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SUMMARY 
If nonhydrostatic internal waves are of sufficiently large amplitude, they undergo significant dispersion due 

to interactions between the waves and wave-induced mean flow. The effect of these interactions is investigated for 
internal waves propagating upward in a uniformly stratified Boussinesq flow with uniform shear. The sign of the 
shear is established so that the wave intrinsic frequency increases as the wave packet propagates upward; hence 
linear theory predicts that the waves should reflect at some level. Fully nonlinear numerical simulations of two- 
dimensional wave packets are performed to study the wave-packet evolution as a function of the initial amplitude 
and spatial extent of the wave packet. It is shown that if the waves are horizontally periodic, and of sufficiently 
large amplitude, momentum is permanently deposited to the mean flow at altitudes near, but below, the reflecting 
level predicted by linear theory. If the waves are horizontally compact, the waves propagate upward well above 
the reflection level. 
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1. INTRODUCTION 

Linear theory is often employed to estimate how momentum and energy are redis- 
tributed in the atmosphere and ocean by internal waves. Provided the waves are of suf- 
ficiently small amplitude and if the background stratification and mean flow speed vary 
sufficiently gradually with height, the path of an internal wave packet is well predicted. 
In particular, if a two-dimensional internal wave packet propagates upward in uniformly 
stratified fluid with uniform shear, linear theory predicts that one of three things will 
happen. The waves may approach a critical level, where the horizontal phase speed 
of the waves equals the background flow speed. In this case the waves asymptotically 
approach the critical level and eventually break or dissipate thus depositing momentum 
to the mean flow. If the shear is of opposite sign, the waves may approach a reflecting 
level, where the Doppler-shifted frequency of the waves equals the background buoy- 
ancy frequency. In such circumstances the momentum and energy fluxes are redirected 
back toward the wave source. In the atmosphere a third possibility exists: due to anelastic 
(non-Boussinesq) effects waves may grow to sufficiently large amplitude, as they prop- 
agate upward into the less dense atmosphere, that they overturn and break. (For further 
discussion, see Bretherton (1966), Booker and Bretherton (1967), Bretherton (1969), 
Lighthill (1978) section 4.6, Lindzen (1981) and Gill (1982) section 6.14.) 

Under more realistic circumstances, for example in non-uniform background flows 
or for large-amplitude waves, recent studies have shown that the wave evolution can be 
surprisingly complex. For example, it has been demonstrated that internal waves inci- 
dent upon a veering wind may be transmitted through a critical level (Shutts 1995,1998; 
Broad 1995,1999). Large-amplitude effects can act to enhance or retard the transmission 
of wave packets across a reflecting level in a unidirectional shear layer (Sutherland 1999) 
or into regions where the stratification becomes weaker (Sutherland 1996). 

In the absence of shear and in uniformly stratified fluid, plane periodic spanwise uni- 
form internal waves are unstable even at infinitessimally small amplitudes as a result of 
resonant wave-wave interactions (Mied 1976; Drazin 1977; Lombard and Riley 1996). 
These results were founded upon earlier work on surface waves by Phillips (1960) and 
on waves in general (Hasselmann 1967). (Phillips (198 1) reviews the development of 
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wave interaction theory.) The occurrence of these ‘parametric instabilities’ has been 
observed experimentally by Benielli and Sommeria ( 1996, 1998) and examined numer- 
ically by Bouruet-Aubertot et al. (1995, 1996) who excited standing internal waves in 
an oscillating tank with a rectangular horizontal cross-section. At larger amplitudes, 
but not so large that the waves are overturning, spanwise parametric instabilities may 
develop, growing at rates comparable with those of the two-dimensional instabilities 
(Klostermeyer 1991; Lombard and Riley 1996). 

The stability of finite-amplitude wave packets in stationary uniformly stratified 
fluid is governed by different dynamics if the waves are quasi monochromatic (that 
is. if the wave-packet envelope is of finite vertical and/or horizontal extent). The 
weakly nonlinear dispersion relation may be used to determine if a finite-amplitude 
wave-packet envelope grows in amplitude through a process known as modulational 
instability (Whitham 1965, 1974). Such instability does not necessarily result in wave 
breaking. If the initial wave amplitude is not too large, the wave packet transfers energy 
to neighbouring wave numbers through a fundamental nonlinear process known as 
‘Fermi-Pasta-Ulam’ recurrence (Fermi et al. 1955). Sutherland (2000) demonstrated 
that vertically compact, horizontally periodic Boussinesq internal wave packets are 
unstable to finite-amplitude modulations if the vertical group velocity is a decreasing 
function of the vertical wave number, i.e. the phase lines tilt at angles between 0 and 
approximately 35 degrees to the vertical. Although the modulational instability is a 
finite-amplitude effect, the condition for the instability to occur does not depend upon 
the wave amplitude itself. 

A third class of instability, and that which is of primary interest here, arises due 
to interactions between the waves and the wave-induced mean flow. In their study 
of large-amplitude internal waves incident upon a critical layer, Fritts and Dunkerton 
( 1984) coined the term ‘self acceleration’ to describe how the wave-induced mean flow 
effectively increases the intrinsic phase speed of the waves. Sutherland (2000) proposed 
that vertically compact, horizontally periodic internal waves become unstable and break 
if the wave-induced mean flow is greater than the horizontal group velocity of the 
waves. The amplitude-dependent condition for instability to occur was coined the ‘self- 
acceleration condition’. Such resonant excitation is a special case of the short-wave 
and long-wave resonant interactions first anticipated by McIntyre (1973) and described 
analytically by Grimshaw (1977). 

Fully nonlinear numerical simulations have demonstrated that the self-acceleration 
condition does indeed represent well the stability boundary of the waves (Sutherland 
2000). The instability occurs because the wave-induced mean flow, which acts most 
strongly near the centre of the wave packet where the amplitude is largest, locally tilts 
the isopycnal surfaces until they become convectively overturning. In particular, waves 
with frequencies very close to, but smaller than, the background buoyancy frequency 
are unstable to self-acceleration effects at infinitessimally small amplitudes! It has been 
argued that this explains why turbulence-generated waves in laboratory experiments 
occur predominantly in a narrow frequency band (corresponding to waves propagating 
close the maximum vertical group velocity): waves with faster and slower frequencies 
and with comparable amplitudes are unstable (Sutherland and Linden 1998; Sutherland 
2000). 

The purpose of the present study is to examine the stability of vertically compact 
wave packets in a uniform shear flow. In all cases the waves examined propagate 
upward initially with positive horizontal phase speed, and the shear is prescribed so 
that the intrinsic (Doppler-shifted) frequency of the waves increases as the wave packet 
propagates upward. From linear theory, the waves are expected to reflect from a level 
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where the intrinsic frequency equals the background buoyancy frequency, N. If the 
waves are of large amplitude, but not so large that the self-acceleration condition is 
satisfied, the waves are stable initially. As the wave packet propagates toward the 
reflection level, the intrinsic frequency increases, and the waves may thereby become 
unstable in one of two ways. First, the intrinsic frequency may become sufficiently large 
before reflecting that the waves become unstable due to self acceleration. Whether the 
wave packet becomes unstable depends on whether the wave packet’s growth rate is 
sufficiently large that the instability grows to sufficiently large amplitude before the 
wave packet encounters the reflecting level. A second mechanism for instability may 
occur as the wave packet reflects. The superposition of the incident and reflecting wave 
packets is a disturbance of approximately twice the amplitude of the incident wave 
packet alone. The amplitude of this disturbance may be so large that the wave packet 
becomes unstable. 

Details of the linear and weakly nonlinear theory for internal waves are given in 
section 2. The numerical model used to simulate the fully nonlinear evolution of the 
waves is described in section 3. The results of simulations of horizontally periodic, 
vertically compact wave packets in uniform shear are described in section 4. The 
evolution is qualitatively different for horizontally compact wave packets as shown in 
section 5.  Estimates of the critical amplitudes for breaking and transmission across a 
reflection level are derived in section 6. 

2 .  THEORY 

This paper is restricted to the study of two-dimensional, Boussinesq internal waves 
with structure only in the x (horizontal) and z (vertical) directions. In making the 
Boussinesq approximation, it is assumed that density perturbations due to waves are 
negligible in the momentum equations except in the buoyancy term. 

We further assume that the background density gradient is constant. Thus, the fully 
nonlinear equations of motion may be written in terms of the vorticity field, {, and the 
vertical displacement field, 6 : 

Here D/Dt is the material derivative, w is the vertical velocity, and N is the (constant) 
background buoyancy frequency. Explicitly, N 2  = -(g/po) dp/dz, in which p(z )  is the 
background density profile, g is the acceleration due to gravity and po is a characteristic 
value of density. In general, Bu and BK are operators representing the diffusion of 
momentum and heat, respectively. In the theory presented below, these are taken to be 
identically zero, although in practice the numerical model employs an artificial form of 
the diffusion operators, as discussed in the next section. 

Equations (1) and (2) constitute a coupled pair of nonlinear partial differential 
equations. The velocity field, which appears implicitly in the material derivative, is 
found from { by inverting the Laplacian equation, { = -VZ$, to get the stream function 
@, from which the velocity field is immediately determined. 

Though explicit analytic solutions of the fully nonlinear equations cannot in general 
be found, simplifying assumptions can be made to determine the behaviour of periodic 
waves of small and moderately large amplitude. A review of these results is given below. 
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(a )  Linear wave theory 
In the absence of background wind, the advection terms in the material derivative of 

the fully nonlinear equations (1) and (2 )  are negligible if the waves are of sufficiently 
small amplitude. Ignoring viscous effects, the resulting coupled pair of linear equations 
are 

The waves are assumed to be periodic so that one can write $ = %{A+ exp(i@)} and 
6 = %{A6 exp(i@)}, where 3 denotes the ‘real part of’, and @ = k,x + k,z - wt is the 
phase of the wave in terms of its wave-number vector ( k x ,  k , )  and frequency w, A+ 
is the stream-function amplitude and A t  is the amplitude of the vertical-displacement 
field. Substituting these expressions into Eq. (3) results in an eigenvalue problem which 
can be solved to give the dispersion relation for small-amplitude internal waves (for 
example, see Gill 1982): 

2 2 x  k2 2 2  o = N  T = N  cos 0. 
Ikl 

(4) 

The group velocity of the waves can be determined from this expression and thereby it 
can be shown that 0 represents the angle of propagation of the waves to the vertical. 

The polarization relations and other relevant properties of internal waves are listed in 
Table 1. For consistency with the results presented here, amplitudes of various fields are 
given in terms of the amplitude, A*, of the vertical-velocity field. In particular, Table 1 
lists quadratic representations of the wave-induced mean flow, - (({), and the vertical 
flux of horizontal momentum per unit mass, (uw), where the angle brackets denote the 
average over one horizontal wavelength. 

(b) Weakly nonlinear theory 
The dispersion of waves is modified by finite-amplitude effects. These may be 

represented by a Taylor series expansion of the dispersion relation, which for a one- 
dimensional system (w = w ( k ) )  is of the form 

( 5 )  2 2: wg + ( k  - ko)wL + $ ( k  - kg)2w! + lAol ~ 2 ,  

in which Ao is a measure of the wave amplitude, 00 = w(k0) is the linear-theory 
prediction for the frequency of the waves of wave number ko, and the primes denote 
derivatives with respect to k .  The envelope of waves obeying this dispersion relation 
evolve according to the nonlinear Schrodinger (NLS) equation 

Here A ( X ,  T )  is the (complex) amplitude envelope of the wave packet. It is a function 
of variables X and T that vary slowly in space and time compared with the wavelength 
and period of the waves, respectively. The variables are given in a frame of reference 
moving with the group velocity cg = wb (for example, see Whitham 1974, section 17.7). 

For moderately large amplitude waves, w2 represents the effect of interactions 
between the waves and the wave-induced mean flow as well as interactions between 
the waves and the wave-induced first harmonics (waves with wave number 2ko). 
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TABLE 1 .  PROPERTIES OF SMALL-AMPLITUDE INTERNAL WAVES 

Dispersion relation 
Phase velocity 
Group velocity 

Horizontal velocity 
Vertical displacement 
Vorticity 

Wave-induced mean flow 
Vertical momentum flux 

o = N cos 0 
cp = (N/k,)(cos 0, cos 0 cot 0) 

cg = (N/~,)(cos o sin2 0,  cos2 0 sin 0) 

At  = (i/N) sec @A, 
A< = -ik, secz @A, 

- ( c ~ )  = t ( k , / ~ )  sec2 O A ~ ,  
(UW) = 4 1 / 2 1  tan O A ~ ,  

A, = -tan @ A ,  

Stability regimes of finite-amplitude waves 

Vertical modulations 90" 3 (01 2 tan-'(2-'/2) E 3.5" 
Horizontal modulations o 5 101 5 s i n - ' ( 2 ~ l / ~ )  2: 530 
Self acceleration IAWl <I/Z(N/k,)s inOcos20 

Characteristics of small-amplitude internal waves from linear theory, and 
weakly nonlinear stability characteristics. Values are given in terms of 
the amplitude of the vertical-velocity field, A,, the background buoyancy 
frequency, N, the horizontal wave number, k, ,  and the angle of propagation 
of the waves to the vertical, 0. 

The calculation of w2  can be quite involved. For the case of internal waves, only 
the results of two special cases will be considered here: the vertical dispersion of 
horizontally periodic waves, and the horizontal dispersion of internal wave modes 
bounded above and below. In both cases the background stratification and wind speed 
are assumed to be constant. 

In considering the weakly nonlinear dispersion of vertically compact, horizontally 
periodic waves, the horizontal wave number, k,, is assumed to remain constant for 
all time, but the vertical wave number, k,, may vary. With some exceptions, the time 
evolution of the wave packet is given approximately by Eq. (6) with w: = a2w/akZ and 

4 k,2 = 2w0 sec 0- 
N 2  ' 

w2 = 2wo- 
N2kz 
iki4 

(7) 

where wg = w in Eq. (4), and A0 in Eq. ( 5 )  is taken to be the amplitude of the vertical- 
velocity field, A,. This result is valid provided the waves do not propagate upward at 
the fastest group velocity, in which case w: = 0 and a higher-order partial differential 
equation than Eq. (6) is required. For Eqs. (6) and (7) to be valid it is also necessary 
for the amplitude of the waves to be sufficiently small; the equations break down if 
the waves are of sufficiently large amplitude that they resonantly excite the mean flow 
(Mcintyre 1973; Grimshaw 1977). Sutherland (2000) showed that the wave packets 
become unstable to convective overturning as a result of this resonant interaction. 
The critical amplitude at which this occurs is given by the self-acceleration condition, 
Eq. (10). 

The weakly nonlinear dispersion of vertically bounded wave packets has been 
considered by Grimshaw (1977). The vertical structure of the waves is represented by a 
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series of discrete modes and the wave packet is free to disperse horizontally. The wave- 
packet evolution is given by Eq. (6) with 06 = a2w/ak: and 

k,  cr3 sin6 0 k: 
w2 = -12- - - 12wo sec 0 

cpx 1 - 453 - 1 - 4 sin6 0 N2' 
where r~ = cgx/cpx 21 sin2 0 (for high-order vertically confined modes), and A0 = A, ,  
as above. cpX is the horizontal phase speed and cgx is the horizontal group velocity. 

The modulational stability of a finite-amplitude wave packet may be assessed using 
Whitham's theory (Whitham 1965). Briefly, this predicts that the finite-amplitude form 
of the group velocity of waves obeying the dispersion relation Eq. ( 5 )  is 

If the radical has a real value, the wave packet is stable and divides into two disturbances 
propagating at different group velocities. If the radical is imaginary, the wave packet is 
unstable and grows in amplitude as it evolves. 

Applying the stability criterion to the case of vertically compact and horizontally 
periodic internal waves, it is found that the waves are stable if w{ > 0. That is, the 
wave-packet envelope does not increase in amplitude if the phase lines tilt at angles 
35" < 101 5 90". The wave packet is unstable otherwise. Modulational stability and in- 
stability are demonstrated in the numerical simulations presented in section 4. Although 
modulational instability implies that the wave packet grows in amplitude, it is not nec- 
essarily true that the waves ultimately break as a result. Provided the initial amplitude 
of the waves is not too large, the wave packet first grows in amplitude then subdivides 
into a sequence of smaller wave packets, as was described by Benjamin and Feir (1 967) 
in their study of deep-water waves. 

When the stability criterion is applied to the case of modes spanning a vertically 
bounded domain, it is found that the wave packets are unstable if 0 > 53" (Grimshaw 
1977; Sutherland 2000). 

(c)  Self acceleration of internal waves 
For sufficiently large-amplitude waves, the wave-induced mean flow is excited res- 

onantly by wave-wave interactions (Mcintyre 1973; Grimshaw 1977). Resonant excita- 
tion occurs when the wave-induced mean flow speed equals the horizontal group veloc- 
ity of the waves. Using linear theory estimates Sutherland (2000) argued that this oc- 

2 (1/2) curs when the amplitude of the vertical displacement field, A6 = A x  sin 20/(8n ) , 
where A, is the horizontal wavelength and 0 gives the angle of the tilt of the phase 
lines to the vertical (or, equivalently, the angle of the wave-number vector to the hor- 
izontal). From the dispersion relation, 0 = cos-'(w/N). In terms of the amplitude of 
the vertical-velocity field, A,, the critical value is given by 

The self-acceleration condition asserts that waves are unstable and ultimately break 
if the amplitude of the vertical-velocity field exceeds that given by Eq. (lo), i.e. if 
A, > ATt.  It follows from Eq. (10) that, if 0 is close to zero or 90", the waves are 
unstable at very small amplitudes. 

For a wave packet incident upon a reflecting level, the superposition of the incident 
and reflecting wave packet is a disturbance of approximately twice the amplitude. 
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Although the incident wave packet may be stable to self-acceleration effects, the 
superimposed incident and reflected waves are unstable if  the amplitude of the incident 
wave exceeds A",'/2. That is, if 

N 
A ,  > AP* = (2-1/2 sin o COS* o>-. 

k x  
Table 1 summarizes the finite-amplitude stability regimes described in sections 2(,b) 

and (c). 

( d )  Internal wave rtlfEection and caustics 
The intrinsic frequency of internal waves is Doppler shifted as they propagate 

vertically in wind shear. If the background velocity profile, u(z), varies slowly with 
height compared with the vertical wavelength of the waves, the intrinsic frequency is 
S-2 = wg - k,U,  in which wg = kxcpx is constant. 

Suppose a wave packet propagates upwards with positive horizontal phase speed, 
cpx, with respect to the background wind at some level. If the background wind speed 
increases linearly with height, then eventually the wave packet will encounter a critical 
level, being the height at which the background wind equals the horizontal phase 
speed (52 = 0). Ray theory predicts that the (two-dimensional) wave asymptotically 
approaches such a critical level and must ultimately overturn and break (Bretherton 
1966; Lighthill 1978). 

The converse situation is relevant here. If the background wind decreases linearly 
with height then the intrinsic frequency of the waves equals the background buoy- 
ancy frequency at some height (52 = N ) .  Above this level small-amplitude waves are 
evanescent: the waves do not propagate and their amplitude decreases exponentially. 
Ray theory predicts that incident waves reflect downward at this height, which is re- 
ferred to hereafter as a 'reflecting level'. This boundary between the region of incident 
and reflected waves and the region of evanescent, exponentially decaying waves is also 
referred to as a 'caustic'. 

When internal waves of moderately large amplitude are incideyt upon a reflecting 
level, the superposition of the upward-propagating incident and downward-propagating 
reflected wave is a disturbance of approximately twice the amplitude of each wave taken 
individually. The wave-induced mean flow, which to first order is proportional to the 
amplitude squared, increases by approximately quadruple its value near the reflecting 
level. Numerical simulations have shown that interactions between the waves and the 
wave-induced mean flow increase the intrinsic frequency of the waves as their amplitude 
increases (Sutherland 19964. Thus, weakly nonlinear effects can act to enhance the 
reflection of waves (with positive phase speed) in a background localized shear flow 
whose speed decreases with height to a smaller value, but not so small that a reflecting 
level is present. In this case, the wave-induced mean flow may increase the intrinsic 
frequency of the waves to such a large value that the waves are evanescent above the 
shear layer. Likewise it has been shown that the intrinsic frequency of a moderately 
large-amplitude wave packet decreases as its amplitude decreases, and thereby enhanced 
transmission of a wave packet across a reflecting level may occur. 

Sutherland (1996, 1999) examined the reflection of internal waves in hyperbolic 
tangent shear flows, in which case it was a simple matter to diagnose the characteristics 
of the reflected and transmitted waves well above and below the shear layer. In the 
present study, the background is taken to be a constant-shear flow. Thus, although 
the transmission of large-amplitude waves across a reflecting level is anticipated, it 

- 
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is expected that the waves must ultimately encounter a level where the entire wave 
packet reflects. Nonetheless, numerical simulations demonstrate remarkably different 
behaviours for horizontally periodic and compact wave packets. 

3. DESCRIPTION OF THE NUMERICAL MODEL 

The propagation of internal waves is examined using a fully nonlinear numerical 
model that solves Eqs. (1) and (2). The domain is taken to be a periodic channel flow 
with free-slip upper- and lower-boundary conditions. The vertical boundaries are taken 
to be so far from the waves, that they can effectively be ignored. In simulations of 
horizontally compact waves, the horizontal extent of the domain is set to be over ten 
times larger than the wave-packet extent. Domain-size doubling tests confirm that the 
horizontal extent of the domain is sufficiently large that the horizontal periodicity of 
the domain does not affect the wave-packet evolution. In simulations without wave 
breaking, typically the resolution is sufficiently fine that at least 40 grid points span 
one vertical wavelength of the wave packet under consideration. In simulations with 
wave breaking, the vertical resolution is four times greater. A recent detailed description 
of the model is given by Sutherland (1999). 

Of interest here are the dynamics of nonhydrostatic waves, which have non- 
negligible vertical velocity compared with the horizontal velocity and whose intrinsic 
frequency is comparable with the background buoyancy frequency, N .  Coriolis forces 
are neglected. 

The effects of viscosity are assumed to be negligible. Nonetheless, it is necessary to 
include the dissipation-like terms a>, and DK in order to eliminate the growth of small- 
scale numerical noise. Explicitly, D, is the product of an effective Reynolds number, 
Re, times a Laplacian diffusion operator acting only on horizontal scales smaller than 
the horizontal wavelength of the initial wave packet. Here the value Re = 10 000 is 
used, based on the horizontal wave number, k,, of the initial waves and the background 
buoyancy frequency, N .  This value of the Reynolds number is chosen so that the 
viscous dissipation time-scale is longer than the duration of any simulation, typically 
64 buoyancy periods. One buoyancy period is T = 2 n / N .  Explicitly, the dissipation 
time-scale is 

Tdiss - (vlkI2)-' = Re(L Ikl /T)-' = Recos2 @ / ( 2 n N )  
where d: and 3- represent characteristic length- and time-scales, respectively, of the 
waves. 

The simulations are initialized with a wave packet defined in terms of the vertical- 
velocity field by 

2 2  

w(x,  z) = nZ[W(x, z) exp{i(k,x + k,z)}l (12) 
in which W ( x ,  z )  prescribes the structure of the wave-packet envelope. The horizontal 
wave number, k,, is set to be positive and the vertical wave number, k,, is set to be 
negative, so that in time the wave packet propagates upward and to the right. 

The wave packet is prescribed so that initially the amplitude envelope decreases 
exponentially about the wave-packet centre. The waves may be either horizontally 
periodic with 

WPW(X9 z) = A, exP(-lzl/%>, (13) 

(14) 

or horizontally compact, the envelope being Gaussian in the horizontal: 

W(X, Z> = A, exp(-lzl/o,> exp(-x2/20,2). 



INTERNAL WAVE REFLECTION IN UNIFORM SHEAR 3263 

0.4 0.02 21.8" 0.93 (0.13, 0.32) 2.5 10-4 8.0 x 1 0 - ~  

0.7 0.02 35.0" 0.82 (0.27, 0.39) 3.6 x 10-4 1.4 

1.4 0.02 54.5" 0.58 (0.39, 0.27) 1.0 x 10-3 2.8 10-4 

0.4 0.30 21.8" 0.93 (0.13, 0.32) 5.6 x 1.8 x 

0.7 0.30 35.0" 0.82 (0.27, 0.39) 8.2 x 3.2 x 

1.4 0.30 54.5" 0.58 (0.39, 0.27) 2.3 x lo-' 6.3 x lo-* 

-k , /kx  - S I N  Ab,"*kX/N Atransmitk , X l N  

0.4 0.002 0.23 0.18 
0.7 0.004 0.27 0.21 
1.4 0.016 0.19 0.25 

Predicted properties of internal waves analysed in detail here, including maximum values of the non- 
dimensional wave-induced mean flow ((50) and the vertical momentum flux per unit mass ( ( u w ) )  for 
the wave packets. The second table gives predicted critical amplitudes for breaking (see Eq. (1 1)) and 
transmitted (see Eq. (16)) internal waves in uniform shear. k ,  is the vertical wave number, kx is the 
horizontal wave number, A ,  is the amplitude of the vertical-velocity field, N is the background buoyancy 
frequency, 0 is the angle of propagation of the waves to the vertical, cgx is the horizontal group velocity, 
cgz is the vertical group velocity, and s is the shear strength. 

Figure 1. Initial state of horizontally periodic internal waves showing (a) the vertical-displacement field (<), 
(b) the wave-induced mean flow ( ( 5 6 ) )  and (c) the vertical flux of horizontal momentum per unit mass ( ( u w ) ) ,  

associated with this wave packet. Here k ,  = 1 and N = 1 in arbitrary units. See text for further details. 

A,,, is the amplitude of the vertical-velocity field and a, and a, are the horizontal and 
vertical extents of the wave packet, respectively. In all studies discussed here the vertical 
extent is given in terms of the horizontal wave number by a, = 10/ kx and the extent of 
horizontally compact wave packets is given by a, = 1 O /  k,. 

The background flow is given by u = Uo + sz, where s is a small negative constant. 
In studies of horizontally periodic waves it is convenient to set Uo = -cpx so that the 
horizontal phase speed of the waves is effectively zero in the small-amplitude limit. In 
studies of horizontally compact waves Uo = 0. Superimposed on the mean flow is the 
calculated wave-induced mean flow, -((,$). Initially this results in a small increase in 
U over a range a, about z = 0. Simulations show that as the wave packets propagate 
- 



3264 B. R .  SUTHERLAND 

upward in time, away from the origin, the residual mean flow is just UO + sz. If 
the wave-induced mean flow is not introduced initially, the residual mean flow near 
the origin is found to be approximately Uo + sz  + ( ( e ) ,  after the wave packet has 
propagated away. 

Simulations are performed in which the evolution of horizontally periodic and 
horizontally compact wave packets is examined as a function of amplitude, A,, phase 
tilt, 0 = Itan-'(k,/k,)l, and shear strength, s. In practice, the length and time-scales in 
the simulations are established by setting k,  = 1 and No = 1, respectively. For ease of 
interpretation and extension of these results to atmospheric and oceanic flows, results 
are given in dimensionless units where practical. Thus, the shear strength is given as 
a fraction of the buoyancy frequency, and the amplitude, A,, is given as a fraction of 
N/ k , .  Conversion to other physical quantities may be calculated using Table 1.  

Although a wide range of simulations were performed, only a subset of these are 
reported upon in detail here. The vertical wave number is set so that k , / k ,  = -0.4, 
-0.7 and - 1.4. These correspond to wave packets that are unstable, marginally stable, 
and stable to finite-amplitude modulations, respectively. The second case corresponds to 
wave packets moving upward at approximately the fastest vertical group velocity with 
respect to k i .  The last case corresponds to wave packets moving from left to right with 
approximately the fastest horizontal group velocity. In most simulations reported here 
the shear strength is set so that s / N  = -0.002, -0.004 and -0.016 for k , / k ,  = -0.4, 
-0.7 and - 1.4, respectively. The values are chosen so that the reflection level is situated 
a distance between 15 and 20cg,T above the initial position of the wave packet. Thus, 
in theory the wave packet propagates to the height of the reflection level after 15 to 20 
buoyancy periods. The predicted properties of the internal waves are listed in Table 2. 

The initial state of a simulation of a horizontally periodic wave packet is shown in 
Fig. 1. This shows the normalized vertical-displacement field, c(x, z ) ,  the corresponding 
wave-induced mean flow profile, -(to, and the vertical flux of horizontal momentum 
per unit mass, (uw). Note that the momentum flux is positive, corresponding to the 
upward transport of forward momentum. 

4. HORIZONTALLY PERIODIC WAVES 

The evolution of a vertically compact wave packet is examined as a function of 
A w ,  0, and the background shear strength, s. In this section, the waves are taken 
to be initially horizontally periodic with structure given by Eqs. (12) and (13) with 
oi = 10/k,. 

In the absence of shear, large-amplitude wave packets evolve quite differently 
depending on their vertical wave number. This is illustrated in Fig. 2, which shows the 
evolution of small- and large-amplitude wave packets with wave numbers k z / k x  = -0.4 
(Figs. 2(a) and (d)), -0.7 (Figs. 2(b) and (e)), and -1.4 (Figs. 2(c) and (0). The 
plots show vertical time series over approximately 64 buoyancy periods of second- 
order accurate estimates of the wave-induced mean flow, -((,$). The vertical axis is 
normalized by the product of T with the vertical group velocity, cg7, predicted by linear 
theory. The time series itself is normalized by the maximum value of -((,$) calculated 
from linear theory at time t = 0 (see Tables 1 and 2). 

In the small-amplitude cases, (Figs. 2(a), (b) and (c)), the wave packet moves upward 
at a steady speed equal to the vertical group velocity, cgz, as expected from linear theory. 
The least dispersion occurs for the wave packet with vertical wave number k,  = -0.7k,. 
Such behaviour is anticipated because, from the linear dispersion relation for internal 
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Figure 2 .  Time series of the normalized wave-induced mean flow i n  six simulations of small- and large- 
amplitude wave packets in How with no shear (see text). The amplitude, A,, and vertical wave number, kl ,  
corresponding to each simulation are shown. N is the background buoyancy frequency and k ,  the horizontal wave 

number. See text for further details. 

waves, a2w/ak:  = 0 if k z / k x  = -2-’12 2: -0.707, which corresponds to internal waves 
propagating vertically with the fastest group velocity. 

The wave-packet dispersion is quite different for the corresponding large-amplitude 
internal waves for which the vertical-velocity field is A, = 0 . 3 N / k x .  In Fig. 2(d) 
the wave packet increases in amplitude initially reaching maximum amplitude after 
approximately 14 buoyancy periods. This behaviour agrees with the predictions of 
Whitham’s stability theory applied to horizontally periodic internal waves, which claims 
that weakly nonlinear modulated wave packets are unstable if l k , / k x  I < 2-’/* 2 0.7 
(Sutherland 2000). The ensuing evolution is described by Benjamin and Feir (1967) and 
may be determined by inverse-scattering theory. Overall, weakly nonlinear effects act to 
limit the lateral dispersion of the wave packet while reducing its vertical group velocity. 

Figure 2(f) shows the evolution of a stable large-amplitude wave packet with 
k, = - 1 .4kx. Here, the amplitude of the wave packet is largest at t = 0 and the wave 
packet rapidly subdivides into a train of solitary waves following the well recognized 
Fermi-U1 am-Pasta recurrence. 

The transitional case with k,  = -0.7kx is shown in Fig. 2(e), which shows that the 
wave packet peaks in amplitude near time t = 20T, and thereafter subdivides into three 
distinct groups of wave packets. 

Because of the complex dispersion characteristics of large-amplitude internal waves, 
the analysis of their evolution in a shear flow is subdivided into three cases representative 
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Figure 3. (a) Time series of the normalized vertical flux of horizontal momentum per unit mass for a wave packet 
with vertical wave number kz = -0.4kx and amplitude A ,  = 0 . 0 2 N / k X ;  (b) the normalized vertical-displacement 
field shown for this simulation at time t E 48T; (c) and (d) show plots corresponding to (a) and (b), respectively, 
but for a simulation of a large-amplitude wave packet with A ,  = 0 . 3 0 N / k x .  In both simulations the background 

shear is s = -0.002N. S e e  text for further details. 

of modulated wave packets that are unstable, marginally stable, and stable. These are 
examined sequentially in each subsection below. 

(a)  Case: k, = -0.4kx 
In this case, finite-amplitude wave packets are unstable to modulational instability. 

The evolution of small- and large-amplitude wave packets in the presence of constant 
background shear with s = -0.002N is illustrated in Fig. 3. The plot in Fig. 3(a) shows 
the vertical time series of (u w), the vertical flux of horizontal momentum per unit mass, 
as the wave packet evolves over 64 buoyancy periods, T = 2x1 N .  The wave packet is of 
relatively small amplitude, A, = 0 . 0 2 N / k x .  The field is normalized by the maximum 
initial value of ( u w )  (see Table 1). A horizontal dashed line is drawn to indicate the 
height of the reflection level (the height where the Doppler-shifted frequency of the 
wave equals the buoyancy frequency N ) .  At early times (uw) is positive, corresponding 
to the upward propagation of forward momentum. As the small-amplitude wave packet 
approaches the reflection level, however, the vertical momentum flux decreases and 
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is redirected downward between times t = 20T and 30T. Figure 3(b) illustrates the 
structure of the reflected waves at time t 2: 48T. The plot shows contours of the vertical 
displacement field, ,$, normalized by the maximum value of this field at time t = 0 (see 
Table 1). The horizontal scale spans one wavelength and the vertical scale is the same 
as that in Fig. 3(a). The downward left-to-right tilt in the phase lines of the waves is 
consistent with downward-propagating, reflected waves. 

In comparison, Figs. 3(c) and (d) show time series of ( u w )  and a snapshot of the 
vertical-displacement field at time t 2: 48T, but shown here for large-amplitude waves 
with A, = 0 . 3 0 N / k X .  As in Fig. 2(b), the maximum momentum flux increases over 
time initially and the group velocity is smaller. However, a significant fraction of the 
momentum flux is reflected downward before the wave packet reaches the height of the 
reflection level. Indeed, the redistribution of momentum by the wave packet is quite 
complicated. The vertical displacement field in Fig. 3(d) shows that the reflected wave 
packet near z = 0 is composed of waves with half the horizontal wavelength of the initial 
wave packet. A significant proportion of the wave packet has penetrated well above the 
reflection level and continues to propagate upward above z 2: 30c, T ,  as indicated by 
the upward left-to-right tilt of phase lines. It is interesting to note that the momentum 
flux associated with the upward propagating waves is predominantly negative above the 
reflection level. The detailed mechanism for the generation of super-harmonic waves (of 
smaller horizontal wavelength) and the implication of these structures for momentum 
transport and deposition merits further investigation but is beyond the scope of this 
work. Certainly, the phenomena are ‘real’ in the sense that their qualitative features are 
unaltered in resolution-doubling tests. 

If lkzl < kX/21/2, and in particular if k, = -0.4kX, the amplitude of the weakly 
nonlinear wave packet increases even in the absence of background shear due to 
modulational instabilities. This explains why the large-amplitude wave packet reflects 
well below the reflecting level in the constant-shear case examined here. As the wave 
packet grows in amplitude. its intrinsic frequency increases, so the effective reflecting 
level occurs at a lower height. 

The transmission of a wave packet incident upon a reflecting level may also be 
enhanced due to weakly nonlinear effects. This occurs because the intrinsic frequency 
of the wave decreases when its amplitude decreases. As the trailing edge of the incident 
wave packet approaches the reflecting level, the amplitude of the incident and reflected 
waves decreases, and the resulting decrease in the intrinsic frequency of the waves 
enables a proportion of the incident wave to penetrate above the reflecting level. 

Indeed. in the constant-shear case examined here, a proportion of the large- 
amplitude wave packet is found to transmit above this level. However, as the transmitted 
proportion of the wave packet continues to propagate upward, it continues to be Doppler 
shifted by the decreasing background wind, and it is expected that it will eventually 
reflect or dissipate. 

The dynamics of the reflecting and transmitting wave packets are further compli- 
cated by interactions between the reflected and transmitted waves. For sufficiently large- 
amplitude waves, these result in the permanent deposition of momentum to the mean 
flow. 

To illustrate this, Fig. 4 shows vertical time series of AU and -(<,$). The former 
is the calculated difference between the horizontally averaged flow at each time and the 
initial background shear, U ( z )  = Uo + sz. Figures 4(a) and (b) show these time series 
for a simulation of small-amplitude waves with k, = -0.4kX and A, = 0.02N/kX. As 
the wave packet propagates upward in a shear flow with s = -0.002N and reflects from 
a reflecting level, the two profiles are approximately the same at corresponding times. 
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Figure 4. Time series of (a) AU and (b) -(to for a simulation with k, = -0.4kX and A ,  = 0 . 0 2 N / k X .  (c) 
and (d) show plots corresponding to (a) and (b), respectively, but for a simulation of a large-amplitude wave 
packet with A,,, = 0 . 3 0 N / k X .  In both simulations the background shear is s = -0.002N. The horizontal line 
superimposed on each plot indicates the location of the reflection level predicted by linear theory. See text for 

further details. 

Figures 4(c) and (d) show the same fields but for a simulation of large-amplitude waves 
with A, = 0 . 3 N / k X .  Although near time t = 0 the two fields are the same, they differ 
significantly when the waves partialIy reflect. The difference indicates that momentum 
has been deposited permanently to the mean flow. 

This conclusion is supported by the observed behaviour of the vertical-displacement 
field as it evolves over time in a digitized movie. The field is analysed in a frame 
of reference moving with the (positive) horizontal phase speed, cpx, of the waves. As 
the waves move upward initially, the amplitude of the waves changes but their phase 
remains stationary at any fixed point in space. However, as they reflect, interactions 
between the incident and reflected waves excite waves of smaller horizontal wavelength 
(for example, see Fig. 3(d)). These smaller-scale disturbances have lower horizontal 
phase speeds than the incident waves; they move backward in the frame of reference 
moving at speed cpx. In time, viscosity efficiently dissipates these small-scale waves 
and their associated momentum is deposited to the mean flow. 
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In general, there are three possible mechanisms for momentum deposition due to 
reflection, each of which occurs because the result of the superposition of the incident 
and reflected waves is a disturbance of larger amplitude. 

The first possibility, which is apparent here, is that interactions between the large- 
amplitude incident and reflected waves, excite waves of shorter horizontal wavelengths. 
Ultimately, the energy associated with these smaller-scale disturbances is dissipated 
more efficiently by viscosity. 

A second, more efficient, possibility occurs if the incident wave is of sufficiently 
large amplitude that, although the wave alone is not overturning, its superposition with 
the reflected wave is an overturning disturbance. That is, there may be regions in the 
fluid where the sum of the background and fluctuation density increases with height. 
If the wave-field evolves sufficiently slowly, convective instabilities will have time to 
grow. 

A third, but related, mechanism for momentum deposition is through interactions 
between the superimposed disturbances and the wave-induced mean flow which drive 
the flow to convective instability. The amplitude of the incident waves may initially be 
much smaller than that required for overturning, for this instability due to 'self accel- 
eration' to take place. However, the superposition of the incident and reflecting waves 
approximately doubles the amplitude of the superimposed disturbance and quadruples 
the associated wave-induced mean flow. Thus, incident waves that are stable to self- 
acceleration effects may be unstable upon reflection. 

Figure 5 assesses the stability of the reflecting large-amplitude waves to super- 
harmonic excitation and to convective instability. Figure 5(a) shows that super-harmonic 
disturbances (of horizontal wave number 2k,) are strongly excited at times t > 25T.  
Energy-transfer diagnostics (not shown) confirm that energy is tranferred directly from 
wave number k, to 2k, ; energy is not significantly transferred to or from the mean flow. 
The convective stability of the flow is assessed by computing the minimum value of 
A N 2  = - (g/po) dpldz, the change in the buoyancy frequency due to the perturbation 
density field, p(x ,  z ,  t ) .  If A N 2  < -N2 ,  the disturbances are overturning somewhere 
in the flow field. Figure 5(b) shows that the flow field is convectively stable over the 
times shown. The sub-harmonic waves are thus generated solely as a consequence of 
the nonlinear interaction between the incident and reflecting waves. 

(b) Case: k,  = -0.7k, 
In this case the magnitude of the vertical wave number, lkzl 2 k,/2'I2, which 

corresponds to a wave packet propagating with the fastest vertical group velocity, and 
horizontally periodic wave packets are marginally stable to growth due to modulations. 

As in Fig. 3, Fig. 6 shows the evolution and structure of small- and large-amplitude 
waves reflecting in a constant shear flow with s = -0.004N. The strength of the shear 
is chosen so that the normalized height of the reflecting level, z,.(c,,T), is comparable 
to that for the case with kr = -O.4kx. 

The time evolution of the normalized momentum flux is shown in Fig. 6(a) for small- 
amplitude waves with A, = 0 .02N/kX .  This clearly shows the wave packet transporting 
forward momentum upwards until it reaches the reflecting level at time t 2: 20T (about 
20 buoyancy periods). After this time, the wave packet reflects and transports momen- 
tum downwards. The vertical-displacement field at time t 2: 48T, shown in Fig. 6(b), 
illustrates the downward tilt of phase lines characteristic of downward momentum trans- 
port by rightward propagating waves. 
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Figure 5 .  Superharmonic excitation and convective instability cases with k,  = -0.4k,,  s = -0 .002N ((a) and 
(b)), k, = -0.7k,,  s = -0 .004N ((c) and (d)), and k ,  = -1.4k,, s = -0.016N ((e) and (9). A ,  = 0 . 1 5 N / k ,  
in each case. All plots show evolution over time from t = 0 to 32T. Plots (a), (c) and (e) show the change in 
energy from initial values in different harmonics: energy associated with disturbances of horizontal wavenumber 
k, (thin solid line), 2k, (long-dashed line), 3k, (dotted line); and energy difference between mean flow and initial 
background shear (thick solid line). All values are normalized by the initial energy associated with the waves. 
Plots (b), (d) and (f) show the minimum value of A N 2 / N 2 .  Disturbances are overturning if this value is leas than 

- 1. See text for further details. 

The evolution of large-amplitude waves with A ,  = 0 . 3 0 N / k x  is shown in Fig. 6(c). 
As in the case with k, = -0.4kx, the waves reflect from a level well below that 
predicted by linear theory. Unlike that case, however, the reflecting wave packet remains 
more coherent: at time t 2 24T the momentum flux exhibits a large negative peak 
near z = 6c,,T, and the momentum flux is negligible above z 2 10cg,T. Shortly after 
t 2 24T the waves overturn and the simulation is terminated as small-scale structures in 
the convectively unstable region grow in amplitude at time and length scales too small 
to be resolved. The details of this convective instability and the resulting deposition 
of momentum certainly merits more research but would be a moot exercise here, the 
simulation being restricted to two-dimensional motions. 

It is nonetheless worth emphasizing this important result: wave breaking may occur 
at a reflecting level! That wave breaking may occur near a critical level, where the 
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Figure 6. As in Fig. 3 but for a wave packet with k,  = -0.7kx and A ,  = 0 . 0 2 N / k x  ((a) and (b)) and 
A ,  = 0 . 3 0 N / k ,  ((c) and (d)). The background shear is s = -0 .004N. Note that the time series in (c) is shown 
over a shorter time than in (a). The vertical-displacement field in (b) is shown at time t 21 48T and that in (d) is 

shown at time t 2 24T. See text for further details. 

horizontal phase speed of the waves equals the background flow speed, is well known 
(Booker and Bretherton 1967; Bretherton 1969). At a reflecting level, however, it is 
often assumed that the flux of momentum is redirected, but not deposited, to the mean 
flow. This simulation, and other simulations of large-amplitude waves not reported here, 
demonstrate that momentum can be deposited to the mean flow if the incident waves are 
of sufficiently large amplitude. 

In the simulation of large-amplitude waves, with k, = -O.7kx, self acceleration 
may ultimately be the source of instability and the cause for momentum deposition 
to the mean flow by way of wave breaking. This may be inferred from Fig. 6(d), which 
shows the vertical-displacement field at time t 2 24T. Though a small proportion of the 
wave packet extends above the reflecting level at this time, most of it is centred near 
z = 7cg,T. Here the tilt of the phase lines is almost vertical and the amplitude of the 
disturbance is larger than the initial wave amplitude. These features in combination lead 
one to anticipate that the disturbance may become unstable due to self acceleration. 

Further evidence of the significant effects of self acceleration is illustrated in Fig. 7. 
As in Fig. 4, this shows time series of the normalized AU and - ( r e )  profiles for 
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Figure 7. As in Fig. 4 but for a wave packet with k ,  = -0.7kx and A ,  = 0.02N/kX ((a) and (b)) and 
A, = 0.30N/kx ((c) and (d)). The background shear is s = -0.004N. Note that the time series in (c) and (d) 

are shown over shorter times than in (a) and (b). See text for further details. 

simulations of small- and large-amplitude wave packets. The two time series for small- 
amplitude waves with A, = -0.02N/kx are shown in Figs. 4(a) and (b), respectively. 
As expected, the difference between the horizontally averaged flow and the initial shear 
flow is negligibly different from the wave-induced mean flow throughout the simulation. 
In the large-amplitude wave-packet simulation (A, = -0.30N/ k x ) ,  the corresponding 
two fields in Figs. 7(c) and (d) are likewise similar, although some discrepancies 
appear below z = 10cgzT at time t 2: 24T. The wave-induced mean flow is negative 
over a wider vertical extent than the corresponding negative region of the AU profile. 
This discrepancy continues to be enhanced at longer times (not shown) as convective 
instabilities develop. 

Perhaps the most significant observation to be made from Fig. 7(d) is that the 
wave-induced mean flow increases as the wave packet reflects and it remains large 
for long times. Although initially the peak value is max(-((t)) 2 O . O S N / k , ,  at time 
t 2 24T the peak value is approximately 0.12N/kx. This should be compared with the 
horizontal group velocity, cgx = tan2 O N / k , ,  where 0 is the angle to the vertical of the 
phase lines. During reflection the waves are approximately vertically oriented, so that 
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101 E 0. Indeed, provided 101 < 19", the wave-induced mean flow is greater than the 
horizontal group velocity, and instability due to self acceleration is expected, provided 
these conditions persist for sufficiently long times. 

Figures 5(c) and (d) show that the disturbances are overturning at time t E 22T 
(when A N 2 /  N 2  < - 1) and that this instability results in the efficient energy transfer to 
super harmonics with horizontal wave numbers 2kx and 3k,. Higher super harmonics 
are also excited (not shown). Thus, in this case momentum is efficiently deposited to 
the mean flow through the turbulent dissipation of the disturbances. A more detailed 
analysis of the dissipation process was not performed since, in reality, the resulting 
turbulence would be fully three dimensional and could not be reproduced by the 
numerical model employed here. The simulations here are sufficient to demonstrate that 
the onset of turbulence should occur in reality. 

(c )  Case: k, = -1.4kx 
In the final case discussed here, the reflection of internal waves with k, = -1.4k,r 

is examined. In order to properly resolve the vertical structure of these waves, these 
simulations were performed with twice the vertical resolution of the above two cases. 
The wave-packet evolution is examined in shear flow with s = -0.016N, this value 
being chosen so that the reflection level is at a height comparable to that of the two other 
cases discussed above. 

As in Fig. 3, Fig. 8 shows time series of the momentum-flux profiles and the 
vertical-displacement fields of large- and small-amplitude waves. In the small-amplitude 
case, A ,  = 0 . 0 2 N / k x ,  the wave packet reflects near z = 15c,,T, as expected from 
linear theory. At early times the waves are Doppler shifted to higher frequencies as 
they propagate upward in the shear flow. As a result, their vertical group velocity first 
increases as the magnitude of the vertical wave number decreases from Ik, I = 1 .4k, to 
J k ,  1 = k x / 2 1 / 2 ,  and the vertical group velocity decreases as lk, I continues to decrease. 
In linear theory, the energy flux is proportional to the group velocity. If it is assumed that 
the energy associated with the waves is constant, then the energy flux should increase 
then decrease as the wave packet approaches the reflecting level. Likewise, the peak 
vertical momentum flux should increase initially as the small-amplitude waves approach 
the reflecting level. This is evident in Fig. 3(a) for times t up to 10 buoyancy periods. 
Of course, the momentum flux eventually decreases again and becomes negative when 
the waves reflect. 

The redistribution of momentum is quite complicated in the large-amplitude case. 
The time series of the momentum-flux profiles is shown in Fig. 8(c) for large-amplitude 
waves with A ,  = 0 . 3 0 N / k x .  As in the simulations with no shear flow, (Fig. 2(f)) ,  the 
initial wave packet subdivides into a train of wave packets shortly after time t = 0 and 
before reaching the reflecting level. Each component of the wave train encounters the 
reflecting level at different times, and at these times the momentum flux is redirected 
downward, resulting in a sequence of downward-propagating wave packets. 

The normalized vertical displacement field at time t 2: 48T, shown in Fig. 8(d), 
illustrates the disordered structure of the reflected waves. Below the reflecting level, 
super-harmonic waves and smaller-scale structures are prevalent. Surprisingly, the plot 
shows that a small proportion of the initial wave packet is transmitted and continues to 
propagate upward well above the reflecting level at this time, as indicated by the upward 
tilt in the phase lines at the leading edge of the wave packet. 

Momentum is deposited to the mean flow as the reflecting large-amplitude waves in- 
teract, excite super-harmonic waves and dissipate, similar to the case with k, = -0.7k,. 
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Figure 8. As in Fig. 3 but for a wave packet with k, = -1.4kX and A, = 0 . 0 2 N / k X  ((a) and (b)) and 
A, = 0 . 3 0 N / k X  ((c) and (d)). The background shear is s = -0 .016N. The vertical-displacement fields in (b) 

and (d) are shown at time t 2: 3 2 T .  See text for further details. 

Figures 5(e) and (f) confirm that convective instability is responsible for efficient mo- 
mentum deposition. The wave-induced mean flow is positive over most of the domain 
when k, = -1.4kx. This is illustrated in Fig. 9, which shows times series of AU and 
- ((0 profiles for the small- and large-amplitude simulations. Though difficult to dis- 
cern from Figs. 9(c) and (d), AU differs from the wave-induced mean flow at late times, 
indicative of momentum deposition. Digitized movies of these simulations show that 
the flow is decelerated so that the waves below the reflecting level move backward with 
respect to a frame of reference moving with the horizontal phase speed of the initial 
upward-propagating waves. 

The strength of the background shear was varied in a series of simulations to 
examine how the reflecting level changes for large-amplitude wave packets with k, = 
-1.4kx. Figure 10 shows time series of the normalized momentum-flux profiles of 
wave packets with A, = 0 . 3 0 N / k x  and k, = -1.4kx, and with shear s = -0.008N 
(Fig. 10(a)) and s = -0.004N (Fig. 10(b)). The reflection level predicted by linear 
theory is indicated by the horizontal line in both plots. The two time series show that a 
significant fraction of the large-amplitude wave packets reflects well below the predicted 
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Figure 9. As in Fig. 4 but for a wave packet with k ,  = -1.4k, and A,, =0.02N/k ,  ((a) and (b)) and 
A, = 0.30N/k ,  ((c) and (d)). The background shear is s = -0.016N. See text for further details. 

Figure 10. Time series of the normalized vertical flux of horizontal momentum per unit mass for simulations 
with k ,  = -1.4kx and A ,  = 0.30N/kx .  The background shear strength, s, is (a) -0.008N and (b) -0.004N. The 

height of the predicted reflection level is indicated by the horizontal line. See text for further details. 
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Figure 11. As in Fig. 2 but fur simulations of horizontaUy as well as vertically compact wave packets. The initial 
amplitude (At , , )  and vertical wave number ( k , )  of the simulations are indicated on each plot. See text for further 

details. 

reflecting level. The beam that first reflects is vertically compact, in that its extent is 
much smaller than the separation distance between successively reflected wave packets. 
Furthermore, the reflection level is a weak function of the background shear strength. 
Comparing Fig. 8(c) and Figs. 10(a) and (b), the first reflected beam is centred about 
z = 0 at times t 2 30T, 30T, and 35T for shear strengths of s = -0.016N, -0.008N 
and -0.004N, respectively. 

5 .  HORIZONTALLY COMPACT WAVES 

Large-amplitude horizontally periodic internal waves are significantly affected by 
interactions between the waves and the wave-induced mean flow. However, if the 
wave packet is horizontally compact, the wave-induced ‘mean flow’ acts only over 
the horizontal extent of the wave packet itself. The interactions are expected to affect 
not only the power spectrum of the wave packet but also the horizontal structure of 
the wave packet itself, which is horizontally accelerated to a greater extent near the 
centre of the wave packet than at the left and right flanks of the wave packet, where the 
waves are of smaller amplitude. The effect will be pronounced if the waves are of such 
large amplitude that the wave-induced mean flow is comparable to the horizontal group 
velocity of the wave packet. 

Simulations are performed on compact wave packets whose initial vertical-velocity 
fields are given by Eqs. (1 2) and (14) with horizontal and vertical extents given by a, = 
10k, and a? = lOk,. The nonlinear evolution of vertically and horizontally compact 
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Figure 12. Time series of (uw) for siinulations with k ,  = -0.4kx and amplitude A, equal to (a) 0.02N/k , ,  
(b) 0 . 2 0 N / k x ,  (c) 0 . 3 0 N / k x ,  and (d) 0.40N/kx.  In each simulation the background shear is s = -0.002N. The 

horizontal line on each plot indicates the predicted reflection level. See text for further details. 

internal wave packets in stationary uniformly stratified fluid has been examined in detail 
by Sutherland (2000). In general, it is found that large-amplitude horizontally compact 
wave packets undergo significant horizontal dispersion, though the vertical structure 
does not exhibit as diverse a range in behaviour as in the horizontally periodic case. 

As in Fig. 2, Fig. 11 shows time series of -(<(), computed for simulations of small- 
and large-amplitude horizontally compact wave packets with k, = -0.4kX (Figs. 1 ](a) 
and (d)j, k, = -0.7kX (Figs. 1 l(bj and (e)) and k ,  = -1 .4kx (Figs. 1 l(c) and (0). Each 
time series is normalized by the predicted maximum initial value of - (<t) (see Table 1). 

In the small-amplitude cases, the horizontally compact and periodic waves show 
similar behaviour. The maximum value of - ((6) decreases in time but only gradually in 
the case with k ,  = -0.7kx (Fig. 1 l(b)). For the large-amplitude wave-packet simulation 
shown in Fig. ll(d), where A, = 0 . 4 N / k X  and k, = -0.4kX, the peak value of -{<t) 
initially increases over time to a maximum value at t = 20T. Thus, the instability due 
to modulations of the wave packet in the vertical is still pronounced for horizontally 
compact wave packets. Unlike the horizontally periodic case, the wave packet continues 
to spread vertically over long times. In the large-amplitude cases with k, = -0.7kX 
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Figure 13. Vertical displacement fields at times (a) 0, (b) ?16T, (c) -32T and (d) -48T,  shown for simulations 
of horizontally and vertically compact wave packets with k ,  = -0.4kX and amplitude A,, = 0.40N/kX. The 
background shear is s = -0.002N. The horizontal line on each plot indicates the predicted reflection level. See 

text for further details. 

(Fig. 1 1 (e)) and k ,  = - 1 .4kx (Fig. 1 1 (f)), the wave packets spread vertically rather 
than undergoing the weakly nonlinear modulation patterns prevalent in the horizontally 
periodic cases. In all three large-amplitude wave-packet simulations the waves propagate 
upward at a speed close to the vertical group velocity predicted by linear theory. 

Despite some similarities to linear dispersion, the large-amplitude horizontally 
compact wave packets evolve quite differently from their small-amplitude counterparts, 
or from their horizontally periodic counterparts, when they encounter a reflecting level 
in a uniform-shear flow. As shown below, horizontally compact wave packets can 
transport significant momentum well beyond a reflecting level if they are of large 
amplitude. 

(a )  Case: k, = -0.4kX 
Figure 12 shows time series of the normalized momentum-flux profiles for simula- 

tions of horizontally compact internal waves with vertical wave numbers k,  = -0.4kx. 
The plots are shown for simulations of wave packets in which the normalized ampli- 
tude of the vertical-velocity field, A w / ( N / k x ) ,  is 0.02 (Fig. 13(a)), 0.20 (Fig. 13(b)), 
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Figure 14. As in Fig. 12 but for a simulation of a wave packet with vertical wave number k ,  = -0.7kX and 
amplitude A,,] equal to (a) 0 . 0 2 N / k X ,  (b) 0.20N/kx ,  (c)  0 . 3 0 N / k X ,  (d) 0 . 4 0 N / k X .  In each simulation the 

background shear is s = -0.004N. See text for further details. 

0.30 (Fig. 13(c)) and 0.40 (Fig. 13(d)). The obvious and surprising result of nonlinear 
effects is that the large-amplitude waves are capable of transporting momentum well 
above the reflecting level (indicated by the horizontal line in each plot). Indeed, when 
A ,  = 0.4N/ k,, a negligible proportion of the wave packet is reflected downward. Sim- 
ulations performed at twice the resolution give the same result. 

Figure 13 shows the vertical-displacement field at times t = 0 (Fig. 13(a)), E 16T 
(Fig. 13(b)), 2 32T (Fig. 13(c)), and 2 48T (Fig. 13(d)) for a large-amplitude wave- 
packet simulation with A, = 0 . 4 N / k X .  The horizontal and vertical axes are normalized 
by the respective components of the group velocity predicted by linear theory times the 
buoyancy period, T .  The background shear flow is prescribed so that the mean wind 
speed is zero at z = 0. 

The plots show that the phase lines tilt more vertically as the wave packet approaches 
the reflecting level at z 2 18c,,T. Shortly after time t 2 16T the incident wave packet 
partially reflects generating a small-amplitude wave packet with phase lines close to 
the vertical below the reflecting level (Fig. 13(c)). Due to interactions between the 
waves and the wave-induced mean flow the phase speed of the waves decreases near 
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Figure 15. As in Fig. 13 but for a simulation of a wave packet with k ,  = -0.7k, and A,  = 0 . 4 0 N / k X .  The 
vertical-displacement fields are shown at times (a) 0, (b) ?16T, (c) ~ 3 2 T  and (d) ~ 4 8 T .  The background shear 

is s = -0.004N. See text for further details. 

the reflecting level as the amplitude of the incident wave packet decreases. As a result, 
the phase lines of the waves above the reflecting level tilt away from the vertical. This 
behaviour is evident in movies constructed from successive frames of the simulation. As 
time progresses the leading edge of the wave packet above the reflection level maintains 
a similar structure and continues to propagate upward and to the right at a more-or-less 
constant speed (Figs. 13(c) and (d)). 

Some of the properties of this transmitted wave packet appear similar to those of a 
solitary wave: the disturbance remains vertically localized with relatively little change 
in form and its structure seems to be determined by a balance between dispersion in 
shear flow and self focusing due to interactions between waves and the wave-induced 
mean flow. A detailed examination of these observations is the subject of future work. 

(b)  Case: k, = -0.7kx 
Here, simulations are examined in which horizontally compact wave packets with 

different amplitudes propagate in shear flow with strength s = -0.004N. The vertical 
wave number k ,  = -0.7kX, close to that of small-amplitude waves with the fastest 
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Figure 16. As in Fig. 12 but for a simulation of a wave packet with vertical wave number k ,  = -1.4kx and 
amplitude A ,  equal to (a) 0 . 0 2 N / k x ,  (b) O.ION/k , ,  (c) 0 . 2 0 N / k x ,  (d) 0 . 3 0 N / k x .  In each simulation the 

background shear is s = -0 .016N.  See text for further details. 

upward group velocity. According to linear theory, the small-amplitude waves will 
encounter a reflecting level near z E 1 Scgz T .  

Similarly to the simulations with k,  = -0.4kx, the large-amplitude wave packets 
are found to transmit well above the reflecting level if the amplitude is sufficiently large. 
Figure 14 shows time series of the momentum flux for four simulations of wave packets 
with the initial amplitude of the vertical-velocity field indicated in the upper left-hand 
comer of each plot. In the small-amplitude case (Fig. 14(a)) the wave packet reflects 
near z E 18c,,T, as anticipated from linear theory. However, the large-amplitude wave- 
packet simulations (Figs. 14(c) and (d)) show that relatively little momentum flux 
is redirected downward. Indeed, when A ,  = 0 . 3 N / k X  the wave packet continues to 
transport momentum upward over twice the distance predicted by linear theory. The 
upward transport of momentum is more efficient in this case compared with wave 
packets with the same amplitude and k,  = -0.4kx. 

Figure 15 shows that a small proportion of the incident wave packet is reflected 
downward when A ,  = 0 . 4 N / k x ,  although the corresponding downward momentum 
flux is negligible compared with the upward momentum flux associated with the wave 
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Figure 17. As in Fig. 13 but for a simulation of a wave packet with k, = -1.4kX and A ,  = 0 . 3 0 N / k X .  The 
vertical-displacement fields are shown at times (a) 0, (b) =8T, (c) -16T and (d) -24T. The background shear is 

s = -0.016N. See text for further details. 

packet above the reflecting level (e.g. see Fig. 14(d)). The transmitted wave packet at 
time t 2i 48T (Fig. 15(d)) is more vertically localized than the initial wave packet having 
peak amplitude at (x, z )  2: (5cgxT, 36cg,T). The horizontal propagation of the wave 
packet is much slower than in the corresponding case with k, = -0.4kx, for which the 
peak amplitude occurs near (x, z )  2: (25cgxT, 42c,,T) after time t N 48T. 

(c) Case: k, = -1.4kx 
The vertical group velocity is the smallest of the three cases examined here. The 

waves are examined as they propagate upward in a shear flow with s = -0.016N. Linear 
theory predicts that the reflecting level is situated near z 2 15cg,T. 

The time series of the momentum-flux profiles are shown in Fig. 16 for four simula- 
tions of wave packets with normalized amplitude, A,k,/N, equal to 0.02 (Fig. 16(a)), 
0.1 (Fig. 16(b)), 0.2 (Fig. 16(c)), and 0.3 (Fig. 16(d)). In simulations with A, = 
0.4N/ k,, not shown here, the wave packet becomes convectively unstable shortly after 
partially reflecting at time t 2 20T. 
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These simulations are distinguished from those performed with lower values of 
Ik,/ kx 1 in many ways. Comparing Fig. 16(c) with Figs. 12(b) and 14(b), it is found that 
when k, = - 1 .4kx, the upward momentum flux of the incident wave packet increases 
as it approaches the reflecting level, and the downward momentum flux of the reflected 
wave packet is comparable in magnitude to the incident flux at the same vertical level. 

At a larger amplitude, with A ,  = 0 . 3 N / k x  (Fig. 16(d)), the upward momentum 
flux of the incident wave packet has a sharp peak near the reflecting level between times 
t 2: 10T and 15T. At later times, a significant proportion of the wave packet is found 
to reflect. This should be compared with the behaviour of the waves with the same 
amplitude but k, = -0.7kx (Fig. 14(c)), in which a negligible proportion of the incident 
wave packet reflects downwards. 

The effect upon the wave-packet structure of interactions between the waves and 
the wave-induced mean flow is shown in Fig. 17. This shows the normalized vertical- 
displacement field at times 0 (Fig. 17(a)), -8T (Fig. 17(b)), -16T (Fig. 17(c)), and 
-24T (Fig. 17(d)). As expected from linear theory, at early times the wave packet 
propagates upward and to the right, its phase lines tilting more closely to the vertical 
as the waves propagate into ever-decreasing background mean flow speeds. Upon 
encountering the reflecting level, the waves are partially transmitted and reflected, and 
the horizontal group velocity of the two wave packets decreases. Indeed, at late times 
the two wave packets translate from right to left. 

6. DISCUSSION AND CONCLUSIONS 

The simulations show that horizontally periodic internal waves can deposit momen- 
tum near a reflecting level if the amplitude of the incident waves is sufficiently large. 
A criterion predicting when momentum deposition occurs is estimated from the self- 
acceleration condition, Eq. (10) (which determines the maximum amplitude of vertically 
compact wave packets propagating in stationary uniformly stratified fluid), and is given 
by Eq. (1 1). Some values of this critical amplitude are listed in Table 2. 

For example, in the case with k, = -0.4kx, momentum deposition is expected 
if A,kx/N > 0.23. This is consistent with the results shown in Fig. 4. Likewise, in 
simulations with k, = -0.7kx and -1.4kx momentum is found to be deposited to the 
mean flow when the amplitude of the initial wave packet exceeds the critical value 
predicted by Eq. (1 1). 

For the purposes of improving the parametrization of momentum deposition by 
large-amplitude internal waves, it would be desirable to quantify this work further by de- 
termining the partitioning of momentum transport and deposition by a large-amplitude 
wave packet incident on a reflecting level. However, because the breaking process must 
involve three-dimensional behaviour, which is prohibited in the simulations performed 
here, it would be misleading to provide such an estimate based on these simulations. 
A comprehensive study of the fully three-dimensional dynamics has been initiated to 
provide a more realistic assessment of the internal wave dynamics near a reflecting level. 

Of course, if the incident wave packet is horizontally as well as vertically compact, 
one does not expect that the waves, even at large amplitude, could accelerate the mean 
flow across the entire domain. Wave breaking would affect the time-mean motions only 
over the horizontal extent of the wave packet. Indeed, simulations show that the wave 
packet does not break at all when it is horizontally compact. Instead, particularly for 
wave packets with phase tilt, 0, close to zero, a substantial proportion of the large- 
amplitude wave packet is found to propagate well above the reflecting level. 
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The enhanced transmission of a large-amplitude wave packet across a reflecting level 
has been observed previously by Sutherland (1999), who studied the propagation of 
compact wave packets across a hyperbolic tangent shear layer (with constant velocity 
well above and well below the reflecting level). That study showed that interactions 
between the waves and the wave-induced mean flow acted to decrease the intrinsic 
frequency of the transmitted wave packet. If the amplitude of the incident wave packet 
was so large that the resulting intrinsic frequency beyond the reflecting level was 
smaller than the background buoyancy frequency, then the transmitted wave packet 
could propagate indefinitely. 

In this case, the background flow is constant shear. This means that, even though a 
large-amplitude wave packet could be transmitted across a reflecting level as argued 
above, the resulting wave packet must ultimately encounter another reflecting level 
further up. The wave packet should not propagate upward indefinitely. 

The simulations here do not bear out this hypothesis. 
As Figs. 12 and 14 illustrate, if the incident wave packet is horizontally compact, 

with 1 k ,  / k,  I < 1, and if it is of sufficiently large amplitude, then the momentum flux is 
transported vertically upward at a nearly constant rate well above the reflecting level. 
The structure of the transmitted wave packet does not change shape significantly as 
it continues to propagate upward. It appears as though the transmitted wave packet 
propagates in a quasi-steady state. Resolution-doubling tests were performed to confirm 
that this behaviour is not an artefact of the numerical model. 

One might attempt to explain this behaviour by arguing that a steady state might 
be reached if the shear associated with the wave-induced mean flow is comparable 
in magnitude (but opposite in sign) to the background shear. From linear theory, a 
quantitative estimate can be formulated to determine the minimum amplitude of the 
incident wave packet necessary for the generation of a steady-state transmitted wave 
packet. In terms of the maximum amplitude, A,, of the vertical-velocity field, the 
maximum shear associated with the wave-induced mean flow is 

Following the above argument, it is assumed that a steady-state transmitted wave packet 
may be generated if the amplitude of the initial wave packet is sufficiently large that the 
wave-induced shear flow given by Eq. (15) is at least as great as the background shear, 
s. Comparing and re-arranging gives a condition for the critical amplitude: 

Atransmit ‘v (20 k c0s3 0)l” N/ k, . 
’N W 

Table 2 lists some values of the critical amplitude for the steady-state transmission 
of horizontally compact waves given by Eq. (16). The critical breaking amplitude is 
greater than the critical amplitude for transmission in simulations with k, = -0.4kx 
and -0.7k,. Indeed, it is these two simulations that clearly show quasi steady-state 
transmission for amplitudes A, >_ 0.3 N / k, . In the case with k,  = - 1 .4k,, the critical 
breaking amplitude is less than the transmission amplitude explaining why weaker 
transmission occurs in simulations of waves with amplitude A, 1 0.3N/ k x .  

In general, these simulations show that the behaviour of large-amplitude nonhydro- 
static internal waves (for which Ik,/ k, I < 1)  deviates significantly from that predicted 
by linear theory. The redistribution of momentum by reflecting and breaking waves 
has yet to be accurately determined in fully three-dimensional numerical simulations. 
Nonetheless, the issues raised here illustrate the dynamics of two important processes 
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that must ultimately be considered when attempting to parametrize the effect of drag on 
the atmosphere by nonhydrostatic internal waves: a reflection level may not pose such 
a barrier to nonhydrostatic wave propagation as previously supposed; and waves may 
break not only near a critical level but also near a reflection level. 
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