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Theory is developed to predict the flows induced by small-amplitude two-dimensional
vertically propagating internal wave packets under the influence of rotation. While the
long-wave response originally predicted by Bretherton [J. Fluid Mech. 36, 785 (1969)]
dominates if the influence of background rotation is negligible, the induced waves are
found to be evanescent if the Coriolis parameter is sufficiently large. Explicitly, evanescent
induced flows dominate if the Coriolis parameter is greater than the forcing frequency,
which is set by the ratio of the vertical group velocity of the wave packet divided by the
vertical scale of modulation of the wave packet. The predicted structure of the induced flow
is confirmed by numerical simulations. For an upward and rightward propagating Gaussian
wave packet that dominantly induces a long-wave response, the flow is rightward across the
upper flank and leftward across the lower flank of the wave packet. In contrast, the induced
flow for a dominantly evanescent response is negative over the middle of the wave packet.
This qualitative change in structure is anticipated to influence the modulational stability of
moderately large-amplitude wave packets.
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I. INTRODUCTION

Internal gravity waves propagate due to buoyancy forces within a stratified fluid. One class
of internal gravity waves is confined to an interface or bounded above and below such that, in
either case, the waves propagate only in the horizontal. The second class of internal gravity waves
propagate vertically as well as horizontally in continuously stratified fluid. Our interest here lies in
the latter class of waves, which we hereafter refer to simply as “internal waves.” Although there is
no Stokes drift associated with these waves, it is well known that they induce an Eulerian flow
[1] whose qualitative structure depends upon the relative aspect ratios of the wave packet [2].
In particular, Bretherton [3] first showed that a two-dimensional (spanwise-infinite) wave packet
induces an Eulerian flow in the form of long internal waves that trail the wave packet to its left and
right. Likewise, a three-dimensional wave packet induces a long-wave response if it is sufficiently
wide in the spanwise direction [2,4]. For internal waves influenced by the Earth’s rotation, it is
well known that their frequency is restricted to lie between the Coriolis frequency, f , and the
background buoyancy frequency, N . Extending previous work examining Eulerian flows induced
by two-dimensional wave packets unaffected by background rotation [3,5], here we include the
influence of the Coriolis force, anticipating that the long-wave response should become evanescent
if this force is sufficiently strong.

In part due to the need to understand pathways for energy transport from large-scale atmospheric
and oceanic circulations to small dissipative scales, there have been several studies aiming to
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examine interactions between near-inertial waves (internal waves with frequency close to f ) and
mean flows [6–11]. In most of these studies, the focus has been on the excitation of inertial waves
by geostrophically balanced flows. Conversely, even relatively large-frequency internal waves can
put energy into large-scale flows due to dissipative processes, such as overturning and breaking
[12–16], as well as nondissipative processes, such as Eulerian induced flows [6,10,17–19]. It is an
investigation of the latter case that guides the work presented herein.

Notably, Tabaei and Akylas [4] performed a comprehensive examination of flows induced by
two- and three-dimensional internal wave packets including the influence of rotation and weakly
nonlinear effects associated with moderately large-amplitude waves. Through appropriate scaling
analyses they derived a reduced set of differential equations describing the structure of the Eulerian
induced flow we examine herein. Although they presented the results of numerical simulations
revealing the generation of induced flows, they did not obtain closed-form solutions, nor did they
perform a detailed analytic examination of the structure of the induced flows by two-dimensional
wave packets as it is influenced by rotation.

The generation of long waves can be understood to arise as a consequence of a localized
translating source (i.e., the wave packet) resulting from the divergence of the vertical flux of
horizontal momentum. The vertical wavelength of the long waves is set by the vertical scale, �z,
of modulation of the waves. The frequency of the long waves is set by the forcing frequency, given
by the ratio of the vertical group velocity, cgz, to �z (Sec. III.C of van den Bremer and Sutherland
[5]). Thus it is anticipated that the long-wave response becomes evanescent if cgz/�z � f . This
straightforward physical argument is consistent with the analysis of Tabaei and Akylas [4], who
showed that rotation should play as important a role as wave-packet modulation upon induced flows
if f is scaled with �−1

z .
The main purpose of the work presented here is to provide an explicit analytic expression for

the flow induced by two-dimensional internal wave packets in the presence of Coriolis forces. This
is done in Sec. II. The resulting expression permits analyses predicting the relative importance of
induced long waves versus evanescent flows. Although we do not consider the weakly nonlinear
feedback of the order amplitude-squared induced flows acting to Doppler-shift waves within the
wave packet, we nonetheless examine the change in the structure of the induced mean flow over the
extent of the wave packet, as this should influence the modulational stability of the wave packet[4].
In Sec. III we present the results of numerical simulations, for comparison with the theoretical
predictions. We discuss the relevance of our findings to oceanic and atmospheric applications in
Sec. IV, and conclusions are drawn in Sec. V.

II. THEORY

Here we formulate the prediction for the flows induced by a quasimonochromatic, two-
dimensional (i.e., spanwise-uniform), vertically propagating internal wave packet. In doing so, we
follow the approach of van den Bremer and Sutherland [5] and extend their work to predict the
Eulerian flow induced by vertically propagating two-dimensional internal wave packets in uniformly
stratified, Boussinesq fluid on the f plane. The effects of viscosity and diffusion are neglected.

A. Equations of motion

The equations of motion for a two-dimensional, incompressible, Boussinesq, rotating fluid are

ux + wz = 0, (1a)

ut + uux + wuz − f v = −Px, (1b)

vt + uvx + wvz + f u = 0, (1c)

wt + uwx + wwz = −Pz + b, (1d)

bt + ubx + wbz = −N2w. (1e)
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Here u, v, and w are the x, y, and z components of velocity, P ≡ p/ρ0 is the dynamic pressure
divided by the characteristic density ρ0, b = −gρ/ρ0 is the buoyancy cast in terms of the fluctuation
density ρ, g is gravity, f is the (constant) Coriolis parameter, and N2 = −(g/ρ0)d ρ̄/dz is the
(constant) squared buoyancy frequency given in terms of the uniform background density gradient
d ρ̄/dz. Assuming spanwise uniform motion, the basic-state fields are independent of y, being
functions only of the horizontal x direction, the vertical, z, and time, t .

The equations may be combined by taking the curl of (1b) and (1d), which eliminates the pressure
gradient terms, using (1a) to define the stream function, ψ , such that

u = −∂ψ/∂z (2a)

and

w = ∂ψ/∂x, (2b)

and then eliminating the linear differential operators acting on b using (1e). The resulting evolution
equation for ψ is written with linear terms on the left-hand side and nonlinear terms on the right-
hand side as follows:

[∂tt (∂xx + ∂zz ) + N2∂xx + f 2∂zz]︸ ︷︷ ︸
≡ L

ψ = ∇ · [∂t (ζ u) + N2∂x(ξ u) + f ∂z(vu)]︸ ︷︷ ︸
≡ F

. (3)

Here we have denoted the spanwise vorticity by

ζ ≡ (∇ × u) · ŷ = −∇2ψ, (4)

and buoyancy has been recast in terms of the vertical displacement

ξ = −ρ/(d ρ̄/dz) = −b/N2. (5)

Equation (3) reduces to Eq. (30) of van den Bremer and Sutherland [5] by taking f = 0. Like
their expression, the evolution equation is written as a linear differential operator, L, acting on ψ

being driven by nonlinear forcing expressed as the divergence of F. With the inclusion of Coriolis
forces, closure requires the inclusion of the evolution equation for the spanwise velocity v, given by
(1c).

B. Polarization relations

We set out to find approximate solutions to (3) using perturbation theory for small-amplitude
quasimonochromatic internal wave packets. This perturbation procedure involves the small param-
eter α, which is a nondimensional measure of the maximum amplitude of the wave packet, and
the small bandwidth parameter ε, which is a measure of the wavelength relative to the length scale
associated with modulation of the amplitude envelope of the wave packet. For simplicity, we assume
that the length scale for modulation in the x and z directions are of comparable order.

Somewhat arbitrarily, we assume that the O(αε0) vertical displacement field associated with the
wave packet is specified exactly by

ξ
(1)
0 = A(X, Z, T )eıϕ, with ϕ ≡ kx + mz − ωt, (6)

in which it is understood that the actual vertical displacement field is the real part of this expression.
The subscript on ξ denotes the order of ε, and the superscript denotes the order of α. The
quantity A denotes the amplitude envelope of the wave packet, which varies on the slow space
and time scales, (X, Z ) and T , respectively. The envelope contains waves with wave number
k = (k, m) and frequency ω = ω(k). Thus we define α ∼ |k| ||A|| � 1 and ε ∼ ||AX ||/(|k| ||A||) ∼
||AZ ||/(|k| ||A||) � 1. It is convenient to consider the wave-packet evolution in a frame of reference
moving at the group velocity, cg = ∇kω, of the wave packet so that

X = x − cgxt (7a)
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TABLE I. Coefficients of eıϕ ≡ exp[ı(kx + mz − ωt )] in the polarization relations corresponding to
indicated fields evaluated at O(αε0) (second column) and O(αε) (third column) given in terms of the amplitude
envelope A of the vertical displacement field. It is understood that the actual fields are given by the real parts of
the tabulated expressions after multiplication by eıϕ . In the above expressions, C ≡ k2m2(N2 − f 2)/(ω2|k|4).

Field O(αε0) O(αε1)

Vertical displacement (ξ ) A 0

Stream function (ψ) − ω

k A −ı ω

k [ 1
k (1 − C) ∂X A + 1

mC ∂Z A]

Along-stream velocity (u) ı ωm
k A ωm

k (1 − C) [ − 1
k ∂X A + 1

m ∂Z A]

Spanwise velocity (v) f m
k A ı

f m
k [ 1

k ∂X A − 1
m ∂Z A]

Vertical velocity (w) −ıω A ωC [ − 1
k ∂X A + 1

m ∂Z A]

Vorticity (ζ ) − ω|k|2
k A ı ω|k|2

k [ 1
k ( N2k4− f 2m4

ω2 |k|4 ) ∂X A + 1
m (C + 2 f 2m2

ω2 |k|2 ) ∂Z A]

and

Z = z − cgzt . (7b)

In this frame, the temporal evolution represented by the dependence of the amplitude envelope upon
T , describes the dispersion of the wave packet, which is order ε2, and so will be negligible at the
orders of perturbation theory considered below.

Taking terms at O(αε0) in (3) gives the standard dispersion relation for internal waves that are
influenced by rotation:

ω2 = (N2k2 + f 2m2)/(k2 + m2). (8)

Likewise, the polarization relations at this order can be found from the linearized equations of
motion assuming plane wave solutions. These are listed in the second column of Table I. For what
follows, it is necessary to evaluate the corrections to the polarization relations at O(αε), expressions
that involve single spatial derivatives of the amplitude envelope, A. These are listed in the third
column of Table I.

C. Nonlinear forcing

Given the polarization relations in Table I, we can proceed to compute the nonlinear terms on
the right-hand side of (3) to leading order. Specifically, we seek only the forcing terms on the
wave-packet scale, neglecting superharmonic terms proportional to exp(±2ıϕ). Thus, for example,
from the correlation ζu in the first term of F in (3), we consider only the leading-order forcing ζu =
ζ (1)u(1), where the over-bar denotes averaging over the fast wave scales. All of these correlations,
listed in Table II, are O(α2ε) at leading order, involving single spatial derivatives of |A|2.

TABLE II. Slowly varying parts of the correlations appearing in the leading-order nonlinear forcing terms
on the right-hand side of (3).

Correlation Value

(ζu)(2)
1

1
4 (ω2/k2)[2km∂X + (m2 − k2)∂Z ]|A|2

(ζw)(2)
1

1
4 (ω2/k2)[(m2 − k2)∂X − 2km∂Z ]|A|2

(ξu)(2)
1

1
4

ω

k2 (1 − C) [−m∂X + k∂Z ]|A|2
(ξw)(2)

1
1
4

ω

kmC [−m∂X + k∂Z ]|A|2
(vu)(2)

1
1
4

ω f m
k3 C [m∂X − k∂Z ]|A|2

(vw)(2)
1

1
4

ω f
k2 (1 + C)[−m∂X + k∂Z ]|A|2
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Combining these results, we see that the leading-order forcing on the right-hand side of (3) is
O(α2ε3). Explicitly, the forcing can be expressed as

(∇ · F)(2)
3 = −N4k3m2

2ω|k|6 (CXXX∂XXX + CXXZ∂XXZ + CXZZ∂XZZ + CZZZ∂ZZZ)|A|2, (9)

in which the coefficients are given by

CXXX = m

k

[
1

2γ
(1 + 3γ ) + 1

2
(5 + γ ) − 2γ

]
,

CXXZ = − 1

2γ
(1 + 4γ − 3γ 2) + 1

2
(1 − 11γ ) + γ

2
2(5 − γ ),

CXZZ = m

k

[
1

2γ
(1 − 5γ ) + 1

2
(11 − γ ) − 1

2
2(3 − 4γ − γ 2)

]
,

CZZZ = 1 − 
1

2γ
(1 + 5γ ) − 2 γ

2
(3 + γ ), (10)

in which  ≡ ( f /N )2 and γ ≡ (m/k)2.

D. Eulerian induced flow

As originally found by Bretherton [3], two-dimensional internal wave packets in the absence
of rotation induce an Eulerian flow that is manifest as horizontally long internal waves emanating
outward and leeward of the wave packet (for example, see Fig. 5 of van den Bremer and Sutherland
[5]). The long-wave response to localized forcing inspires the simplification of the right-hand side
forcing in (3) originally made by Bretherton [3] such that

(∇ · F)(2)
3 � N (Z )δ(kX ), (11)

in which

N (Z ) = k
∫ ∞

−∞
(∇ · F)(2)

3 dX = −N4k4m2

2ω|k|6 CZZZ

∫ ∞

−∞
∂ZZZ|A|2 dX. (12)

Hence all terms in (10) vanish except for that involving Z derivatives alone. That term arises from
the correlations ζw and vw.

In particular, if the amplitude envelope of the vertical displacement field is separable such that
A(X, Z ) = A0 η(X )A(Z ) with ||η|| = ||A|| = 1, then (12) gives

N (Z ) = −A2
0�x

N4k4m2

2ω|k|6 CZZZ
d3

dZ3
|A|2, (13)

in which �x ≡ ∫ ∞
−∞ η2(X ) dX . In the special case of the wave packet being a Gaussian in the

horizontal such that η(X ) = exp[−X 2/(2σ 2
x )], then �x = σx

√
π .

To find the induced flow that arises in response to this forcing at O(α2), we manipulate the linear
terms on the left-hand side of (3), reexpressing the derivatives in terms of the translating coordinates
(X, Z ) and neglecting the partial X derivatives in the Laplacian and higher-order time derivative
terms. The former is a consequence of assuming the response is wider than the wave packet in the x
direction as for the case without Coriolis forces. Hence the leading-order equation for the induced
Eulerian flow in terms of the O(α2) stream function ψ (2) is(

c2
gz∂ZZZZ + N2∂XX + f 2∂ZZ

)
ψ (2) = N (Z )δ(kX ). (14)

The solution is found in Fourier space by writing

ψ (2)(X, Z ) =
∫ ∫

ψ̂ (κ, μ) eı(κX+μZ ) dκ dμ, (15)
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and likewise transforming the forcing given by (11) with (12). Using (13), the resulting algebraic
equation for ψ̂ is solved to give

ψ̂ = ıA2
0�x

N4k3m2

4πω|k|6 CZZZ
μ3 |̂A|2

c2
gzμ

4 − N2κ2 − f 2μ2
, (16)

in which |̂A|2(μ) is the Fourier transform of |A|2(Z ).
We seek an analytic solution in real space as a single integral through identifying singularities

in the inverse Fourier transform of (16). Following van den Bremer and Sutherland [5], the
denominator in (16) is factored in the following way:

1

c2
gzμ

4 − f 2μ2 − N2κ2
= 1

2cgzμ

√
μ2 − μ2

0

⎡
⎣ 1

cgzμ

√
μ2 − μ2

0 − Nκ

+ 1

cgzμ

√
μ2 − μ2

0 + Nκ

⎤
⎦,

in which we have defined μ0 ≡ | f /cgz|. From this, we can perform the integration in κ explicitly.
However, we see that when inverting the Fourier transform, we must separately consider cases
with |μ| > μ0 (yielding singularities on the real κ axis) and |μ| < μ0 (yielding singularities on
the imaginary κ axis). For the real singularities, we obtain long-wave solutions by taking a branch
cut corresponding to outgoing waves. For the imaginary singularities, we obtain evanescent wave
solutions using the residue theorem, enforcing the boundedness of the solutions. Thus we arrive at
the following:

ψ (2) = −1

2
A2

0�x
N3km

(N2 − f 2)|k|2 CZZZ

[ ∫ ∞

μ0

μ2 |̂A|2√
μ2 − μ2

0

cos

(
cgz

N
μ

√
μ2 − μ2

0 |X | + μZ

)
dμ

+
∫ μ0

0

μ2 |̂A|2√
μ2

0 − μ2
exp

(−cgz

N
μ

√
μ2

0 − μ2 |X |
)

sin(μZ ) dμ

]
. (17)

The first integral represents the induced flow manifest as long waves, while the second integral
represents the induced flow manifest as evanescent waves occurring when the frequency associated
with the induced flow is less than f . The corresponding expression for the horizontal wave induced
mean flow is

u(2) = −1

2
A2

0�x
N3km

(N2 − f 2)|k|2 CZZZ

[ ∫ ∞

μ0

μ3 |̂A|2√
μ2 − μ2

0

sin

(
cgz

N
μ

√
μ2 − μ2

0 |X | + μZ

)
dμ

−
∫ μ0

0

μ3 |̂A|2√
μ2

0 − μ2
exp

(
− cgz

N
μ

√
μ2

0 − μ2 |X |
)

cos(μZ ) dμ

]
. (18)

This may be written as u(2) = ulw + uev, corresponding to the sum of the induced flow associated
with long waves (the first integral with μ > μ0) and evanescent disturbances (the second integral
with 0 < μ < μ0).

We can find the induced spanwise flow, v(2), from the y-momentum equation (1c) written in the
translating (X, Z ) coordinates:

−(cgx∂X + cgz∂Z )v(2) = −∂X (v(1)u(1) ) − ∂Z (v(1)w(1) ) + f ∂Z (ψ (2) ).

The induced flow varies more slowly in X compared with Z , and so the cgx∂X term on the left-
hand side can be neglected. Furthermore, the advective terms are smaller than the last term on the
right-hand side. Thus the dominant contribution to v(2) is given simply by

v(2) = −μ0ψ
(2). (19)
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FIG. 1. Horizontal velocity associated with the wave-induced flow for a Gaussian wave packet with
kσx = kσz = 20, containing waves with m/k = −1: (a) induced flow computed with f = 0, (b) induced
flow computed with f /N = 0.01 and its decomposition into the flow associated with (c) long waves and
(d) evanescent disturbances. In all cases the velocity is normalized by kNA2

0. The white circle centred at the
origin (appearing as an ellipse in these stretched coordinates) is drawn with radius 20/k, indicating the spatial
extent of the wave packet. Note the reduced scale in (d) that serves to show better the relatively small evanescent
disturbances.

The buoyancy field associated with the Eulerian induced flow is likewise found by writing the
buoyancy equation (1e) in translating coordinates and neglecting the cgx∂X term and the relatively
small advective terms. The equation for b(2) thus satisfies

∂Zb(2) = (N2/cgz )∂X ψ (2). (20)

The induced flow predicted by (18) is shown for three cases in Figs. 1–3. In all cases the
upward-propagating wave packet has a bivariate Gaussian amplitude envelope given by A(X, Z ) =
A0 exp[−(X 2/σ 2

x + Z2/σ 2
z )/2], in which σx = σz = 20/k. Figure 1 shows the case in which the

waves contained in the packet have m = −k. In the nonrotating case ( f = 0), the induced flow
has the well-known form of the long-wave response [3–5]. This result can be compared with
the total induced flow in the case f = 0.01N [Fig. 1(b)]. The amplitude and structure of the
long-wave response are similar to those in the nonrotating case except that there is also a signal of
horizontally uniform, vertically periodic waves contained between the outward propagating induced
long waves. The total induced flow is decomposed into its contributions from ulw and uev, as
shown in Figs. 1(c) and 1(d), respectively. Both components involve horizontally uniform, vertically
periodic disturbances both above and below the wave packet. However, the superposition of these
fields results in destructive interference above the wave packet and constructive interference below.
Hence there is no disturbance by the total induced flow sufficiently far above the wave packet and a
weak vertically periodic disturbance below. We examine the asymptotic behavior in more detail in
Sec. II F.
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FIG. 2. As in Fig. 1 but for an internal wave packet containing waves with m/k = −3.

FIG. 3. As in Fig. 1 but for wave packet containing waves with m/k = −5. Note the reduced scale in (c).
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For a wave packet containing more hydrostatic waves with m = −3k, the influence of rotation
upon the Eulerian induced flow is significantly more pronounced, as shown in Fig. 2. If there
is no rotation, the long waves emanate downward to the right and left of the wave packet at a
shallower angle to the horizontal. This is consistent with the scaling argument that the frequency
of the long waves should be of the order cgz/�z, and the fact that the vertical group velocity
decreases as |m/k| increases provided |m/k| � 1/

√
2. For the wave packet with m = −3k and

f = 0, ω � 0.32N and cgz � 0.095N/k. Hence, taking �z = σz, the long waves have frequency on
the order cgz/�z � 0.0047N . With a typical value of the relative Coriolis parameter, f = 0.01N ,
rotation has little influence upon waves in the wave packet. However, a significant proportion of the
spectrum of induced long waves is anticipated to be evanescent, as evident in Figs. 2(b)–2(d). In
this case the contributions to the total flow from ulw and uev are comparable. While the long-wave
contribution has a signal of downward and outward propagating waves, both this and the evanescent
contribution exhibit horizontally uniform, vertical periodic disturbances as well. As in the case with
m = −k, these disturbances destructively interfere above the wave packet so that the total induced
flow is non-negligible only below the wave packet.

In the case with m = −5k, shown in Fig. 3, the vertical group velocity of the wave packet, cgz �
0.038N/k, is so small that the long waves have frequency on the order 0.0019N . Correspondingly,
although shallow long waves are evident in the case with f = 0, the contribution from ulw is
negligible if f = 0.01N . In this case, the total induced flow, which is dominated by uev, is
characterized by horizontal disturbances that decay to the left and right of the wave packet as well
as above and below. The enhanced lateral confinement of the induced flow due to rotation was also
noted in the simulations of Wilhelm et al. [20].

E. Horizontally integrated flow

It is insightful to consider the horizontal integral of the induced horizontal flow, u(2). After
integrating in X , the two integrals in (18) combine, and the result can be manipulated to cast it
in the following form:∫

u(2) dX = �xC
[∫ ∞

0

μ2

μ2 − μ2
0

̂|A|2(μ) cos(μZ ) dμ

]
= �x[UDF(Z ) + V̄ (Z )], (21)

in which

UDF ≡ C|A|2(Z ), V̄ ≡ C
∫ ∞

−∞

μ2
0

μ2 − μ2
0

̂|A|2(μ)eiμZ dμ (22)

and

C ≡ 1

2
N |k|A2

0
N4

(N2 − f 2)2

(
1 + f 2m2

N2k2

)1/2

CZZZ. (23)

If f = 0, then V̄ = 0 and UDF is equal to the divergent-flux induced flow UDF0, found by horizontally
averaging the horizontal momentum equation, assuming horizontally periodic waves [21]:

UDF0(Z ) ≡ 〈u1w1〉/cgz = 1
2 N |k| A2

0 |A(Z )|2. (24)

For nonrotating two-dimensional wave packets, the horizontal integral of the Eulerian induced flow,
u(2), was shown to equal UDF0�x in van den Bremer and Sutherland [5]. In other words, all the
horizontal momentum in u(2) originates from the divergent-flux induced flow of the wave packet.

If rotation is not neglected, then the expression for V̄ can be seen to result from the Coriolis term
in the x-momentum equation (1b). Explicitly, �xV̄ = −(1/cgz )

∫ Z ∫ ∞
−∞ f v(2)(X, Z̃ ) dX dZ̃ , in which

v(2) is given by (19). In other words, not all the horizontal momentum in u(2) originates from the
divergent-flux induced flow of the wave packet.
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FIG. 4. First four coefficients Cn(μ̃0) used in the approximation to u(2)(X = 0, Z ) for |Z/σz| � 1, as
defined by (26) for a Gaussian wave packet.

F. Near- and far-field asymptotics

To get further insight into the structure of the induced flow field, we consider the flow at the
center of wave packet as well as far above and below the wave packet at X = 0.

1. Near-field asymptotics

Starting with the near field, performing a Taylor series expansion in Z , we obtain for small Z at
X = 0

u(2)|X=0 � −1

2
A2

0�x
N3km

(N2 − f 2)|k|2 CZZZ
1

�2
z

∞∑
n=0

Cn

(
Z

�z

)n

, |Z|/�z � 1, (25)

where �z represents the characteristic vertical scale of the modulation to the wave packet in Z , and
the nondimensional coefficients, Cn, are given by

C2 j = (−1) j+1

(2 j)!

∫ μ̃0

0

μ̃2 j+3√
μ̃2

0 − μ̃2

1

�z

̂|A|2(μ̃) dμ̃, j = 0, 1, 2, . . . , (26a)

C2 j+1 = (−1) j

(2 j + 1)!

∫ ∞

μ̃0

μ̃2 j+4√
μ̃2 − μ̃2

0

1

�z

̂|A|2(μ̃) dμ̃, j = 0, 1, 2, . . . , (26b)

in which μ̃0 ≡ μ0�z. For a Gaussian wave packet we set �z = σz, in which case ̂|A|2(μ̃)/�z =
exp(−μ̃2/4)/(2

√
π ). The corresponding integrals in (26) can be evaluated numerically and are

plotted in Fig. 4 for n = 0, 1, 2, and 3. For small μ̃0, the leading coefficients are

C0 � − 1

3
√

π
μ̃3

0, C2 � 2

15
√

π
μ̃5

0,

C1 � 4√
π

(
1 + μ̃2

0/8
)
, C3 � − 16

3
√

π

(
1 + 9μ̃2

0/128
)
.

The corresponding asymptotic approximations for large μ̃0 are

C0 � − 4√
π

1

μ̃0

(
1 + 4μ̃−2

0

)
, C2 � 16√

π

1

μ̃0

(
1 + 6μ̃−2

0

)
,

C1 � 1

2
μ̃3

0 exp(−μ̃2
0/4)

[
1 + 3μ̃−2

0

]
, C3 � − 1

12
μ̃5

0 exp
( − μ̃2

0/4
)[

1 + 5μ̃−2
0

]
.
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FIG. 5. Predicted horizontal flow (black curves) at X = 0 for (a) m/k = −1, (b) −3, and (c) −5.
Asymptotic approximations for |Z|/σz � 1 (25) and |Z|/σz � 1 (27) are plotted as short- and long-dashed
lines, respectively.

These are shown by dotted lines in Fig. 4. The coefficients with odd indices (plotted in blue) come
from the first integral in (18), which corresponds to induced long waves, whereas the coefficients
with even indices (plotted in black) come from the second integral corresponding to evanescent
disturbances. The plots show a transition from horizontal flows over the wave packet that are odd
in Z for μ̃0 � 1 (when dominated by long waves) to flows that are even in Z for μ̃0 � 1 (when
dominated by evanescent disturbances). To be more precise, the maximum absolute values of the
horizontal flows associated with the long waves and evanescent disturbances are equal for μ̃0 ∼
μ̃�

0 = 2.4. Hence, long waves dominate if μ̃0 < μ̃�
0 and evanescent disturbances dominate otherwise.

The corresponding asymptotic curves are superimposed on the exact solution for u(2)(X = 0, Z ) in
Fig. 5.

2. Far-field asymptotics

Using the method of steepest descents upon the integrals in (18), we find for the far field

u(2)|X=0 � −1

2
A2

0�x
N3km

(N2 − f 2)|k|2 CZZZμ3
0

⎧⎨
⎩

− ̂|A|2(0) 6
(μ0Z )4 Z/�z → ∞,

̂|A|2(μ0)
√

2π
|μ0Z| sin(μ0Z − π/4) Z/�z → −∞.

(27)
For the bivariate Gaussian, �x = √

πσx and |̂A|2(μ) = σz/(2
√

π ) exp (−μ2σ 2
z /4). The correspond-

ing asymptotic curves are superimposed on the exact solution for u(2)(X = 0, Z ) in Fig. 5. The
result clearly shows that, under the influence of rotation, the induced flow is manifest as a vertically
decaying oscillating disturbance below the wave packet whose wavelength decreases as μ0 = f /cgz

increases. Despite the factor μ
5/2
0 in the Z → −∞ expression in (27), the amplitude of this periodic

disturbance also decreases with increasing μ0 owing to the rapid decay of |̂A|2(μ) with increasing
μ > 1/σz. Above the wave packet the disturbance decays rapidly to zero as A2

0σxσz/Z4.
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FIG. 6. Contours of k/μ0 (= kσz/μ̃
�
0 at transition) indicating whether the induced flow is dominated

by long waves or evanescent disturbances. For given kσz, parameter values to the left (right) of this
contour are dominated by long waves (evanescent disturbances). A solid line is drawn for the contour with
kσz/μ̃

�
0 = 20/(2.4), which is used for the examples presented here. The open circles indicate the parameters

corresponding to the theoretical results shown in Figs. 1–3. The crosses indicate the parameters corresponding
to numerical simulation results presented in Sec. III. The red triangle corresponds to observations of mountain
waves [22], and the red circle corresponds to observations of convectively generated waves [23].

G. Regime diagram

In order to gain better insight into what parameters determine whether the total induced flow will
be dominated by long waves or evanescent disturbances, Fig. 6 plots contours corresponding to the
transition which occurs when μ0σz(= f σz/cgz ) ∼ 1. Explicitly, contours of k/μ0 are plotted as they
depend upon | f |/N and |m/k|. At transition, these contour values are equal to kσz/μ̃

�
0.

In the examples presented above we considered a Gaussian wave packet with kσz = 20. Figure 6
shows that the case with m = −k and f = 0.01N has k/μ0 � 35. Being larger than kσz means the
induced flow is long-wave dominated. In contrast, the cases with m = −3k and −5k, respectively,
have k/μ0 � 9.5 and 3.8, and so these are dominated by evanescent disturbances. Clearly whether
or not the induced flow is long-wave dominated depends upon the vertical scale of modulations of
the wave packet. If kσz = 5, long waves should be dominant even in the case m = −3k.

Although not part of this study, it is relevant to emphasize an important aspect of the transition
from long waves to evanescent disturbances. In the former case, the horizontal flow over the wave
packet is positive on the leading flank and negative on the trailing flank. Consequently, if the waves
in the packet are hydrostatic and of such large amplitude that weakly nonlinear effects become
important, then the Doppler shifting of the waves by the induced flow on the trailing flank would
lead to modulational instability. This is because the negative flow on the trailing flank would increase
the extrinsic frequency of the waves causing their vertical group velocity to increase. Hence the
amplitude envelope in the lee of the wave packet would narrow and grow in amplitude, as has
been investigated in studies of horizontally periodic (one-dimensional) wave packets [21,24,25]
and nonrotating two-dimensional wave packets [26]. However, if the waves dominantly induce
an evanescent disturbance, then the flow is negative over the center of the wave packet. Hence,
hydrostatic, moderately large-amplitude waves should be modulationally unstable, in contrast with
the modulational stability associated with one-dimensional and three-dimensional wave packets
whose induced flow is predominately positive over the wave packet.

The regime diagram in Fig. 6 also shows that the transition from long-wave to evanescent
dominated induced flows can be obtained by fixing |m/k| and increasing | f |/N . This is the approach
taken below in performing numerical simulations.
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III. NUMERICAL SIMULATIONS

A. Description of the code and setup

We have run fully nonlinear simulations of the evolution of small-amplitude quasimonochromatic
wave packets, using the same code as that used to simulate two-dimensional wave packets with
no background rotation [5]. As basic state fields, this code works with the spanwise vorticity,
ζ , buoyancy, b, and spanwise velocity, v. In all cases reported upon here the simulations were
initialized with an upward and rightward propagating wave packet with vertical displacement
field given by ξ (x, z, t = 0) = A(x, z) cos(kx + mz), in which we set the vertical wave number
to be m = −k. The waves were contained in a Gaussian wave packet prescribed generally by
A(x, z) = A0 exp[−(x2/σ 2

x + z2/σ 2
z )/2], for which we set σx = σz = 20/k and A0k = 0.01. With

this prescription, the polarization relations in Table I were used to specify the initial values of ζ , b,
and v.

Here we explore the transition from flows dominated by long waves to those dominated
by evanescent disturbances by varying f /N from 0.01 to 0.1. This is done for computational
convenience: simulations with larger |m/k| required more vertical grid points in order to resolve the
waves, and run times were longer because the vertical group velocity was smaller. Increasing | f |/N
can be thought of as a study of wave packets at midlatitudes (where f ∼ 10−4 s−1) propagating in
strong stratification (N ∼ 10−2 s−1, as in the stratosphere and oceanic thermocline) compared to
those propagating in weak stratification (N ∼ 10−3 s−1, as in the troposphere and mesosphere, and
in the oceanic abyss).

In some simulations, only the wave packet was specified at the outset, in which case the Eulerian
induced flow was allowed to develop naturally, and a residual disturbance was also found to develop
near the original position of the wave packet. In other simulations, the predicted Eulerian induced
flow was also superimposed at the initial time. The predicted stream function associated with the
induced flow was computed in a domain with double the vertical and horizontal extent of that used
in the simulations. The corresponding fields for spanwise vorticity, spanwise velocity, and buoyancy
were computed in Fourier space using ζ = −∇2ψ , (19), and (20), respectively. The corresponding
fields in Fourier space are ζ̂ = (κ2 + μ2)ψ̂ , v̂ = −μ0ψ̂ , and b̂ = (N2/cgz )(κ/μ)ψ̂ . The fields were
then inverse Fourier transformed, and the portion of these fields used for the smaller simulation
domain was then extracted.

After the code was initialized, the basic state fields were advanced in time through the solution
of the right-hand side of the equations for spanwise vorticity,

ζt = −uζx − wζz − bx + f vz + Dζ , (28)

buoyancy,

bt = −ubx − wbz − N2w + Db, (29)

and the spanwise velocity,

vt = −uvx − wvz − f u + Dv. (30)

Here D denotes a Laplacian diffusion operator that acted only upon horizontal wave numbers greater
than 4k. For these high wave numbers, kinematic viscosity, ν, was set so the Reynolds number was
Re = N/(k2ν) = 105. The diffusivity in (29) was set to equal ν. In most simulations, the horizontal
extent of the domain was set to be 1024λ, with λ = 2π/k. Vertically the domain extended from
−200/k to 200/k. The spatial resolution was set to have 16 points spanning a wavelength of the
waves in the wave packet. The code was advanced in time using a leap-frog scheme for the advective
terms and forward advancing for the diffusive terms. Time was advanced in steps of 0.05/N up
to Nt = 200. By this time, the wave packet had translated vertically at the group velocity from
the origin to z � 71/k. Thus there was negligible overlap between the initial and final Gaussian
envelope.
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FIG. 7. Results of numerical simulation with f = 0.1N and initialized only with a Gaussian wave packet
(without the predicted Eulerian induced flow initially superimposed) having m = −k, A0 = 0.01/k and σx =
σz = 20/k, showing the wave-packet-filtered horizontal flow (a) at Nt = 10, and (b) after evolving to time
Nt = 200. In both plots, the color scale is the same, as indicated in (a), and the white circles of radii 20/k
indicate the location and extent of the wave packets.

In order to examine the flows induced by the wave packet, the horizontal velocity field was
Fourier transformed in the horizontal, the Fourier components with wave numbers within 5/σ of k
were set to zero, and the result was then inverse Fourier transformed. The resulting field we refer to
as the “wave-packet-filtered flow,” and we denote its horizontal velocity by ũ.

B. Results and comparison with theory

To begin, we present results of numerical simulations examining a wave packet whose induced
flow is strongly influenced by rotation. Explicitly, we set f = 0.1N , in which case μ0σz � 5.7 >

μ̃�
0 � 2.41, corresponding to a predicted induced flow dominated by evanescent disturbances. We

examine cases with and without the predicted Eulerian induced flow initially superimposed in turn.

1. Simulation without the predicted Eulerian induced flow initially superimposed

In Fig. 7 we show the wave-packet-filtered horizontal flow at two different times from a
simulation in which only the wave packet is superimposed at the outset. At Nt = 10 the translating
wave packet has induced a strong positive (negative) horizontal flow along its upper (lower flank),
and beams of internal waves radiate above and below the wave packet. None of these disturbances
were predicted by our steady-state theory, and all are a consequence of the flow field transiently
adjusting to the forcing by the localized divergence of the momentum flux over the wave packet.

By Nt = 200, the wave packet has propagated vertically to kz � 70, as predicted for the waves
propagating with vertical group velocity cgz � 0.348N/k. At this time there are three qualitatively
different flow features evident. At the location of the wave packet, the flow is negative with positive
flows above and below. This is the structure predicted by theory. Conversely, at the original location
of the wave packet (about z = 0) the flow exhibits a flow that, about X = 0, is positive above Z = 0
and negative below Z = 0. Besides these features, wave beams propagate to the left and right both
upward and downward, originating from the origin. This spurious disturbance is a result of the
simulation not being initialized with the predicted Eulerian induced flow.

2. Simulations with the predicted Eulerian induced flow initially superimposed

Figure 8 shows the wave-packet-filtered horizontal flow from simulations in which the predicted
Eulerian induced flow is superimposed at the outset. In the case with f = 0.1N , the predicted flow
[Fig. 8(a), left] exhibits the vertically even symmetry in the horizontal velocity, characteristic of
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FIG. 8. Results from simulations with (a) f = 0.1N , (b) f = 0.05N , and (c) f = 0.02N showing (left)
the wave-packet-filtered horizontal flow at Nt = 0 and (right) the same field at Nt = 200 with the predicted
Eulerian induced flow initially superimposed. The fields on the right are plotted with the same scale as that
indicated in the corresponding plot to the left, and the white circles of radii 20/k indicate the location and
extent of the wave packets.

evanescent disturbances. Comparing the wave-packet-filtered flow at Nt = 200 [Fig. 8(a), right]
with that in the simulation having no induced flow initially superimposed [Fig. 7(b)] we see that
there is no significant remnant flow near the origin, and the flow around the height of the wave
packet has changed little from its initial state. Similarly, the simulations with smaller f , for which
the predicted induced mean flow exhibits more significant long-wave disturbances, the induced
flow is found to translate with the wave packet at its group velocity. These results show that
numerical simulations should include the predicted Eulerian induced flow if the intent is to capture
a disturbance that is steady in a frame of reference moving with the group velocity of the wave
packet.

To compare the amplitude as well as the structure of the induced flow measured in simulations
with that predicted by theory, Fig. 9 plots vertical profiles of the streamwise flow at X = 0 as
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FIG. 9. Vertical profiles of the horizontal flow across the center of the wave packet as predicted by theory
(black line) and extracted from simulations at Nt = 200 (blue lines) as shown in the right panels of Fig. 8.

predicted by theory and compares these with corresponding vertical profiles extracted at Nt = 200
from the simulations with m = −k and f = 0.1N , 0.05N and 0.02N . In all three cases the agreement
is excellent, confirming that the theory describes well the steady-state evolution of the flow induced
by vertically propagating internal wave packets.

Crucial to the development of the prediction for the induced flow is the assumption (11) that the
induced flow has such broad horizontal extent compared with the extent of the wave packet that
the nonlinear forcing can be treated as a delta function in X . While this is a reasonable assumption
if the induced flow is dominated by long waves [as in the simulation results shown in Figs. 8(b)
and 8(c) and 9(b) and 9(c)], it is questionable if evanescent waves dominate (as in Figs. 8(a) and 9
a) and the lateral extent of the evanescent disturbance is not much larger than σx. To examine this
circumstance, simulations were performed with m = −k, as in Fig. 8, but with wave packets having
a horizontal extent given by kσx = 60, 100, 150, and 200 in the case f = 0.1N and by kσx = 200 in
cases with f = 0.05N and f = 0.02N . The vertical profiles of horizontal velocity through the center
of the wave packet are extracted from the simulations at Nt = 200 and compared with theory, as
shown in Fig. 10.

In the case with f = 0.1N , the predicted evanescent-dominated induced flow (Fig. 8(a), left
plot) becomes vanishingly small a distance 100k−1 to the left and right of the wave packet. Theory
predicts that the structure of the flow is independent of σx, but its magnitude increases linearly with
σx [through the value of �x in (18)]. This is shown by the dotted curves in Fig. 10(a). However, the
simulations results (solid curves) show that the magnitude of the induced flow at X = 0 saturates as
the horizontal extent of the wave packet becomes comparable to the predicted lateral extent of the
evanescent induced flow. Conversely, in the cases f = 0.05N and 0.02N , which have a dominate
long-wave response with corresponding wider extent about the wave packet, the predicted induced
flow at X = 0 corresponds well with the simulation results even with kσx = 200.

It is possible to improve the theory, relaxing the assumption (11) that the response is so wide that
the nonlinear forcing can be treated as a δ function in X . This would involve keeping all four terms
in (9) and then solving numerically using Fourier transforms in both the horizontal and vertical
directions. However, the explicit formula for the wave-induced flow (18) would seem to be robust
for many atmospheric and oceanic applications, as discussed below.
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FIG. 10. As in Fig. 9, comparing vertical profiles of horizontal velocity from simulations (solid lines) with
theory (dotted lines) with m = −k, (a) f = 0.1N , (b) f = 0.05N , and (c) f = 0.02N , and with wave-packet
horizontal extent kσx as indicated by the colored lines toward the upper left of each plot. The cases with
kσx = 20 are reproduced from Fig. 9 with the black dotted and solid curves corresponding, respectively, to the
black and blue curves shown in Fig. 9.

IV. DISCUSSION

Although in reality there are no truly two-dimensional wave packets, the flow induced by
modulated internal waves can behave similarly to wave packets in the two-dimensional limit if
generated with sufficiently wide lateral extent [2]. Explicitly, in the absence of Coriolis effects,
these authors found that the induced flow from a wave packet modulated in three dimensions
takes the form of long waves if the vertical aspect ratio, Rz ≡ σz/σx, is less than a critical value
R�

z � 1.2[|km|/(|k|3σx )]R1/2
y , in which Ry ≡ σy/σx is the horizontal aspect ratio. It is natural to

ask under what circumstances in the atmosphere and ocean transiently excited internal waves are
sufficiently wide to satisfy this criterion.

In the ocean the most comprehensive measurements of vertically propagating waves are of
those generated by tidal flow over bottom topography, such as the observations of Alford [27],
who recorded upward propagating near-inertial waves excited by flow over the Mendocino Ridge,
or generated by storms, such the observations by Soares et al. [28], who recorded downward
propagating waves generated by a typhoon in the tropical Indian Ocean. However, the lateral extent
of the waves could not be measured, and, in any case, their frequencies were close to the Coriolis
frequency so that |m/k| � N/| f |. Hence, only an evanescent response could occur.

A broader range of frequencies of internal waves can be excited in the atmosphere, whether by
flow over topography or by convection [29]. (Less important mechanisms, such as imbalance caused
by baroclinic instability of the Jet Stream [30], excite near- f waves.) Due to satellite observations,
LIDAR, and measurements of airglow in the upper mesosphere, as well as in situ measurements by
aircraft and radiosondes, several comprehensive campaigns have recently documented the life cycle
and climatology of atmospheric internal waves [31]. In particular, Taylor et al. [22] observed over
the southern island of New Zealand several north-south-oriented internal waves whose lateral extent
was as large as 400 km, containing waves with horizontal wavelengths ranging from 46–68 km. The
vertical wavelengths were such that |m/k| � 4.5–5.1. Taking the background stratification near
the top of the mesosphere to be N � 0.005 s−1, these waves correspond to the red triangle shown in
the regime diagram of Fig. 6. If the vertical extent of modulations of the wave packet is σ � 20 km,
then kσz/μ̃

� � 2. Hence these waves should induce a mean flow in the form of long waves.
As another example, we consider the observations of Yue et al. [23], who used airglow measure-

ments to examine circularly spreading internal waves near the mesopause. These were generated
below by summer thunderstorms in northeast Colorado, USA. These waves were nonhydrostatic
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with horizontal wavelengths of 44 km near the mesopause and vertical wavelengths (inferred from
the AIRS satellite) ranging between 35 and 55 km. The characteristics of the waves are shown
by the red circle in Fig. 6. The circular arcs associated with internal waves had largest observed
diameters of around 600 km, again suggesting a sufficiently long spanwise extent that induced flows
in the form of long waves may be possible. Indeed, assuming the waves are modulated on the scale
of their wavelengths, so that kσx � kσz � 6, and taking σy � 300 km, the critical vertical aspect
ratio is R�

z � 0.2. Thus the observed vertical extent of the waves is only moderately larger than the
scale predicted for long-wave resonance, suggesting there may be some signature of long waves.
Furthermore, because kσz/μ̃

� � 3, these waves also lie in the regime such that the induced flow
excites long waves.

V. CONCLUSIONS

We have formulated analytic solutions for the Eulerian flow induced by two-dimensional
vertically propagating internal wave packets including the effects of background rotation. The
predictions were confirmed with the results of numerical simulations. Even for moderately non-
hydrostatic waves, the induced flow qualitatively changes structure as determined by the value
of μ0σz, in which μ0 = f /cgz and σz is a measure of the vertical extent of the wave packet. For
μ̃0 ≡ μ0σz � μ̃�

0 = 2.4, long waves dominate the induced flow, which, for an upward and rightward
propagating wave packet, is positive on the upper flank and negative on the lower flank. For
μ̃0 � μ̃�

0, evanescent disturbances dominate the induced flow. This flow is localized near the wave
packet with negative flow over the wave packet itself. This change in flow direction across the wave
packet is expected qualitatively to change the modulational stability of moderately large-amplitude
waves.

Most observed vertically propagating internal wave packets in the atmosphere and ocean are
near-inertial, so their induced flow is expected to be dominated by evanescent disturbances.
However, recent observations of mountain waves and of convectively generated internal waves in
the middle atmosphere suggest that, in some circumstances, they may be nonhydrostatic and have
long lateral extent as they propagate upward. In particular, because convectively generated waves
spread radially from their localized source near the top of the troposphere, the structure of their
induced flow may change as they widen sufficiently to allow for long-wave resonance. Because the
waves also grow in amplitude due to anelastic effects, the induced flow may have significant impact
upon the evolution and consequent breaking level of the waves. This work has focused upon waves
of such small amplitude that the induced flow has negligible weakly nonlinear influence upon the
evolution of the waves through Doppler shifting that can lead to enhanced amplitude growth through
(modulational instability) causing the waves to overturn at altitudes lower than predicted by linear
theory, or can enhance vertical dispersion (modulational stability) leading to breaking at relatively
higher altitudes [21,25,26]. Consequently, the change in the structure of the mean flow predicted by
our theory as it depends upon |m/k|, | f |/N and kσz/μ

�
0 suggests that this should be an important

consideration in predicting the ultimate level of breaking and momentum deposition. Ongoing work
is examining such weakly and fully nonlinear dynamics.
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