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The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic
internal wavepackets are examined analytically and by numerical simulations. The
weakly nonlinear dispersion relation for horizontally periodic, vertically compact
internal waves is derived and the results are applied to assess the stability of weakly
nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of
constant phase make with the vertical, the wavepackets are predicted to be unstable

if |Θ| < Θc, where Θc = cos−1 (2/3)
1/2 ' 35.3◦ is the angle corresponding to internal

waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of
finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets
with |Θ| > Θc decreases over time; the amplitude of wavepackets with |Θ| < Θc

increases initially, but then decreases as the wavepacket subdivides into a wave train,
following the well-known Fermi–Pasta–Ulam recurrence phenomenon.

If the initial wavepacket is of sufficiently large amplitude, it becomes unstable
in the sense that eventually it convectively overturns. Two new analytic conditions
for the stability of quasi-plane large-amplitude internal waves are proposed. These
are qualitatively and quantitatively different from the parametric instability of plane
periodic internal waves. The ‘breaking condition’ requires not only that the wave
is statically unstable but that the convective instability growth rate is greater than
the frequency of the waves. The critical amplitude for breaking to occur is found
to be ACV = cotΘ(1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical
displacement of the wave to its horizontal wavelength. A second instability condition
proposes that a statically stable wavepacket may evolve so that it becomes convectively
unstable due to resonant interactions between the waves and the wave-induced
mean flow. This hypothesis is based on the assumption that the resonant long
wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves
linearly in time, continues to amplify the waves in the fully nonlinear regime. Using

linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)
1/2

.
The results of numerical simulations of horizontally periodic, vertically compact
wavepackets show excellent agreement with this latter stability condition. However,
for wavepackets with horizontal extent comparable with the horizontal wavelength,
the wavepacket is found to be stable at larger amplitudes than predicted if Θ . 45◦. It
is proposed that these results may explain why internal waves generated by turbulence
in laboratory experiments are often observed to be excited within a narrow frequency
band corresponding to Θ less than approximately 45◦.
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1. Introduction
It is well known that the cumulative effect of drag due to breaking internal waves

has a significant impact on the strength and variability of the large-scale atmosphere
and ocean circulations. To improve existing general circulation models it is necessary
to improve our understanding of the processes that lead to internal wave breaking,
and to make better predictions of where such breaking occurs. Linear theory predicts
that waves may break when they approach an altitude where the speed of the mean
flow equals the horizontal phase speed of the waves (Bretherton 1966; Booker &
Bretherton 1967). Near this ‘critical level’ the phase lines of the waves tilt closer to the
horizontal until, in the absence of diffusive effects, the waves become unstable due to
convective overturning or shear instability. As pointed out recently by Broad (1995,
1999) and Shutts (1995, 1998), if the mean wind changes direction with height, the
waves need not be trapped below a critical level and, indeed, may not break at all.

Even if the mean wind is uni-directional with height, finite-amplitude effects can act
to adjust the height at which waves approaching a critical level ultimately break. This
was first demonstrated by Jones & Houghton (1971) who used a numerical model
to show that the mean flow, which is accelerated by the waves as they dissipate,
acts to Doppler shift the frequency of the waves thus allowing wave penetration to
greater heights. This phenomenon was examined in detail using a quasi-linear theory
to model interactions between waves and the adjusted mean flow (Grimshaw 1975a;
Fritts 1978, 1982; Dunkerton 1981).

In the absence of background shear there can be no critical levels. Nonetheless,
atmospheric internal waves may break when they become saturated: as a consequence
of the Eliassen–Palm theorem, which states that the vertical flux of momentum due
to monochromatic, undamped internal waves does not change with height (Eliassen
& Palm 1961), upward propagating internal waves increase in amplitude as the
background density decreases, and the waves eventually grow to such a size that
they break. Breeding (1972) and Jones & Houghton (1972) were the first to use
nonlinear numerical models to simulate the effect of saturation and wave breaking
in the absence of shear. They showed that, although linear theory correctly predicts
the height at which wave breaking first occurs, the resulting acceleration of the mean
flow rapidly leads to the spontaneous generation of a critical level which thereafter
modifies the breaking process. Numerical investigations have since been performed
to determine how the mean flow is affected by the breaking of internal waves in
a background shear flow when the waves are both saturated and incident upon a
critical level (Dunkerton 1982; Walterscheid 1984). In particular, in their study of
large-amplitude, transient wavepackets, Fritts & Dunkerton (1984) showed that the
frequency of the waves can shift due to interactions between waves and the wave-
induced mean flow, and that this acts to ‘dislocate’ the critical level above its initial
position. They referred to the frequency shift of the waves, which results from weakly
nonlinear wave–wave interactions, as wave ‘self-acceleration’.

Self-acceleration can significantly affect the evolution of internal waves whether or
not a critical level is present. In particular, it has been shown that self-acceleration
can act to enhance the transmission of large-amplitude transient wavepackets across
a reflecting level (Sutherland 1999, 2000).

The purpose of this paper is to examine the evolution and stability of large-
amplitude internal waves in the absence of saturation and critical levels. To this end,
the propagation of waves is studied in uniformly stratified Boussinesq fluid with no
shear. It is shown that if a quasi-plane internal wavepacket is of sufficiently large
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amplitude, but not so large that the waves are initially overturning, the wavepacket
may nonetheless break as it evolves due to the effects of self-acceleration.

Instability due to self-acceleration is different from parametric instability. It is now
well established that a plane periodic internal wave is unstable due to parametric
instabilities in which secondary waves of half the primary wave frequency grow in
amplitude through resonant interactions with the primary wave (Hasselmann 1967;
Mied 1976; Drazin 1977; Klostermeyer 1991; Lombard & Riley 1996). (For a review
of wave interaction theory in general, see Phillips 1981.) Instability of this kind has
been observed in laboratory experiments (Benielli & Sommeria 1996) and in numerical
simulations (Bouruet-Aubertot, Sommeria & Staquet 1995).

In particular, monochromatic internal waves are unstable even at infinitesimally
small amplitudes provided the timescale of the instability is smaller than the diffusive
timescale. Of course, one should not conclude from this that internal waves cannot
exist; wavebreaking occurs only after the unstable waves grow to sufficiently large
amplitude, a process that may last much longer than the propagation and diffusion
timescales.

In any realistic geophysical circumstance internal waves are not perfectly monochro-
matic, and therefore the waves disperse as they propagate. Finite-amplitude wavepack-
ets must be susceptible to the effects of nonlinear dispersion. The numerical simula-
tions presented here demonstrate that weakly nonlinear wave–mean flow interactions
dominate the dynamics governing the evolution of large-amplitude quasi-plane inter-
nal waves.

In weakly nonlinear theory, a quasi-plane wavepacket may be unstable due to
modulations of the large-amplitude waves. Whether or not instability occurs may
be assessed from the weakly nonlinear dispersion relation of the wave by using
Whitham’s equations (see Whitham 1974, § 15.1, and Debnath 1994, § 7.6). Whitham’s
result, as relevant to the discussion here, may be summarized as follows: if the weakly
nonlinear, one-dimensional dispersion relation of waves with amplitude A is given by

ω = ω0(k) + ω2(k)A
2, (1.1)

where k is the wavenumber, ω is the frequency and ω0(k) is the linear dispersion
relation, then the wavepacket is unstable if ω2ω

′′
0 < 0 (Whitham 1974). From this

it follows, for example, that deep water waves are unstable at all wavenumbers, as
indeed is well established by experiment and theory (Benjamin 1967; Benjamin &
Feir 1967; Whitham 1967; Lake et al. 1977).

In weakly nonlinear theory, if a wavepacket of fundamental wavenumber k0 is
unstable to finite-amplitude modulations, it will grow in amplitude to a maximum
limit. The energy is then transferred to waves of wavenumber near k0 which later
transfer this energy back to the fundamental wavenumber. These dynamics are a
manifestation of the ‘Fermi–Pasta–Ulam’ recurrence phenomena (Fermi, Pasta &
Ulam 1974). Modulational instability does not necessarily lead to wave breaking.

Wave instability due to self-acceleration differs qualitatively from parametric and
modulational instability in that it results from a resonant interaction between waves
and the wave-induced mean flow. The resonance occurs when the waves are of such
large amplitude that the wave-induced mean flow is at least as large as the horizontal
group velocity of the waves. Such instability is quantitatively different from parametric
and modulational instability in that the waves are predicted to be unstable only if
their amplitude, in general, exceeds a finite threshold. In contrast, there are no lower
bounds on the amplitude necessary for parametric and modulational instability to
occur.
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In § 2 the linear and weakly nonlinear theory of internal waves is reviewed and
the weakly nonlinear dispersion relation for horizontally periodic, vertically compact
internal waves is explicitly derived. The modulational stability criterion for such waves
is thus determined. Specifically it is shown that a wavepacket is unstable if the absolute
value of the ratio of its vertical to horizontal wavenumber is less than 1/

√
2 ' 0.71.

(Waves with the ratio equal to 1/
√

2 correspond to wavepackets propagating with
the fastest vertical group velocity.) For such non-hydrostatic waves, the lines of
constant phase tilt at an angle Θ . 35◦ to the vertical. The theory deriving the
critical amplitude for overturning waves is reviewed and a new condition is proposed
that predicts at what amplitude convective breaking will occur. By identifying the
wave-induced mean flow with the pseudomomentum of internal waves, for which an
explicit analytic formula is known, the critical amplitude at which waves are unstable
due to self-acceleration is determined.

These predictions are compared with the results of fully nonlinear numerical
simulations. The numerical model is described in detail in § 3. In § 4, the results of
representative simulations are presented to show how the structure of internal waves
changes as a function of their amplitude, initial tilt of their phase lines to the vertical
and their spatial extent. Simulations are performed of doubly periodic, horizontally
periodic/vertically compact, and horizontally and vertically compact wavepackets.
Parametric instability is observed for doubly periodic waves. However, spectral energy
transfer diagnostics demonstrate that interactions between the fundamental waves and
the wave-induced mean flow dominate over interactions between the fundamental
and its harmonics when the wavepacket is vertically compact. In agreement with the
modulational stability criterion derived in § 2, wavepackets are found to be unstable if
the magnitude of their vertical wavenumbers is sufficiently small, and the wavepackets
are stable to finite-amplitude modulations otherwise. In § 5 the results of a range of
simulations are presented in which the stability of the wavepackets to overturning and
breaking is evaluated. For simulations of horizontally periodic, vertically compact
wavepackets, the stability regimes agree well with the self-acceleration condition
derived in § 2. Horizontally and vertically compact wavepackets are generally found
to be stable at larger amplitudes than predicted by the self-acceleration condition if
the magnitude of their vertical wavenumber is moderately less than their horizontal
wavenumber. The application of these results to experiments on wave generation in
stratified turbulence is discussed in § 6.

2. Internal wave theory and stability criteria
Internal waves are examined in uniformly stratified Boussinesq fluid with no shear.

In the Boussinesq approximation, density variations are assumed to be negligible
except for their effects upon buoyancy. The approximation is applicable to internal
waves in the ocean and may be applied to atmospheric waves over vertical lengthscales
smaller than the density scale height of the atmosphere, on the order of 10 km (Spiegel
& Veronis 1960). Internal waves that propagate upward over larger vertical distances
(i.e. waves that are non-Boussinesq) grow significantly in amplitude. A complete study
of wave breaking in the atmosphere must include such anelastic effects. Likewise, the
interaction of internal waves with critical levels is an important factor governing
whether and where wave breaking occurs. In this paper these processes are neglected
in order to demonstrate clearly that the wave breaking occurs in the absence of
saturation and critical levels.
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2.1. Basic equations

It is convenient to represent the degree of stratification in terms of the squared
buoyancy frequency N2

0 , which in the Boussinesq approximation is proportional to
the vertical gradient of the background density. Explicitly,

N2
0 = −(g/ρ0) dρ̄/dz, (2.1)

in which ρ̄(z) is the background profile of density, ρ0 is a reference value of density
and g is the gravitational acceleration. The background density decreases linearly with
height if N0 is constant. For atmospheric motion, N2

0 is proportional to the vertical
gradient of the background potential temperature but, for convenience, the definition
given by (2.1) will be used throughout.

In uniformly stratified inviscid fluid which is two-dimensional, the fully nonlinear
equations of motion for the fields of vorticity ζ and vertical displacement ξ are

Dζ

Dt
= N2

0

∂ξ

∂x
+Dζ (2.2)

and
Dξ

Dt
= w +Dξ. (2.3)

With N0 constant, ξ is related to the fluctuation density field, ρ, by the relation

ρ = −ρ̄′(z)ξ =

(
ρ0

g
N2

0

)
ξ. (2.4)

D/Dt = ∂/∂t + u∂/∂x + w∂/∂z is the material derivative, and u and w are the
horizontal and vertical components, respectively, of the velocity field. The diffusion
operators Dζ and Dξ are neglected in the theory below, but are necessarily employed
in the numerical model, as discussed in the next section.

This study is concerned primarily with the dynamics of non-hydrostatic waves,
that is, waves with intrinsic frequencies close to the buoyancy frequency. Because the
Coriolis frequency f is typically two orders of magnitude smaller than the buoyancy
frequency of the atmosphere, Coriolis forces are neglected.

A Boussinesq fluid is incompressible and therefore the velocity fields may be
expressed in terms of the streamfunction ψ:

u = −∂ψ
∂z

(2.5)

and

w =
∂ψ

∂x
. (2.6)

Thus, in terms of ψ, the basic state fields are given by

ζ = −∇2ψ. (2.7)

and
Dξ

Dt
=
∂ψ

∂x
. (2.8)

The initial conditions for (2.2) and (2.3) are given in terms of the streamfunction:

ψ(x, z) = Ψ (x, z) exp [i(kxx+ kzz)] + c.c., (2.9)

in which Ψ (x, z) prescribes the form of the wavepacket envelope and c.c. denotes
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the complex conjugate. The horizontal wavenumber kx is set to be positive and
the vertical wavenumber kz is set to be negative, so that in time the wavepacket
propagates upward and to the right.

The wavepackets considered here are either doubly periodic (monochromatic, plane
waves) with

Ψ = A0, (2.10)

horizontally periodic and vertically compact with

Ψ ≡ ΨPW(z) = A0 exp (−|z|/σz), (2.11)

or horizontally and vertically compact with

Ψ ≡ Ψ (x, z) = A0 exp (−|z|/σz) exp (−x2/2σ2
x). (2.12)

Note, the meaning of ‘compact’ is not used here in the strict mathematical sense, but
is meant to indicate that the amplitude of the waves is vanishingly small except within
a region of finite extent. For propagating waves, the initial vertical displacement field
is defined in terms of the streamfunction by ξ = −(kx/Ω)ψ, in which Ω is the wave
frequency.

In each case, Aψ ≡ 2A0 is the streamfunction amplitude and σx and σz are the
horizontal and vertical extents of the wavepacket, respectively. Note that (2.10) is
equivalent to setting σx and σz to be infinitely large, and (2.12) is equal to (2.11) in
the limit as σx becomes infinitely large. Typically the envelope is set to be sufficiently
large that it is a quasi-plane wavepacket. That is, σx � 1/|kx| and σz � 1/|kz|.

Vertically compact wavepackets are set to decay exponentially with height for
historical reasons: as an internal wavepacket develops from a transient forcing mech-
anism, such as variable flow over topography, convection, or shear instability, the
leading and trailing edges are predicted to decay exponentially with distance from
the centre of the wavepacket (see, for example, McIntyre & Weissman 1978; Suther-
land, Caulfield & Peltier 1994). The horizontal envelope of a horizontally compact
wavepacket is set to be the typical shape of a Gaussian. The qualitative results of
these simulations are not expected to depend sensitively upon the detailed structure
of the wavepacket envelopes.

The boundary conditions on (2.2) and (2.3) are set to be periodic in the directions
where the waves are periodic and the domain is infinite in extent in the direction
where the waves are compact.

The choice of length and timescales is arbitrary. Typically quantities are given here
in non-dimensional form based on the horizontal wavelength, λx = 2π/kx, representing
the characteristic lengthscale and the buoyancy period, T = 2π/N0, representing the
characteristic timescale.

The initial state for doubly periodic, horizontally periodic/vertically compact, and
horizontally and vertically compact wavepackets is shown in figures 1(a), 1(b) and
1(c), respectively. In (b) and (c), the vertical extent of the wavepacket is given by
σz = 10/kx and in (c) the horizontal extent of the horizontally compact wavepacket
is given by σx = 10/kx. The streamfunction amplitude of each wavepacket is given
by Aψ = 0.1N0/k

2
x which corresponds to a maximum vertical displacement of Aξ =

0.017λx. The contours illustrated by the grey-scale in each figure show the normalized
vertical displacement field ξ(x, z)/λx. Other aspects of this figure are described later.

2.2. Linear dispersion relation

For small-amplitude waves, the advection terms in the material derivatives in (2.2)
and (2.3) are neglected. For plane periodic waves, substitution of (2.10) into the
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Figure 1. Typical initial state of (a) doubly periodic, (b) horizontally periodic/vertically com-
pact, and (c) horizontally and vertically compact wavepackets. In each case the amplitude
A = Aξ/λx = 0.017 and kz = −0.4kx. In (a), (c) and the left-hand panel of (b) the grey scale
shows the normalized vertical displacement field ξ(x, z)/λx. The x- and z-axes in these plots are
scaled by λx. The right-hand panel in (b) shows the pseudomomentum profile normalized by the
predicted horizontal group velocity. In (c), contours of the normalized and locally averaged pseudo-
momentum field are shown superimposed on the contours of ξ/λx. Contours are shown by intervals
of 0.02. In (a), the pseudomomentum profile (not shown) is constant.

resulting equation and neglecting diffusion yields an eigenvalue problem from which
the dispersion relation is found:

Ω = N0kx/|k| = N0 cosΘ, (2.13)

in which Ω is the (intrinsic) frequency of the waves, |k|2 = k2
x + k2

z and Θ =
cos−1(Ω/N0) = tan−1(|kz/kx|) is the angle at which lines of constant phase tilt from
the vertical (for example, see Gill 1982, § 6.5). The corresponding eigenfunctions
yield the ‘polarization relations’ from which, for example, the amplitude of the
vertical displacement field, Aξ , may be determined in terms of the streamfunction
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amplitude Aψ:

Aξ ' Aψ/cpx, (2.14)

in which the horizontal phase speed cpx ≡ Ω/kx = N0 cosΘ/kx. It is convenient to
define the non-dimensional amplitude A as the ratio of the maximum vertical dis-
placement to the horizontal wavelength. Explicitly

A =
Aξ

λx
=

1

2π

Aψkx

N0

|k|. (2.15)

These relationships also hold for quasi-plane wavepackets such as those given
by (2.11) and (2.12) with |kxσx| � 1 and |kzσz| � 1. The velocity at which such
wavepackets translate as a whole is given by the group velocity (for example, see Gill
1982, § 6.6):

(cgx, cgz) = N0

kz

|k|3 (kz,−kx).
In particular, in terms of N0 and kx the magnitude of each component of the group
velocity is given by

(|cgx|, |cgz|) =
N0

kx
cosΘ sinΘ(sinΘ, cosΘ). (2.16)

A quantity examined in detail here is the wave-induced mean flow. For small-
amplitude, horizontally periodic waves, the wave-induced mean flow is negligibly
different from the second-order-accurate expression for the wave pseudomomentum

M(z) = −〈ζξ〉, (2.17)

in which the angle brackets denote the horizontal average over the domain (Shep-
herd 1990; Scinocca & Shepherd 1992). Thus the wave-induced mean flow may be
diagnosed from the basic-state vorticity and vertical displacement fields. Even for
moderately large-amplitude waves, Sutherland (1996) has shown that this estimate
is a good approximation to the actual wave-induced mean flow. In part, this is be-
cause the non-dimensional amplitude A of stable waves is typically less than 0.1, and
therefore higher-order corrections to (2.17) are negligibly small.

From the polarization relations, the magnitude of the wave-induced mean flow,
AM , may be estimated from the characteristics of the initial wavepacket. Explicitly,

AM = 1
2
A2
ψ

|k|3
N0

.

Using (2.13) and (2.15) gives

AM = 2π2A2N0

kx
secΘ. (2.18)

For horizontally compact waves, it is convenient to define the field

M(x, z) = −〈ζξ〉λx , (2.19)

which is determined at each point (x, z) by horizontally averaging the product ζξ
over one horizontal wavelength centred about x. Note that for horizontally periodic
waves, M(x, z) is independent of x.

The right-hand panel of figure 1(b) shows the profile of the normalized wave-
induced mean flow M(z) corresponding to the wave shown in the left-hand panel with
kz = −0.4kx. The predicted horizontal group velocity cgx is used as a normalization
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factor. Superimposed on the vertical displacement field in figure 1(c) are contours of
the normalized M(x, z) field shown by intervals of 0.02.

2.3. Weakly nonlinear dispersion and modulational stability

The dispersion relation of moderately large-amplitude wavepackets must be modified
to account for the effects of weakly nonlinear dispersion. Take, for example, the
case of a one-dimensional wavepacket, in which the linear dispersion relation is
ω0 = ω0(k). (Here the orientation of the wavenumber k is arbitrary.) Typically the
weakly nonlinear dispersion relation may be written in the form

ω = ω0 + A2ω2 + O(A4) (2.20)

where ω2 = ω2(k) is the second-order finite-amplitude correction to the dispersion
relation. Following Whitham’s stability theory (Whitham 1965, 1974), the wavepacket
is found to be stable or unstable depending on whether the quantity ω2ω

′′
0 is positive

or negative, respectively. (The primes denote derivatives with respect to k.) In the
former case, modulation of the wavepacket obeys a hyperbolic system of equations;
the initial wavepacket splits into two separate disturbances propagating with group
velocities cg+ and cg− given by

cg± = ω′0(k)± A
[
ω2ω

′′
0

]1/2
+ O(A2). (2.21)

In the latter case, the modulation of the wavepacket obeys an elliptic system of
equations, hence the wavepacket envelope grows in time.

In Appendix A the weakly nonlinear dispersion relation for horizontally periodic,
vertically compact (and unbounded) internal waves is derived. In this derivation
ω0 ≡ Ω in (2.13) with k ≡ kz and kx fixed. From (A 19), it is found that

ω2 = ω02π
2/ cos2 Θ, (2.22)

which is always positive. Thus modulational instability is predicted to occur if the
vertical group velocity decreases with increasing vertical wavenumber. In terms of Θ,
the wavepacket is therefore unstable if

|Θ| < tan−1(1/
√

2) ' 35◦. (2.23)

The numerical simulations presented in § 4 are in excellent agreement with this
prediction.

The modulational stability of a vertically confined large-amplitude internal wave-
packet that is horizontally modulated has been considered by Grimshaw (1975b,
1977). He found that the second-order correction to the weakly nonlinear dispersion
relation is given by

ω2 = −12
kx

cpx

σ6

1− 4σ6
, (2.24)

where σ = cgx/cpx is the ratio of the horizontal group to phase speed. Thus such
wavepackets are unstable to horizontal modulations if

ω2

∂2ω0

∂kx
2

= 36
cos2 Θ sin8 Θ

1− 4 sin6 Θ
< 0.

In terms of Θ, instability occurs if

|Θ| > sin−1(2−1/3) ' 53◦. (2.25)

The modulational instability of the wavepacket does not guarantee wave breaking.
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Figure 2. Normalized vertical displacement field of an overturning doubly periodic wave.
Isopycnal surfaces are superimposed. The wave is shown with kz = −kx and amplitude A ' 0.23.

On the contrary, a large body of theoretical and numerical work has demonstrated that
moderately large-amplitude wavepackets initially grow in amplitude but then decrease
in amplitude as waves grow in the sideband frequencies. Subsequently, energy is taken
up back into the fundmental waves and the process repeats, following the modulation–
demodulation cycle known as the Fermi–Pasta–Ulam recurrence phenomenon (Fermi
et al. 1974; Zabusky & Kruskal 1965; Benjamin & Feir 1967).

2.4. Wave-breaking criteria

An internal wavepacket is statically unstable if dense fluid is lifted by the waves to
such a degree that it overlies less dense fluid somewhere in the wavefield (e.g. Gill 1982,
§ 8.10). This is illustrated in figure 2, which shows isopycnal surfaces superimposed on
the vertical displacement field of a doubly periodic internal wave. The wave is of such
large amplitude in this example that the fluid is statically unstable along a diagonal
band situated below the contour of maximum vertical displacement and above the
contour of minimum vertical displacement.

An explicit formula for the critical amplitude at which a periodic wave train is
unstable is found by requiring that the sum of the vertical gradients of the background
density and fluctuation density field is positive: ∂(ρ̄(z) + ρ(x, z))/∂z > 0. Defining

∆N2 ≡ ∆N2(x, z) = − g

ρ0

∂ρ

∂z
, (2.26)

the condition that the wavefield is statically unstable is

∆N2(x, z) < −N2
0 (2.27)

for some (x, z).
Using (2.4), (2.15), and (2.13), the amplitude of the ∆N2 field is

A∆N2 = 2πAN2
0 tanΘ, (2.28)
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and the critical (non-dimensional) amplitude at which plane internal waves are
statically unstable is therefore

AOT =
1

2π
cotΘ. (2.29)

Hereafter, a wavepacket with initial amplitude A > AOT is said to satisfy the ‘over-
turning condition’. Note that AOT becomes infinitely large as Θ → 0.

A plane wave that is statically unstable is susceptible to the development of
convective instabilities. However, the overturning condition alone does not guarantee
that the wavepacket will convectively mix. If the period of the wave motion is much
shorter than the timescale for the growth of convective instability, then statically
unstable regions are transient and convective instability does not have time to develop
significantly before the periodic wave motion acts to restore stability to the region.
For example, the unstable region in figure 2 will be stable after half a wave period
provided convective mixing has not had time to develop. If, however, the timescale
for convection is much shorter than the period of the wave evolution, convective
wave breaking is expected. The overturning condition is a necessary but not sufficient
condition for the latter process to occur.

The timescale of convective instability is estimated using Rayleigh–Taylor theory
(Rayleigh 1883; Taylor 1950; Drazin & Reid 1981, § 44.2). For a linearly stratified
Boussinesq fluid bounded above and below over a depth H , the fastest growing normal
mode disturbance of horizontal wavenumber α develops on an e-folding timescale
1/σ where

σ = (−N2)
1/2
[
1 +

( π

Hα

)2
]−1

. (2.30)

The growth rate is real-valued if the fluid is statically unstable, that is, if N2 < 0.
The fastest growing disturbances are the infinitesimally small ones (i.e. α→∞, or

equivalently H → ∞) in which case σ ' (−N2)
1/2

. Note that the maximum growth
rate is independent of the depth of the overturning region. The local value of
the squared buoyancy frequency in an internal wave field is N2

0 + ∆N2. We define
N2 = N2

0 + ∆N2, and note from (2.27) that N2 < 0 if the waves are overturning. Then,
using (2.26) and (2.4), the maximum growth rate is given in terms of the amplitude
of the vertical displacement field by

σmax = N0(|kz|Aξ − 1)
1/2

(2.31)

The condition that convective instability has time to grow substantially before one
wave period is given by σmax > Ω. Using (2.31), (2.15) and (2.13), the critical amplitude
for convective instability to develop is

ACV =
1

2π
cotΘ(1 + cos2 Θ). (2.32)

Hereafter, a wavepacket with amplitude A > ACV is said to satisfy the ‘breaking
condition’. Note that ACV ' 2AOT →∞ in the limit Θ → 0.

A third condition governing the stability of waves to overturning and breaking is
based on a proposal by McIntyre (1973) and the analytic calculations by Grimshaw
(1975a, b) for vertically bounded internal wave modes in a channel. The latter explicitly
showed that the theory used to derive the weakly nonlinear dispersion relation (2.24)
breaks down when there is a resonant interaction between the waves of vertical mode
number m and horizontal wavenumber k with a long wave of mode number 2m. The
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interaction is unusual in that it involves a matching between the group velocity of
the wavepacket and the phase speed of the long wave mode. Indeed, Grimshaw has
shown that when the resonant interaction occurs the amplitude of the interaction is
comparable with that of the wave itself, and the waves grow linearly in time if the
horizontal extent of the wavepacket is sufficiently large.

These results may be extended to internal waves that are vertically unbounded,
which corresponds to the limit of large vertical mode number m. In this limit, the
long wave mode is just the wave-induced mean flow, and the resonant interaction
describes the process of wave self-acceleration. Thus, provided the horizontal extent of
a wavepacket is sufficiently large compared with the horizontal wavelength, instability
due to self-acceleration will occur.

Whether owing to this resonant interaction waves will grow to such amplitude that
they break cannot be assessed by a weakly nonlinear theory.

Nor does it seem that nonlinear stability theories can be applied. The nonlinear
stability of some fluid flows may be assessed by way of Arnol’d’s theorems (Arnol’d
1969) applied to the conservation laws determined from Hamiltonian fluid dynamics.
This approach has been used successfully to provide sufficient conditions for stability
of uniform, incompressible, inviscid flow (for example, see Shepherd 1990). The
stability of stratified flows has been more difficult to assess in this way. In considering
the limit from a multi-layer to continuously stratified model, Ripa (1991) has shown
that the corresponding stability criterion describes only the stability of normal modes
and not the subsequent nonlinear evolution. Ripa has concluded that the stability of
continuously stratified flows probably cannot be assessed by conservation laws.

The approach here is to derive an explicit formula that predicts at what amplitude
self-acceleration effects are non-negligible, and then to examine the fully nonlinear
evolution of the waves. In § 5, the simulations indeed show that an initially stati-
cally stable wavepacket that is, nonetheless, of sufficiently large amplitude evolves
nonlinearly: the waves interact with the wave-induced mean flow until they become
statically unstable and break.

The critical amplitude at which waves interact resonantly with the mean flow is
given by matching the predicted maximum value of the wave-induced mean flow, given
by (2.18), with the horizontal group velocity of the waves, given by (2.16). Solving
AM = cgx, and using (2.15) to write the condition in terms of the non-dimensional
amplitude A, the critical amplitude is

ASA =
1

2π
√

2
sin 2Θ. (2.33)

Hereafter, the waves are said to satisfy the ‘self-acceleration condition’ if A > ASA. The
maximum value of the right-hand side of this inequality occurs for waves propagating
at an angle Θ = 45◦ to the vertical (that is, if kx = kz), in which case marginal stability
occurs when Aξ = (1/2π

√
2)λx ' 0.11λx. Thus interactions between the waves and

the wave-induced mean flow are expected to be relevant even if the amplitude of the
initial wavepacket is an order of magnitude smaller than the horizontal wavelength.
This fact provides a posteriori support for the assumption that linear theory can
provide a useful estimate of the stability boundary, even though the instability itself
ultimately occurs due to weakly nonlinear effects.

Figure 3 schematically illustrates the above-described domains of stability and
instability. Based on the above arguments, only those waves with values of Θ and
amplitudes, A, indicated by the hatched region are stable. The stability boundary is



Finite-amplitude internal wavepacket dispersion and breaking 355

B
reaking

O
verturning

A

Self -
accelerating

1
π√8

Stable

Θ 90°

Figure 3. Schematic showing domains of stability and instability of internal waves as a function of
Θ, the tilt of the phase lines with respect to the vertical, and the initial wavepacket amplitude A,
the ratio of the maximum vertical displacement to the horizontal wavelength.

set by (2.33) for Θ . 65.5◦. Some of the calculated properties and critical amplitudes
for internal wavepackets examined in detail here are listed in table 1.

Note that the marginal stability curve for the breaking condition lies well above
the marginal stability curve for self-acceleration for non-hydrostatic waves (with
Θ . 45◦). Thus if one considers a circumstance where a stable non-hydrostatic
wavepacket propagating in the atmosphere gradually increases in amplitude (for
example due to non-Boussinesq effects), then one should expect the wavepacket to
become unstable due to self-acceleration before it is of sufficiently large amplitude to
be unstable due to convective breaking.

As Appendix B demonstrates, instability due to self-acceleration does not occur for
deep water waves because they reach breaking amplitudes before the wave-induced
mean flow is comparable to the phase speed of the waves.

In the preceding discussion, dynamic instability has been ignored because the onset
of dynamic and convective instability occurs for waves of approximately the same
amplitude if their frequency is large and background rotation effects are negligible
(Dunkerton 1989): the overturning condition and the dynamical instability condition
are identical. For waves near inertial frequencies (with Θ ' 90◦), strong shear may
drive the waves to become dynamically unstable through Kelvin–Helmholtz instability
(Fritts & Rastogi 1985). Examination of these hydrostatic dynamics is beyond the
scope of this work.

3. Model description
The propagation of internal waves is examined using a fully nonlinear numerical

model that simulates fluid motion in two dimensions in a doubly periodic domain
and in a periodic channel flow. The model has been employed recently to examine the
propagation and reflection of internal waves in non-uniformly stratified, stationary
flows (Sutherland 1996) and in uniformly stratified, shear flows (Sutherland 1999,
2000).
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Wavepacket characteristics Linear theory

|kz |/kx Θ (deg.) (cgx, cgz)
kx

N0

AOT ACV ASA

0.4 21.8 (0.128, 0.320) 0.40 0.74 0.078
2.5 68.2 (0.320, 0.128) 0.064 0.073 0.078

Wavepacket characteristics Static stability Wave-induced mean flow

|kz |/kx Θ (deg.) A −A∆N2

N2
0

min{∆N2}
N2

0

AM
kx

N0

Mmax

kx

N0

0.4 21.8 0.0034 −0.009 −0.01 0.0003 0.00016
0.4 21.8 0.069 −0.17 −0.45 0.10 0.21
0.4 21.8 0.086 −0.21 −1.09 0.16 1.3
2.5 68.2 0.0086 −0.14 −0.13 0.004 0.0028
2.5 68.2 0.069 −1.08 −1.9 0.25 0.43
2.5 68.2 0.086 −1.35 −5.5 0.39 1.1

Table 1. Characteristics of internal wavepackets in simulations of horizontally periodic waves with
wavenumber (kx, kz) and amplitude A. Θ is given implicitly by (2.13); cg is the group velocity; the
overturning, breaking and self-acceleration conditions are represented by critical amplitudes given
by (2.29), (2.32) and (2.35), respectively; A∆N2 is given by (2.28) and AM is given by (2.18); the
minimum value of the ∆N2 field up to time t ' 16T and the wave-induced mean flow Mmax at time
t ' 16T are determined from simulations.

.

The numerical model solves the discretized form of the equations (2.2) and (2.3).
The basic-state fields are represented by the discrete Fourier coefficients of their
horizontal structure and are sampled at equally spaced intervals in the vertical.
Vertical derivatives are taken using a second-order finite difference scheme. The code
is advanced in time using a second-order ‘leap-frog’ with an Euler backstep taken at
regular intervals (Smyth & Peltier 1993; Sutherland & Peltier 1994).

Although it is desirable here to neglect diffusion effects, it is nonetheless necessary
to include the diffusion-like terms Dζ and Dξ in order to eliminate the growth of
small-scale numerical noise. Typically, Dζ = Dζ and Dξ = Dξ, where D is taken to
be the product of an effective diffusion constant, 1/Re, times a Laplacian diffusion
operator acting only on horizontal scales smaller than the horizontal wavelength
of the initial wavepacket. The effective Prandtl number is thus equal to 1. Here
the Reynolds number Re = 1000 is used, based on the lengthscale λx/2π and the
timescale T/2π, where λx is the horizontal wavelength of the initial waves and T is
the background buoyancy period, T = 2π/N0.

This diffusion scheme has been employed to damp small-scale noise while allowing
the initial wavepacket to evolve as if it were propagating in effectively inviscid
fluid. However, in simulations in which waves convectively break, Re is nonetheless
sufficiently small that the code remains numerically stable if run at high resolution.
For comparison, simulations have also been performed with D ≡ (1/Re)∇2 acting
on all wavelengths. In terms of Θ and N0, the timescale of diffusion acting on the
initial wavepacket is predicted to be Re cos2 Θ/(2πN0) (Sutherland 2000). Indeed,
with Re = 10 000, the amplitude and structure of non-hydrostatic wavepackets are
found to be negligibly different over the duration of the simulation from those in
simulations where the diffusion operator acts only on small scales.
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The simulations are run between times t = 0 and t = 100/N0 ' 16T , approximately
16 buoyancy periods. Time steps are taken at intervals of 0.0016T with an Euler
backstep taken every 20 steps.

In simulations of doubly periodic waves, the boundary conditions are set to be
both horizontally and vertically periodic, and the domain size is set to accommodate
exactly one vertical and one horizontal wavelength of the initial wavepacket. The
simulations have been run with resolutions of 32 by 32 and 64 by 64 points spanning
the domain. (Thus, in the horizontal the discrete Fourier coefficients are cut off at
wavenumbers above 32kx.)

In simulations of vertically compact wavepackets, the upper and lower boundaries
are rigid with free-slip conditions. However, the vertical extent of the model domain
is set to be sufficiently large that the waves are of negligibly small amplitude at the
upper and lower boundaries over the duration of each simulation. Whether or not
vertically bounded or vertically periodic boundary conditions are used is found to
be irrelevant in these cases. Typically, the vertical extent of the domain ranges from
−40/kx to 80/kx (' −6.4λx to 12.7λx) with the wavepacket centred initially at the
origin. In simulations of horizontally periodic wavepackets, the horizontal extent of
the domain is λx. Simulations have been run at resolutions ensuring that at least ten
points span a single wavelength of the initial wavepacket. In most results reported
here, the horizontal by vertical resolution is 64 by 1024 grid points.

In simulations of horizontally compact waves the horizontal extent of the domain
is set to be much larger than the extent, σx, of the wavepacket itself. Typically
−16λx 6 x 6 16λx for simulations with σx = 10/kx. In simulations for which the
horizontal extent of the domain is doubled, the evolution of the wavepacket is found
to change negligibly. In order to perform a large number of these simulations, typically
they are run at a horizontal by vertical resolution of 256 by 512. Resolution doubling
tests have been performed for specific cases. No significant quantitative differences
between the coarse and fine resolution simulations are found for the results reported
herein.

4. Wave dispersion
In this section, the dispersion and weakly nonlinear stability of wavepackets is

examined as a function of their amplitude and extent. The behaviour of small-
amplitude waves in simulations is shown to be consistent with the predictions of
linear theory. For waves of moderately large amplitude, however, nonlinear effects
significantly alter the characteristics of the wavepacket. For very large-amplitude
waves, breaking occurs due to wave self-acceleration. A detailed study of the last case
is deferred to the next section.

4.1. Horizontally periodic waves

4.1.1. Waves with vertical wavenumber kz = −0.4kx

A range of simulations have been performed to examine the evolution of hori-
zontally periodic, vertically compact internal waves as a function of their amplitude
and wavenumber vector. Figure 4 shows the vertical displacement field and its asso-
ciated power spectrum at time t ' 16T for a small- and large-amplitude wavepacket
with kz = −0.4kx. Figures 4(a) and 4(b) shows the results for a small-amplitude
wavepacket with (non-dimensional) amplitude A ' 0.0034. The left-hand panel of
figure 4(b) shows the normalized vertical displacement field, ξ(x, z)/λx, using the grey-
scale indicated by the box in the top right corner. The scale ranges from −0.003 to
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Figure 4. Comparison of (a, b) small- and (c, d) large-amplitude wavepacket structures with vertical
wavenumber kz = −0.4kx at time t ' 16T . (a) Power spectrum at t ' 16T (solid line) compared with
the power spectrum of the initial wavepacket (dashed line). Both are normalized by the peak power
predicted by linear theory. (b) Left-hand panel shows the vertical displacement field normalized
by the horizontal wavelength, and the right-hand panel shows the profile of M(z), effectively a
measure of the wave-induced mean flow, normalized by the predicted horizontal group velocity of
the wavepacket, cgx. Panels (c) and (d) correspond to (a) and (b), respectively, but for a wavepacket
with amplitude initially 20 times larger.

0.003. The right-hand panel shows the corresponding vertical profile of the normalized
wave-induced mean flow: M(z)/cgx. The predicted peak value of M(z) of the initial
wavepacket is AM ' 2.5×10−4N0/kx. At time t ' 16T , its peak value is approximately
1.6× 10−4N0/kx. These values are much smaller than the predicted horizontal group
velocity of the wavepacket, cgx ' 0.128N0/kx. Thus the effects of self-acceleration are
not expected to be relevant in this case.

The nonlinear dispersion of the wavepacket is assessed by examining contours of
the power spectra at time t ' 16T . Here the spectra are determined from the square
of the discrete Fourier transform of the vertical displacement field which is normalized
by the predicted peak value

Pmax = 4π2

(
A

1

kx

σz

Lz

)2

, (4.1)
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Figure 5. Horizontally averaged energy profile of (a) small-amplitude and (b) moderately
large-amplitude internal wavepacket with kz = −0.4kx. The wavepacket is nonlinearly unstable
to modulations of the vertical structure.

in which Lz is the vertical extent of the domain. Figure 4(a) shows the normalized
power spectra as a function of the vertical wavenumber m. The spectrum at t ' 16T
is determined from the vertical displacement field and is compared with the initial
spectrum (dashed curve). Throughout the wavepacket evolution, the spectrum of the
waves remains peaked at m = −0.4kx, close to the initial vertical wavenumber. The
discrepancy between the initial and final structure of the power spectrum occurs
primarily because the vertical extent of the initial wavepacket is comparable to the
vertical wavelength.

These diagnostics confirm that the small-amplitude wavepacket undergoes negligible
dispersion and that the dynamics governing the wavepacket evolution are numerically
well resolved.

The small-amplitude simulation results are compared with those of a large-
amplitude wavepacket with the same wavenumber as that discussed above, but
with A ' 0.069. Figure 4(c) shows that the spectrum of the large-amplitude waves
is spread out over a broader range of m. Thus the waves are of sufficiently large
amplitude that weakly nonlinear dispersive effects are non-negligible. The structure
of the wavepacket at time t ' 16T is shown in figure 4(d). It is immediately appar-
ent that the wavepacket has not propagated as far vertically as its small-amplitude
counterpart. The vertical extent of the wavepacket is smaller and the lines of constant
phase tilt more closely to the vertical near the centre.

The right-hand panel of figure 4(d) shows a plot of the wave-induced mean flow
M(z) normalized by the horizontal group velocity at time t ' 16T . Because the peak
value of the wave-induced mean flow is approximately 50% larger than the horizontal
group velocity, the effects of self-acceleration are non-negligible in this case. The peak
value, Mmax of M(z) is compared with the initial value predicted by linear theory in
table 1.

The effect of weakly nonlinear dispersion upon the envelope of the wavepacket is
demonstrated in figure 5, which shows vertical time series of the horizontally averaged
energy corresponding to the waves. In both diagrams the energy is normalized by
the maximum energy predicted by linear theory: 2|k|2A0

2. Figure 5(a) shows that the
small-amplitude wavepacket propagates vertically upward at approximately constant
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Figure 6. As in figure 4 but for small- and large-amplitude wavepackets with vertical wavenumber
kz = −2.5kx.

speed equal to the vertical group velocity (indicated by the superimposed diagonal
dashed line). Figure 5(b) shows that the large-amplitude wavepacket initially increases
in amplitude. This behaviour is consistent with weakly nonlinear theory, as expressed
by (2.23), which predicts that the waves should be unstable due to finite-amplitude
modulations. The wavepacket amplitude does not grow indefinitely but, consistent
with the Fermi–Pasta–Ulam recurrence phenomenon (Fermi et al. 1974), the envelope
first peaks in amplitude at time t ' 9.5T , weakens, then peaks again at time t ' 14T .

The wavepacket as a whole propagates vertically at a substantially slower speed
than the group velocity predicted by linear theory.

4.1.2. Waves with vertical wavenumber kz = −2.5kx

Weakly nonlinear effects are significantly different for wavepackets with small
vertical wavelength compared with the horizontal wavelength, as anticipated from
(2.23). As in figure 4, figure 6 shows the structure at time t ' 16T of a small-amplitude
wavepacket (with A = 0.0086) and a large-amplitude wavepacket (with A = 0.069) in
which the vertical wavenumber is kz = −2.5kx.

Figure 6(a) shows that there is negligible difference between the initial and final
power spectrum of the waves. Both are sharply peaked about m = −2.5kx, with
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Figure 7. Horizontally averaged energy profile of (a) small-amplitude and (b) moderately
large-amplitude internal wavepacket with kz = −2.5kx. The wavepacket is stable to weakly nonlinear
modulations of the vertical structure.

maximum (normalized) value close to unity, as expected from linear theory. The
wavepacket at time t ' 16T , shown in figure 6(b), has undergone only weak dispersion
with a well-defined peak amplitude. The peak value of M(z), shown in the right-hand
panel of figure 6(b), is less than 1% of the horizontal group velocity predicted by
linear theory (cgx ' 0.32N0/kx) so the effects of self-acceleration are negligible.

In the large-amplitude case, however, the spectrum is broadly distributed over a
wide range of vertical wavenumbers with multiple, but relatively small peaks (figure
6c). From the left-hand panel of figure 6(d), it is apparent that the waves tilt more
closely to the vertical near the leading edge of the wavepacket. This effect was
also observed by Fritts & Dunkerton (1984) in their study of saturation and self-
acceleration. In their simulations, the waves were forced at a relatively low frequency
so that Θ ' 77◦.

The structure of the plot of M(z), shown in the right-hand panel, is qualitatively
very different from its counterpart in figure 4 where kz = −0.4kx. Rather than being
strongly peaked over a small vertical distance, here M(z) is approximately uniform
over a wide vertical range, but exhibits large-valued spikes near the trailing edge
of the wavepacket. The peak value of M(z) is comparable to the horizontal group
velocity predicted from linear theory.

The effect of finite-amplitude modulations on the wavepacket are demonstrated in
figure 7. As in figure 5 this shows the vertical time series of the horizontally averaged
energy field. The field is normalized by the maximum value predicted by linear theory.
For small-amplitude waves, the wavepacket moves vertically upward at the same speed
as the predicted vertical group velocity. For large-amplitude waves, the envelope of
the wavepacket spreads out and the amplitude decreases in time. These results are
consistent with (2.23) which predicts that this wavepacket is stable to finite-amplitude
modulations. Weakly nonlinear theory predicts that the wavepacket should subdivide
into two groups that propagate vertically at speeds respectively greater than and less
than cgz , the vertical group velocity of linear theory. Consistent with this theory, the
average vertical speed of the wavepacket is observed to be close to cgz .

The results in this section serve to demonstrate qualitatively that finite-amplitude
effects are important when the amplitude of the waves is sufficiently large that the
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wave-induced mean flow is comparable with the horizontal group velocity of the
waves. Furthermore, they emphasize that finite-amplitude effects are significant even
when the amplitude itself is seemingly small: in the simulation discussed above with
A = 0.069 and kz = −0.4kx, the amplitude of the initial wavepacket is well below the
amplitude, AOT ' 0.40, of overturning of the waves, but only moderately below the
critical amplitude for self-acceleration ASA (see table 1).

4.2. Horizontally compact waves

The dispersion of large-amplitude wavepackets that are horizontally as well as ver-
tically compact is significantly different from that of horizontally periodic internal
waves. This is anticipated for two reasons. First, weakly nonlinear theory predicts
that finite-amplitude wavepackets are unstable to horizontal modulations if Θ is
sufficiently large, as given explicitly by (2.25) for internal waves confined vertically
in a channel (Grimshaw 1977). In contrast, horizontally periodic, vertically compact
wavepackets are predicted to be stable for such large values of Θ (e.g. see (2.23)).

Second, it follows from symmetry that horizontally periodic waves satisfy the
conservation of pseudomomentum. This conservation law does not hold for waves
that are spatially inhomogeneous in the horizontal (Shepherd 1990). This symmetry
argument is identical to noting that a horizontally compact wavepacket cannot
induce a mean flow over the entire horizontal extent of the domain: there can be
no wave-induced mean flow where the amplitude of the waves is negligibly small.
Nonetheless, if a horizontally compact wavepacket contains many wavelengths, it is
reasonable to suppose that the waves will induce a mean flow over the horizontal
extent of the wavepacket. If the waves are of sufficiently large amplitude that the
wave-induced mean flow is comparable with the horizontal group velocity, then the
horizontal structure of the wavepacket will be significantly altered by the effects of
self-acceleration.

The influence of the wave-induced mean flow upon a horizontally compact
wavepacket is diagnosed by calculating the field M(x, z) defined by (2.19). The effects
of self-acceleration are expected to be significant over regions of the wavepacket
where M(x, z) & cgx.

4.2.1. Waves with vertical wavenumber kz = −0.4kx

Figure 8 shows the two-dimensional power spectra and wave structures at time
t ' 16T of a small- and large-amplitude wavepacket given by (2.12) with kz = −0.4kx
and σx = σz = 10/kx.

For a simulation of a small-amplitude wavepacket with A ' 0.0034, the computed
power spectrum of the waves at time t ' 16T is shown in figure 8(a). The field is
normalized by

Pmax = 8π2

(
A

1

kx

σxσz

LxLz

)2

, (4.2)

the predicted peak power of the discrete two-dimensional Fourier transform of the
initial wavepacket. The plot illustrates that the peak value is negligibly different from
its initial value and is centred near its initial wavenumber.

The corresponding vertical displacement field is shown in figure 8(b). The magnitude
of the field is illustrated by the grey-scale indicated in the upper right-hand box. The
black lines superimposed on the vertical displacement field are contours of M(x, z)/cgx
shown in intervals of 0.0003. Its maximum value is approximately 0.001. Therefore,
the effects of self-acceleration everywhere over the wavepacket are negligible. Indeed,
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Figure 8. Comparison of (a, b) small- and (c, d) large-amplitude horizontally compact wavepackets
with vertical wavenumber kz = −0.4kx at time t = 16T . The wavepacket extent is given by
σz = σx = 10/kx. (a) Contours of the two-dimensional power spectrum normalized by the peak
power predicted by linear theory. Contours are shown by intervals of 0.3. (b) The grey-scale shows
values of the normalized vertical displacement field, ξ(x, z)/λx, and superimposed on it are contours
of M(x, z) normalized by cgx, shown by intervals of 0.0003. Panels (c) and (d) correspond to (a) and
(b), respectively, but for a wavepacket with amplitude initially 40 times larger. In (c) contours of the
normalized power spectrum are shown by intervals of 0.05, and in (d) contours of the normalized
M(x, z) field are shown by intervals of 1.

the centre of the wavepacket is close to the position expected on the basis of linear
theory at time t ' 16T : (x, z) ' (16cgxT , 16cgzT ).

By contrast, a large-amplitude wavepacket undergoes significant vertical and hori-
zontal dispersion due to nonlinear effects. Figure 8(c) shows the power spectrum of the
waves at time t ' 16T for a simulation with A = 0.137. There are four distinct peaks
in the spectrum. The strongest peak occurs near wavenumber (k, m) = (0.96,−0.31)kx,
and a peak almost as strong occurs near (0.09,−0.63)kx. The strength and position of
these peaks do not change in simulations performed with domains four times as large
and in simulations with quadruple the resolution. Peaks of smaller magnitude occur
near (1.02,−0.61)kx and (0.06, 0.51)kx. Thus, like the case of horizontally periodic
waves, due to nonlinear effects the spectrum exhibits peaks near k = kx but with
smaller and larger vertical wavenumbers than kz = −0.4kx. Unlike the case of hor-
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izontally periodic waves, however, the vertical displacement field exhibits significant
power at small horizontal wavenumbers k ' 0.1kx. Its value is set by the horizon-
tal extent of the wavepacket σx = 10/kx. Indeed, in simulations of wavepackets of
larger horizontal extent, the peak power for small horizontal wavenumbers occurs at
successively smaller values of k. These values of k decrease approximately in inverse
proportion to σx. A large spectral peak occurs at small horizontal wavenumbers
because of the interaction between waves of horizontal wavenumber kx and the
wave-induced mean flow acting over the extent of the wavepacket.

Figure 8(d) shows the corresponding vertical displacement field and contours of
〈M(x, z)〉λx . At time t ' 16T the wavepacket has developed a complex structure as a
result of interactions between the waves and the wave-induced mean flow. The initial
wavepacket has subdivided into multiple wavepackets, and the 〈M(x, z)〉λx field ex-
hibits many peaks with values larger than cgx. Thus, as a result of nonlinear dispersion
effects, the initial wavepacket subdivides into multiple wavepackets some of which
propagate at speeds approximately twice as large as the horizontal group velocity
predicted by linear theory: under the effects of self-acceleration, the wavepacket is
advected at speeds greater than cgx by the wave-induced mean flow.

4.2.2. Waves with vertical wavenumber kz = −2.5kx

For a wavepacket composed of waves with Θ large, it is found that the mechanism
of nonlinear dispersion acts much more weakly, even for waves with amplitudes only
moderately smaller than that required for instability and breaking.

The results of simulations of a horizontally compact wavepacket with kz = −2.5kx
and σx = σz = 10/kx are shown in figure 9. Figure 9(a) shows the normalized power
spectrum of a small-amplitude wavepacket with A = 0.0086 after it has propa-
gated from the origin for time t ' 16T . As expected for a quasi-plane small-
amplitude wavepacket, the spectrum is sharply peaked near (k, m) = (kx,−2.5kx)
with value close to unity. Figure 9(b) shows the corresponding vertical displacement
field with superimposed contours of M(x, z)/cgx. The wavepacket is centred near
(x, z) ' (16cgxT , 16cgzT ) as expected from linear theory. The wave-induced mean
flow is everywhere much less than the horizontal group velocity, so the effects of
self-acceleration are negligible.

Figure 9(c) shows the normalized power spectrum at time t ' 16T of a large-
amplitude wavepacket with A = 0.086. Unlike the case with kz = −0.4kx, here the
spectrum of the horizontally compact waves is negligibly different from that of the
small-amplitude waves as seen by comparing figures 9(a) and 9(c).

Nonetheless, nonlinear effects have significantly altered the structure of the wave-
packet as shown in figure 9(d). Similar to the corresponding simulations of large-
amplitude horizontally periodic waves with kz = −2.5kx, the waves are quasi-periodic
along their leading edge but exhibit irregular behaviour along the trailing left-hand-
side edge of the wavepacket. Only in this region is the M(x, z) field significant. The
inset to figure 9(d) shows the contours of M(x, z)/cgx superimposed on a close-up of
the vertical displacement field for 7 6 x/(cgxT ) 6 14 and 0 6 z/(cgzT ) 6 3.

In simulations of wavepackets with moderately larger amplitude than this, the
waves become convectively unstable before time t ' 16T in the trailing region of the
wavepacket.

Thus, in comparison with the results for horizontally periodic waves, large-
amplitude horizontally compact wavepackets excite long horizontal wavelengths if
they are non-hydrostatic (|Θ| small), but the dispersion of the waves is inhibited if
|Θ| ' 90◦. In the former case, the peak power of a large-amplitude horizontally com-
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Figure 9. As figure 8 but for a wavepacket with kz = −2.5kx. In (a), the contours of the normalized
power spectrum of the small-amplitude wavepacket are shown by intervals of 0.3. In (b), the
contours of the normalized M(x, z) field are shown by intervals of 0.002. Diagrams (c) and (d)
show the results if the amplitude of the initial wavepacket is 10 times larger. In (c) contours of the
normalized power spectrum are shown by intervals of 0.2, and in (d) contours of the normalized
M(x, z) field are shown by intervals of 2. The inset shows a close-up of a region in the wave field
where M(x, z)� cgx. The grey scale and contour interval are the same.

pact wavepacket decreases over time to a greater extent than horizontally periodic
waves.

5. Wave breaking
It is generally accepted that an internal wave will break, adding momentum to the

mean flow, if its amplitude is so large that it is overturning (e.g. Gill 1982, § 8.10). For
a quasi-plane wavepacket, the critical amplitude at which overturning occurs is given
by (2.29), where, from (2.13), Θ = cos−1(Ω/N0). Here it is demonstrated by way of
numerical simulations that this value generally underestimates the critical amplitude
at which the wave actually overturns and convectively breaks. A more accurate
prediction of the critical amplitude for convective breaking is given by (2.32).

The numerical simulations also show that a wavepacket with amplitude initially
well below that of a breaking wave may nonetheless evolve so that it eventually
overturns. For horizontally periodic waves, the critical amplitude at which such
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breaking occurs is shown to be comparable with the predicted critical amplitude
given by the ‘self-acceleration’ condition (2.33).

Below it is shown that this mechanism for breaking is different from breaking due
to parametric instability.

5.1. Parametric instability and self-acceleration

Analytic theories and numerically computed stability calculations have shown that,
even at infinitesimally small amplitudes, plane periodic internal waves are unstable
to parametric instability whereby the superharmonic waves draw energy from the
fundamental waves until they grow to such amplitude that they break (Mied 1976;
Drazin 1977; Klostermeyer 1991; Lombard & Riley 1996). This result assumes the
waves are perfectly monochromatic, and hence have constant amplitude everywhere,
as shown in figure 1(a). One might assume the results could be extended to quasi-
plane waves, such as those shown in figures 1(b) and 1(c). However, it is shown here
that interactions between the waves and the wave-induced mean flow dominate the
evolution and stability of compact wavepackets.

Wave–wave and wave–mean flow interactions are diagnosed by continually cal-
culating the spectrally decomposed transfer rates of energy from one horizontal
wavenumber to another during a simulation (Herring et al. 1974; Smyth & Peltier
1992; Sutherland & Peltier 1994). The details of this calculation are given in Ap-
pendix C. Specifically, the rate of energy transport between the mean flow, the
fundamental waves (with horizontal wavenumber kx) and the superharmonics (with
horizontal wavenumber 2kx) is determined from a spectral decomposition of the en-
ergy equation using (C 9), (C 10) and (C 11). At early times in all the studies discussed
here it is found that energy is exchanged between these three modes alone. Thus
parametric wave excitation may be diagnosed simply by examining the transfer of
energy into modes with horizontal wavenumber 2kx.

Figure 10 shows the spectral energy transfer rates between waves and the mean
flow computed up to time t ' 16T in simulations of small- and large-amplitude
wavepackets which are doubly periodic (monochromatic) and horizontally periodic
but vertically compact. In all four cases kz = −0.4kx. The streamfunction amplitude
envelope of the doubly periodic waves is given initially by (2.10), and the evolution
equations (2.2) and (2.3) are solved in a domain with vertically and horizontally
periodic boundary conditions.

The rate of energy transfer from waves to the mean flow, TW0, is plotted over time by
a solid line. As is typical for all horizontally periodic wavepacket evolution simulations
that have been examined, TW0 is equal in magnitude but opposite in sign to the energy
transfer rate from the mean flow to waves with horizontal wavenumber kx, that is
TW0 ' −T01 in which T01 is given by (C 11), and is plotted over time by a long-dashed
line in figure 10. The energy transfer rate from waves to the fundamental waves, TW1,
is plotted over time by a short-dashed line, and the energy transfer rate from waves
to the superharmonic waves, TW2, is plotted over time by a dotted line. Again, as
is typically observed, TW1 = −TW2: energy is exchanged between waves primarily
between the fundamental and the first superharmonic. In all four simulations clearly
energy is exchanged between the mean flow and the fundamental waves through
interactions distinct from the exchange of energy between the fundamental waves and
the superharmonic with horizontal wavenumber 2kx.

For relatively small-amplitude doubly periodic waves with A = 0.017 (figure 10a),
energy is simultaneously transferred from the mean flow to the fundamental while
the fundamental waves also draw energy from the superharmonic waves. In both
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Figure 10. Comparison between doubly periodic and horizontally periodic, vertically compact
wavepackets of energy transfers between waves and the mean flow for waves with kz = −0.4kx.
For doubly periodic waves the results are shown for simulations of wavepackets with amplitude (a)
A = 0.017 and (b) A = 0.069. Corresponding simulation results for horizontally periodic, vertically
compact wavepackets are shown in (c) and (d), respectively. In each diagram, the energy transfer
rates are shown from waves to the mean flow (solid line), from the mean flow to waves with
horizontal wavenumber kx (long-dashed line), from all waves to waves with horizontal wavenumber
kx (short-dashed line), and from all waves to waves with horizontal wavenumber 2kx (dotted line).

instances, the energy transfer rates are less than 10−8 indicating that the growth
of instabilities due to parametric resonance remains small over the duration of this
simulation.

Significant growth of the superharmonic due to parametric resonance is observed,
however, in simulations of doubly periodic waves with larger amplitude. As shown in
figure 10(b), after time t ' 12T , significant energy is extracted from the fundamental
by superharmonic waves (short-dashed and dotted lines). The energy extraction rate
continues to increase exponentially until the waves overturn. Note that although the
fundamental waves continue to extract energy from the mean flow (solid and long-
dashed lines), this exchange is negligible compared with the wave–wave interactions.

For a doubly periodic wavepacket, the wave-induced mean flow (like the wavepacket
envelope) is vertically uniform. However, for a vertically compact, horizontally pe-
riodic wavepacket, the wave-induced mean flow is large near the centre of the
wavepacket and neglible where the amplitude of the waves is negligibly small on
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either flank of the wavepacket. Therefore, as the wavepacket moves upward, the
mean flow is accelerated on the upper flank of the wavepacket and it is decelerated
on the lower flank. Owing to such interactions one expects that the energy transfers
between waves and the mean flow will be greater for a vertically compact wavepacket.

Indeed, as shown for a small-amplitude vertically compact wavepacket simulation
in figure 10(c), the fundamental waves extract energy from the mean flow at a rate
four orders of magnitude greater than in the doubly periodic case. The mean-flow
energy extraction rate is greatest at time t ' 3T . The exchange of energy between
the fundamental and superharmonics is negligibly small over the duration of the
simulation.

In a simulation of a vertically compact wavepacket with larger amplitude, A =
0.069, the mean flow is found to extract energy from the fundamental at times t > 14T ,
as shown in figure 10(d). Throughout this simulation, energy is also extracted from
the fundamental by the superharmonics, but the exchange rate is small compared
with the interactions between the waves and the wave-induced mean flow.

The energy exchange between doubly periodic and vertically compact waves is
also computed for wavepackets with kz = −2.5kx, and is shown in figure 11. In both
small- and large-amplitude doubly periodic wave simulations the fundamental waves
exchange energy with the mean flow at a rate that varies with frequency comparable
with N0. The exchange of energy between the waves and the superharmonics is of
comparable magnitude but varies approximately with frequency 2N0.

As in the case with kz = −0.4kx, figures 11(c) and 11(d) show that the dynamics
of the wavepacket evolution are dominated by the exchange of energy between the
fundamental and the wave-induced mean flow throughout the simulations. Referring
to table 1, the critical amplitude for overturning waves with kz = −2.5kx is 0.073.
Thus, for the case shown in figure 11(d), the waves are large amplitude in the sense
that the maximum vertical displacement is more than half that of overturning waves.

On the basis of these analyses, it is concluded that interactions between the waves
and the wave-induced mean flow dominates over wave–wave interactions when the
waves are vertically compact.

5.2. Overturning and breaking

Here the mechanism of wave breaking is examined in detail. As argued in § 3, one
expects breaking to occur when the waves overturn and the timescale for the growth
of convective instability is less than the order of the wave period.

However, as the simulations have shown, the structure of a finite-amplitude
wavepacket is modified significantly as it evolves. Even if the initial amplitude of
the wavepacket is well below that required for overturning, the wavepacket may
evolve in such a way that it eventually overturns.

To demonstrate this, the minimum value of the ∆N2 field everywhere in space is
determined over time during a simulation. It is found that this minimum value does
not vary greatly if the waves are of such small amplitude that |min{∆N2}| � N2

0 .
However, if |min{∆N2}| & 2N2

0 , the minimum value grows rapidly in magnitude due
to the onset and growth of convective instabilities.

Figure 12 shows the time evolution of min{∆N2}/N2
0 in simulations of horizontally

periodic waves with (a) kz = −0.4kx and (b) kz = −2.5kx. In figure 12(a), the values
are plotted for waves with amplitude A = 0.068 (solid line), 0.085 (dotted line), and
0.10 (dashed line).

Three simulations at different resolutions are run for each value of kz and A. The
light curves show the results of a low-resolution simulation (∆z ' 0.23/kx), medium-
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Figure 11. As in figure 10 but for waves with kz = −2.5kx. Each panel shows energy transfer rates
from waves to the mean flow (solid line), from the mean flow to waves with horizontal wavenumber
kx (long-dashed line), from all waves to waves with horizontal wavenumber kx (short-dashed line),
and from all waves to waves with horizontal wavenumber 2kx (dotted line).

weight curves show the results of standard simulations (∆z ' 0.12/kx), and heavy
curves show the results of high-resolution simulations (∆z ' 0.06/kx), where ∆z is
the vertical spacing between grid points. Comparison between these curves shows
that there is neglible difference between the results of standard and high-resolution
simulations if min{∆N2} > −N2

0 . The evolution of breaking waves differs depending
on the resolution, as one might expect since convective instability results in the
rapid growth of small scales. Because convective breaking is a fully three-dimensional
phenomenon, it would be a fruitless exercise to attempt to resolve small convection
scales in a two-dimensional simulation. Nonetheless, the results show that the model
accurately predicts at what time the onset of breaking occurs, if it occurs at all.

For the simulation with kz = −0.4kx and A = 0.069, min{∆N2} decreases gradually
from its initial value of −0.17N2

0 to a minimum value of −0.57N2
0 , before increasing

again. If A = 0.086, min{∆N2} is initially −0.21N2
0 , but it decreases to values close

to −N2
0 at time t ' 8T . After this time min{∆N2} fluctuates to a greater extent and

is as low as −N2
0 at t ' 16T . In the large-amplitude case with A = 0.10, min{∆N2}

decreases from its initial value of −0.25N2
0 to −N2

0 after time t ' 7T .
While higher spatial and temporal resolution simulations could be run to examine
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Figure 12. Plots over time of the minimum value of the ∆N2 field normalized by N2
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periodic wavepackets of different amplitudes (as indicated on plots), and vertical wavenumber (a)
kz = −0.4kx and (b) kz = −2.5kx. Light, medium and heavy curves correspond to low-, standard-,
and high-resolution simulations, respectively (see text). The horizontal dotted line in both figures
indicates the critical value of ∆N2 when overturning occurs.
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Figure 13. As in figure 12 but for horizontally compact wavepackets with σx = 10/kx.

the convective dynamics in more detail, because the flows examined here are restricted
to two dimensions, such an analysis would be unrealistic. It is sufficient here to remark
that for waves of sufficiently large amplitude convective mixing does occur.

The stability of wavepackets with relatively small vertical wavelength is examined
in figure 12(b), which shows the time evolution of min{∆N2}/N2

0 in simulations with
kz = −2.5kx. Values are plotted for waves with amplitude A = 0.0086 (solid line),
0.043 (dotted line), and 0.086 (dashed line). Unlike the case with kz = −0.4kx, here
min{∆N2} increases in time from its initial value when the initial amplitude is small.
In the case where A = 0.086, min{∆N2} is less than −N2

0 initially. After about two
buoyancy periods min{∆N2} decreases rapidly in time.

The time evolution of min{∆N2}/N2
0 is shown in figure 13 for a range of simulations

of horizontally compact wavepackets. The results are similar to those for horizontally
periodic waves. In simulations with kz = −0.4kx, figure 13(a), the value of min{∆N2}
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A min{∆N2}/N2
0

∣∣
t=T

min{∆N2}/N2
0

∣∣
t=4T

σT

0.034 −0.086 −0.090 0.016
0.052 −0.132 −0.158 0.066
0.069 −0.181 −0.271 0.166
0.086 −0.235 −0.448 0.302
0.10 −0.292 −0.647 0.405

Table 2. Values of min{∆N2}/N2
0 determined at times t = T and t = 4T in simulations of

horizontally periodic/vertically compact wavepackets with kz = −0.4kx and a range of amplitudes
A. The wave amplitude growth rate, σ, is estimated from these data using (5.1).

decreases over time initially and becomes approximately constant for amplitudes
smaller than A = 0.14. When A = 0.17, however, min{∆N2} decreases to values less
than −N2

0 at time t ' 2T . Afterward, the plot exhibits large fluctuations until after
t ' 11.6T when energy is rapidly deposited to small scales as a result of convective
overturning. Figure 13(b) shows that when kz = −2.5kx, min{∆N2} does not decrease
significantly from its initial value for simulations with A . 0.043. When A = 0.086,
min{∆N2}/N2

0 is less than −1, meaning that overturning occurs initially. Nonetheless,
min{∆N2}/N2

0 does not vary greatly over the first 8 buoyancy periods.
The plots above demonstrate that, although overturning occurs when min{∆N2} <

−N2
0 , this does not guarantee the simultaneous rapid growth of density gradients

due to convective instability. The simulation results are consistent with the breaking
condition of (2.32), which states that overturning is not a sufficient criterion for
convective instability to occur; the background waves must evolve on a sufficiently
slow timescale for overturning regions to grow in amplitude.

If the waves are close to overturning, they remain so for many buoyancy periods if
Θ > 35◦ (e.g. when kz = −2.5kx). However, if Θ . 35◦ (e.g. when kz = −0.4kx) then
the amplitude of the waves increases (and hence min{∆N2} decreases) in part due to
modulational instability.

But the rapid decrease in min{∆N2} cannot be explained in terms of modulational
instablity alone. Table 2 lists values of min{∆N2} at times t = T and t = 4T
determined from five simulations of different amplitude wavepackets with kz = −0.4kx.
Assuming the amplitude of the waves is proportional to the value of min{∆N2} (e.g.
in linear theory, the relationship is represented explicitly by (2.28)), the growth rate,
σ, of the waves is estimated by

σ ' 1

3T

(min{∆N2}|t=4T −min{∆N2}|t=T )

min{∆N2}|t=T
. (5.1)

The growth rate is estimated over the interval T 6 t 6 4T because during this time
min{∆N2} decreases monotonically at a steady rate in all five simulations.

If a wavepacket is unstable to weakly nonlinear modulations alone, the growth rate
to lowest order is proportional to the amplitude as expressed by (2.21), However, as
a function of increasing amplitude A, the growth rate listed in table 2 increases faster
than linearly. Indeed, a least-square fit line to a log–log plot of the data gives the
dependence

σ ∝ A3.0±0.4.

Spectral energy transfer diagnostics reveal that the waves grow in amplitude as a
result of interactions with the wave-induced mean flow. Thus the instability occurs
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Figure 14. Stability regimes compared with simulation results of horizontally periodic waves with
vertical extents given by (a) σzkx = 10 and (b) σzkx = 40. Each points represents the results of
a single simulation for a wavepacket with Θ = tan−1(|kz/kx|) and amplitude A = Aξ/λx. A solid
circle denotes simulations for which min{∆N2}/N2

0 > −0.1 over the duration of the simulation
(0 6 t . 16T ). A solid triangle is plotted if −1 < min{∆N2}/N2

0 < −0.1 over the duration of the
simulation. An open triangle is plotted if min{∆N2}/N2

0 < −1 between times 5T and 16T . A cross
indicates simulations in which min{∆N2}/N2

0 < −1 before time 5T . Superimposed on the regime
diagram are the theoretically predicted stability regimes, reproduced from figure 3.

due to self-acceleration. If the amplitude of the initial wavepacket is not too large,
the growth rate decreases to zero after a finite time. However, if the wavepacket
is of sufficiently large amplitude initially, it may grow to such amplitude that it
overturns. Whether the waves ultimately grow to such amplitude that they overturn
is well represented by the self-acceleration condition (2.33). To demonstrate this,
a series of simulations have been performed to examine under which conditions
overturning ultimately occurs. For each simulation, the minimum value of the ∆N2

field is determined as it evolves up to time t ' 16T .
The results for horizontally periodic waves are plotted in figure 14. In both

diagrams, the symbols (circles, triangles and crosses) are plotted at the position cor-
responding to Θ and the normalized amplitude A = Aξ/λx of the initial wavepacket.
Solid circles and triangles are plotted if the wavepacket does not overturn at any time
during the simulation. Open triangles are plotted if the wavepacket is overturning
after time t = 5T , and crosses are plotted if the wavepacket is overturning before then.

The data are plotted in figures 14(a) and 14(b) for simulations of wavepackets
with vertical extent σz = 10/kx and 40/kx, respectively. Superimposed on the data
is a heavy curve indicating the predicted boundary between stable, small-amplitude
wavepackets and wavepackets that eventually overturn due to the effects of self-
acceleration, as given by (2.33). The light solid curves indicate the regions where the
initial wavepackets are overturning and breaking. Both diagrams show remarkably
good agreement between the results of simulations and theory. The waves are stable
in the linear regime and, in general, they are unstable when the self-acceleration
condition is satisfied. If Θ . 45◦, the waves become unstable even though the
amplitude of the initial wavepacket is well below that for initially overturning waves.

Similarly, a series of simulations have been performed to examine the stability
characteristics of horizontally compact wavepackets. Each diagram in figure 15 is
similar to those in figure 14. In figure 15(a), the horizontal and vertical extent of the
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Figure 15. As in figure 14 but showing stability regimes for horizontally compact waves with
horizontal and vertical extents given by (σx, σz)kx = (a) (10, 10), (b) (40, 10) and (c) (10, 40).

wavepacket are given by σx = σz = 10/kx, in figure 15(b) σx = 40/kx and σz = 10/kx,
and in figure 15(c) σx = 10/kx and σz = 40/kx. The first diagram shows that waves
with small Θ are stable for larger amplitudes than predicted by the self-acceleration
condition, but nonetheless are unstable at amplitudes well below that of waves that
are initially overturning. For wavepackets of larger horizontal or vertical extent,
the stability regimes more closely correspond to that given by the self-acceleration
condition.

6. Discussion and conclusions
The numerical simulations show that, in agreement with theory, quasi-plane internal

wavepackets become convectively unstable even though their initial amplitude is well
below that of overturning waves. The instability results from interactions between
the waves and the wave-induced mean flow: the self-acceleration of the waves. This
weakly nonlinear effect acts to shift the phase speed of the waves in regions where
the amplitude of the waves is sufficiently large. Over time the lines of constant phase
of the waves tilt more vertically in the region where the effects of self-acceleration are
significant. At the boundary of this region the lines tilt more horizontally. Typically
it is on the trailing edge of the wavepacket where the lines tilt more horizontally
and where the waves are of sufficiently large amplitude that the waves overturn and
convectively mix.

The critical amplitude for instability due to self-acceleration is given by (2.33).
Numerical simulations show that the self-acceleration condition provides a good
prediction of the stability boundary of horizontally periodic waves. In particular, it
shows that waves with Θ ' 0 are stable only if the amplitudes are infinitesimally
small, and that waves with Θ ' 45◦ are stable for the largest amplitudes. If the
waves are horizontally compact, the self-acceleration condition does a poorer job of
predicting the stability boundary owing to horizontal modulations of the wavepacket.
Consistent with near-linear modulational stability theory, the wavepacket subdivides
if Θ . 53◦ and the wavepackets remain stable for larger initial amplitudes. Numerical
simulations show that the largest amplitude horizontally compact wavepackets that
are stable occur for Θ ' 35◦(±5◦).

These results may explain why, in many laboratory experiments on internal waves
generated by turbulence (for example, see Linden 1975; Sutherland & Linden 1998),
the phase lines of the waves are predominantly observed to be tilted within a narrow
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range of angles Θ to the vertical. At the boundary between the turbulent mixing
region and the stable, unmixed region where internal waves propagate, a broad
frequency spectrum occurs due to turbulent eddies deforming the boundary. One
might expect a similarly broad frequency spectrum of internal waves to be generated
at this boundary. However, for reasons that are not fully understood, internal waves
are observed with a small range of frequencies corresponding to values of Θ lying
approximately between 30◦ and 45◦. In the light of the simulation results, it is possible
that the waves of smaller and greater frequencies are not observed since these are
unstable at all but negligibly small amplitudes. Experiments are currently in progress
which will attempt to observe and quantify the regimes of internal wave stability
under the effects of self-acceleration.

The author is indebted to the reviewers for their useful comments on the
organization of the paper and, in particular, for suggesting that instability due
to self-acceleration be compared with parametric instability. Many of the calcula-
tions reported here have been performed on a 40-node SGI Origin 2000 operated
by the MACI community. The research has been funded in part by NSERC grant
203065-99.

Appendix A. Weakly nonlinear theory
Here the nonlinear Schrödinger equation is derived which governs the modulation

of a vertically compact, horizontally periodic packet of Boussinesq internal waves.
Using this equation, the stability of the wavepacket is assessed. Though less detail is
given here, the derivation described below is similar to that of Grimshaw (1977), who
determined the equations describing the horizontal modulations of Boussinesq and
anelastic internal waves.

The fully nonlinear system of equations of two-dimensional uniformly stratified
Boussinesq fluid motion is given by (2.2) and (2.3). These may be combined into a
single equation of the form

Lψ = M, (A 1)

where L and M are linear and nonlinear operators, respectively, acting on the
streamfunction ψ. Explicitly,

L = L(∂x, ∂z, ∂t) = ∂2
t

(
∂2
x + ∂2

z

)
+N2

0∂
2
x, (A 2)

and

M = ∇ ·
(
∂

∂t
(uζ) +N2

0

∂

∂x
(uξ)

)
. (A 3)

We assume that the streamfunction is horizontally periodic though the envelope of
the wavepacket may exhibit slowly varying structure vertically in space and in time.
Thus to lowest order the streamfunction is

ψ
(0)
1 = αA(Z?, T ?)ei(kx+mz−ωt) + c.c., (A 4)

where k = (k, m) is the wavenumber vector and ω is the frequency. The wavepacket
envelope A is a function of the slowly varying variables Z? = z/ε and T? = t/ε,
where ε� 1. The small, but finite amplitude α� 1 of the waves is set so that |A| is
O(1) with respect to α and ε. Our objective is to find a weakly nonlinear equation for
A using (A 2) and (A 3). To do so, it turns out to be appropriate to set α = ε in order
to balance the lowest-order nonlinear terms.
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Combining (A 4) with (A 2) gives

L(∂x, ∂z, ∂t)ψ
(0)
1 = αei(kx+mz−ωt)L

(
ik, im+ ε

∂

∂Z?
,−iω + ε

∂

∂T?

)
A+ c.c. (A 5)

Expanding the operator in ε, we find that

LA = L|ε=0A+ εLZ|ε=0

∂A

∂Z?
+ εLT|ε=0

∂A

∂T?
+ 1

2
ε2LZZ|ε=0

∂2A

∂Z?2
+ . . . (A 6)

where LZ and LT denote partial derivatives with respect to the second and third
arguments of L, respectively. Note that second derivatives involving T? are not
written explicitly because, as shown below, after a change of variables, these terms
are found to be negligibly small.

Putting (A 4) and (A 6) in (A 1), and noting that the nonlinear operator M is at
least of order α2, we find we must have L|ε=0A = 0. Rigorously, this is a consequence
of the compatibility condition:

k

2π

∫ 2π/k

0

e−ikx L|ε=0αA(Z?, T ?)ei(kx+mz−ωt) dx = 0. (A 7)

Substituting L|ε=0 = L(ik, im,−iω) in (A 2) thereby gives the linear dispersion
relation for Boussinesq internal waves: D(k, m, ω) = 0, where D is defined by

D(k, m, ω) ≡ L(ik, im,−iω) = ω2(k2 + m2)−N2
0k

2. (A 8)

It is convenient to use this definition to rewrite (A 6) in terms of D:

LA = −iεDm
∂A

∂Z?
+ iεDω

∂A

∂T?
+− 1

2
ε2Dmm

∂2A

∂Z?2
+ . . . . (A 9)

Taking the first and second m-derivatives of (A 8), it is found that Dm = cgzDω ,
Dmω + cgzDωω = 0, and Dmm = −Dω∂cgz/∂m, in which cgz is the vertical group velocity
of linear theory. From the dispersion relation, it is convenient to define the frequency
as a function of m alone with k held fixed, i.e. ω0(m; k) = N0k/|k|, in which case we
have Dmm = −Dωω′′0 .

These properties suggest a transformation to a coordinate system moving at the
vertical group velocity. Specifically, we define Z = Z? − cgzT ? = ε(z − cgzt), and
T = εT ? = ε2t. In (Z,T ) coordinates (A 9) becomes

LA = ε2Dω(iAT + 1
2
ω′′0AZZ ) + O(ε2α, ε3). (A 10)

Thus the left-hand side of (A 1) is O(αε2). If the amplitude of the waves is infinites-
imally small, if α� ε, the right-hand side of this equation is negligible. The resulting
equation, to lowest order, is the linear Schrödinger equation:

iAT + 1
2
ω′′0AZZ = 0, (A 11)

which describes modulations of the wavepackets under the effects of linear dispersion.
If the amplitude is not negligible but α ∼ ε, then the weakly nonlinear effects,

given by (A 3), are balanced by second-order dispersion effects, given by (A 6), both
of which are of order α3 ∼ αε2. Explicitly, to lowest order the compatibility condition
determined from (A 1) is

αε2ei(mz−ωt)(iAT + 1
2
ω′′0AZZ ) =

1

Dω

k

2π

∫ 2π/k

0

e−ikxM1 dx, (A 12)
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where M1 is determined from (A 3) at order α3. In theory, weakly nonlinear effects
occur due to two types of interactions: those between waves of wavenumber k
and the wave-induced mean flow, and those between waves of wavenumber k and
2k. For quasi-plane wavepackets, only the former is significant to lowest order, as
demonstrated by figures 10 and 11.

The wave-induced mean flow is given to order α2 by the pseudomomentum, (2.17).
Denoting the wave-induced mean flow by u0 and using (A 4), we find

u0 = −〈ζξ〉 = 2(k2 + m2)(k/ω)α2|A|2 + O(εα2, α4). (A 13)

From this equation and the conservation of mass, it is found that the mean horizontal
values of ζ, ξ and w are zero at this order. Therefore

M1 =
∂

∂x

(
∂

∂t
(u0ζ

(0)
1 ) +N2

0

∂

∂x
(u0ξ

(0)
1 )

)
, (A 14)

where ζ1
(0) and ξ

(0)
1 are the vorticity and vertical displacement fields, respectively,

which are determined from the first term on the right-hand side of (A 4).
Substituting this expression in (A 12), after some algebra the right-hand side of the

equation is found to be

α3 1

Dω
(4|k|4k2)|A|2Aei(mz−ωt) (A 15)

and so (A 12) can be written in the standard form of the one-dimensional nonlinear
Schrödinger equation

iAT + 1
2
ω′′0AZZ + γ|A|2A = 0, (A 16)

where

γ = −2ω0|k|4/N2
0 . (A 17)

It follows from (A 16) that the nonlinear dispersion relation for vertical modulations
of horizontally periodic internal waves is given by

ω = ω0(1 + 2|k|4/N2
0α

2) + O(α4). (A 18)

Identifying α with the streamfunction amplitude A0 (e.g. as in (2.11)), the dispersion
relation given to second order in the amplitude A = Aξ/λx is

ω = ω0(1 + 2π2A2/ cos2 Θ). (A 19)

Appendix B. Deep water theory
It is instructive to compare the stability conditions for internal waves with those

for surface waves on deep water. In this case, the wave-induced mean flow MSW is
given by the ‘Stokes drift’, AM . Explicitly, to second order in the amplitude,

AM = ωkxA
2λ2, (B 1)

in which ω is the frequency, kx is the horizontal wavenumber, and A is the ratio of
the maximum vertical displacement of the waves to the horizontal wavelength.

The analogous self-acceleration condition for surface waves states that interactions
between the waves and the wave-induced mean flow is significant if the Stokes drift
is larger than the horizontal group velocity cgx. Using the dispersion relationship for
deep water waves, the self-acceleration condition is

A = Aξ/λx >
1

2π
√

2
' 0.11. (B 2)
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As in the case of internal waves, the amplitude necessary for the effect of self-
acceleration to be significant is an order of magnitude smaller than horizontal wave-
length.

However, for deep water waves, the maximum amplitude the waves can attain
before forming a cusp and breaking is Amax ' 0.0706 (Lighthill 1978). Thus, to the
order of approximation used here to formulate the self-acceleration condition, deep
water waves cannot become unstable under the effects of self-acceleration. Nor does
it seem that large-amplitude effects should change this conclusion. The nonlinear
dispersion relation for deep water waves is ω = (gk)1/2[1 + A2

ξk
2/2 + O(A4)] (e.g. see

Whitham 1974, § 13.13). Thus the second-order term is at most 2(πAmax)
2 ' 0.1, an

order of magnitude smaller than the leading term in the dispersion relation.
That is not to say that deep water waves are stable below breaking amplitudes:

using the variational approach by Whitham (1965), Lighthill (1967) showed that
finite-amplitude deep water waves are always unstable due to weakly nonlinear
modulations of the wavepacket, though such instability does not necessarily result in
wave breaking.

Appendix C. Spectral energy transfers
The transfer of energy between different Fourier modes has been used to analyse

two-dimensional isotropic turbulence (e.g. Herring et al. 1974), and the growth and
nonlinear development of parallel flow instabilities in density-stratified fluid (Smyth
& Peltier 1992; Sutherland & Peltier 1994).

In the discussion below, diffusive effects are assumed to be negligible. Energy is
thus redistributed due to nonlinear advection, but the total energy in the domain
remains approximately constant.

The change in energy due to advection is given by

∂E
∂t

= −∇ · (uE) (C 1)

where the energy per unit mass is

E = − 1
2
(|u|2 +N2

0ξ
2) (C 2)

(e.g. Gill 1982). The basic-state fields at a particular time are Fourier decomposed

so that, for example, ξ(x, z) =
∑

k ξ̂k exp (−ik · x), where ξ̂ is the amplitude of the
Fourier mode with wavenumber k = (k, m).

Using (2.5) and (2.6), the velocity fields are written in terms of the Fourier decom-
position of the streamfunction ψ(x, z) =

∑
k ψ̂k exp (−ik · x). To ensure the fields are

real-valued ψ̂(−k,m) = ψ̂?(k,m), where the star denotes the complex conjugate.
Substituting these equations into (C 1) and (C 2) gives

∂Ek
∂t

=Fk (C 3)

where

Fk = − 1
2
ψ?k

∑
k′
TKE(k, k′)− 1

2
N2

0ξ
?
k

∑
k′
TAPE(k, k′), (C 4)

TKE(k, k′) = |k′|2(mk′ − km′)ψk−k′ψk′ + c.c., (C 5)

TAPE(k, k′) = (mk′ − km′)ψk−k′ξk′ + c.c., (C 6)
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in which k′ = (k′, m′). Thus the energy in the Fourier mode k changes as a result of
the sum of interactions between the mode pairs k′ and k − k′.

At regular intervals during a simulation the discrete Fourier transform coefficients
ψk and ξk are determined using a standard FFT algorithm (Press et al. 1993). The
sums in (C 4) are then computed. The numerical accuracy of this procedure is tested
by evaluating the sum

∑
kFk. As expected it is found to be negligibly small during

numerical simulations of propagating waves.
The normalized transfer of energy between waves and the mean flow is diagnosed

by partitioning the sums in (C 4) into two parts:

F0
k = − 1

2
ψ?k

∑
m′
TKE(k, (0, m′))− 1

2
N2

0ξ
?
k

∑
m′
TAPE(k, (0, m′)), (C 7)

and

F′k = − 1
2
ψ?k

∑
k′ ,k′ 6=0

TKE(k, k′)− 1
2
N2

0ξ
?
k

∑
k′ ,k′ 6=0

TAPE(k, k′). (C 8)

The former equation corresponds to spectral energy transfers into mode k due to
wave-mean flow interactions. The latter equation corresponds to spectral energy
transfers into mode k due to wave–wave interactions.

The normalized spectral transfer of energy from waves to the mean flow is thus
defined to be

TW0 =
∑
m

F′(0,m)/2E, (C 9)

where E is given by (C 2). Similarly the transfer of energy from waves to the mode
with horizontal wavenumber nkx is defined by

TWn =
∑
m

F′(nkx,m)/2E. (C 10)

The extraction of energy from the mean flow into the mode with horizontal wavenum-
ber nkx is defined by

T0n =
∑
m

F0
(nkx,m)/2E. (C 11)

These three forms of the normalized spectral energy transfer rates are used to
produce figures 10 and 11.
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