
Chapter 3
Internal Waves in the Atmosphere
and Ocean: Instability Mechanisms

Bruce R. Sutherland

Abstract This chapter summarizes and extends part of the lectures on internal grav-
ity waves in the atmosphere and ocean by focusing upon the various instabilities
associated with vertically propagating internal waves, including breaking due to con-
vective overturning and shear, parametric subharmonic instability, and modulational
instability associated with spatially localized wave packets.

Overview

Internal gravity waves move within a fluid whose density changes with height, and
are driven by buoyancy forces. Thewaves can be subdivided broadly into two classes:
interfacial and vertically propagating waves. Interfacial internal waves and modes
move horizontally being confined by localized stratification and/or by horizontal
boundaries at the top and bottom of the domain. Vertically propagating internal
waves move upward and downward in continuously varying stratification. Here we
will focus on the latter case, referring to them simply as “internal waves”. (For an
introduction to the theory for propagation, generation, and breaking of interfacial
and internal waves, see the textbook by Sutherland 2010). The aim of this chapter is
to examine some of the stability properties of vertically propagating internal waves.
There are amyriad ofmechanisms throughwhich energy andmomentum on the scale
of the waves can be transferred to different scales. Understanding these processes is
essential to improve predictions of the general circulation of the atmosphere and of
mixing in the ocean. Particularly in the latter case, internal waves are an important
conduit through which energy injected into the ocean at large scales (through surface
winds or tidal flow over bottom topography) is ultimately dissipated, thus providing
closure to the ocean energy budget. The use of linear theory is well established to
estimate the breaking of waves due to overturning or (in the atmosphere) due to
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72 B. R. Sutherland

interactions with the synoptic-scale winds near a critical level, which is where the
ground-based horizontal phase speed of the waves matches the wind speed (Lindzen
1981). Because of the interest in mixing induced by oceanic internal waves, sev-
eral new breaking mechanisms have only recently come under investigation. These
include the breakdown of a wave beam reflecting from bottom topography with a
critical slope (e.g., see Chalamalla and Sarkar 2016), breaking waves exerting drag
upon oceanic eddies (Trossman et al. 2013; Marshall et al. 2017), or waves simply
being trapped and eventually absorbed within an anticyclonic eddy (Danioux et al.
2015). These and other energy and momentum cascade processes are discussed in a
recent review paper (Sutherland et al. 2019).

Although an entire book could be devoted to internal wave breaking, this chapter
focuses specifically upon the stability of internal waves in the absence of topography,
background flows, or other waves. Even with these restrictions, there are still many
mechanisms through which internal waves may become unstable, whether through
overturning, shear instability, parametric subharmonic instability, or modulational
instability. In the section“Dispersion and Polarization Relations”, we review the
linear theory for small-amplitude, plane-periodic Boussinesq, and anelastic internal
waves. Breaking conditions (whether due to convective overturning or shear insta-
bility) are then reviewed in the section“Breaking Conditions”. In the section“Triad
Resonant Instability” reviews the theory for triad resonance instability (TRI) with
discussion of its adaptation to confined modes and internal wave beams. Moderately
large amplitude quasi-monochromatic wave packets may be susceptible to modula-
tional instability, as discussed in the section“Modulational Stability and Instability”.
Finally, future directions for research are discussed in the section“FutureDirections”.

Dispersion and Polarization Relations

The motion of internal waves is given by the laws of conservation of mass, momen-
tum, and internal energy with additional approximations to filter the dynamics of
sound waves and to account for the magnitude of background density variations in
the vertical. In the ocean or in the atmosphere over small (� 5km) vertical distances,
the Boussinesq approximation is used: this amounts to treating density as a constant,
ρ0, where it multiplies the material derivative in the momentum equations; density
variations are included only as they influence buoyancy. For internal waves with
vertical structure or propagating over vertical distances larger than about 10km, it
is necessary to use the anelastic approximation. In this case, the background density
profile ρ̄(z) multiplies the material derivative in the momentum equations. The way
in which sound is filtered is different under these two approximations: a Boussinesq
fluid is assumed to be incompressible; for an anelastic gas, the background density
variations are accounted for in the mass conservation equation.
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3 Internal Waves in the Atmosphere and Ocean: Instability Mechanisms 73

Explicitly, ignoring viscosity and dissipative effects, the equations are given by
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(3.1)

Here we will examine internal waves in otherwise stationary fluid so that
�u = (u, v, w) represents the velocity fluctuations due to waves. We also assume
that the fluid is uniformly stratified, meaning that the buoyancy frequency, N , is a
constant. The buoyancy frequency represents the frequency (in radians per second)
of vertical oscillations in the fluid which results when fluid is carried upward and so
finds itself more dense than its surroundings or it is carried downward and finds itself
lighter than its surroundings. In the ocean, over vertical domains less than about a
kilometer (so that the thermodynamic effects of pressure upon density and tempera-
ture can be ignored), the buoyancy frequency is given by N = [−(g/ρ0) dρ̄/dz]1/2.
The ocean is uniformly stratifiedwhere the density increases linearly with depth, cor-
responding to an approximately linear decrease in temperature and/or linear increase
in salinity provided that these changes are not so large that the nonlinear equation
of state of sea water needs to be taken into account. In the atmosphere, the buoy-
ancy frequency is given generally by N = [(g/θ̄) d θ̄/dz]1/2, in which g is gravity
and θ̄(z) is the vertical profile of the background potential temperature. Explicitly,
θ̄ ≡ T̄ ( p̄/p0)−κ, in which T̄ (z) and p̄(z), respectively, are the background tempera-
ture and pressure, p0 is a reference pressure (typically taken to be that at the ground),
and κ � 2/7 for Earth’s atmosphere, which is composed primarily of the diatomic
molecules of nitrogen and oxygen. The atmosphere is uniformly stratified where the
background temperature is constant with height in which case the potential temper-
ature increases exponentially with height and the corresponding density decreases
exponentially with height according to ρ̄(z) = ρ0 exp(−z/Hρ), with Hρ = RaT/g
being the density scale height for air with gas constant Ra = 287 J/kgK. Internal
waves exist on sufficiently small spatial scales that the influence of theEarth’s rotation
can be treated as approximately uniform with latitude, if its influence is considered
at all. Thus, the Coriolis parameter, f , is taken to be constant. Finally, b represents
the buoyancy associated with perturbations in the fluid: for the ocean b ≡ −gρ/ρ0;
for the atmosphere b ≡ gθ/θ̄.

What is clear from (3.1) is that the anelastic equations reduce to the Boussinesq
equations by taking ρ̄ → ρ0. This is one reason why one can perform laboratory
experiments in tanks filled with stratified salt solutions and yet still make predictions
about stratified air flow on relatively small vertical scales in the atmosphere.

The equations for small-amplitudewaves are produced byneglecting the advective
terms in the material derivatives appearing in (3.1) so that D/Dt ≡ ∂/∂t + �u · ∇ →
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74 B. R. Sutherland

∂/∂t . In the Boussinesq approximation, this gives five coupled linear equations in
five unknowns all having constant coefficients. The structure and dynamics of these
waves are correspondingly straightforward to derive. For small-amplitude anelastic
waves, the exponentially decreasing background density ρ̄ leads to a moderately
more involved analysis. Nonetheless, after combining the coupled equations to a
single equation in one unknown, the mass streamfunction, the result is a partial
differential equation with constant coefficients, and so is straightforward to solve.
These procedures are discussed in more detail below.

Boussinesq Internal Waves

After linearizing the Boussinesq equations in (3.1), we seek plane-periodic solutions
with the understanding from the superposition principle that any solution can be
written as a sum of waves. Thus, we seek solutions of the form

(u, v, w, b, p) = (Au, Av, Aw, Ab, Ap) exp[ı(kx + �y + mz − ωt)], (3.2)

in which it is understood that the actual field is the real part of the right-hand side
expression. Each of the constant amplitudes (Au , etc) is possibly complex valued
such that its magnitude represents the actual amplitude and its argument represents
the phase.

Substituting (3.2) into (3.1) thus results in an algebraic matrix eigenvalue problem
whose eigenvalue gives the dispersion relation (an equation relating the frequency,
ω, to the wavenumber �k = (k, �,m)) and whose eigenvector gives the polarization
relations (the relationship between the amplitudes of each field). Explicitly, the dis-
persion relationship for Boussinesq internal waves is

ω2 = N 2(k2 + �2) + f 2m2

k2 + �2 + m2
= N 2 cos2 � + f 2 sin2 �, (3.3)

where in the last expression we have defined � ≡ tan−1(m/kh) with kh ≡ (k2 +
�2)1/2 being the horizontal wavenumber. Thus, � represents the angle from the hor-
izontal of the wavenumber vector or, equivalently, the angle from the vertical of
lines of constant phase. Supposing that the maximum vertical displacement, A0, is
prescribed and the phase is arbitrarily set so that the vertical displacement ampli-
tude Aη = A0 is real valued, then the polarization relations can be written to express
how the amplitudes of the remaining fields depend upon A0. Formathematical conve-
nience, we further simplify the results by supposing the x-axis points in the horizontal
direction of propagation of the waves. (Such a transformation is possible because
the full Eq. (3.1) is invariant upon rotation about the z-axis provided that the Coriolis
parameter, f , is constant.) In effect, this allows us to set � = 0 so that kh = k. The
results are given in Table3.1 and illustrated in Fig. 3.1.

bsuther@ualberta.ca
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Table 3.1 Polarization relations for Boussinesq internal waves giving (left) the possibly complex
amplitudes and (right) the actual fields supposing the vertical displacement amplitude A0 is real
valued

Aη = A0 ⇒ η = A0 cos(kx + mz − ωt)

Au = ıω tan� A0 ⇒ u = −ω (m/k) A0 sin(kx + mz − ωt)

Av = f tan� A0 ⇒ v = f (m/k) A0 cos(kx + mz − ωt)

Aw = −ıω A0 ⇒ w = ω A0 sin(kx + mz − ωt)

Ab = −N 2 A0 ⇒ b = −N 2 A0 cos(kx + mz − ωt)
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Fig. 3.1 Schematic illustrating the polarization relations associated with internal waves in the
x–z plane having phase (group) velocity directed upward (downward) to the right. The Coriolis
parameter is taken to be positive. Circles with crosses inside indicate vectors pointing into the page,
whereas circles with filled circles inside indicate vectors pointing out of the page. The spanwise
vorticity is indicated by ζ

Of course another approach to come up with these results is to combine the
five coupled linearized Boussinesq equations in (3.1) to form a single differential
equation. Assuming the waves have no structure in the y-direction, this is done most
straightforwardly by defining the streamfunction ψ implicitly through u = −∂zψ
and w = ∂xψ, thus automatically satisfying the condition for incompressibility. The
terms involving pressure are eliminated by taking the spanwise component of the curl
of the momentum equations and so arriving at an equation for the spanwise vorticity,
ζ = ∂zu − ∂xw = −∇2ψ. Finally, buoyancy can be eliminated by using the internal
energy equation. If this procedure is followed retaining the nonlinear terms, the
resulting fully nonlinear equation for the evolution of the streamfunction is

[∂t t∇2 + N 2∂xx + f 2∂zz]ψ = ∇ · [∂t(ζ �u) − ∂x (b�u) + f ∂z(v�u)]. (3.4)
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76 B. R. Sutherland

For small-amplitude waves, the right-hand side can be neglected and the resulting
linear partial differential equation can immediately be seen to give the dispersion
relation (3.3).

Anelastic Internal Waves

Because of the z-dependent coefficients involving ρ̄ in the anelastic equations given in
(3.1), one cannot start by assuming solutions with vertical periodicity in z. Instead,
after linearizing it is necessary to combine the equations to form one equation in
one unknown. As with Boussinesq waves, we simplify the algebra by orienting
the x-axis in the horizontal direction of propagation of the waves, thus eliminating
terms involving y-derivatives in (3.1). From the expression for mass conservation of
anelastic waves, ∇ · (ρ̄�u) = 0, we define the mass streamfunction, �, implicitly so
that u = −(1/ρ̄)∂z� and w = (1/ρ̄)∂x�. We then proceed as described above for
Boussinesq flow by taking the spanwise curl of the momentum equations to give an
evolution equation for the spanwise vorticity,

ζ = ∂zu − ∂xw = −(1/ρ̄)[∇2� + (1/Hρ)∂z�], (3.5)

in which Hρ ≡ −(ρ̄′/ρ̄)−1 is the density scale height and, for simplicity, the influence
of the Earth’s rotation has been neglected. Eliminating buoyancy from the resulting
equations and neglecting background rotation gives

∂2

∂t2
∇2� + 1

Hρ

∂3�

∂t2∂z
+ N 2 ∂2�

∂x2
= 0. (3.6)

This reduces to the linearized Boussinesq equation (3.4) with f = 0 by taking the
limit Hρ → ∞.

Because both N and Hρ are constant in an isothermal, uniformly stratified
atmosphere it is possible to find solutions to (3.6) in the form of an exponen-
tial: � = A� exp[ı(kx + Mz − ωt)], in which the z-dependent background sug-
gests that M is not necessarily real valued. Indeed, by substituting into (3.6), we
find M = m + ı/(2Hρ), in which m is the usual real-valued vertical wavenumber.
Thus, the mass streamfunction has the form of a exponentially decaying oscillator
with height. The corresponding velocity fields increase exponentially with height
according to

u = − 1
ρ0

(ım − 1/2Hρ) A� ez/2Hρ eı(kx+mz−ωt)

w = 1
ρ0

(ık) A� ez/2Hρ eı(kx+mz−ωt),
(3.7)

and the dispersion relation for anelasticwaves not influenced by the Earth’s rotation is
given by ω2 = N 2k2 [k2 + m2 + (4Hρ)

−2]−1/2. While it may seem unphysical that u
andw appear to beunbounded, the exponential increase in thesefields followsdirectly
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from the physical requirement thatmomentum is conserved,which is to say that in the
absence of breaking the horizontally averaged vertical flux of horizontal momentum,
ρ̄ 〈uw〉, must be constant. The velocities increase because the background density
decreases with height. In reality, waves do not grow to infinite amplitude: upward-
propagating waves eventually grow to such large amplitude that weakly nonlinear
effects (ignored in the derivation of (3.6)) begin to play a role and eventually fully
nonlinear effects of convective overturning and turbulent breakdown occur.

Breaking Conditions

Although linear theory strictly makes reliable predictions only for waves of suffi-
ciently small amplitude, it is insightful to extrapolate the results for waves that are of
such large amplitude that they are overturning or otherwise lead to fine-scale insta-
bilities associated with breaking waves (Lindzen 1981). While we can imagine that
anelastic waves eventually grow to such large amplitude that they break, the break-
ing itself is expected to occur over small vertical scales compared with the density
scale height. This gives some justification for using the polarization relations for
Boussinesq waves to examine breaking.

Overturning

Internal waves are overturning if the amplitude is so large that the waves carry
dense fluid over less dense fluid rendering the fluid locally to be unstably stratified.
Mathematically, this means that the total squared buoyancy frequency, N 2

T ≡ N 2 +
�N 2, composed of the background squared buoyancy frequency plus the change
due to waves �N 2 ≡ ∂b/∂z, is negative somewhere in the flow field. Thus, the
condition for the critical vertical displacement amplitude AOT of waves on the cusp
of overturning is min{[�N 2/N 2]}|A=AOT = −1. Using the polarization relations in
Table3.1 gives

AOT =
∣∣∣∣
1

m

∣∣∣∣ . (3.8)

Convection

Just because the waves are overturning, it does not mean they will necessarily con-
vectively breakdown. This is because convective instability itself takes time to grow.
If the growth rate is not sufficiently fast, the waves may pull back the overturned
fluid so that the region becomes stably stratified again.
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Thus, an assessment of whether convection actually occurs is found by comparing
the growth rate, σc, for convection with the frequency, ω, of the waves. The growth
rate itself is given by the maximum value of (−N 2

T )1/2 in which the discriminant
is evaluated where the local total stratification is unstable (N 2

T < 0). The critical
vertical displacement amplitude, ACV, of overturning waves that are susceptible to
convection is given implicitly by the condition σc = ω. Using the polarization and
dispersion relations, we find

ACV =
∣∣∣∣
1

m

∣∣∣∣
(
1 + ω2

N 2

)
, (3.9)

in which the frequency is given by (3.3). In the low-frequency limit, appropriate for
near-inertial internal waves, ACV � AOT.

Shear Instability

For near-inertial internal waves, which have low frequency close to f , their motion
is close to horizontal (� � 90◦). Thus, even if the waves are not overturning, it is
possible for shear instability to develop and ultimately result in the breakdown of
the waves. A necessary condition for the linear instability of a parallel stratified
shear flow is that the minimum gradient Richardson number, Rig , is below 1/4. For
the case of internal waves moving in the x–z plane (� = 0), Rig is the ratio of the
local stratification, N 2

T , to the square of the local vertical shear ∂u/∂z. For small
amplitude, non-overturning waves, it turns out that this has a minimum close to
where the stratification is unaffected by the waves (�N 2 = 0) but where the shear is
strongest (see Sect. 4.6.3 of Sutherland 2010). Thus, the critical vertical displacement
amplitude for waves satisfying min{Rig} = 1/4 is

ASHR = 2
N |k|
ωm2

√
1 −

(
Nk

ωm

)2

. (3.10)

This criterion is met for amplitudes below the overturning threshold (A0 = AOT)
for internal waves having |k/m| <

√
f/N � 0.1, in which the last value is esti-

mated from characteristic values in the atmosphere and ocean of f ∼ 10−4s−1 and
N ∼ 10−2s−1.

Summary of Breaking Instabilities

Figure3.2 plots the critical amplitudes AOT, ACV, and ASHR against relative
wave numbers. Also shown in Fig. 3.2a is the prediction for instability due to
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Fig. 3.2 Breaking regimes heuristically predicted from linear theory showing (a) the critical ampli-
tudes associated with overturning and convective instability as well as self-acceleration and (b) the
critical amplitude associated with stratified shear instability of near-inertial waves. (Adapted with
permission from Fig. 4.18 of Sutherland 2010)

self-acceleration, a weakly nonlinear mechanism to be discussed in the section
“Modulational Stability and Instability”. Focusing on the high-frequency non-
hydrostatic waves in Fig. 3.2a, it appears that the waves become unstable to self-
acceleration before reaching overturning amplitudes. This is bourne out in simula-
tions of horizontally periodic vertically localizedwave packets though fully localized
non-hydrostatic wave packets may achieve higher amplitudes before being driven to
overturn by the effects of self-acceleration (e.g., see Sutherland 2001). Focusing
on the near-inertial waves in Fig. 3.2b, it is clear that the waves become unstable
due to shear instability before reaching overturning amplitudes if their wavenumber
is such that |k/m| < ( f/N )1/2. Surprisingly, if |k/m| � ( f/N )1/2 then even waves
with very small amplitude are susceptible to shear instability.

Triad Resonant Instability

Parametric subharmonic instability (PSI) or, more generally, triad resonant instabil-
ity (TRI) is considered as a potentially important and pervasive mechanism for the
breakdown of internal waves, particularly in the oceanwhere anelastic growth cannot
contribute to drive the waves to breaking through one of the mechanisms described
above. The general theory was developed for plane periodic waves (Hasselmann
1967) and applied specifically to internal waves by several researchers (see reviews
by Phillips (1981); Staquet and Sommeria (2002); Dauxois et al. (2018)). Mathe-
matically, TRI is a consequence of weakly nonlinear interactions between a triplet of
waves including a “parent wave” with wavenumber �k0 and a pair of “sibling waves”
with wave numbers �k±. Through the nonlinear advective terms in the equations of
motion, energy can pass between the parent and siblings provided they satisfy the
resonance conditions �k0 = ±�k+ ± �k−

ω0 = ±ω+ ± ω−,
(3.11)
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80 B. R. Sutherland

in which the frequencies ω0 and ω± are given by the corresponding dispersion rela-
tions. Even for waves restricted to the x–z plane, there are a rich number of solutions
to these three equations in four unknowns. Of these it remains to determine for
which the amplitudes of the sibling waves indeed grow. These are the waves that
are expected to grow out of noise, extracting energy from the parent wave with the
fastest growing siblings expected to be dominant.

Taking a somewhat different approach from that of previous researchers (Benielli
and Sommeria 1998; Bourget et al. 2013), we begin byworking with the fully nonlin-
ear Boussinesq equations in the form given by (3.4). The parent wave is characterized
in terms of the streamfunction in which extracting the real part of the complex expo-
nential is made explicit:

ψ0 = 1

2
a0 exp[ı(k0x + m0z − ω0t)] + c.c., (3.12)

inwhich c.c. denotes the complex conjugate. Likewise, the siblingwaves have stream-
function

ψ± = 1

2
a± exp[ı(k±x + m±z − ω±t)] + c.c.. (3.13)

The polarization relations can be used to find corresponding expressions for the
vorticity, velocity, and buoyancy associated with the parent and sibling waves. In all
these expressions, the amplitudes a0 and a± are considered to be functions of time
allowing for the possible growth of the sibling waves at the expense of the parent.

Putting these results into (3.4) together with the resonance conditions (3.11) gives
a triplet of equations expressing how two of the waves interact to influence the third
wave. In particular, the interaction between the parent and the “+” sibling to influence
the “−” sibling is expressed through

[∂t t∇2 + N 2∂xx + f 2∂zz]ψ− =
∇ · [∂t (ζ0�u+ + ζ+�u0) − ∂x (b0 �u+ + b+�u0)] + f ∂z(v0�u+ + v+�u0)]. (3.14)

With use of (3.12) and (3.13) and the corresponding polarization relations, this can
then be written as an equation for the time evolution of the amplitude a−. In doing
so, it is convenient to assume that the growth rate is small compared to the wave
frequency so that ‖dtta−‖ � ω−‖dta−‖ and the term dt (a0a�+) arising on the right-
hand side of (3.14) is considered to be negligible.

The resulting equation can bewritten dta− = I−a0a�+, inwhich I− is an expression
involving thewavenumbers of the parentwave and the “+” sibling. Similarly, the evo-
lution equation for the amplitude of the “+” sibling can be written dta+ = I+a0a�−.
Combining these results gives

d2

dt2
a+ = I+ I �

− |a0|2 a+. (3.15)
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Thus, through the process of passing energy from one sibling to the other via the
parent, it is possible for both siblings to grow in amplitude. Assuming the change
in a0 is small while the sibling amplitudes are small, so that |a0| can be treated
as a constant in (3.15), the growth is exponential with growth rate, σp, given by
the positive real part of

√
I+ I �− |a0|. (As |a±| grows to be comparable to |a0|, the

waves can saturate or, if |a0| is sufficiently large, additional nonlinear effects can
lead to energy being transferred to a broader frequency spectrum possibly leading to
overturning.)

If rotation is neglected, then I± is pure real. In this case, it is possible for there
to be no growth of sibling waves if their wave numbers are such that I+ I− < 0.
However, numerous studies have shown growth for a range of sibling waves in two
dimensions (Mied 1976) and for a wide range in three dimensions (Klostermeyer
1991; Lombard and Riley 1996).

Although the resonance conditions (3.11) strictly require the waves to be perfectly
periodic in infinite space, siblingwavesmay also grow fromaboundedparentmode in
uniform stratification if the wave numbers of the sibling waves are sufficiently small
that a wavelength can fit inside the domain. This has been observed in laboratory
experiments (Bouruet-Aubertot et al. 1995; Benielli and Sommeria 1998), as shown
in Fig. 3.3a.

TRI has also been observed for horizontally propagating vertically confined inter-
nal waves having a mode-1 vertical structure (Joubaud et al. 2012), as shown in
Fig. 3.3b. Recent advances have been made in the study of TRI for internal wave
beams (Bourget et al. 2013; Karimi and Akylas 2014; Dauxois et al. 2018), showing
that sibling waves can grow within and emerge from a parent beam if there are a
sufficient number ofwavelengths of parent waveswithin the beam. For the interpreta-
tion of experiments showing TRI occurring within an internal wave beam (Fig. 3.3c),
Bourget et al. (2013) included viscosity in their theoretical analysis.

Modulational Stability and Instability

If the amplitude of the waves varies in space, as surely occurs for naturally occurring
internal waves, then there is another mechanism for amplitude growth or decay
in time resulting from the waves inducing a flow that then Doppler shifts the waves
themselves. If resulting in amplitude growth, the waves are said to be modulationally
unstable. Otherwise, they are modulationally stable, meaning that their amplitude
decreases faster than linear theory for dispersion would predict. The structure of the
induced flow and its consequent impact back upon the waves depends non-trivially
upon the dimensionality of the amplitude envelope, which describes the space- and
time-dependent amplitude of the waves.

Conceptually, it is most straightforward to understand the physics of induced
flows by considering a one-dimensional wave packet, which is spanwise uniform
and horizontally periodic so that the amplitude envelope varies spatially only in the
vertical. Thus, the vertical displacement field for a 1D Boussinesq wave packet is
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82 B. R. Sutherland

Fig. 3.3 Observations in laboratory experiments of TRI occurring for internal waves as (a) a mode
in an oscillating square tank (adapted with permission from Fig. 6 of Bouruet-Aubertot et al. 1995),
(b) a horizontally propagating vertically confined mode (adapted with permission from Fig. 1 of
Joubaud et al. 2012), and (c) a down and rightward propagating beam (adapted with permission
from Fig. 2 of Bourget et al. 2013)

written

η(x, z, t) = 1

2
A(Z , T )eı(kx+mz−ωt) + c.c.. (3.16)

Assuming the modulated waves are quasi-monochromatic, the variables Z and T ,
respectively, represent slow variations in the vertical and in time as compared with
the vertical wavelength and period of the waves.

Using the polarization relations in Table3.1, the leading-order expressions for the
corresponding horizontal and vertical velocity fields are
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u1(x, z, t) = 1
2 ı(ωm/k) A(Z , T ) eı(kx+mz−ωt) + c.c.

w1(x, z, t) = − 1
2 ıω A(Z , T ) eı(kx+mz−ωt) + c.c.,

(3.17)

in which the subscripts emphasize that these fields, arising from linear theory, are
proportional to the amplitude. Themeanmomentumflux, Fz = ρ0 〈u1w1〉, is straight-
forwardly computed from the cross-terms of the product, u1w1, for which the com-
plex conjugate cancels the complex exponential leaving only the slow variations.
Explicitly,

Fz = −ρ0
ω2m

2k
|A|2. (3.18)

Rightward propagating wave packets with upward group velocity, cgz , have k > 0
and m < 0, and so Fz > 0 for such waves as expected.

Being horizontally periodic and incompressible, one can write the x-momentum
equation in flux-form and average over one horizontal wavelength. For conceptual
convenience we neglect rotation and so find

∂

∂t
(ρ0 〈u〉) = − ∂

∂z
Fz . (3.19)

The key here is to recognize that u on the left-hand side is not the u1 appearing in
(3.17). Instead it is a quantity proportional to the amplitude squared and which is
independent of x . For convenience, we will write u2 ≡ 〈u〉 on the left-hand side of
(3.19). Thus, ∂t u2 represents the horizontal acceleration of the background resulting
from the divergence of the momentum flux.

For plane waves the amplitude is constant and, consequently, so is the momentum
flux, Fz . Hence, there is no force or corresponding flow induced by plane waves until
they break or otherwise dissipate. However, even without dissipation, modulated
internal wave packets do induce a (time-changing) flow directly as a consequence
of the vertical variation in Fz . An example with an upward-propagating wave packet
having a Gaussian amplitude envelope is illustrated in Fig. 3.4. The momentum flux
is largest where the amplitude is largest at the vertical center of the wave packet.
Corresponding to the decrease in the momentum flux going upward from this point
there is a time-transient acceleration of the background flow. Likewise, the momen-
tum flux increases going upward from below the wave packet to its center and so
there the background flow decelerates after the center of the wave packet passes. The
net increase in speed due to the acceleration occurring on the leading flank of the
wave packet is canceled by the net decrease occurring on the trailing flank. And so
the speed of the background flow remains the same from before to after the passage
of the wave packet. However, a floating particle (a passive tracer) will find itself
displaced rightward from its initial position.

A formula for the induced flow itself can be found if one assumes the flow is
steady in a frame of reference moving with the group velocity of the wave packet.
That is, we suppose u2(z, t) = u2(z̃) in which z̃ ≡ z − cgzt . Likewise, we know
that the amplitude envelope translates at the group velocity and assume that time
variations in the translating frame due to wave packet dispersion occur on much
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Fig. 3.4 Schematic
illustrating the physical
mechanism for the transient
acceleration of the mean
flow due to the divergence of
the momentum flux
associated with a wave
packet. The curved solid line
represents vertical variations
of, e.g., displacement along
some vertical cut; the dashed
line represents the amplitude
envelope, which translates
vertically upward at the
group velocity cgz

z

u = 0

u > 0

u = 0

∂t u > 0

∂t u < 0

uw > 0

∂z uw < 0

∂z uw > 0

cgz

Momentum Conservation per Mass

slower time scales. Thus, we can approximate A(Z , T ) � A(z̃) in the expression
for Fz in (3.18). So, changing co-ordinates in (3.19) to the translating frame gives
−cgz∂z̃(ρ0u2) = −∂z̃ Fz . Integrating both sides and using (3.18) gives

u2 = −1

2

1

cgz

ω2m

k
|A|2 = 1

2
N |�k||A|2, (3.20)

in which |�k| = (k2 + m2)1/2. In the case illustrated by Fig. 3.4, the induced flow is a
vertically translating squared Gaussian. A parcel at a fixed point in space accelerates
rightward as the leading edge of the wave packet approaches and then decelerates as
the squared Gaussian flow passes, but overall is displaced rightward as given by the
vertical integral of u2.

Now being aware that a modulated 1D wave packet induces a flow that translates
vertically with the wave packet, it is anticipated that this flow, if sufficiently large,
could act significantly to Doppler shift the waves, just as a time-independent back-
ground shear flow can act to cause wave reflection or breaking near a critical level.
This is indeed the case. As a crude heuristic, an estimate for the critical amplitude
at which this Doppler shifting might force the waves to overturn is given by the
condition for “self-acceleration”, which assumes the waves break if the maximum
of the induced flow exceeds the horizontal group velocity of the waves. The critical
amplitude for self-acceleration is ASA = √

2m/|�k|, which is plotted in Fig. 3.2a.
In amore rigorous examination, we note that the effect of a background horizontal

flow,U , acting uponwaves is given by the advection operatorU∂x . So, in the absence
of other influences, the evolution of the amplitude envelope due to the leading-order
effect of Doppler shifting of the waves is represented by ∂t A = −ıkU A. Including
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the effects of the vertical translation of thewave packet at the group velocity aswell as
the dispersion of the waves, which can be important at this order, the evolution of the
amplitude envelope of a wave packet as influenced by the flow it induces is given by

∂t A = −cgz∂z A + ı
1

2
ωmm∂zz A − ı

1

2
Nk|�k||A|2A. (3.21)

This is a nonlinear Schrödinger (NLS) equation (normally written in a frame trans-
lating with the wave packet at its vertical group velocity, in which case the first term
on the right-hand side disappears and z is replaced with z̃ = z − cgzt). An example
of the solution of the NLS equation for a modulationally unstable wave packet is
shown in Fig. 3.5.

The NLS equation predicts whether the amplitude initially grows or decays
depending upon the product of the sign of the induced flow and the sign of ωmm =
∂mcgz: modulational stability occurs ifUωmm > 0 (the group velocity increases with
increasing wavenumber); otherwise, the wave packet is modulationally unstable.
(For the general theory, see Whitham 1974 or Sect. 4.2.4 of Sutherland 2010.) For
non-rotating internal waves, the maximum upward group velocity occurs for waves
with m = mc = −k/

√
2. For larger m (with smaller magnitude), cgz is smaller and

η
=

R
e{

A
ex
p[

ı(
k
0x

−
ω
0t
)]
}
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Fig. 3.5 Evolution of a modulationally unstable Gaussian wave packet showing (a) the displace-
ment due to waves (solid blue lines) and the amplitude envelope (dashed red lines) at five different
times during the evolution as indicated and (b) the evolution of the amplitude envelope in a frame
moving with the group velocity of the wave packet, with magnitude indicated by the color scale.
Note that after the initial amplitude growth the wave packet then broadens and its amplitude decays.
Over longer times the growth and decay process repeats. (Adapted with permission from Fig. 4.4
of Sutherland (2010))
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Fig. 3.6 Breakdown of an anelastic nonlinear 1D packet showing (a) induced flow that grows
exponentially with height, (b) induced momentum that would be unchanging in the absence of
weakly nonlinear effects

so ωmm < 0: the waves are modulationally unstable. Conversely, more hydrostatic
waves with |m| > k/

√
2 are modulationally stable.

The physics of modulational stability and instability are clear by considering the
effect of the induced flow that Doppler shifts the waves. For non-hydrostatic waves
with |m/k| < 1/

√
2, Doppler shifting acts to reduce the effective frequency of the

waves which, in turn, reduces their vertical group velocity. Thus, the trailing edge of
the wave packet catches up with the leading edge causing the amplitude to increase
while the vertical extent of the packet decreases. On the other hand, if |m/k| > 1/

√
2

then the effective decrease in the wave frequency leads to an increase in the vertical
group velocity causing the wave packet to spread vertically and its amplitude to
decrease faster than would occur due to linear dispersion alone.

Although the NLS equation predicts that a modulationally unstable wave packet
will periodically narrow and then spread (see Fig. 3.5), in reality other nonlinear
effects may come into play as the amplitude peaks. An example is shown in Fig. 3.6
illustrating the evolution of the inducedflowassociatedwith an anelasticwave packet.
As the wave packet narrows and peaks, the wave packet becomes convectively unsta-
ble. Although this is predicted by linear theory to happen for a 1D anelastic wave
packet, the addition of the weakly nonlinear effect of modulational instability shows
that breaking occurs at much lower altitudes (Dosser and Sutherland 2011).

Conversely, modulationally stable 1D anelastic wave packets spread as they grow
in amplitude and weakly nonlinear effects become important. Thus, overturning is
retarded and simulations show that they break at much higher altitudes than predicted
by linear theory. The overturning heights found in simulations are compared with
those predicted by linear theory in Fig. 3.7.

What has been presented so far relates to 1D wave packets whose amplitude
envelope varies spatially only in the z-direction. The structure of the flow changes
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Fig. 3.7 Overturning heights of 1D anelastic wave packets measured in fully nonlinear numerical
simulations and comparedwith theory, showing the altitude of overturning anelasticwaves predicted
by linear theory (solid blue lines) and fully nonlinear numerical simulation results for the altitude
of the first occurrence of overturning (red dots). (Copyright © American Meteorological Society.
Adapted with permission from Fig. 6 of Dosser and Sutherland 2011)

qualitatively for wave packets that are modulated in both the x- and z-directions. In
this case, the induced flow resulting from the divergence of the momentum flux is
itself horizontally divergent and so an order amplitude-squared pressure gradient is
established to ensure the fluid remains incompressible. The result is that a spanwise
infinite wave packet that is otherwise horizontally and vertically localized induces a
flow in the form of a long wave provided the frequency of the long wave is larger than
the Coriolis frequency (Bretherton 1969; Tabaei and Akylas 2007; van den Bremer
and Sutherland 2014). Unlike the induced flow for 1D wave packets, this flow is
positive over the leading flank of the wave packet and is negative over the trailing
flank. Thus, whatever the wavenumber of the waves in the wave packet, the waves
are always modulationally unstable with the leading edge narrowing and peaking
if |m/k| < 1/

√
2 and the trailing edge narrowing and peaking otherwise. Evidently

from numerical simulations of 2D anelastic wave packets, this results in overturning
occurring at altitudes not too different from those predicted by linear theory (Gervais
et al. 2018).

The flow induced by 3D wave packets is entirely different again. In this case,
provided the spanwise extent of the wave packet is not too wide, the response to
the horizontal divergence of the momentum flux is to create a circulation that goes
horizontally around thewave packet inwhat is termed theBrethertonflow (Bretherton
1969; Tabaei and Akylas 2007; Bühler 2014; van den Bremer and Sutherland 2018).
The induced flow over the extent of the wave packet is unidirectional as in the case
of 1D wave packets, although the magnitude of the flow is smaller. Thus, while the
effects of modulational instability and stability are again anticipated, their influence
is expected to be not so pronounced for 3D as for 1D wave packets. Examination of
these effects is currently under investigation.
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Future Directions

Here we have presented a brief overview of some of the instability mechanisms
associated with internal waves in uniformly stratified fluid. While plane-periodic
internal waves are an exact solution of the fully nonlinear Euler equations, their
stability properties are by nomeans trivial. Even at small amplitudes, periodic waves,
modes, and beams can eventually break downdue to resonant-triadwave interactions.
If, as in the atmosphere, the waves grow sufficiently rapidly with height that TRI can
be ignored, then the waves can break either due to convection or shear instability.
And the height at which this breakdown occurs can be preconditioned by the weakly
nonlinear effects of modulational stability and instability.

Despite interest in internal waves for their momentum transport in the atmosphere
and their energy transport in the ocean, several fundamental aspects of their instabil-
ity properties remain to be explored. Of these, this author believes themost important
avenues for exploration include studying the influence of nonuniform stratification
and spatial confinement upon TRI and examining the influence of background rota-
tion upon wave-induced flows and their corresponding weakly nonlinear influence
upon the modulational stability/instability and ultimate breaking of wave packets.
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inner core at its current size. However, powering the geodynamo happens to be more
problematic when the inner core is smaller, and before its nucleation. With a low
core thermal conductivity and Qad

cmb = 5 TW, the convective power Pa would be of
a few tens of TW. Driving the geodynamo with thermal convection seems therefore
possible, though the convective power would bemuch lower than at present.Whether
this would have a significant impact on the large-scale part of the geomagnetic field
remains an open question. If the high estimates of the core thermal conductivity
are correct, the CMB heat flux may well be sub-adiabatic. In this situation thermal
convection is not possible, and driving the dynamo requires another source of motion
and energy. Possible additional sources of energy include exsolution of light elements
from the core (O’Rourke and Stevenson 2016; Badro et al. 2016; O’Rourke et al.
2017) and astronomical forcing (Andrault et al. 2016). In addition, adding some
radioactive heating in the core (possible due to 40K) would help by decreasing the
rate of cooling of the core and increasing the age of the inner core (Labrosse 2015).

Inner Core Dynamics

The Earth’s inner core is the deepest layer of our planet: a 1221 km-radius sphere
of solid iron-alloy surrounded by molten metal. Its existence was unknown until the
first observations of seismic reflexions at the inner core boundary by Inge Lehmann,
in one of the shortest-title paper ever: P’ (Lehmann 1936). The arrivals of P-waves
in the core shadow zone, where P-waves are refracted away by the presence of the
3600-km-radius core, have been explained by the existence of a new discontinuity
inside the core, the inner core boundary.

Since these first observations, the study of seismic waves travelling through the
inner core and normal modes sampling the deepest layers have provided a blurry
image of the inner core structure (Fig. 5.14). Birch (1940) and Jacobs (1953) have
proposed that the inner core is a solid sphere of the same metal constituting the
outer core, while the actual solidity has been demonstrated only several years later
by Dziewonski and Gilbert (1971). Poupinet et al. (1983) were the first to note the
different propagation velocities of waves travelling parallel to the rotation axis and
perpendicular to it. This anisotropy of seismic properties has since been extensively
studied, demonstrating the existence of a complex structure of the inner core. Among
the most robust and surprising features of the inner core structure, we can cite two: a
strong anisotropy for the bulk of the inner core, and an uppermost layer of the inner
core with a strong hemispherical dichotomy in P-waves velocity, but no detectable
anisotropy.

The existence of anisotropy in the inner core is an evidence for crystal orienta-
tion within the bulk of the inner core (iron crystals being elastically anisotropic).
Such crystal orientation is the main motivation for studying flows in the inner core,
as lattice-preferred orientation (LPO) may be deformation-induced (Karato 2012).
Thus, it is thought that the observed structure may be an evidence for flows within
the inner core, likely to be combined with initial crystallisation-induced LPO.
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Inner core Outer Core Mantle

F Layer
stably stratified

Concentration (Si,S,O)

Fig. 5.14 A schematic view of the structure of the inner core. In addition to a global elastic
anisotropy oriented parallel to the axis of rotation of the Earth (grey lines), the inner core has radial
and horizontal variations of its seismic properties. There is a strong asymmetry between its western
and eastern hemispheres (approximately defined by the Greenwich meridian), which have different
seismic waves propagation velocity, attenuation, and degree of anisotropy. Anisotropy is weak or
non-existent near the surface of the inner core, and increases in depth. Finally, the inner core is
surrounded by a layer that appears to be stably stratified, the F-layer

We will discuss here the constitutive equations and some of the aspects of inner
core dynamics, focusing on the flow forced in the inner core by the magnetic field
diffused from the outer core.

Constitutive Equations

We consider an incompressible fluid in a spherical domain of radius ricb, with a
Newtonian rheology and uniform viscosity η. Neglecting inertia and rotation, the
equation of continuity and the conservation of momentum are written as

∇ · u = 0, (5.156)

0 = −∇p′ + η

ρs
∇2u + F, (5.157)

where F denotes volume forces, p′ is the dynamic pressure (including gravity poten-
tial) and u the velocity field.

Among the volume forces, the buoyancy force is written as Fbuoyancy = �ρg,
where �ρ is the density difference compared to a neutral density profile and g =
gicbr/ricber the acceleration of gravity. gicb is the acceleration of gravity at the surface
of the inner core.
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In thismodel, the density variations only play a role in the buoyancy term, and they
can be related to variations in temperature or concentration in light elements (Si, S,
O, ...) compared to a reference state. We take as the reference temperature profile the
adiabatic temperature profile Tad(r) anchored at the melting temperature at the radius
of the inner core ricb. The deviation of the temperature field compared to this reference
profile is the potential temperature � = T − Tad. The potential composition field is
defined as C = cs − csicb, where c

s is the concentration of light elements in the inner
core and csicb its value at the inner core boundary. The density variations are thusραT�

orραCC for respectively thermal or compositional stratification,whereαT andαC are
the thermal and compositional expansion coefficients. As both potential temperature
and potential composition are solutions of an advection–diffusion equation and are
both set to zero by construction at the inner core boundary, we will consider a general
equation for a quantity χ, representing either of these quantities. χ is solution of

∂χ

∂t
+ u · ∇χ = κχ∇2χ + Sχ(t), (5.158)

where κχ is the diffusivity and Sχ(t) a source term built from the evolution of the
reference profile as

ST =κT∇2Tad − ∂Tad
∂t

, (5.159)

SC = − dcsicb
dt

. (5.160)

The continuity and momentum equations can be solved using a poloidal–toroidal
decomposition of the velocity field u = ∇ × (T r) + ∇ × ∇ × (Pr), where r = rer
is the position vector and T and P respectively the toroidal and poloidal components.
In the following, we will only consider boundary conditions with a zero vertical
vorticity and volume forces without toroidal components. The flow is thus expected
to have only non-zero poloidal component, and applying r · (∇ × ∇×) toEq. (5.157),
we obtain

0 = −(∇2)L2P + r · (∇ × ∇ × F), (5.161)

where L2 is the Laplace horizontal operator defined as

L2 = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2
. (5.162)

One could note that for a volume force of the form F = Frrer such as the buoy-
ancy forces, the second term of the right-hand side of the equation simplifies as r ·
(∇ × ∇ × F) = L2Fr . Splitting the volume force term as one term for the buoyancy
forces and one term for the other forces, we have F = ραχχrgicber/ricb + Fvolume.
Expanding the scalar fields P and χ with horizontal spherical harmonics Ym

l sat-
isfying L2Ym

l = −l(l + 1)Ym
l of degree l and order m, as P = ∑

l,m Pm
l Ym

l and
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χ = ∑

l,m χm
l Y

m
l , the equation of interest is eventually written for each (l,m) as

D2
l P

m
l − ραχgicb

r

ricb
χm
l − f ml

l(l + 1)
= 0, (5.163)

where f ml is the spherical harmonics decomposition of the poloidal component of
the volume force F, and Dl a second-order differential operator defined as

Dl = d

dr2
+ 2

r

d

dr
− l(l + 1)

r2
. (5.164)

Boundary Conditions

The inner core boundary is a crystallisation front, where the iron-alloy of the outer
core freezes due to the slow secular cooling of our planet. Its exact position is deter-
mined by the intersection of the melting temperature profile of the iron-alloy and
the temperature profile in the core. Any solid material pushed dynamically further
from this intersection would melt, while any liquid pushed inward would freeze. The
timescale τφ involved in the freezing or melting of a small topography at the inner
core boundary can be estimated from the timescale needed by outer core convection
to extract the latent heat released by crystallisation. We note h the topography at the
inner core boundary.

From continuity of stress at the ICB, themechanical boundary conditions are writ-
ten at r = ricb(t). We consider that the dynamical topography h is small (compared
to the horizontal wavelength) and that the vector normal to the boundary is close to
the radial unit vector. The tangential and normal components of the stress tensor are
written as

τrθ = η

[

r
∂

∂r

(uθ

r

)

+ 1

r

∂ur
∂θ

]

, (5.165)

τrφ = η

[

r
∂

∂r

(uφ

r

)

+ 1

r sin θ

∂ur
∂φ

]

, (5.166)

τrr = 2η
∂ur
∂r

− p, (5.167)

where p here is the total pressure. The viscosity of the outer core being much smaller
than the viscosity of the inner core, we can assume tangential stress-free conditions.
The boundary conditions are then written as τrθ(r = ricb) = τrφ(r = ricb) = 0 and
continuity of τrr across the ICB, which for a small topography amounts to state that
the normal stress on the inner core side at r = ricb is equilibrated by the weight of
the topography:
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2η
∂ur
∂r

− p′
︸ ︷︷ ︸

normal stress

= �ρgh
︸ ︷︷ ︸

topography
weight

, (5.168)

p′ being the dynamical pressure on the inner core side of the ICB.
To close the systemof equations,we consider the time evolution of the topography.

The topography can be formed by deformation of the inner core boundary by the
underlying flow ur − ṙicb and is eroded by phase change, such that we can write
that Dh/Dt = ur − ṙicb + Vr , where Vr is the velocity of phase change in the radial
direction. Vr at first order is −h/τφ, where τφ is a typical timescale for the phase
change. Considering a dynamical equilibrium for the topography, we obtain ur −
ṙicb = h/τφ and the continuity of normal stress is written as

− �ρgicbτφ(ur − ṙicb) − 2η
∂ur
∂r

+ p′ = 0. (5.169)

Non-dimensionalisation and Final Set of Equations

The governing equations aremade dimensionless using characteristic scales for time,
length, velocity, pressure and χ (potential temperature or composition) as, respec-
tively, the diffusion time r2icb/(6κχ), its radius ricb, κχ/ricb, ηκχ/r2icb and Sχr2icb/(6κ).
Using the same symbols for dimensionless quantities, the non-dimensional set of
equations is

∇ · u = 0, (5.170)

−∇p′ + Ra χ r + ∇2u + Fvolume = 0, (5.171)

∂χ

∂t
= ∇2χ − u · ∇χ + 6. (5.172)

The dimensionless number Ra is a Rayleigh number expressed as

Ra = αχρgicbSχr5icb
6κ2

χη
. (5.173)

The momentum equation (5.171) can also be written for the poloidal decomposition
in spherical harmonics as

D2
l P

m
l − Ra χm

l − f ml
l(l + 1)

= 0. (5.174)

The last step is to express the boundary conditions in termof the poloidal decompo-
sition and in non-dimensional form. Noting that ur = L2P/r and that the horizontal
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integration of the momentum equation taken at r = 1 gives −p′ + ∂(r∇2P)/∂r =
cste, the stress free condition takes the form

d2Pm
l

dr2
+ [l(l + 1) − 2] P

m
l

r2
= 0, (5.175)

and the normal stress balance is

r2
d3Pm

l

dr3
− 3l(l + 1)

dPm
l

dr
=
[

l(l + 1)P − 6

r

]

Pm
l , (5.176)

whereP is a dimensionless number comparing the timescale of viscous relaxation of
the boundary η/�ρgicbricb and the time scale of phase change τφ, de facto quantifying
the permeability of the inner core boundary. It is defined as

P = �ρgicbricbτφ

η
. (5.177)

Unstable or Stable Stratification in the Inner Core?

The core crystallises from the center outward because the solidification temperature
of the core mixture increases with depth faster than the (adiabatic) core geotherm
(Jacobs 1953). One consequence of this solidification mode is that the inner core is
cooled from above, a configuration which is potentially prone to thermal convection.
Thermal convection further requires the inner core temperature profile to be super-
adiabatic, which depends on a competition between extraction of the inner core
internal heat by diffusion and advection, and cooling at the ICB. Equation (5.158)
shows that super-adiabaticity in the inner core (i.e. a potential temperature increasing
with depth) requires ST to be positive. Fast cooling and a low inner core thermal
diffusivity (ST > 0) promotes super-adiabaticity; slow cooling and high thermal
diffusivity (ST < 0) results in a stable thermal stratification.

The expression of ST (Eq. 5.159) can be rewritten by writing the time derivative
of the temperature at the ICB as a function of the rate of inner core growth (Deguen
and Cardin 2011). This gives

ST = − 1

ricb

dTad
dr

∣
∣
∣
∣
icb

([
dTs
dTad

− 1

]

ricbṙicb − 3κT

)

, (5.178)

where dTs/dTad is the ratio of the Clapeyron slope to the adiabat. It is then straight-
forward that the term ST is positive only if

dr2icb
dt

>
6κT

dTs
dTad

− 1
. (5.179)
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Unfortunately, the uncertainties on the thermal conductivity and inner core growth
rate are such that the sign of ST is not known with much certainty. The high value of
the thermal conductivity currently favoured (de Koker et al. 2012; Pozzo et al. 2012;
Gomi et al. 2013, 2016) results in a stable thermal stratification.

The inner core may also have developed a compositional stratification. The con-
centration in light elements of newly crystallised solid, csicb, is linked through the
partition coefficient D to the concentration in the liquid from which it crystallises,
clicb, as

csicb = Dclicb, (5.180)

while its derivative with respect to inner core size is

dcsicb
dricb

= D
dclicb
dricb

+ clicb
dD

dricb
, (5.181)

= Dclicb

[
d ln clicb
dricb

+ d ln D

dricb

]

. (5.182)

A stable compositional stratification would develop if csicb increases with increasing
inner core size (more light elements in the upper part of the inner core); conversely,
an unstable stratification would develop if csicb decreases with increasing inner core
size. The first term on the right-hand-side term of Eq. (5.182) is very likely positive,
due to the gradual enrichment of the outer core in light elements expelled during
crystallisation. The second term depends on how D varies with pressure and tem-
perature along the (P, T ) path defined by the evolution of the position of the inner
core boundary. Ab initio calculations (Gubbins et al. 2013) suggest that it is nega-
tive, and of the same order of magnitude as the first term on the r.h.s. of Eq. (5.182).
The relative importance of the two terms depends on the exact composition of the
inner core (Gubbins et al. 2013; Labrosse 2014), which is not very well constrained.
Again, it is difficult to be definitive: given our current knowledge of the composition
of the core and of the partitioning behaviour of its light elements, stable and unstable
compositional stratifications seem equally plausible.

Natural (thermal or compositional) convection in the inner core has been studied
in details (e.g. Weber and Machetel 1992; Wenk et al. 2000; Alboussière et al. 2010;
Monnereau et al. 2010; Deguen and Cardin 2011; Cottaar and Buffett 2012; Deguen
et al. 2013;Mizzon andMonnereau 2013;Deguen et al. 2018). In the limitP → 0, the
convection instability takes the form of a translation of the inner core, withmelting on
one hemisphere and solidification on the other (Alboussière et al. 2010; Monnereau
et al. 2010; Deguen et al. 2013; Mizzon and Monnereau 2013; Deguen et al. 2018).
We will focus here on the case of neutral or stable stratification, and consider the
flow forced by the Lorentz force associated with the magnetic field diffused in the
inner core from the outer core.
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Deformation Induced by the Lorentz Force

As discussed in section “The Geodynamo Hypothesis”, the flow in the outer core
sustains a magnetic field extending upward to the surface of the Earth but also inward
inside the inner core. Themagnetic Reynolds number of the inner core is likely small:
assuming, for example, a velocity 10−10 m.s−1 gives a magnetic Reynolds number
on the order of 10−5. This shows that the magnetic field is only diffused inside the
inner core, with no net advection or generation of the field. A diffused magnetic field
in the inner core will add two terms in the set of equations: the Lorentz force in the
momentum equation, and Joule heating in the energy equation. We are interested
here in the flow driven by the Lorentz force in the inner core (Lasbleis et al. 2015).

Geodynamo simulations often exhibits a strong toroidal magnetic field close to
the inner core boundary. As we are interested in the largest effect on the inner core
dynamics, we consider here only low-order toroidal components of the magnetic
field at the ICB, which have the largest penetration length scale.

We thus add in the momentum equation the Lorentz force due to a purely toroidal
and axisymmetric magnetic field of degree two at the ICB B|icb = B0 sin θ cos θeφ

(Buffett and Bloxham 2000). Imposing this field at the ICB and solving for its diffu-
sion inside the inner core assuming it does not vary with time (∇2B = 0), we obtain
B = B0r2/r2icb cos θ sin θeφ. This field is associated to an electric current density
j = 1

μ0
∇ × B, with μ0 the magnetic permeability. The associated Lorentz force is

fL = j × B which non-potential part (magnetic tension) can be written as

f̃ L = B2
0

μ0ricb

r3

r3icb
[ frer + fθeθ] , (5.183)

with fr and fθ two functions of θ expressed as

fr (θ) = 3 cos4 θ − 15

7
cos2 θ + 4

35
, (5.184)

fθ(θ) = cos θ sin θ

(
4

7
− 3 cos2 θ

)

. (5.185)

Injecting this force into the dimensionless Stokes equation, we obtain

0 = −∇p + Ra χ r + ∇2u + M f̃ L , (5.186)

where

M = B2
0r

2
icb

μ0ηκ
(5.187)

is similar to a Hartmann number, quantifying the ratio of the Lorentz force to the

viscous force, and f̃ L is defined as in (5.183) without the prefactor B2
0

μ0ricb
.
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Equation (5.186) is solved using a poloidal decomposition and horizontal spher-
ical harmonics decomposition. The term corresponding to the Lorentz force gives

r · (∇ × ∇ × f̃ L) = 8r2(1 − 3 cos2 θ) = − 16√
5
r2Y 0

2 , (5.188)

where Y 0
2 = √

5(3 cos2 θ − 1)/2. The momentum equation can thus be written as
an equation for the spherical harmonics components Pm

l and tml of respectively the
poloidal component of the velocity and the temperature as

D2
l P

m
l − Ra tml + 16√

5l(l + 1)
Mr2δ2lδ0m = 0, l ≥ 1, (5.189)

where δ is the Kronecker symbol.

Neutral Stratification

We first consider the neutral stratification end-member where Ra = 0. In that case,
the only force driving flows in the system is the Lorentz force, and we do not need
to solve for the temperature or composition fields. The flow results from a balance
between the Lorentz and viscous forces. Since the characteristic length scale of
velocity variations must be the size of the inner core (1 in dimensionless form), we
have

∇2u
︸︷︷︸

∼u

∼ M f̃ L
︸︷︷︸

∼M

, (5.190)

which implies that the magnitude of the velocity field should be proportional to M .
We can now solve analytically the flow field for a neutral stratification. With

Ra = 0, Eq. (5.189) reduces for l = 2 and m = 0 to

D2
2P

m
l + 8

3
√
5
Mr2 = 0, (5.191)

whichwe solvewith the boundary conditions at r = 1described in section “Boundary
Conditions”:

d2P0
2

dr
+ 4

P0
2

r2
= 0, (5.192)

r
dr3P0

2

dr3
− 18

1

r

dP0
2

dr
=
(

P − 1

r2

)

6P0
2 . (5.193)
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Equation (5.191) is a fourth order non-homogeneous differential equation, which
solution can be obtained by solving the homogeneous equation and noticing that

P0
2 = − 1

337
√
5
Mr6 (5.194)

is one solution of the complete equation. Searching for a polynomial solution, we
find that rα is solution of the homogeneous equation D2

2P
0
2 = 0 if α is a zero of

the polynomial expression [α(α + 1) − 6][(α − 2)(α − 1) − 6]. We then obtain the
general solution of equation (5.191) as

P0
2 (r) = − M

337
√
5
r6 + Ar−3 + Br−1 + Cr2 + Dr4. (5.195)

A and B must be equal to 0 for the velocity to remain finite at r = 0. C and D are
obtained from the boundary conditions at r = 1, and we finally obtain

P0
2 (r) = 1

337
√
5
M

(

−r6 + 14

5
r4 − 9

5
r2 + 1

19 + 5P
[
204

5
r4 − 544

5
r2
])

.

(5.196)
From the expression of P0

2 , we can now obtain the expressions for the velocity
field from

ur = 3
P0
2

r
Y 0
2 , (5.197)

uθ = 1

r

d

dr
(r P0

2 )
∂Y 0

2

∂θ
. (5.198)

Defining the r.m.s. velocity as

V 2
rms = 3

4π

∫ 2π

0

∫ π

0

∫ 1

0
(u2r + u2θ) sin θr2 dr dθ dφ, (5.199)

we obtain

Vrms = M
4

189

√

34

715

√
74029 − 1576 P + 76 P2

19 + 5 P
. (5.200)

This expression for the RMS velocity gives insight on the effect of P on the
global dynamics. As predicted at the beginning of the subsection, the velocity is
indeed a linear function of M , with the boundary conditions modifying the pref-
actor. For P → 0, VRMS ∼ 0.066M , and for P → ∞, VRMS ∼ 0.008M . Permeable
boundary conditions (P → 0) give velocities about one order of magnitude higher
than impermeable boundary conditions (P → ∞) (Fig. 5.15).
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Fig. 5.15 Neutral
stratification: r.m.s. velocity
as a function of the
parameter P , and meridional
cross-section of the
streamlines of the two
end-members P → 0 and
P → ∞. (Modified from
Lasbleis et al. (2015).)
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Stable Stratification

If the inner core is stably stratified (Ra < 0), the buoyancy forces resulting from the
deformation of constant density surfaces would tend to oppose further deformation,
and inhibit vertical motions. We can thus anticipate that the flow obtained in the limit
of Ra = 0 can be significantly altered by a strong stratification.

To estimate to what extent the neutral stratification solution can be altered by the
presence of a stable density stratification,we consider the vorticity equation (obtained
by taking the curl of Eq. (5.186)), which is

0 = −Ra
∂χ

∂θ
eφ + M∇ × f̃ L + ∇2ζ, (5.201)

where ζ = ∇ × u is the vorticity. Because the form of the magnetic field considered
here forces a degree 2 flow, and because in non-dimensional form χ varies between
0 and 1, the θ derivative of χ is � 1. The magnitude of the baroclinic vorticity pro-
duction −Ra ∂χ

∂θ
is therefore � −Ra. Since the vorticity production associated with

the Lorentz force is on the order of M , a stable stratification can affect significantly
the flow only if −Ra � M . As one of the main unknown for inner core dynamics is
the viscosity, it is interesting to note that the ratio M/Ra,

M

Ra
= B2

0

μ0�ρ gicb ricb
, (5.202)

does not depend on the viscosity, so that the boundary between a strongly stratified
regime and a neutral stratification does not depends on the viscosity.

Figure 5.16 shows the temperature and vorticity fields obtained by solving numer-
ically Eqs. (5.172) and (5.189) at M = 104 and Ra = −104, −6 × 104, −105, and
−106. The stratification has a negligible effect on the flow at Ra = −104, but
already has a significant effect at Ra = −6 × 104, which is consistent with the
criterion we just derived (−Ra � M for a strong effect of the stratification). At
Ra = −105 and −106, the flow induced by the Lorentz force is essentially con-
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Fig. 5.16 Meridional cross-sections of the temperature and the vorticity fields forM = 104 and four
different values of the Rayleigh number. At low Ra, the flow is similar to the neutral stratification
case. If −Ra � M (strong stratification) the flow is confined in a layer at the top of the inner core.
(Modified from Lasbleis et al. (2015).)

fined to a thin layer below the inner core boundary, in which the flow direction is
essentially horizontal. Lasbleis et al. (2015) found that the thickness of this layer is
∝ (−Ra)−1/6 and the strain rate in the layer is ∝ M(−Ra)−1/3. For application to
Earth’s inner core, we take �ρ ∼ −1 kg.m−3 and B0 ∼ 4 mT (Gillet et al. 2010),
and find M/(−Ra) ∼ 106, which would imply that stratification strongly affects the
flow forced by the Lorentz force.

Core Formation

The final section of this chapter concerns the formation of Earth’s core. The Earth
formed about 4.56 Gy ago through the accretion of solar nebula material, a pro-
cess which is estimated to have taken a few tens of millions of years. Accretion in
the solar system went through different dynamical phases which involved increas-
ingly energetic and catastrophic impacts and collisions (Lunine et al. 2011; Walsh
et al. 2011). The last phase of accretion, in which most of the Earth mass was
accreted, involved extremely energetic collisions between alreadydifferentiatedplan-
etary embryos (∼100–1000 km size), which resulted in widespread melting and the
formation of magma oceans.

The basic ingredients of a terrestrial planet—an iron-rich metal and silicates—are
immiscible, and can separate under the action of gravity to form an iron-rich core
surrounded by a rockymantle. The timescale of phase separation ismuch smaller than
the accretion timescale if at least one of the two phases is liquid, and it is thus believed
that core formation has been concomitant with Earth’s accretion. Importantly, the
metal added to the Earth by each impact had no reason to be in thermodynamic
equilibrium with the silicate mantle of the growing Earth, which implies that heat
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and chemical elements would have been transferred from one phase to the other when
the two phaseswere in contact. Chemical elements and heat released during accretion
have thus been partitioned between the core and mantle, in a way which depends on
the exact physical mechanism by which metal and silicate have separated.

This has important implications for the state of the planet at the end of its accre-
tion, and its subsequent evolution. The partitioning between core and mantle of the
heat released during accretion has set the initial temperature contrast between the
mantle and core, a key parameter for the early dynamics of the planet, with impli-
cations for the possibility of forming a basal magma ocean (Labrosse et al. 2007),
the existence of an early dynamo (Williams and Nimmo 2004; Monteux et al. 2011),
and the subsequent thermal and magnetic evolution of the planet. The partitioning of
chemical elements between the core andmantle has been used to constrain the timing
of differentiation and the physical conditions under which it occurred (e.g. Yin et al.
2002; Halliday 2004; Wood et al. 2006; Rudge et al. 2010). It has also important
implications for a number of geodynamical issues. One example is the identity and
abundance of light elements and radioactive elements in the core (Corgne et al. 2007;
Badro 2015), which depend on the conditions (pressure P , temperature T , oxygen
fugacity f O2) at which metal and silicate have interacted for the last time.

The large impacts which dominated the last stages of Earth formation injected
enormous amounts of kinetic energy into themagmaoceans, creating highly turbulent
environments in which it has been conjectured that the cores of the bodies impacting
the Earth would fragment down to centimetre scale, at which metal and silicates can
efficiently exchange chemical elements and heat (Stevenson 1990; Karato and Rama
Murthy 1997; Rubie et al. 2003). The metal is envisioned to disperse in the magma
ocean and equilibrate with the silicates, before raining out. It would then collect at
the base of the magma ocean, and finally migrate toward the core as large diapirs
(Stevenson 1990; Karato and RamaMurthy 1997; Monteux et al. 2009; Samuel et al.
2010) or by the propagation of iron dykes (Stevenson 2003), at which point further
chemical equilibration is unlikely to be significant.

Most geochemical models of core formation are based on this so-called iron
rain scenario, but the fluid dynamics involved is actually poorly understood, even
at a qualitative level. Efficient chemical exchange requires a high metal–silicates
interfacial area-to-volume ratio, which requires fragmentation or stretching of the
metal down to ∼cm size. Differentiation of terrestrial bodies started early, and it
is now recognised that most of the mass of the Earth was accreted from already
differentiated planetary bodies, with cores of their own. Whether or not these large
volumes of iron (∼100–1000 km) would indeed fragment down to cm scale at which
chemical equilibration can occurs therefore remains an open question, and a matter
of much speculation (Dahl and Stevenson 2010; Deguen et al. 2011; Samuel 2012;
Deguen et al. 2014; Wacheul et al. 2014).

Wehaveyet nowell-tested and self-consistent theory of fragmentation and thermal
or compositional equilibration in the context of metal–silicate separation in a magma
ocean. For this reason,wehave heremade the choice of focusing on the basic concepts
and mechanisms which we believe are important to know and understand to tackle
this problem, rather than trying to give a definitive answer to this question.
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Problem Set-Up and Non-dimensional Numbers

To keep things reasonably simple, we will ignore here the dynamics of the impact
itself and consider the fate of an initially spherical mass of molten iron falling into
silicates, which can be either solid or molten. This molten iron mass may be either
the core of a planetary body impacting the Earth or a fragment of the core if it has
been significantly dispersed by the impact. As an additional simplifying hypothesis,
we will even assume that the metal mass has no initial velocity.

The volume of molten iron is assumed to be close to spherical, and has a radius
R0. We denote by ρm and ρs = ρm − �ρ the densities of metal and silicates, and by
ηm and ηs their viscosities. The metal and silicates phases are immiscible and we
denote by γ the interfacial tension of the metal–silicates interface. We denote by g
the acceleration of gravity.

The evolutionof themetalmass dependson sevendimensional parameters (R0,ρm ,
ρs , ηm , ηs , γ) involving 3 fundamental units (length, weight, and time). According to
Vashy-Buckingham’s theorem, the number of independent non-dimensional numbers
to be used to describe the problem is equal to 7 − 3 = 4. One possible set is the
following:

Bond number: Bo = �ρ g R2
0

γ
, (5.203)

Grashof number: Gr = �ρ

ρs

gR3
0

ν2
s

, (5.204)

density ratio:
ρm

ρs
, (5.205)

viscosity ratio:
ηm

ηs
. (5.206)

The Bond number is a measure of the relative importance of buoyancy and interfacial
tension. The Grashof number is basically a Reynolds number obtained by taking
Stokes’ velocity as a velocity scale. Additional useful numbers include Reynolds
and Weber numbers, which can be defined as

Reynolds number: Re = ρsU R0

ηs
, (5.207)

Weber number: We = ρsU 2R0

γ
, (5.208)

whereU is a velocity scale to be defined. The Reynolds andWeber numbers compare
inertia to viscous forces and interfacial tension, respectively. The density ratio is
close to 2.

If, in addition, we consider heat or mass transfer between metal and silicates, then
two additional dimensional parameters enter the problem: the diffusivities (thermal
or compositional) κm and κs in the metal and silicates. Since there is no additional
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fundamental units, Vashy-Buckingham’s theorem implies that two additional non-
dimensional numbers must be used. One possible choice is to use the ratio of the
diffusivities and a Péclet number:

diffusivity ratio:
κm

κs
, (5.209)

Péclet number: Pe = UR0

κs
. (5.210)

In what follows, we will assume that κs = κm for the sake of simplicity.

Preliminary Considerations

Terminal Velocity

Since we have chosen to focus on the case of a metal mass falling with no initial
velocity, a relevant velocity scale is its terminal velocity, reached when the buoyancy
force (∼�ρgR3

0) is balanced by the drag on the surface of the metal mass. Two
different scalings can be obtained depending on whether the drag is dominated by
viscous stresses (∼ηsU/R0) or dynamic pressure (∼ρsU 2). The ratio of the dynamic
pressure and viscous stresses contributions to the total drag is

dynamic pressure

viscous stress
∼ ρsU 2

ηsU/R0
= Re. (5.211)

The drag on the metal mass is obtained by multiplying the dominant stress by the
surface area of the metal mass: it is on the order of ηsU R0 if the drag is dominated
by the contribution of viscous stresses (low Re), and on the order of ∼ρsU 2R2

0 if it
is dominated by the contribution of dynamic pressure (high Re). The force balance
on the metal mass can thus be written as

�ρgR3
0

︸ ︷︷ ︸

buoyancy

∼ max
(

ρsU
2R2

0, ηsU R0
)

︸ ︷︷ ︸

drag

. (5.212)

The terminal velocity obtained from this balance is

U ∼ min

(

�ρgR2
0

ηs
,

(
�ρ

ρs
gR0

)1/2
)

. (5.213)

The first scaling gives Stokes’ settling velocity, and corresponds to the low Re limit;
the second scaling is the so-called newtonian scaling, and corresponds to the high
Re limit. The two velocities are on the same order of magnitude when
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Gr ∼ 1, (5.214)

which defines the boundary between the two scalings (here νs = ηs/ρs). The terminal
velocity is thus

U ∼ �ρgR2
0

ηs
if Gr � 1, (5.215)

U ∼
(

�ρ

ρs
gR0

)1/2

if Gr � 1. (5.216)

With these scalings, the Reynolds andWeber numbers based on the terminal velocity
are given by

{

Re ∼ Gr

We ∼ Gr Bo
if Gr � 1, (5.217)

{

Re ∼ Gr1/2

We ∼ Bo
if Gr � 1. (5.218)

Maximal Stable Size of a Falling Drop

Interfacial tension (unit J.m−2) can be interpreted as an energy per unit area. Deform-
ing an interface in a way which results in an increase of the interfacial area costs
energy, and interfacial tension effects will tend to minimise the surface area of the
interface. If no other force acts on a drop, interfacial tension would keep it spherical,
hence minimising its surface area.

Interfacial tension can also be seen as a force per unit of length (it can be verified
that J.m−2 = N.m−1): if a piece of an interface is divided into two parts, the force
imparted by one part of the surface on the other is parallel to the interface and has a
magnitude given by the product of the interfacial tension with the length of the curve
separating the two parts of the surface. If integrated over a curved surface, one can
also show that interfacial tension induces a pressure jump across the interface equal
to

�P = γ

(
1

R1
+ 1

R2

)

, (5.219)

where R1 and R2 are the principal radii of curvature. This pressure jump is called
Laplace’s pressure. Across a spherical interface (the surface of a drop or bubble of
radius R0), Laplace’s pressure is equal to 2γ/R0.

A falling drop can be deformed by the stresses imparted by the surrounding fluid
onto the drop, or in other words by the fluid drag. If the total drag on the drop is Fdrag,
the mean stress on the surface of the drop is ∼Fdrag/R2

0 . One can expect significant
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deformation of the drop if the hydrodynamic stress variations due to the drag exceed
Laplace’s pressure:

Fdrag

R2
0

� γ

R0
. (5.220)

If the drop reached its terminal velocity, then the drag must be equal to the total
buoyancy of the drop, Fdrag ∼ �ρgR3

0. Combining this with Eqs. (5.220), we find
that strong deformation of the drop will happen if its radius is larger than a critical
radius Rc given by

Rc ∼
(

γ

�ρg

)1/2

. (5.221)

This length is also known as a capillary length: it is the length scale over which
buoyancy effects dominate over surface tension effects. Interfacial tension will keep
the drop close to spherical if its radius is smaller than Rc. Equation (5.221) is equiva-
lent to writing that deformation is significant if the Bond number of the drop is large
compared to 1. The interfacial tension between metal and silicates is on the order of
1 J.m−2 and �ρ ∼ 4000 kg.m−3. With g ∼ 10 m.s−2, we thus have Rc ∼ 5 mm.

Strong drop deformation may happen before reaching terminal velocity, and in
this case the above scaling will not be the most relevant. If drag is dominated by
viscous effects (Fdrag ∼ ηsU R0), then we find that deformation of the drop may
happen if its velocity is larger than a critical velocity

Uc ∼ γ

η
. (5.222)

This criterion is of limited use since if the drag is dominated by viscous effect (which
means that Re � 1), then the drop velocitywill very quickly reach a terminal velocity
equal to Stokes’ settling velocity. Using Stokes’ velocity for U in Eq. (5.222) gives
Eq. (5.220).

If instead drag is dominated by the contribution of dynamic pressure (Fdrag ∼
ρsU 2R2

0), then we find that strong deformation requires the drop Weber number is
large:

We = ρsU 2R0

γ
� 1. (5.223)

This criterion reduces to Eq. (5.221) when the drop reaches its terminal velocity
(U ∼ √

(�ρ/ρs)gR0 since in this limit Re � 1).

The Low Reynolds Limit: Diapirism

A first relevant limit of the problem described in section “Problem Set-Up and Non-
dimensional Numbers” corresponds to molten metal diapirs travelling through a
solid, or partially molten, silicate layer. The radius of these diapirs may be similar
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to the size of the core of the impactors, say somewhere between 1 km and 1000 km.
The acceleration of gravity is smaller or equal to its current value in Earth’s mantle,
g ∼ 10 m.s−2. The viscosity ηs of the silicates is a strong function of temperature,
and can also be significantly decreased if the silicate layer is partially molten. A
reasonable range is 1015–1021 Pa.s. The viscosity of molten iron is ∼10−2 Pa.s.

With this parameter values, Bo � 1010, Gr � 10−4, ρm/ρs ∼ 2, ηm/ηs � 10−18.
The Grashof number being small, we are well into the low Reynolds regime: viscous
forces dominate over inertia in the silicates. The limit of low Re and high Bo has
been studied numerically in the context of core formation (Samuel and Tackley 2008;
Monteux et al. 2009; Samuel et al. 2010), and experimentally in other contexts (e.g.
Ribe 1983; Bercovici and Kelly 1997). In this limit surface tension is unimportant,
but the volume of metal is kept roughly spherical because Re � 1. Since viscous
forces are so important in the silicates, the flow around the metal mass is limited
to spatial scales on the order of R0, which limits the deformation of the metal mass
(in other words, small scale perturbations of the metal–silicate interface shape are
damped viscously).

The falling velocity is thus simply given by Stokes’ velocity [Eq. (5.215)]. The
law of heat or mass transfer between the diapir and its surrounding is also well known
(e.g. Clift et al. 1978; Ribe 2007; Ulvrová et al. 2011: the heat flux is given by

heat flux = a4πR2
0ks

T̄ − Ts(z)

R0
Pe1/2 (5.224)

where ks is the thermal conductivity in the silicates, T̄ the mean temperature in the
diapir, Ts(z) the temperature of the surrounding silicate layer at depth z, and a is a
constant on the order of 1. A similar expression can be written for chemical elements
transfer.

The heat balance of the diapir writes

ρmcp,m
4π

3
R3
0
dT̄

dt
= −4πR2

0aks
T̄ − Ts(z)

R0
Pe1/2, (5.225)

where cp,m is the heat capacity of the metal phase. Transforming the time deriva-
tive into a derivative with respect to the distance z travelled by the diapir (using
d(...)/dt = Ud(...)/dz) and re-arranging gives

dT̄

dz
+ T̄

�
= Ts(z)

�
, (5.226)

where the characteristic length � is given by

� = 1

3 a

ρmcp,m
ρscp,s

R0Pe
1/2. (5.227)
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� is the characteristic distance over which the temperature of the diapir responds
to changes of the surrounding temperature, the thermal equilibration distance. The
general solution of equation (5.226) is

T̄ = T0e
−z/� +

∫ z

0

e(z′−z)/�

�
Ts(z

′)dz′, (5.228)

where T0 is the initial temperature of the diapir. In practice, the amount of heat transfer
is small because � is typically larger than the mantle thickness. The compositional
diffusivity in the solid silicates being perhaps four orders of magnitude smaller that
the thermal diffusivity, exchange of chemical elements would be even smaller (the
equilibration distance being ∝ Pe1/2 ∝ κ−1/2). Diapirs migrating through a solid
part of themantlewould therefore exchange a negligible amount of heat and chemical
elements with the surrounding mantle.

The High Reynolds Limit: Metal–Silicates Separation
in a Magma Ocean

Let us now consider the case of a volume of molten metal falling into molten rocks—
a magma ocean. The parameter values are similar to what we have considered when
discussing the case of diapirism, except that the viscosity of the silicates is much
smaller, on the order of 10−1 Pa.s. With these parameter values, Bo � 1010, Gr �
1022, ρm/ρs ∼ 2, ηm/ηs � 10−18. Since Gr � 1, the relevant velocity scale is the
newtonian scaling given by Eq. (5.216). This gives Re ∼ Gr1/2 � 1011 and We ∼
Bo � 1010. The very large values of Re, Bo, and We imply that neither viscous
forces nor interfacial tension can keep the metal volume spherical: a molten mass
of metal falling into a magma ocean should suffer significant deformation, possibly
resulting in its fragmentation into drops.

Observations from Laboratory Experiments

The very large values of the Bond and Weber numbers imply that interfacial ten-
sion should be unimportant for the large-scale dynamics. This suggests to first look
at the case of infinite Bond and Weber numbers, which corresponds to the limit
of miscible fluids.

Figure 5.17a shows snapshots from an experiment in which a negatively buoyant
volume of an aqueous solution of sodium iodide is released into fresh water. The
volume of the (dyed) negatively buoyant fluid is seen to increase as it falls, which
indicates that it entrains and incorporates ambient fluid, resulting in its gradual dilu-
tion. Measurements show that the mean radius of the dyed mixture increases linearly
with the distance from the point of release. This is what is known as a turbulent ther-
mal in the fluid mechanics and atmospheric science communities ( e.g. Batchelor
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(a) Miscible turbulent thermal

(b) Immiscible turbulent thermal

Fig. 5.17 a A 169 mL volume of an aqueous solution of NaI (ρ = 1502 kg.m−3) falling into
fresh water, at Re = 4 × 104, ρm/ρs = 1.5, ηm/ηs = 1. The time interval between each image is
0.3 s. b A 169 mL volume of an aqueous solution of NaI (ρ = 1601 kg.m−3) falling into a low-
viscosity silicon oil (ρ = 821 kg.m−3, η = 8.2 × 10−4 Pa.s), at Bo = 3.4 × 104, Re = 5.5 × 104,
ρm/ρs = 1.95, ηm/ηs = 1.2 (Deguen et al. 2019). The time interval between each image is 0.2 s

1954; Scorer 1957; Woodward 1959). The name thermal is inherited from the usage
of glider pilots, for whom a thermal is an isolated mass of warm air rising through
the lower atmosphere. Though the buoyancy in atmospheric thermals is due to tem-
perature differences, the nature of the source of buoyancy (thermal or compositional)
happens to be of secondary importance and introduces no qualitative difference. The
term thermal has since been used to denote an isolated buoyant mass of a fluid rising
or falling (depending on the sign of the buoyancy), irrespectively of the nature of the
source of buoyancy. Here we will also often use the term buoyant cloud instead of
thermal.

Figure 5.17b shows snapshots from a similar experiment in which a negatively
buoyant volume of sodium iodide is now released into a low-viscosity silicon oil.
The NaI solution and the silicon oil are immiscible, so we are one important step
closer to the core-mantle differentiation configuration. The experimental fluids and
configuration have been chosen so as to maximise the values of the Bond and
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Reynolds numbers, which are Bo = 3.4 × 104 and Re = 5.5 × 104. The density
ratio is ρm/ρs = 1.95 (close tometal–silicate), and the viscosity ratio is ηm/ηs = 1.2.
The large-scale evolution of the negatively buoyant volume is strikingly similar to
what has been observed in the miscible experiment: the volume of the negatively
buoyant fluid increases linearly with distance, which indicates that it entrains and
incorporates silicon oil. PIV measurements on a similar experiment (Fig. 5.18) show
that the velocity field has a vortex ring structure, with most of the entrainment of
silicon oil probably occurring from the rear of the cloud.

In contrast, the small scale structure in the immiscible experiment is qualitatively
different from what we can observe in the miscible experiment. In the miscible
experiment, the negatively buoyant solutionsmixeswith the entrainedwater, diffusion
of the NaI salt allowing homogenisation at the molecular scale. In the immiscible
experiment, the NaI solution of course does not mix with the entrained silicon oil
since the two liquids are immiscible. A close inspection of the last snapshot of
the immiscible experiment reveals that the dense phase has been fragmented into
droplets.

Fig. 5.18 Velocity field obtained from PIV measurements in an experiment in which a 169 mL
of aqueous solution of NaI (ρ = 1280 kg.m−3) is released in a 1cst viscosity silicon oil. The
colorscale gives the vorticity field (red is clockwise, blue counterclockwise). The concentration of
the NaI solution has been chosen so that its optical index matches that of the silicon oil, in order to
avoid optical distorsion. The non-dimensional parameter values areBo = 2 × 104, Re = 4.2 × 104,
ρm/ρs = 1.56, ηm/ηs = 1.2
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Large-Scale Dynamics: Turbulent Entrainment Model

We consider the evolution of a mass of negatively buoyant fluid falling into another
one (Fig. 5.19). The mass of negatively buoyant fluid has an initially spherical shape
and an initial radius R0, and has a density ρa + �ρ, where ρa is the density of the
surrounding fluid. We denote by uz the vertical velocity of the center of mass of
the negatively buoyant cloud, and by R(z) its spatial extension. Following Batchelor
(1954), we assume that far from the source uz and R only depend on either distance
z or time t , and on its total amount of buoyancy defined as

B = g
�ρ

ρa
V0,

where V0 is the initial volume of the released buoyant mass. We thus assume that
surface tension has no effect on the evolution of uz and R. Dimensional analysis then
shows that

{

uz ∼ B1/2z−1

R ∼ z
or, equivalently

{

uz ∼ B1/4 t−1/2

R ∼ B1/4 t1/2
,

which predicts that the spatial extension of the cloud increases linearly with z: the
cloud must therefore entrain ambient fluid. The prediction that the mean velocity
decreases as z−1, or, equivalently, as R−1, is consistent with the fact that the total
buoyancy of the cloud is conserved, but not its volume. The buoyancy is “diluted”
by the incorporation of neutrally buoyant ambient fluid to the cloud.

A more physical (and more general) way to obtain the evolution of a turbulent
thermal has been given by Morton et al. (1956), who based their analysis on the
assumption that the rate of entrainment of ambient fluid within the buoyant cloud is
simply proportional to the mean vertical velocity uz and to the surface area of the
cloud (Fig. 5.19). This is the basic assumption of the turbulent entrainment models
used to describe the dynamics of turbulent clouds, plumes, and jets.

This assumption implies that the time derivative of the cloud volume is given by

d

dt

(
4π

3
R3

)

= 4πR2α uz, (5.229)

where α is the entrainment coefficient. Noting that d(...)/dt = uzd(...)/dz, where
z is the vertical position of the center of mass of the cloud, integration of equation
(5.229) gives

R = R0 + αz, (5.230)

which is consistent with the prediction of dimensional analysis.
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Fig. 5.19 The turbulent
thermal model: a volume of
fluid with initial radius R0
and density ρa + �ρ is
released at z = 0 in a fluid of
density ρa . The thermal has a
mean vertical velocity uz . Its
mean radius R increases
with the distance z from the
source due to entrainment of
ambient fluid at a rate
ue = αuz

z

R(z)

u = uzez

g

R0, B = Δρ
ρs

gR3
0

ue = αuz

Conservation of momentum allows to obtain a predictive law for the vertical
velocity uz of the center of mass of the cloud. Ignoring fluid drag on the cloud and
a possible loss of buoyancy in the wake of the cloud, conservation of momentum
simply states that

d

dt

(
4π

3
R3ρ̄uz

)

= 4π

3
R3
0�ρg (5.231)

where ρ̄ is the mean density of the cloud, given by

ρ̄ = ρa + �ρ
R3
0

R3
= ρa + (1 + αz)−3�ρ. (5.232)

Conservation of mass implies that

d

dt

(
4π

3
R3ρ̄

)

= 4πρa R
2αuz . (5.233)

Using this relation inEq. (5.231), using the transformationd(...)/dt = uzd(...)/dz =
αuzd(...)/dR, and re-arranging gives

du2z
d R

+ 6

R

ρa

ρ̄
u2z = 2g

α

�ρ

ρ̄

R3
0

R3
, (5.234)
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a linear first order ordinary differential equation with varying coefficients. The solu-
tion, written for uz as a function of z, is

uz =
(

g

2α3

�ρ

ρa
R3
0

)1/2

F
(
R0

αz
,
�ρ

ρa

)
1

z
, (5.235)

where

F
(
R0

αz
,
�ρ

ρa

)

=

[

1 + 4
R0

αz
+ 6

(
R0

αz

)2

+ 4

(

1 + �ρ

ρa

)(
R0

αz

)3
]1/2

1 + 3
R0

αz
+ 3

(
R0

αz

)2

+
(

1 + �ρ

ρa

)(
R0

αz

)3 . (5.236)

The function F tends toward 1 at large αz/R0. The full solution is thus consistent
with the dimensional analysis prediction when far from the source. Close to the
source, the velocity is given (at first order in αz/R0), by

uz =
(

2
�ρ

ρa
gz

)1/2

. (5.237)

Though the turbulent thermal model just described has been developed to model
miscible flows, experiments suggest that it can also be applied to immiscible fluids
in situations where the Bond and Weber numbers are large (Deguen et al. 2014;
Landeau et al. 2014; Wacheul et al. 2014; Wacheul and Le Bars 2017). A qualitative
comparison of Fig. 5.17a, b suggests that it is indeed the case. The similarity between
the miscible and immiscible experiments also holds on a quantitative level: from a
series of experiments similar to that presented on Fig. 5.17, we have been able to
show that the evolution of both R and uz are very well described by the turbulent
entrainment model with α = 0.25 ± 0.05, similar to miscible flows (Deguen et al.
2014; Landeau et al. 2014). This demonstrates that there is indeed no effect of surface
tension on the large-scale part of the flow.

Fragmentation

Qualitative Observations form Experiments

In the experiment shown on Fig. 5.17b and in similar experiments, most of the frag-
mentation of the dense liquid occurs during a relatively short time span. In Fig. 5.17b,
the dense phase is essentially continuous until the third snapshot, and almost entirely
fragmented into drops at the fourth snapshot. The analysis of images obtained with a
high-speed camera (1kHz) shows that drops formation results from twomechanisms:

bsuther@ualberta.ca



202 R. Deguen and M. Lasbleis

(a) Capillary instability

(b) Liquid sheet fragmentation

Fig. 5.20 Two fragmentations mechanisms observed in the experiment shown in Fig. 5.17b. a
Fragmentation of a liquid (NaI solution) ligament. The time interval between two images is�t = 10
ms, and the width of each image is 1 cm. b Fragmentation of liquid film. The time interval between
two images is �t = 20 ms, and the width of each image is 1.8 cm

1. the fragmentation of stretched cylindrical ligaments of aqueous solution through
the Rayleigh–Plateau capillary instability, as shown in Fig. 5.20a (the mechanism
of the Rayleigh–Plateau instability is explained below),

2. the fragmentation of thin liquid films, as shown in Fig. 5.20b. In this regime,
thin films of aqueous solutions are stretched by the flow before eventually being
punctured.Thefilm thenquickly retracts, the liquid forming thefilmgathering into
ligaments which then fragment into drops due to the Rayleigh–Plateau instability.

These two modes of fragmentation are classically observed in fragmentation prob-
lems in a variety of contexts. In fact, liquid fragmentation necessitates a capillary
instability, irrespectively of the nature of the flow (Villermaux 2007). What varies
from one problem to another is the sequence of mechanisms resulting in the forma-
tion of ligaments which can fragment as a result of the Rayleigh–Plateau capillary
instability. In experiments such as shown in Fig. 5.17b, the observed sequence is the
following: (i) the interface is destabilised and deformed by the combined effect of
shear and Rayleigh–Taylor instabilities; (ii) three-dimensional structures generated
by the destabilisation of the interface are stretched and stirred by the mean flow and
velocity field fluctuations; (iii) stirring produces ligaments and films, which will then
break up and produce a population of drops.
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Rayleigh–Plateau Capillary Instability

In many situations, the deformation of an interface results in an increase of its surface
area, and hence of its interfacial energy. In this case deformation is not energetically
favoured, and mechanical work therefore has to be provided to deform the interface.
This is for example the case of initially planar interface: any perturbation of the
interface results in an increase of its surface area and energy.

In contrast, the deformation of a cylindrical interface can, under certain conditions,
result in a decrease of its surface area, and hence of its interfacial energy. Take
a cylinder of one liquid into another, of length L and radius R0. Its surface area is
2πR0L and its interfacial energy is 2πR0Lγ. It is easy to see that the cylindrical shape
is not very favourable from an energetic point of view: if the liquid of the cylinder
is re-arranged to form a sphere of the same volume (πR2

0L), the sphere will have

a radius equal to
[

(3/4)R2
0L
]1/3

, and a surface area equal to 4(3/4)2/3πR4/3
0 L2/3,

which is smaller than the cylinder surface area if the length of the cylinder is larger
than (9/2)R0. This shows that the fragmentation into drops of liquid cylinder is
energetically favoured if the ratio of its length and radius is larger than 9/2.

Is fragmentation dynamically possible? To see if it is, let us consider again a liquid
cylinder of radius R0, and assume now that its surface is perturbed from its initial
shape as

R(x) = R̄ + ε sin
(

2π
x

λ

)

, (5.238)

where x is the coordinate along the axis of symmetry of the cylinder, and ε and λ
the amplitude and wavelength of the perturbation (Fig. 5.21). Note that conservation

x

λ

R(x)

Rλ(x)

Fig. 5.21 A liquid cylinder (blue) with its surface perturbed by an axisymmetric sinusoidal pertur-
bation
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of mass implies that R̄ < R0: comparing the volume of a section of length λ of the
unperturbed and perturbed states indeed shows that

R̄ = R0

(

1 − ε2

4R2
0

)1/2

. (5.239)

Calculating the surface area of the perturbed cylinder shows that the perturbation
induces a decrease of the surface area (and hence of energy) if λ > 2πR0, which
suggests that the cylindrical shapemay be unstable to perturbationswithwavelengths
larger than 2πR0.

To see how the instability works, let us consider the two principal curvatures of the
interface (Fig. 5.21). One is the curvature associated with the radius of the cylinder,
1/R(x), and the other is the curvature associated with the longitudinal perturbation,
1/Rλ(x), which is equal to the divergence in the x-direction of the normal n of the
interface. The Laplace pressure jump across the interface is equal to

�P = γ

(
1

R(x)
+ 1

Rλ(x)

)

. (5.240)

The contribution of Rλ is positive where R > R0, and negative where R < R0. It
thus produces a pressure gradient from regions of large R to regions of small R, which
can drive a flow from large to small R that would decrease the amplitude of the radius
perturbation. It thus has a stabilising effect. In contrast, the pressure jump associated
with 1/R is larger in regions of small R. It thus produces a pressure gradient from
small to large R, which may drive a flow that would increase the amplitude of the
perturbation. The amplitude of the radius perturbation can therefore grow if the
pressure gradient associated with the curvature R(x) is larger in magnitude that the
pressure gradient associated with the curvature Rλ(x).

At first order in ε, one find

1

R
= 1

R0

[

1 − ε

R0
sin

(

2π
x

λ

)]

+ O(ε2), (5.241)

and
1

Rλ
= −1
√

1 + (dR/dx)2
d2R

dx2
= 4π2

λ2
ε sin

(

2π
x

λ

)

+ O(ε2), (5.242)

which gives a pressure jump across the interface given by

�P = γ

[
1

R0
+ ε

(
4π2

λ2
− 1

R2
0

)

sin
(

2π
x

λ

)]

+ O(ε2). (5.243)
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Its gradient along x is given by

∂�P

∂x
= ε

2π

λ
γ

(
4π2

λ2
− 1

R2
0

)

cos
(

2π
x

λ

)

+ O(ε2). (5.244)

This shows that the pressure gradient inside the liquid cylinder is from small to
large R if 4π2

λ2 < 1
R2
0
, and from large to small R instead. In other words, the initial

perturbation will grow if
λ > λc = 2πR0, (5.245)

which will eventually lead to the fragmentation of the cylinder into drops. This
dynamical criterion is slightly more restrictive that the energy criterion, since 2π 	
6.26 > 9/2 = 4.5.

Things get more complicated in situations where liquid ligaments are deformed
and stretched by the ambient flow. Fragmentation can be significantly protracted
by stretching effects (Taylor 1934; Tomotika 1936; Mikami et al. 1975; Eggers and
Villermaux 2008), which can be understood as follows. Let us consider a stretched
ligament, the surface of which is modulated by a longitudinal perturbation of wave-
length λ. The stretching will affect the disturbance, which will see its wavelength
increase in proportion to the amount of stretching. If the perturbation wavelength
initially corresponds to the optimal wavelength for the growth of the capillary insta-
bility, increasing the wavelength will decrease the rate of growth of the disturbance.

Chemical and Heat Transfer at the Drop Scale

If the metal phase ends up being fragmented into drops of size equal or smaller than
the maximal stable size Rc ∼ √

γ/(�ρg) [Eq. (5.221)], then thermal and chemical
equilibration of the metal phase with the surrounding silicates is not an issue (e.g.
Stevenson 1990; Karato and Rama Murthy 1997; Rubie et al. 2003; Ulvrová et al.
2011, as shown below.

One can show (Lherm and Deguen 2018) that the timescale of chemical equili-
bration of a falling metal drop with its surrounding is given by

τeq ∼ R2

6κs
Dm/sPes

−1/2

[

1 + 1

Dm/s

(
κs

κm

)1/2
]

, (5.246)

where κs and κm are the compositional diffusivities in the silicates and metal, Dm/s

the metal/silicates partitioning coefficient of a given chemical element, and Pes =
UR/κs . The distance �eq fallen by the drop during a time τeq is given by

�eq = τeqU ∼ R

6
Dm/sPes

1/2

[

1 + 1

Dm/s

(
κs

κm

)1/2
]

(5.247)
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In the case of siderophile elements (Dm/s � 1), this is approximated by

�eq ∼ R

6
Dm/sPes

1/2. (5.248)

For ametal drop falling into amagma ocean, Rc is about 5mm. The corresponding
Grashof number is

Gr = �ρ

ρs

gR3
c

ν2
s

∼
( g

10m.s−2

)

×
(
10−2 Pa.s

ηs

)2

× 105. (5.249)

Magma ocean viscosity is estimated to be in the range 10−3–10−2 Pa.s, which
implies that the drop is in the newtonian regime and has a terminal velocity given
by ∼√

(�ρ/ρsgRc. With a compositional diffusivity κs ∼ 10−9 m.s−2, this gives a
Péclet number around 106 and we thus have (R/6)Pes1/2 	 1 m. Siderophile ele-
ments like Nickel or Cobalt have partitioning coefficients Dm/s around 103 at low
pressure, and as low as∼10when approaching the pressure of the core-mantle bound-
ary. This would give �eq ∼ 1 km at low pressure, and �eq ∼ 10 m at high pressure.
This is in both cases much smaller than typical magma ocean depth, which implies
that drops of metal a few mm in size will readily equilibrate with the surrounding
molten silicates.

However, the above conclusion rests on the assumption that the metal phase frag-
ments into drops of a fewmm in radius. We have no well-tested fragmentation model
that can be used in the context of core formation, so whether the metal phase would
fragment or not is still an open question. It is also possible that efficient equilibration
does not require fragmentation of the metal phase. The metal phase would necessar-
ily be intensely stirred and stretched before fragmentation, and this may allow for
efficient chemical transfer between the metal and silicates phase (Lherm and Deguen
2018).
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Chapter 6
A Brief Introduction to Turbulence
in Rotating and Stratified Fluids

Benjamin Favier

Abstract This chapter discusses basic aspects of turbulent flows relevant for the
small-scale fluid dynamics of planets and stars.We particularly focus on howgeomet-
rical confinement, rotation, and stratification affect the nature of turbulent motions
at different spatial scales. We introduce a hierarchy of models from the celebrated
theory of Kolmogorov valid for homogeneous and isotropic turbulence to gradu-
ally more realistic models including rotation and stratification effects. Emphasis is
put on simple physical processes and qualitative observations and not on rigorous
mathematical derivations.

Introduction

Most of the fluid layers of planets and stars are in a turbulent state. This is a direct
consequence of the very large spatial extent of these fluid domains so that molecular
viscosity is virtually negligible at these scales. A cascade mechanism is therefore
required to bring kinetic energy from the scales at which it is injected (usually by
direct forcing or by some instability mechanism) to those where dissipative mech-
anisms are efficient. In the classical homogeneous isotropic case, this leads to the
self-similar theory of turbulence postulated by Kolmogorov (1941). Fluid layers
inside planets and stars are however constrained by at least four fundamental aspects,
two of which will be discussed in this chapter: background rotation, stable density
stratification, compressibility, and magnetic field.

This chapter will only consider non-electrically conducting fluids so that the
subtle interaction between fluid motions and magnetic fields, a topic called magne-
tohydrodynamics (see the chapter by Deguen and Lasbleis of this book andDavidson
(2013) for more details), will not be discussed. We will also focus on incompressible
dynamics.
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214 B. Favier

Adding rotation and stratification to the turbulence problem is two edged: on the
one hand, linear waves are now supported which reintroduces linear dynamics to the
fundamentally nonlinear problemof turbulence.On the other hand, additional dimen-
sionless parameters mean that different dynamical regimes are expected depending
on the relative importance between the turbulence and the linear effects.

This chapter is by no mean a complete overview of the vast literature about turbu-
lence in rotating and stratified fluids. The goal is primary to link fundamental models
of turbulence such as homogeneous and isotropic turbulence to slightlymore realistic
models aiming at modeling small-scale flows in geophysical and astrophysical sys-
tems. The applications of these general concepts to more specific and complex flows
inside planets and stars can be found in the other chapters and in specialized books
and articles (e.g., Pedlosky (1992); Vallis (2006); Clarke et al. (2007); Davidson
(2013); Alexakis and Biferale (2018)).

3D Homogeneous Isotropic Turbulence

This is the canonical model and probably the most natural starting point when con-
sidering turbulence. Most of our current understanding of turbulence was developed
using the following assumptions: homogeneity and isotropy (and to a lesser extent,
stationarity) (Batchelor 1953). While these assumptions are highly unrealistic at first
glance, they allow for a systematic mathematical description of the statistics of a
turbulent flow. Additionally, even if the large scales of realistic turbulent flows are
neither homogeneous nor isotropic, these idealized properties might be recovered at
the smallest spatial scales of the flow, far from any anisotropic and inhomogeneous
energy injection mechanism.

Let us consider a velocity field u function of the position x and time t . A standard
quantity to statistically describe this flow field is the velocity correlation tensor
defined by

Ri j (x, r, t) = 〈
ui (x, t)u j (x + r, t)

〉
, (6.1)

where brackets indicate an ensemble average. Assuming the flow to be homogeneous
implies that the statistics of the flow do not depend on position x but only on the
separation vector r:

Ri j (x, r, t) = Ri j (r, t). (6.2)

In other words, there are no spatial gradients in any statistical quantity describing the
flow. This discards physical boundaries or interfaces since the statistics of the flow
would then depend on the distance to that boundary or interface, making the system
effectively inhomogeneous. Assuming the flow to be additionally isotropic implies
that only the norm of the separation vector matters

Ri j (r, t) = Ri j (r, t) with r = |r|. (6.3)
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There are no preferential direction required to statistically describe the flow, which is
not true as soon as rotation or stratification is introduced. Finally, it is often assumed
that the flow is stationary so that

Ri j (r, t) = Ri j (r) . (6.4)

All these assumptions greatly simplify the statistical description of a turbulent flow, as
will become apparent in the next sections.However, one should never forget that these
assumptions are almost never satisfied in realistic flows and should systematically
be questioned.

Let us now define the governing equations. The velocity field satisfies the Navier–
Stokes equations for an incompressible fluid

∂u
∂t

+ u · ∇u = −∇P + ν∇2u + F (6.5)

∇ · u = 0 , (6.6)

where P is the pressure divided by the constant fluid density, ν is the constant
kinematic viscosity, and F is some external forcing. The only dimensionless number
characteristic of these equations is the Reynolds number Re, measuring the relative
importance of the nonlinear inertial term to viscous forces

|u · ∇u|
|ν∇2u| ≈ UL

ν
≡ Re, (6.7)

where we have introduced U a typical velocity and L a typical length. In many
contexts, and this is the case for most of the fluid layers of planets and stars, Re � 1
and the flow is inevitably turbulent. At a spatial scale L characteristic of the flow,
viscous forces are negligible compared to the inertia of the fluid.

The scalar product between Eq. (6.5) and u, integrated over a given volume V
(assuming homogeneity or appropriate boundary conditions), leads to the following
kinetic energy equation:

dK

dt
= d

dt

∫

V

1

2
u2dV = −

∫

V
2νSi j Si j︸ ︷︷ ︸

ε

dV +
∫

V
u · FdV, (6.8)

where Si j is the rate of strain tensor and we have introduced ε the rate of dissipation
of turbulent kinetic energy. As a consequence, steady states are obtained when the
work done by the forcing is balanced by viscous dissipation. Neglecting viscosity
altogether, which might look like a good idea for high Reynolds number flows, leads
to an unbounded growth of the kinetic energy.
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The Zeroth Law of Turbulence

This is the single most important empirical observation about turbulence. The zeroth
law of turbulence is the following:

The rate of dissipation of turbulent kinetic energy is finite
and independent of viscosity for Re → ∞.

No matter how small the viscosity is, providing that it is not zero, εwill remain finite.
There are several empirical observations which are directly related to the zeroth law
of turbulence. The drag coefficient of an object moving in a viscous fluid is eventually
independent of the Reynolds number when the latter is large enough. The energy loss
in a pipe flow with a sudden change in the section is independent of viscosity at large
Reynolds numbers (the so-called Borda–Carnot energy loss equation).

Atfirst look, the fact that theflowcandissipate energy evenwhen theviscosity goes
to zero can be surprising. The rate of dissipation of kinetic energy is ε = 2νSi j Si j ,
where Si j = 1/2(∂ui/∂x j + ∂u j/∂xi ). In order for ε to remain constant as ν → 0,
the velocity gradients must diverge ∂ui/∂x j → ∞. We therefore expect very large
velocity gradients in the flow in order to dissipate energy. Assuming that ε depends
on u and l only (and not on viscosity), where u is a typical velocity and l a typical
length scale, we obtain the classical dimensional scaling

ε ∼ u3/ l . (6.9)

Richardson’s Cascade and Kolmogorov’s 2/3rd Law

The cascade mechanism, which brings energy from large to small scales, was pos-
tulated by Richardson (1922) and summarized in the famous poem

Big whirls have little whirls that feed on their velocity,
And little whirls have lesser whirls and so on to viscosity.

The main hypothesis is that the energy flux from large to small scales takes the
form of a long chain of inertial transfers. This is observed in many turbulent flows
where large-scale circulations collapse into small-scale disorder (see a numerical
example in Fig. 6.1). The flux of energy � across any spatial scale r must be equal
to ε (far from forcing and dissipation) and is equal to the kinetic energy u2r at scale
r divided by the turnover time r/ur at the same scale:

�(r) = u2r
r/ur

= u3r
r

= ε ⇒ u2r ∼ (εr)2/3 . (6.10)
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Fig. 6.1 Time evolution of the enstrophy in a standard tri-periodic direct numerical simulation of
the decaying (i.e. without external forcing) Navier–Stokes equations. The initial condition contains
only large-scale structures which collapse into small-scale vorticity filaments as time increases.
Dark colors correspond to low enstrophy values while bright colors correspond to large enstrophy
values

This is the so-called Kolmogorov’s 2/3rd law, which is usually written for the
longitudinal velocity structure function as

〈
(δur )

2
〉 = CK (εr)2/3 (6.11)

where δur (r) = u(x + r) − u(x) and CK is a universal constant.
Let us assume that the large scales have a velocity u and a length scale l, while

the dissipative scales have a velocity uη and a length scale η. Viscous dissipation
balances inertia only at the dissipation scale so that the Reynolds number at that
scale is of order unity:

uηη

ν
∼ 1 . (6.12)

The dissipation rate is ε ≡ 2νSi j Si j ∼ ν(uη/η)2 leading to

η ∼
(

ν3

ε

)1/4

and uη ∼ (νε)1/4 (6.13)

where η is often called the Kolmogorov scale. This is the scale at which energy
is dissipated and beyond which the flow becomes smooth due to dominant viscous
effects. Using ε ∼ u3/ l, one can make the link between large and small scales as a
function of the Reynolds number:

η

l
∼

(
ul

ν

)−3/4

= Re−3/4 and
uη

u
∼

(
ul

ν

)−1/4

= Re−1/4 . (6.14)
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Spectral Statistics

Turbulence dynamics is often described in Fourier space, which is a natural way of
studying the energy transfers across different scales in a homogeneous context. The
forward and backward Fourier transforms are

û(k) = 1

(2π)3

∫
u(x)e−ik·xdx and u(x) =

∫
û(k)eik·xdk . (6.15)

The velocity correlation tensor can be defined in both spaces as

R̂i j (k)= 1

(2π)3

∫
Ri j (r)e−ik·xdx and Ri j (r)=

〈
ui (x + r)u j (x)

〉
. (6.16)

Starting from the total kinetic energy of the system, one can then define the standard
isotropic energy spectrum E(k) as

K = 1

2

∫
R̂ii (k)dk =

∫
e(k)dk =

∫ ∞

0

[∫ π

0

∫ 2π

0
e(k)k2 sin θdθdφ

]

︸ ︷︷ ︸
E(k)

dk, (6.17)

where the wave vector k has been written in spherical coordinates (k.θ,φ). For
isotropic velocity fields,

E(k) = 2πk2 R̂ii (k) . (6.18)

Note that while this definition is valid for any homogeneous turbulent flow, it is
important to remember that an angular average has been performed, so that anistropic
flows, such as rotating or stratified flows, are not well described by the inherently
isotropic quantity E(k).

Assuming that E(k) depends on ε and k only (and not on viscosity) leads to the
celebrated Kolmogorov energy spectrum

E(k) ∼ ε2/3k−5/3 . (6.19)

While this slope is indeed observed in many experiments and simulations (Frisch
1995), it is important to remember that this quantity only carries a fraction of the
information contained in the full velocity field. In particular, the phase information,
fundamental to reconstruct the velocity field in physical space, is lost. As an exam-
ple, we show in Fig. 6.2 two velocity fields with the same Kolmogorov-like energy
spectrum. One is a solution of the Navier–Stokes equations while the second is not.

The evolution equation for the energy spectrum is given by the so-called Lin
equation
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Fig. 6.2 aVolume rendering of the enstrophy in a standard tri-periodic direct numerical simulation
of the forced Navier–Stokes equations. b Same as (a) but the flow field is not a solution of the
Navier–Stokes equations. It is incompressible and has the same power spectrum E(k) as the flow
showed in (a), but the phase information has been randomized. Figures taken from Favier (2009)

⎛

⎝ ∂

∂t
+ 2νk2︸︷︷︸

Dissipation

⎞

⎠ E(k, t) = T (k, t)︸ ︷︷ ︸
Transfer

+ P(k, t)︸ ︷︷ ︸
Production

, (6.20)

where T (k) is the energy flux through wave number k which can be expressed in
terms of third-order velocity moments (Frisch 1995; Davidson 2013). By definition,
the transfer term does not contribute to the overall energy budget, so that

∫ ∞

0
T (k)dk = 0 . (6.21)

In a stationary state, we have the balance

∫ ∞

0
2νk2E(k)dk =

∫ ∞

0
P(k)dk = ε (6.22)

which is the same as Eq. (6.8).
Even ifKolmogorov theory iswidely used inmany contexts, one should remember

that it holds when the following assumptions are satisfied:

• Homogeneity (which excludes physical boundaries, local bursts of turbulence,
mixing layers, interfaces, etc.).

• Isotropy (which excludes rotating and stratified flows).
• Locality (which excludes nonlocal energy transfers across separated length scales).
• Re → ∞ (which is fortunately verified by geophysical flows).
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2D Homogeneous Isotropic Turbulence

The second canonical model to study turbulence, and which can also be seen as a first
step toward geophysical and astrophysical turbulent flows, is two-dimensional (2D)
turbulence. There are many situations where a 3D velocity field becomes effectively
quasi-2D, for example:

• Rotation: rapid rotation dynamically leads to flows invariant along the rotation
axis (see Taylor–Proudman theorem and section 3D Homogeneous Turbulence in
Rotating Fluids).

• Magnetic field: an intense externally imposed magnetic field can lead to an
anisotropic dissipation and partial bi-dimensionalization (Alexakis 2011; Favier
et al. 2011).

• Geometric confinement: a fluid confined to a layer of depth h can be considered
2D over horizontal length scales L � h (Smith et al. 1996).

Governing Equations

Let us assume that the velocity field is purely 2D in the (x, y)-plane

u(x, y, t) = (
u(x, y, t), v(x, y, t), 0

)
, (6.23)

the vorticity is then

ω = ∇ × u = (0, 0, ζ) with ζ = ∂v

∂x
− ∂u

∂y
. (6.24)

Note that the vortex stretching term ω · ∇u in the vorticity equation, so important
in 3D and at the origin of the generation of small-scale intense velocity gradients,
is identically zero. This means that the vorticity is conserved along fluid trajectories
(without viscosity of course), which will have dramatic consequences on the energy
fluxes.

The general equation for the vorticity is

∂ζ

∂t
+ u · ∇ζ = ν∇2ζ . (6.25)

Introducing the stream function ψ such that

u = −∇ × (ψez) = −∇ψ × ez , (6.26)

we have
∂ζ

∂t
+ J (ψ, ζ) = ν∇2ζ, (6.27)
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where

J (ψ, ζ) = ∂ψ

∂x

∂ζ

∂y
− ∂ζ

∂x

∂ψ

∂y
and ζ = ∇2ψ . (6.28)

The total kinetic energy over a domain S is

K = 1

2

∫

S
u2dS = 1

2

∫

S
(∇ψ)2 dS = −1

2

∫

S
ψζdS (6.29)

and one can define a new quantity called enstrophy defined as

Z = 1

2

∫

S
ζ2dS = 1

2

∫

S

(∇2ψ
)2
dS . (6.30)

In the absence of forcing, these two quantities evolve according to the following
conservation equations:

dK

dt
= −2νZ = −ε and

dZ

dt
= −ν

∫

S
|∇ζ|2dS . (6.31)

Both kinetic energy and enstrophy are therefore inviscid invariants of the 2DNavier–
Stokes equations. A key observation is that the enstrophy Z is bounded by its initial
value. Since ε = 2νZ and Z is bounded, it is not possible for ε to remain constant in
the limit of vanishing viscosity. The zeroth law of turbulence is not applicable, there
is no dissipation anomaly in 2D turbulence! It is therefore expected that ε → 0 when
ν → 0.

Forward Cascade of Enstrophy

The vorticity of fluid parcels is conserved in the absence of viscosity. As a uniform
vorticity blob is being stretched by the underlying turbulent flow, its transverse scale
is decreasing, thus increasing vorticity gradients. This leads to the conclusion that the
enstrophy is cascading toward small scales at a constant flux η. The typical turnover
time at a wave number k with energy E(k) is

τ (k) ∼ (
k3E(k)

)−1/2
, (6.32)

so that the dissipation rate of enstrophy Z = ∫
k2E(k)dk per unit mass is given by

η ∼ k3E(k)

τ (k)
∼ (

k3E(k)
)3/2 ⇒ E(k) ∼ η2/3k−3 . (6.33)

This prediction is valid only for scales smaller than the energy injection scale and
corresponds to a direct cascade of enstrophy.
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Inverse Cascade of Energy

If the enstrophy is cascading toward small scales, what is a fate of the kinetic energy,
which is another invariant of the inviscid equations?Let us define the energy spectrum
centroid

kc =
∫
kE(k)dk

∫
E(k)dk

(6.34)

and the weighted spectrum

I =
∫

(k − kc)
2 E(k)dk =

∫
k2E(k)dk

︸ ︷︷ ︸
Z

−k2c

∫
E(k)dk

︸ ︷︷ ︸
K

. (6.35)

Assuming that d I
dt > 0 (i.e., the energy spreads in spectral space which is a natural

assumption for this nonlinear system) and using enstrophy conservation leads to

dk2c
dt

< 0 . (6.36)

The energy spectrum centroid is decreasing with time, energy is on average trans-
ferred toward large scales, this is the so-called inverse cascade regime first postulated
by Kraichnan (1967). Using the same dimensional analysis as in 3D, the inverse cas-
cade satisfies

E(k) ∼ ε2/3k−5/3, (6.37)

where ε is now the energy flux carried by the inverse cascade. This prediction is only
valid for scales larger than the energy injection scale.

Experimental and Numerical Evidences

The theoretical concept of inverse cascade predicted by Kraichnan (1967) has been
verified both experimentally and numerically. Some experiments used a thin layer of
light conducting fluid on top of a heavier fluid forced electromagnetically at small
scales. They observed an accumulation of energy at the scale of the container (Paret
and Tabeling 1997; Chen et al. 2006). Similar conclusions were achieved using
soap films (Couder et al. 1989; Gharib and Derango 1989). 2D turbulence is ideally
studied numerically (see Fig. 6.3 and Smith and Yakhot (1993) for example), and the
double cascade scenario where energy is flowing toward large scales while enstrophy
cascades toward small scales were recently achieved in one unique simulation with
very large-scale separation (Boffetta and Musacchio 2010).
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Fig. 6.3 Time evolution of the vertical vorticity in a standard doubly periodic direct numerical
simulation of the forced 2DNavier–Stokes equations. The forcing is imposed at small scales only but
large-scale coherent structures dynamically emerge. Bright and dark colors correspond to negative
and positive values of the vorticity, respectively

Fate of the Energy at Large Scales

In the direct cascade regime, energy is transferred toward small scales, far from the
nonuniversal behavior associated with the energy input at large scales. This gives
some hope for the forward cascade mechanism characteristic of 3D turbulence to
be universal. In the inverse cascade regime, however, energy piles up at the largest
available scale so that the equilibrium state is not expected to be universal, but
will depend on the details of the model considered. In the following, we give some
examples of mechanisms responsible for the saturation of the inverse cascade.

In a doubly periodic domain, energy piles up at the box size generating a so-
called condensate (Chertkov et al. 2007): a large-scale dipolar structure that interacts
nonlocally with the cascade and modifies the k−5/3 spectrum (Xia et al. 2008; Laurie
et al. 2014).

In a closed container, no-slip boundary conditions can continuously reinject
enstrophy in the system preventing the formation of large scales (Clercx et al. 2001).

If there is a linear friction term −λζ in the vorticity equation (to model the
possible viscous coupling with a bottom boundary for example), an infrared cutoff is
introduced at the transitional wave number k0 ∼ ε−1/2λ3/2, where friction balances
the upscale energy flux.

With additional physics (β-plane, finite-Rossby radius, etc.), the inverse cascade
can compete with other mechanisms (see section Geostrophic Turbulence).

Thin-Layer Turbulence

While 2D turbulence is a necessary step to better understand energy transfers in more
realistic flows, it is highly idealized and never exactly realized in nature. There have
been several studies attempting to bridge the gap between 3D and 2D turbulence
dynamics by considering the case of thin-layer turbulence (Smith et al. 1996; Celani
et al. 2010).
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Consider a thin layer of fluid contained between two stress-free horizontal plates
a distance h apart. 3D turbulence is expected when the energy injection scale L I is
much smaller than the depth of the layer, L I 
 h, while 2D turbulence is expected
for L I � h. In the intermediary regime, both inverse and direct energy cascades
can exist, connected by a direct enstrophy cascade. Vortex stretching is negligible
at large scales but feeds the direct energy cascade at small scales. This interesting
split cascade scenario has been studied experimentally (Xia et al. 2009, 2011) and
numerically (Benavides and Alexakis 2017).

There are other examples of inverse cascade of energy in three-dimensional sys-
tems. Rapidly rotating Rayleigh–Bénard convection is one of them: although the
instability is intrinsically 3D, a spontaneous inverse cascade can develop in the so-
called geostrophic turbulence regime (Julien et al. 2012; Favier et al. 2014, 2019).

Geostrophic Turbulence

The concept of homogeneous isotropic turbulence, both 2D and 3D, is very appealing
from a theoretical point of view, but lacks several physical phenomena ubiquitous in
geophysical and astrophysical applications. Fortunately, control parameters are often
extreme in applications, leading to the derivation of reduced 2D or quasi-2Dmodels.
The purpose of this section is to give a brief overview of some of these models, and
a more detailed description of the so-called β-plane turbulence.

Fundamental Concepts

There are several fundamental concepts very useful to study large-scale geophysical
and astrophysical flows. Note that these are particularly useful to describemid to high
latitudes atmospheric or oceanic rotating flows in thin layers and are not necessarily
relevant to other geophysical or astrophysical flows.

β-plane approximation: the lowest order effect of a planet sphericity appears only
through the projection of the rotation vector on the local vertical axis

f = 2� · ez ≈ 2� sin θ0︸ ︷︷ ︸
f0

+ 2� cos θ0

Re︸ ︷︷ ︸
β

y, (6.38)

where � is the rotation rate, ez is the local vertical axis, θ0 is the latitude, Re is
the radius of the planet, and y is the local meridional coordinate (see Fig. 6.4). This
effectively corresponds to a local linear variation of the Coriolis force along the
meridional direction. The Coriolis parameter f is maximum at the pole while the β
effect is negligible there.
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Fig. 6.4 Local β plane approximation. Only the local vertical projection of the rotation vector �

matters. θ0 is the latitude

Hydrostatic balance: the vertical momentum balance reduces to

∂z P = −ρg , (6.39)

and inertial terms can be neglected. P is the pressure, ρ the density, and g is the
gravitational acceleration.

Geostrophic balance: the horizontal momentum balance reduces to

f ez × u = −1

ρ
∇h P , (6.40)

where ∇h is the horizontal gradient operator.
Rossby radius of deformation: this is the fundamental scale at which rotation

effects become as important as gravitational effects:

LD =
√

gh

f
, (6.41)

where h is the fluid depth.

bsuther@ualberta.ca



226 B. Favier

Quasi-geostrophy (QG)

In essence, quasi-geostrophic models consider perturbations from an exact
geostrophic balance. Equations are obtained by a formal expansion inRossby number
Ro = U/( f L), where U is a typical velocity and L its horizontal length scale:

u = u0 + Rou1 + · · · (6.42)

The first order gives the diagnostic geostrophic balance (6.40) while the next order
gives the prognostic vorticity equation. In addition to theRossby number being small,
there are additional assumptions: the Ekman number E = ν

f H 2 , where H is a vertical

length scale, must be small and T � f −1, where T is a typical timescale (Pedlosky
1992; Vallis 2006).

There exists a hierarchy of QG models with an increasing degree of complexity.
All of the models are derived from the vertical vorticity equation and can generally
be written in the following form:

Dq

Dt
= Forcing − Dissipation + O(Ro), (6.43)

where we have introduced the potential vorticity q and D/Dt is the material deriva-
tive. In the absence of forcing or dissipative effects, q is a conserved quantity. Here is
a list of some classical models, whose complete derivations can be found in classical
textbooks (Pedlosky 1992; Vallis 2006):

• 2D Euler q = ∇2ψ,
• β-plane (rigid lid approximation) q = ∇2ψ + βy,
• Shallow water QG (Charney–Hasegawa–Mima) q=∇2ψ− 1

L2
D
ψ+βy,

• Full shallow water QG q = ∇2ψ+ f
h , and

• Boussinesq continuous QG q = ∇2ψ + ∂
∂z

(
f 2

N 2
∂ψ
∂z

)
.

2D Turbulence on a β Plane

We focus in the rest of this section on the simplest QG model, the β-plane, and
consider the dynamics of a 2D turbulent flow on such a plane.

Consider first a 2D horizontal flow rotating around the vertical. The vorticity
equation is

∂ζ

∂t
+ u · ∇ (ζ + f ) = D (ζ + f )

Dt
= ν∇2ζ . (6.44)

If f = cste, rotation does not affect the 2D flow. On the β-plane, however, f =
f0 + βy as we saw previously in Eq. (6.38), and the vorticity equation is
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∂ζ

∂t
+ u · ∇ζ + βuy = D (ζ + βy)

Dt
= ν∇2ζ , (6.45)

where we see that the potential vorticity q = ζ + βy is materially conserved in the
absence of viscosity. By analogy to 2D flows, the two inviscid invariants are also

K = −1

2

∫

S
ψζdS and Z = 1

2

∫

S
ζ2dS . (6.46)

So far, the properties of β-plane turbulence seem very similar to standard 2D
turbulence. A key difference is the existence of linear waves which were nonexistent
in 2D isotropic turbulence. The vorticity equation in its linearized and inviscid form
is indeed simply

∂ζ

∂t
= −βuy , (6.47)

where uy is the velocity component in the meridional direction. Looking for plane
wave solution of the form ψ ∼ exp [i (k · x − ωt)] leads to the dispersion relation

ω = −β
kx
k2

. (6.48)

These Rossby waves propagate westward with a zonal phase velocity

cp,x = ω

kx
= − β

k2
. (6.49)

The question is now to understand the importance of these Rossby waves in the
dynamics of fully developed β-plane turbulence. We compare two simulations of
β-plane turbulence in a channel in Fig. 6.5, one with β = 0 (standard 2D turbulence)
and one with β �= 0. Both are forced at small spatial scales. While we observe large-
scale flows in both cases, vortices are favored in the standard 2D case while jets
are sustained in the direction perpendicular to the background potential vorticity
gradient for the β-plane turbulence. These large-scale jets are reminiscent of zonal
jets observed on the atmosphere of Jupiter.

A balance between inertial and β terms in Eq. (6.45) gives

|u · ∇ζ|
|βuy | ∼ ζ

βL
∼ U

βL2
∼ 1 ⇒ LRh ∼ √

U/β, (6.50)

where we introduced the length scale LRh called the Rhines scale (Rhines 1975). For
scales much smaller than LRh , inertia dominates and the inverse cascade mechanism
characteristic of classical 2D turbulence persists. At these small spatial scales, the
frequency of Rossby waves is much lower than the typical turnover time of turbulent
eddies and no significant interaction is expected. For scales comparable with LRh ,
however, β-plane dynamics and associated Rossby waves come into play. Note that
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Fig. 6.5 2D turbulence forced at small scales in a periodic channel (boundaries are periodic in
the horizontal direction and no-slip at the top and bottom of the channel). There is no β-effect at
the top while there is one at the bottom (the gradient of potential vorticity is vertical). We show
the horizontal velocity on the upper panel, the vorticity on the lower panel and the horizontally
averaged flow ux = 1/Lx

∫
uxdx on the left plot

we assumed that velocity and vorticity are evolving on the same length scale (see
Eq. (6.50)), which is an arbitrary choice. One could equally choose another measure
for the vorticity, such as Z = 〈

ζ2
〉1/2

, where <> denotes some averaging process,
leading to another transition length scale

LZ = Z

β
. (6.51)

Discussions about the relevant length scales for Rossby waves excitation and jet
formation can be found in Sukoriansky et al. (2007) and references therein.

The formation of zonal jets inβ-plane turbulence can be explained as follows. Tur-
bulence is expected to excite Rossby waves when the wave period and eddy turnover
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time arematched, leading to a transition between an isotropic inverse cascade (gener-
ating isotropic large-scale vortices) to an anisotropic inverse cascade favoring zonal
jets. This explanation was, for example, put forward by Vallis and Maltrud (1993).
Equating the (anisotropic) frequency of a Rossby wave to the (isotropic) frequency
of a turbulent eddy at wave number k leads to

β
kx
k2

∼ ε1/3k2/3 ⇒ kx = kβ cos
8/5 θ and ky = kβ sin θ cos3/5 θ , (6.52)

where we have introduced the polar angle θ = tan−1(ky/kx ) and the transitional
wave number

kβ =
(

β3

ε

)1/5

. (6.53)

Note that the Rhines scale is recovered by neglecting anisotropy and by replacing
the turbulence eddy frequency ω ∼ ε1/3k2/3 by the so-called sweeping frequency
ω ∼ kU whereU is the same undetermined velocity scale as in Eq. (6.50). At scales
smaller than k−1

β , the usual 2D double cascade mechanism is expected to hold from
the energy injection scale, with a direct cascade of enstrophy with rate η and an
inverse energy cascade with rate ε:

E(k) ∼ η2/3k−3 and E(k) ∼ ε2/3k−5/3 . (6.54)

At scales comparablewith k−1
β , an anisotropic competition betweenRossbywaves

and turbulent eddies appear as predicted by Eq. (6.52). The initially isotropic energy
flux from the inverse cascade is channeled toward the plane kx ≈ 0 (structures invari-
ant along the zonal axis, i.e., jets). Rhines (1975) postulated a critical balance between
waves and turbulent eddies to predict the zonal flow spectrum (see also Huang et al.
(2001))

|u · ∇ζ| ∼ |βuy | ⇒ û(k) ∼ β/k2 ⇒ EZ (k) ∼ β2k−5, (6.55)

where EZ (k) is the energy spectrum of the zonally averaged flow. This scaling was
observed in Jupiter atmosphere (Galperin et al. 2014) and in experiments (Cabanes
et al. 2017). For more details about jets formation and dynamics, the interested reader
is referred to the recent book by Galperin and Read (2019).

3D Homogeneous Turbulence in Rotating Fluids

The two previous sections discussed some properties of two-dimensional turbulence,
with or without β effect. While these models are probably relevant for the largest
scales of planetary flows, for which the Rossby number is very small, going down
in scales gradually increases the local value of the Rossby number so that three-
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dimensional effects come back into play. The purpose of this section is to discuss
some properties of three-dimensional rotating turbulence, especially focusing on the
similarities and differences with two-dimensional turbulence.

Governing Equations

We start with the Navier–Stokes equations for an incompressible fluid in a frame
rotating with an angular frequency �:

∂u
∂t

+ u · ∇u + 2� × u︸ ︷︷ ︸
Coriolis

= −∇� + ν∇2u + F (6.56)

∇ · u = 0, (6.57)

where� is themodified pressure taking into account centrifugal effects. In addition to
the Reynolds number, we have introduced a second important dimensionless number,
the Rossby number Ro defined as a balance between inertial and Coriolis terms

|u · ∇u|
|� × u| ∼ U

�L
≡ Ro . (6.58)

Three important regimes can be discussed as follows:

• When Ro � 1, the turbulence ignores rotation and behaves like 3D homogeneous
isotropic turbulence.

• When Ro ∼ 1, the turbulence becomes anisotropic and is dynamically affected by
rotation. A gradual transition to quasi-2D dynamics can be observed.

• When Ro 
 1, inertialwaves and quasi-geostrophicmotions dominate the dynam-
ics.

Very importantly, the length scale L introduced to define the Rossby number is left
to be defined for now. In a turbulent flow with a wide range of spatial scales, we
naturally expect the local Rossby number (based on an eddy size l for example) to
go from very small values at large scales to very large values at small scales. Note
also that quasi-geostrophic models discussed previously are effectively filtering out
inertial waves. They can nevertheless have an important impact on the dynamics at
low Rossby numbers.

Inertial Waves

Similarly to the case of β-plane turbulence discussed previously, linearizing the
equations leads to nontrivial dynamics. Considering the linear inviscid limit of the
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Navier–Stokes equations in a rotating frame, one gets the Poincaré equation (Poincaré
1885):

∂2∇2u
∂t2

+ 4�2 ∂2u
∂z2

= 0, (6.59)

which, looking for plane wave solutions, leads to the dispersion relation of inertial
waves:

ω = ±2�
kz
k

= ±2� cos θ, (6.60)

wherewe have introduced the polar angle θ between thewave vector k and the vertical
axis, kz being the vertical component of the wave vector. Inertial waves frequency
is bounded by 2� so that they are expected to dominate the low-frequency part of
the spectrum. The dispersion relation is anisotropic and the frequency tends to zero
for kz → 0. A visualization of inertial waves excited by an oscillating object in a
rotating fluid can be seen in Fig. 6.6.

The role of inertial waves in the dynamics of rotating turbulence is still an active
area of research. On the one hand, they are widely observed both in experiments
(Yarom et al. 2013) and in numerical simulations (Favier et al. 2010). On the other
hand, their role in the dynamics is still unclear. Are they passively generated by
turbulent eddies or do they significantly contribute to energy transfers through reso-
nant interactions? Note finally that it is also possible to consider the so-called wave
turbulence limit, where low-amplitude inertial waves weakly interact (Galtier 2003;
Bellet et al. 2006; Le Reun et al. 2017) without leading to the formation of turbu-
lent eddies. This limit will not be discussed in the following and only finite-Rossby
rotating turbulence will be considered.

Phenomenological Observations

There are several empirical observations about the behavior of homogeneous turbu-
lence submitted to background rotation.

First, as the rotation rate is increased, the dissipation rate ε is reduced. This has
been observed experimentally by rotating grid-generated turbulence (Jacquin et al.
1990) or by spinning a propeller in a rotating tank filled with water (Campagne et al.
2016). This reduction of dissipation can be understood by a reduction of the forward
energy flux through the direct cascade.

The second empirical property of rotating turbulence is the systematic formation
of columnar structures invariant along the rotation axis. This is related to the Taylor–
Proudman theorem, which is valid in the limit of steady, vanishing Rossby number,
and inviscid motions. In that case, the curl of the geostrophic balance shows that
motions are invariant along the rotation axis. Note however that the hypotheses
required to justify this result are all violated in rotating turbulence, so that explaining
the dynamical formation of columnar structures in rotating turbulence solely based
on the Taylor–Proudman theorem is an approximation at best.
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Fig. 6.6 Visualizations of the vertical velocity in a numerical simulation of inertial waves excited
by an oscillating force localized at the center of the domain. The frequency is decreasing from the
top panel to the middle one. At the bottom, we show the response to an impulse exciting a large
band of frequencies. vg is the group velocity while vφ is the phase velocity. Taken from Favier
(2009)
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Finally, the last important empirical observation concerns the cyclone–anticyclone
asymmetry. During the process of anisotropy growth and columnar structure forma-
tion, the distribution of elongated vortices becomes asymmetric, such that cyclonic
vorticity is favored. Cyclone–anticyclone asymmetry is indeed a generic feature of
rotating flows, which originates from the modification of stretching and tilting of the
vorticity by the Coriolis force, suggesting a more pronounced asymmetry at Ro ∼ 1
and a restoration of symmetry for vanishing Rossby numbers. From an initially
isotropic velocity field, it can be shown that, for short times (Gence and Frick 2001)

d

dt

〈
ω3
z

〉 = 4

5
�

〈
ωiω j Si j

〉
, (6.61)

which explains the asymmetric nature of the probability density function of the
vertical vorticity observed in many rotating turbulent flows. From an initially sym-
metric distribution function (i.e.,

〈
ω3
z

〉 ≈ 0), rotation breaks the cyclone–anticyclone
symmetry. In addition, it is known that cyclonic vortices are more robust against
centrifugal and elliptic instabilities than anti-cyclonic vortices (Sipp et al. 1999).

Anisotropic Energy Transfers

A very important observation is that the Coriolis force does no work (u · (� × u) =
0) so that the kinetic energy equation (which is a second order quantity) is unchanged
in the rotating frame. Rotation does affect the kinetic energy transfers (which is a
third-order quantity) by reducing the forward cascade, reducing dissipation, and
generating anisotropic energy transfers (Cambon et al. 1997). The Coriolis force
being anisotropic, energy transfers along the rotation axis are inevitably different
from those perpendicular to it. The concept of isotropization of the turbulence where
all statistical quantities can be reduced to isotropic tensors is not applicable anymore.
In Fourier space, this means that statistical quantities do not only depend on the
amplitude k of the wave vector k, but also on its orientation. The angular energy
spectrum E(k, θ) can be defined by

K = 1

2

∫
R̂ii (k)dk =

∫
e(k)dk =

∫ ∞

0

∫ π

0

∫ 2π

0
e(k)k2 sin θdφ

︸ ︷︷ ︸
E(k,θ)

dθdk, (6.62)

where the dependence on the polar angle θ is conserved, contrary to standard isotropic
spectral statistics. Rotating turbulence is typically characterized by

E(k, θ ≈ 0) 
 E(k, θ ≈ π/2)

where θ = 0 corresponds to purely vertical wave vectors (associated with spatial
structures nearly invariant along the horizontal directions), whereas θ = π/2 corre-
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sponds to horizontal wave vectors (associated with spatial structures invariant along
the vertical direction). Energy is not only transferred across wave numbers but also
across angles from the pole to the equator. Note that as θ → π/2, kz → 0, and
∂z → 0, which is of course consistent with the formation of columnar structures
discussed earlier. The question remains at which spatial scales are these columnar
anisotropic structures expected?

Using the usual scaling ε ∼ u3/ l, one can build a typical length scale LZ where
the local Rossby number is around unity (Zeman 1994):

Ro(LZ ) = (LZ ε)1/3

�LZ
∼ 1 ⇒ LZ =

( ε

�3

)1/2
. (6.63)

Scales larger than LZ have a low Rossby number and are dynamically constrained by
rotation. Scales smaller than LZ have a large Rossby number and should recover an
isotropic behavior. This transitional length scale separating anisotropic and isotropic
dynamics has been observed in simulations (Delache et al. 2014).

Inverse Cascade

Since rotating turbulence naturally tends to transfer energy toward the kz = 0 plane, it
is then natural to focus on the dynamics of the kz = 0 modes. Remember that modes
with kz = 0 are steady non-propagative motions when considering the dispersion
relation of inertial waves (6.60). Starting from the Navier–Stokes equations without
rotation but assuming that ∂/∂z = 0 leads to

∂uh

∂t
+ uh · ∇uh = −∇h p + ν∇2

huh (6.64)

∂w

∂t
+ uh · ∇hw = ν∇2

hw, (6.65)

where uh and w are the horizontal and vertical velocity components, respectively,
and ∇h is the horizontal gradient operator. The vertical component is passively
advected by the horizontal flow while the horizontal flow satisfies the standard 2D
Navier–Stokes equation. This state is often referred to as 2D-3C turbulence for two-
dimensional three-components turbulence. We therefore expect that, in the limit
where the flow becomes vertically invariant, an inverse cascade can develop in anal-
ogy with truly 2D turbulence. Of course, rotating turbulence is not exactly invariant
along the rotation axis (see Gallet (2015) though), so that a transition is expected as
the Rossby number is varied. An inverse cascade of the depth-invariant geostrophic
modes is indeed observed in numerical simulations (Pouquet et al. 2013; Yokoyama
andTakaoka 2017) and experiments (Campagne et al. 2014)when theRossby number
is low enough.
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3D Homogeneous Turbulence in Stratified Fluids

This section is devoted to the case of fully three-dimensional turbulence in a linearly
stratified fluid. As usual, we consider a homogeneous situation without boundaries
and there is an external force injecting energy in the system.

Equations

Using the Boussinesq approximation, we consider the equations of motions

∂u
∂t

+ u · ∇u = − 1

ρ0
∇ p + ν∇2u − ρ

ρ0
gez (6.66)

∇ · u = 0 (6.67)

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ + uz

ρ0N 2

g
, (6.68)

where ρ0 ismean density,κ is the diffusivity of the stratifying agent, ν is the viscosity,
ρ is the density perturbation around the equilibrium profile ρ(z) = ρ0

(
1 − N 2z/g

)
,

and N =
√

− g
ρ0

∂ρ
∂z is the Brunt–Väisälä frequency.

There are several important dimensionless numbers in this problem:

• The Reynolds number Re = UL
ν
,

• The Froude number Fr = U
NL ,

• The Richardson number Ri = N 2

|∂uh/∂z|2 ,• The Schmidt number Sc = ν
κ
,

where we have introduce a typical velocity scale U and a typical length scale L .
These equations can be made dimensionless using various approaches. Scaling

velocity with U , length with L , time with N−1, and buoyancy b ≡ ρg/ρ0 with UN
gives the following set of dimensionless equations (Lilly 1983):

∂u
∂t

+ Fr u · ∇u = −∇ p + Fr

Re
∇2u + bez (6.69)

∂b

∂t
+ Fr u · ∇b = −uz + Fr

Re Sc
∇2b (6.70)

∇ · u = 0. (6.71)

In the low Froude and ideal (i.e., neglecting viscous and diffusive terms) limit, one
recovers the internal wave equation

∂

∂t
∇2φ + N 2∇2

hφ = 0, (6.72)
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where ∇h is the horizontal gradient operator and φ is a velocity potential func-
tion. Internal waves correspond to the linear oscillatory response of a linearly strati-
fied fluid and share several properties with inertial waves (dispersive, orthogonality
between group and phase velocities, bounded frequencies). Similarly to rotating
turbulence, stratified turbulence is characterized by a superposition and interaction
between turbulent eddies and linear or weakly nonlinear waves.

Let us consider another way of scaling the equations. Scaling horizontal velocities
with U , length with L , time with L/U , b with U 2/L , and vertical velocity with
U 3/(N 2L2) (this particular scaling is obtained by a balance between ∂t b and N 2uz

in the buoyancy equation) gives

∂uh

∂t
+ uh · ∇huh + Fr2uz∂zuh = −∇h p + 1

Re
∇2uh (6.73)

Fr2
(

∂uz

∂t
+ u · ∇uz

)
= −∂z p + b + 1

Re
∇2uz (6.74)

∂b

∂t
+ uh · ∇b + Fr2uz∂zb = −uz + 1

Re Sc
∇2b (6.75)

∇h · uh + Fr2∂zuz = 0. (6.76)

In the low Froude inviscid limit, one gets quasi-2D layered motions

∂∇2ψ

∂t
+ J (ψ,∇2

hψ) = 0, (6.77)

where ψ(x, y, z, t) is the streamfunction. This equation is similar to the standard 2D
Euler equation discussed previously in the context of 2D turbulence, except that the
stream function depends on all three spatial coordinates.

These two particular scalings illustrate that strongly stratified flows can sup-
port two types of motions: three-dimensional internal waves and quasi-2D layered
motions. While this could suggest that stratified turbulence and 2D turbulence share
some similarities, there is an obvious limitation to the previous scaling. There is
no information about the vertical correlation length between each layer. Are they
decoupled or is there some vertical correlation in a turbulent stratified flow? Note
also that this is reminiscent of rotating turbulence and the duality between inertial
waves and geostrophic vortices.

The Zig-Zag Instability and the Buoyancy Scale

The Zig-Zag instability is characteristic of an initially vertically invariant vortex pair
moving in a linearly stratified fluid (Billant and Chomaz 2000a). The vortex pair
breaks into several layers with a well-defined vertical thickness. The most unstable
vertical wavelength of the Zig-Zag instability is found to be Billant and Chomaz
(2000b):
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λz ∼ U/N , (6.78)

where U is the vortex pair traveling velocity and N is the Brunt–Väisälä frequency.
Billant and Chomaz (2001) also showed that the inviscid governing equations in the
limit Fr → 0 are self-similar with respect to the variable zN/U . Vortex structures
with a vertical size scaling like U/N have been also reported in stratified Taylor–
Couette flows in the strongly stratified regime (Boubnov et al. 1995). It was therefore
suggested that the intrinsic vertical scale, when no vertical length scales are imposed
by initial or boundary conditions and when the fluid is strongly stratified, is given by

LB = U/N , (6.79)

the so-called buoyancy scale.
It is natural to focus on the dominant horizontal flow uh = (

ux , uy, 0
)
and on its

correlation length scales

lh = 1

u2
h

∫
uh(x)·uh(x+reh)dr and lv = 1

u2
h

∫
uh(x)·uh(x+rez)dr , (6.80)

where the overbar represents an averaging process, eh and ez are unit vectors in the
horizontal and vertical directions, respectively. One can then define horizontal and
vertical Froude numbers:

Frh = uh
Nlh

and Frv = uh
Nlv

where uh =
√
u2
h . (6.81)

The incompressibility constraint leads to uv/ lv ∼ uh/ lh where uv is a typical vertical
velocity. In the strong stratification regime, onemight expect uv 
 uh so that lv 
 lh .
The empirical observation that lv ∼ LB = U/N leads to Frv ∼ 1 and not Frv → 0
as assumed in the 2D layered turbulence characterized by Eq. (6.77).

The Buoyancy Reynolds Number

Strongly stratified turbulence is characterized by Frh 
 1 and it organizes itself
such that Frv ∼ 1 or equivalently lv ∼ U/N (Billant and Chomaz 2001; Riley and
deBruynKops 2003). Using this scaling, the ratio between the horizontal inertial
forces and the vertical viscous forces is

u2h/ lh
νuh/ l2v

= uhlh
ν

(
uh
Nlh

)2

= RehFr
2
h ≡ R , (6.82)

where we have introduced the buoyancy Reynolds number R. For the horizontal
motions to be viscously decoupled in the vertical direction, one requires R � 1 or
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equivalently Reh � Fr−2
h � 1. This double limit is very difficult to achieve numeri-

cally and a transition between viscously locked layers whenR 
 1 and strong strat-
ified turbulence when R � 1 has only been achieved recently (Brethouwer et al.
2007; Waite 2011).

From numerical simulations, it is observed that ε ∼ u3h/ lh . Following Kol-
mogorov’s approach this leads to (Lindborg 2006):

Eh ∼ ε2/3k−5/3
h ,

where Eh is the horizontal energy spectrum and kh is the horizontal wave number.
It is still not clear if this scaling is indeed observed in the regime of large buoyancy
Reynolds number.

Using the usual scaling ε ∼ u3/ l, one can build a typical length scale L0, the
so-called Ozmidov scale (Ozmidov 1965), where the local Froude number is around
unity

Fr(L0) = (L0ε)
1/3

NL0
∼ 1 ⇒ L0 =

( ε

N 3

)1/2
. (6.83)

Scales larger than L0 have a low Froude number and are dynamically constrained by
stratification. Scales smaller than L0 have a large Froude number and should recover
an isotropic behavior. This is similar to the Zeman scale of rotating turbulence.

• In the ocean, L0 ∼ 1m.
• In strongly stable atmosphere boundary layers L0 ∼ 1m.
• In the upper troposphere or lower stratosphere, L0 ∼ 10m.

Conclusion

These notes are at best a very broad introduction to the many subtleties of turbu-
lence in rapidly rotating and stratified fluids. Many fundamental aspects have been
neglected to focus on simpler physical processes or qualitative descriptions. The
interested reader can read more complete classical textbooks cited throughout this
review, in particular Davidson (2013).

To bridge the gap between this introduction and more applied issues relevant to
the fluid dynamics of planets and stars, several additional effects have to be taken
into account. Compressibility is one of them, since density can change by many
orders of magnitude in stellar interiors or planetary atmospheres. Some properties of
compressible turbulence, which are also relevant to engineering applications such as
turbo-machinery, are, for example, discussed in Sagaut and Cambon (2008). Astro-
physical fluids are often electrically conducting and therefore interact dynamically
with the magnetic field. An introduction to magnetohydrodynamics is given in the
chapter by Deguen and Lasbleis of the same book. The topic of magnetohydrody-
namical turbulence is vast since it applies to many geophysical and astrophysical

bsuther@ualberta.ca



6 A Brief Introduction to Turbulence in Rotating and Stratified Fluids 239

flows from the Earth’s liquid metal core to the ionized gases of stellar interiors.
Finally, coupling all these effects together remain a tremendous task involving many
dimensionless numbers and many different regimes depending on the spatial scales
considered (Alexakis and Biferale 2018).
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