waves of all wavenumbers are modulationally unstable. Even infinitesimally
small-amplitude wavepackets will initially grow in amplitude, though at a very
small growth rate compared to the frequency.

Taking the first two terms in (4.57), the surface displacement of moderately
large-amplitude deep surface waves is

η� A0

[
cos(kx −ωt)+ 1

2
A0k cos2(kx −ωt)

]
. (4.60)

At crests the two terms superimpose to increase the surface displacement. Con-
versely, at troughs they superimpose so that the downward displacement is not so
great. That is, finite-amplitude effects act to flatten the troughs and sharpen the
crests, as illustrated in Figure 4.2. The top two graphs show the structure of waves
with small and moderately large amplitude.

As the amplitude A0 becomes larger, it is necessary to compute increasingly
higher-order terms in the Fourier cosine series representation for A0. The ampli-
tude is limited, however. As first shown by Stokes, at a critical value of A0 the
wave crests develop sharp peaks which form an angle of 120◦ across the cusp, as
shown in Figure 4.2c (see Exercises). The crest-to-trough distance in this case is
approximately 0.44k−1 � 0.071λ. For still larger-amplitude waves, the crest spills
and the wave breaks.

In idealized circumstances, the weakly nonlinear structure of a train of deep
water waves is also modified through development of periodic cusping along the
span of the waves. Such dynamics have been neglected here but are discussed in
references cited in Appendix A.
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a)

b)

c)
120◦

Fig. 4.2. Comparison of the surface displacement structure of a deep water
wave whose amplitude is a) small b) moderate and c) at the point of breaking.
The structure of the small- and moderate-amplitude waves is given by (4.60). The
large-amplitude wave has a crest-to-trough distance of 0.44k−1 � 0.071λ and the
cusps at their crests form a 120◦ angle. Note, the aspect ratios of the plots are not
to scale.

4.3.3 Deep interfacial plane waves

We now consider the motion of the interface between two fluids of comparable den-
sity for which the upper and lower layers are infinitely deep. Taking the Boussinesq
limit ρ1 → ρ2

− in (4.56), the dispersion relation becomes

ω2 � 1

2
g′k

(
1 + 1

2
A0

2k2
)

, (4.61)

in which the reduced gravity g′ is given by

g′ ≡ g
ρ2 −ρ1

ρ2
. (4.62)

As for deep water waves, finite-amplitude effects act to increase their frequency
and phase speed, and the group velocity (4.35) is modified by an imaginary term
proportional to amplitude, meaning that the waves are modulationally unstable.

The structure of the waves is not purely sinusoidal when they grow to large
amplitude. Taking the Boussinesq limit of (4.57), the surface displacement is

η= A0

[
cos(kx −ωt)− 1

8A0
2k2 cos3(kx −ωt)

]
. (4.63)

Note that the order A0
2 term vanishes in the Boussinesq limit so that, unlike the for-

mula (4.60) for deep water waves, the leading-order finite-amplitude correction to
the small-amplitude wave structure is of order A0

3. This has a number of interesting
implications.

First, there is no bias for the waves to have sharp crests and shallow troughs,
as was the case for deep water waves. Instead, both the crests and troughs of
finite-amplitude interfacial Boussinesq waves are flatter than their small-amplitude
sinusoidal counterparts, as shown in Figure 4.3. This symmetry is anticipated
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a)

b)

c)

Fig. 4.3. Comparison of the structure of interfacial Boussinesq waves at a) small,
b) moderate and c) large amplitude.

because in the Boussinesq approximation the equations of motion are invariant
upon reflection in z.

On the other hand, because the finite-amplitude correction is of order A0
3, in

comparison with deep surface waves interfacial waves would have to get to quite
large amplitude before the flattening of crests and troughs becomes evident. In real-
ity, they are unlikely to occur to any significant degree because of other dynamics
that occur at finite amplitude. In Section 2.3.2 we found that the fluid moves left-
wards above and rightwards below the interface of a rightward-advancing wave
crest. Thus the mechanism for interfacial wave breaking is different than that for
deep surface waves: their amplitude is limited not by the development of cusped
peaks but by the development of small-scale shear instabilities as discussed, for
example, in Section 2.6.3.

4.3.4 Deep interfacial wavepackets

The evolution of the amplitude envelope A(x, t) of a quasi-monochromatic
wavepacket whose wavenumber spectrum is peaked about k = k0 is given by (4.27).
Using (4.61), the equation for the interfacial displacement is given explicitly by

ı(At − cgAx)= 1

4
ω0(k0)

[
+1

2
k0

−2Axx + k0
2|A|2A

]
, (4.64)

in which x- and t-subscripts denote space and time derivatives, ω0(k0) =
(g′k0/2)1/2, and the group velocity of small-amplitude waves is cg = (g′/8k0)

1/2 =
1
2ω0/k0.

Equation (4.64) has been written in a way that is straightforwardly converted
into nondimensional form. Defining T̃ = ω0 t, X̃ = k0 (x − cgt) and Ã = k0 A gives
the nonlinear Schrödinger equation

ıÃT̃ = 1

8
ÃX̃ X̃ + 1

4
|Ã|2Ã. (4.65)



SUTHERLAND: “CHAP04” — 2010/6/29 — 17:53 — PAGE 230 — #18

230 Nonlinear considerations

η
=

R
e{

A
ex

p[
ı(

k
0x

−ω
0t

)]
}

0 50 100 150

k0x

ω0t= 0

ω0t = 50

ω0t =100

ω0t = 150

ω0t = 200

a) η(x,t)

−30 300

X̃ ≡ k0(x−cgt)

0

50

100

150

200

T̃
≡

ω
0t
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Fig. 4.4. Weakly nonlinear evolution of a Gaussian interfacial wavepacket pre-
scribed initially with amplitude A0k0 = 0.3 and width σk0 = 10. The solid lines in
a) show a vertically shifted sequence of graphs of the vertical displacement field, η
(solid line) with the amplitude envelope, |A| (dashed line), at the times indicated.
The time series of the amplitude envelope |A| are shown by the greyscale contours
in b). This is plotted in a frame of reference moving with the wavepacket.

Note that the advection term cgAx on the left-hand side of (4.64) has disappeared
as a consequence of defining X̃ to be a spatial co-ordinate in the frame of reference
moving with the wavepacket at the group velocity.

Figure 4.4 shows the predicted evolution of a weakly nonlinear deep interfacial
wavepacket whose vertical displacement field is given initially by

η= A0e−x2/2σ 2
cos(k0x −ω0t).

Solving (4.64) in the case with A0k0 = 0.3 and σk0 = 10 shows that the wavepacket
narrows and its maximum amplitude more than doubles at times around t �
150ω0

−1. Thereafter the wavepacket broadens and the peak amplitude decreases
again.

The growth in amplitude is the result of modulational instability and the narrow-
ing then broadening of the wavepacket is an example of the Fermi–Pasta–Ulam
recurrence phenomenon.

4.3.5 Interfacial waves in finite-depth fluid

Up until now we have ignored the presence of solid horizontal boundaries situated
above or below the interface. Although the mathematical method to determine
the weakly nonlinear behaviour of finite-depth interfacial waves is the same as
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that above, the algebra is more cumbersome and only the salient results will be
given here.

We first consider a two-layer Boussinesq fluid with an unbounded upper layer and
a lower layer bounded below by a rigid horizontal boundary at depth H below the
mean-depth of the interface. This circumstance might crudely model an atmospheric
inversion in the absence of a mean wind. By symmetry, the result can be flipped
vertically to describe waves at an interface beneath a finite-depth upper layer. This
might describe a model thermocline in the ocean or a lake, for which the surface
can be treated as rigid.

The dispersion relation in both circumstances is the same:

ω2 � g′k 1

coth kH + 1
×
[

1 + 9 − 22tanh kH + 13tanh2 kH + 4tanh3 kH

8tanh kH
(A0k)2

]
.

(4.66)

As expected, in the limit H → ∞, this reduces to the dispersion relation (4.61) for
interfacial waves in infinitely deep fluid.

The polynomial in tanh kH in the numerator of the fraction in (4.66) is always pos-
itive.As a consequence these waves, like those discussed above, are modulationally
unstable for all k.

At second order in amplitude, the weakly nonlinear structure of the waves above
a finite-depth lower layer is

η= A0

[
cos(kx −ωt)+ 3

4

1 − tanh kH

tanh2 kH
(A0k)cos2(kx −ωt)

]
. (4.67)

Unlike the case of interfacial waves in infinite-depth fluid, but similar to the
weakly nonlinear behaviour of surface waves, here we find the wave crests sharpen
and the troughs flatten as a consequence of finite-amplitude effects. Specifically,
the waves form peaks in the direction oriented towards the deeper fluid, as shown
in Figure 4.5.

A second class of weakly nonlinear waves exists in semi-infinite fluids in the
near-shallow water limit. These are solitary waves. Because the development and
solution of these equations are distinct from those discussed in this section, we
defer discussion of solitary waves to Section 4.4.

Beforehand we consider the special case of a finite-depth Boussinesq fluid in
which the upper- and lower-layer fluids have approximately the same depth, H1 �
H2 ≡ H . Though geophysically irrelevant, it is a symmetric geometry that has been
singled out for study in laboratory experiments.

As in the case of interfacial waves in a two-layer fluid that is unbounded above
and below, we find the interfacial waves in a bounded, equal-depth, two-layer fluid
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a)

b)

Fig. 4.5. The structure of weakly nonlinear interfacial waves in a fluid with a) a
shallow lower layer and b) a shallow upper layer.

do not form cusps but flatten with respect to the sinusoidal structure of small-
amplitude waves at both the crests and troughs. For long waves, an expansion
in the form (4.13) is possible provided [(A0k)/(kH )2]2 is small. In this case, the
dispersion relation is

ω2 � 1

2
g′k

[
1 +

(
1 − 1

2
coth2 kH

)
(A0k)2

]
. (4.68)

If the amplitude is sufficiently large, the structure of interfacial waves in finite-
depth fluid depends sensitively upon the departure from symmetry. The crests
and troughs are smooth if (H2/H1)

2 < ρ2/ρ1 and they form downward cusps if
(H2/H1)

2 > ρ2/ρ1. The transition occurs when the lower layer is deeper than the
upper layer by an amount H1(�ρ/ρ1)/2.

4.4 Solitary waves

Originally, solitary waves referred to finite-amplitude and isolated (hence solitary)
disturbances of permanent form. In fluid dynamics these are hump-shaped waves
which, for example, have a crest but no trough. The waves exist in finite-depth fluid
which typically has one or two layers and the horizontal extent of the wave is long,
but not too long, compared with the depth of the fluid.

Despite being large-amplitude, the waves maintain their structure through a bal-
ance between dispersion, which tends to broaden the crest, and weakly nonlinear
effects, which tend to steepen it. Whereas fluid beneath a small-amplitude shallow
water wave oscillates back and forth but experiences no net displacement, fluid
beneath a solitary wave is permanently displaced a finite distance which is compar-
able to the horizontal extent of the wave, as required by continuity of mass. This is
shown in Figure 4.6.


