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An existing method for predicting the partial transmission of plane internal gravity waves across a
weakly stratified region is adapted so as to predict the transmission of internal wave beams having
finite horizontal and vertical extent. The results are compared with laboratory experiments in which
internal waves generated by an oscillating cylinder are incident upon a mixed region of varying
depth and stratification. The results are in good agreement except when the characteristic frequency
of the beam is close to the minimum buoyancy frequency of the weakly stratified mixed region. In
this case, the predicted transmission coefficient varies rapidly with frequency and so is sensitive to
small measurement errors. Applications of this method to atmospheric and oceanic internal waves
are discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3486613�

I. INTRODUCTION

Within a stratified fluid, internal waves propagate verti-
cally as well as horizontally due to buoyancy forces. Thus
they provide a means for the vertical transport of momentum
and energy in the atmosphere and ocean. Knowing where the
waves propagate is crucial to assess where they exert drag
and where they mix upon breaking.

The trajectory of an internal wave is typically calculated
using “ray tracing” techniques,1,2 which assume that the
waves have small amplitude and that the vertical wavelength
of the waves is small compared to the scale of vertical varia-
tions of the background stratification and velocity fields.
Heuristics based on ray theory predict that the waves com-
pletely reflect from a level where the �possibly Doppler-
shifted� frequency equals the background buoyancy fre-
quency and they asymptotically approach a critical level,3

where the horizontal phase speed of the waves matches the
background flow speed �or, equivalently, where the Doppler-
shifted frequency is zero�. Recently, a variety of studies have
been performed to test the limits of these heuristics through
the inclusion of nonsteady background flows,4–7 large-
amplitude effects,8 and rapid variations of the background
fields with height.6,9–12 All of these are idealized studies in
which an analytically prescribed plane wave or wave beam is
incident upon an analytically prescribed background field.
The question being addressed in this work is the robustness
of the predictions to inevitable errors that result from uncer-
tainties in the measured properties of the incident waves and
background fields.

For simplicity both in theory and for comparison with
experiment, we assume the background is stationary and its
stratification varies only with height. Specifically, we focus
on the process of tunneling9 in which a vertically propagat-
ing internal wave is incident upon a finite-depth region of
relatively weak stratification through which the wave par-
tially transmits.

Internal wave tunneling has previously been investigated

by Eckart13 who considered the transfer of energy between
two regions of locally enhanced stratification, as is the case
of the main and seasonal thermoclines in the ocean. A similar
study of the atmosphere14 examined the energy transfer by
internal waves between the stratosphere and the ionosphere.
In these cases, tunneling resulted from the resonant transfer
of energy between pairs of vertical modes in the system and,
as a result, energy periodically transferred upward and then
downward; the transfer was not unidirectional and so a trans-
mission coefficient could not be defined as would be done,
for example, in the study of electron tunneling across a po-
tential barrier or photon tunneling across thin films.

Inspired by observations of internal wave propagation
through the weakly stratified mesosphere,15–17 Sutherland
and Yewchuk9 were the first to investigate unidirectional in-
ternal wave tunneling. In two idealized circumstances, they
derived formulae for the transmission coefficient of plane
internal waves passing through a background with
piecewise-constant stratification. In that work, internal wave
tunneling in a laboratory experiment was demonstrated but
the theory developed was too idealized to allow direct com-
parison with the experiment results: the actual stratification
was smooth, not piecewise-constant, and the incident waves
were manifest as a beam, not a monochromatic plane wave.
Since that time, a numerical method has been developed that
predicts the transmission of internal waves through arbi-
trarily specified background profiles of stratification and
velocity.10 Given the horizontal wave number and frequency
of an incident plane wave, the code directly integrates the
Taylor–Goldstein equation to predict the relative amplitude
and structure of the transmitted wave. In particular, for a
plane wave propagating from strong to weak stratification,
they found that the heuristic ray theory prediction was accu-
rate if the transition distance between two stratified regions
was larger than one sixth of the vertical wavelength of the
transmitted waves.

In Sec. II, we extend this result by examining the sensi-
tivity of the predicted transmission coefficient to the smooth-
ness of a stratification profile prescribed as a finite-depth
region of weak stratification surrounded by strongly stratifieda�Electronic mail: bruce.sutherland@ualberta.ca.
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fluid. The corresponding analytic profiles of background den-
sity closely match the measured density profiles established
in laboratory experiments. The experiments themselves are
described in Sec. III. As well as the experimental setup, here
we describe the image processing techniques used to mea-
sure nonintrusively the amplitude and structure of incident
and transmitted wave beams emanating from an oscillating
cylinder. The comparison between theory and experiments is
made in Sec. IV. Here we show that under certain parameter
regimes, the theoretical prediction is very sensitive to details
of the background stratification and incident wave properties.
The summary of results and implications for application to
the study of wave propagation in the atmosphere and ocean
are discussed in Sec. V.

II. THEORY

A. Equations of motion

The evolution of inviscid, two-dimensional, small-
amplitude internal waves in nonuniformly stratified
Boussinesq fluid is given by the partial differential equation

� �2

�x2 +
�2

�z2� �2�

�t2 + N2�2�

�x2 = 0. �1�

Here

N2 = −
g

�0

d�̄

dz
�2�

is the squared buoyancy frequency, which depends on the
rate of decrease of the background density �̄�z� with height,
�0 is the characteristic density of the fluid, and g is the ac-
celeration of gravity. �In the atmosphere, N2 is given in terms
of the rate of increase of the background potential tempera-
ture, but this detail is physically inconsequential in the
Boussinesq approximation.�

Equation �1� is cast in terms of the stream function �,
which is implicitly defined in terms of the horizontal and
vertical velocity fields by

�u,w� = �−
��

�z
,
��

�x
� . �3�

Because the coefficients of Eq. �1� depend only on z, the
equation can be Fourier transformed in x and t such that a
single Fourier component has the form �=��z�exp�i�kx
−�t��, in which it is understood that the actual stream func-
tion is the real part of this expression and the complex-
valued stream function amplitude ��z� describes the vertical
structure of a wave with horizontal wave number k and fre-
quency �. Explicitly, through substituting this expression
into Eq. �1�, � is given by the solution of

�� + k2�N2

�2 − 1�� = 0. �4�

This is a special case of the Taylor–Goldstein equation18 in
which there is no background flow. As expected, solutions to
Eq. �4� are oscillatory in z, where ��N�z�, and exponential
in z, where ��N�z�. The precise determination of � de-

pends on the upper and lower boundary conditions as well as
the prescription of N.

Given �, one can go on to determine other fields of
interest. In this study, two fields are of particular importance.
The vertical displacement field � is related to the stream
function by Eq. �3� and the condition �t�=w. Thus in a uni-
formly stratified fluid, a vertically propagating plane wave
with stream function amplitude A� has vertical displacement
amplitude

A� = −
k

�
A� = −

k

N cos 	
A�. �5�

In the laboratory experiments, we directly measure the time
rate of change of the squared buoyancy frequency due to the
stretching and compression of isopycnals by waves

Nt
2 = −

g

�0

�2�

�t � z
� − N2 �2�

�t � z
. �6�

The second expression makes use of the fact that if the
isopycnal displacements are small, the fluctuation density
field � is related to the vertical displacement field by
�=−�̄��, in which �̄� is the background density gradient. In
terms of the stream function and vertical displacement field,
the amplitude of Nt

2 is

ANt
2 = k2N2 tan 	A� = − kN3 sin 	A�. �7�

In these expressions, we have defined

			 = cos−1��/N� , �8�

which is the angle formed by lines of constant phase to the
vertical. Equivalently, from the dispersion relation for inter-
nal waves, 	=tan−1�m /k�, where m is the vertical wave
number. In this last expression, the sign of 	 is determined
by the sign of m /k. In particular, waves with their group
velocity oriented downward and rightward have m and k
both positive.

Although Eqs. �5� and �7� have been derived for plane
waves in uniformly stratified fluid, they can be used to esti-
mate the relative amplitude of the waves in regions where
the fluid is approximately uniformly stratified.

B. Transmission coefficients

Equation �4� can be solved analytically for piecewise-
constant profiles of N2. Arbitrarily supposing the wave is
incident from above with stream function amplitude A�I and
that it partially reflects with amplitude A�R and transmits
with amplitude A�T, matching conditions requiring � and its
derivative to be continuous, where N2 discontinuously
jumps, give formulae separately relating A�R and A�T to A�I.
In particular, for waves transmitting from one region of con-
stant N to another, the polarization relation �5� can then be
used to relate the reflected and transmitted vertical displace-
ment amplitudes to that of the incident wave amplitude.
From these, one can find relative energy flux associated with
the reflected and transmitted waves. Explicitly, the horizon-
tally averaged energy flux given in terms of the vertical dis-
placement amplitude is
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FE� = 1
2N2	A�	2cgz, �9�

in which cgz= �N /k�cos2 	 sin 	 is the vertical group veloc-
ity. If the buoyancy frequency in the transmitted region is the
same as that in the incident region �as is the case in the
experiments examined here�, the ratio of transmitted to inci-
dent wave energy flux gives the transmission coefficient

T =

1

2

N3

k
cos2 	 sin 		A�T	2

1

2

N3

k
cos2 	 sin 		A�I	2

= �A�T

A�I
�2

. �10�

Likewise, the reflection coefficient is defined by

R = �A�R

A�I
�2

. �11�

It can be independently checked that T+R=1, as required by
energy conservation. In the presence of background shear,
the appropriate analogous definition of T is the ratio of trans-
mitted to incident flux of wave action.8 This reduces to the
definition �10� for uniform or zero flow. Note that when deal-
ing with incident plane waves, the polarization relations �7�
show that it is irrelevant whether the amplitudes in Eq. �10�
are those of stream function, vertical displacement, or Nt

2.
In particular, for plane internal waves incident upon an

N2-barrier prescribed by

N2 = N0
2, 	z	 � L/2,

0, 	z	 
 L/2,
� �12�

the transmission coefficient is9

T = 1 + � sinh�kL�
sin�2	� �2�−1

. �13�

The numerical solution method of Eq. �4� for any prescribed
N2�z� was developed by Nault and Sutherland.10 The incident
waves were assumed to be horizontally periodic with given
horizontal wave number k and with fixed frequency �. In
terms of the stream function amplitude of the incident waves
A�I, the code finds the amplitudes of the transmitted and
reflected waves A�T and A�R, respectively.

Here we use this code to examine the effect of smooth
transitions from strong to weak stratification as measured in
laboratory experiments. To this end we examine the trans-
mission of plane waves across an N2 profile given by

N2 = N0
2 +

N0
2 − N1

2

2
� �tanh� z − zu

�u
� − tanh� z − zl

�l
�� .

�14�

Here, the parameters �u and �l represent half the distance
over which N2 changes from one stratification to another. In
the laboratory experiments presented here, the symmetry of
the way in which we establish a nonuniformly stratified am-
bient gives �u��l. We denote this transition distance simply
by �. Likewise, N0 is the buoyancy frequency of the upper
and lower strongly stratified regions and for sufficiently
small �, N1 is the buoyancy frequency of the middle weakly
stratified region. The values zu and zl denote the top and

bottom, respectively, of the weakly stratified region occur-
ring at the inflection points of N2�z�. In the limit �→0 and
with N1=0, Eq. �14� reduces to the piecewise-constant for-
mula �12� in which zu=L /2 and zl=−L /2. Using the Taylor–
Goldstein solver with very small � and comparing the result-
ing transmission coefficients with those predicted by the
analytic formula �13�, we find excellent agreement for a wide
range of k and � values. This check on the code allows us to
proceed with confidence in using it to predict transmission
across arbitrary, smoothly varying N2 profiles.

Figure 1 compares transmission coefficients as a func-
tion of k and � for internal waves propagating through back-
ground stratification given by Eq. �14� with zu=L /2,
zl=−L /2, N1

2 /N0
2=0, and �u=�l=�. The plot for the approxi-

mately piecewise-constant profile is generated using
� /L�0 �the actual value being at the vertical resolution of
the code z=0.01L� and the plot for the smooth analytic
profile is generated using � /L=0.1. The latter relative inter-
face thickness was chosen to be sufficiently large to intro-
duce an obvious smooth transition in N2 while still being
small enough that N2�0�=0, as shown in the sketch to the
right of Fig. 1�b�.

The resulting plots are similar both qualitatively and
quantitatively. In both cases, for fixed k, transmission coef-
ficients are greatest if �=N0 /�2, which corresponds to wave
propagation in the strongly stratified region moving in a di-
rection from the vertical of 	�45°. For fixed �, transmis-
sion decreases as kL becomes large corresponding to increas-
ing depth of the mixed region relative to k−1.

Discrepancies between the two transmission plots can be
seen more clearly by subtracting the two plots, as shown in
Fig. 1�c�. Differences on the order of 10% are seen for very
small values of � /N0 due to the change in � /L; otherwise,
the difference in transmission is negligible. The transmission
coefficient has also been computed for � /L=0.2 �not shown�
and the difference between this and the � /L=0.0 case is
given in Fig. 1�d�. Doubling � gives substantially larger
transmission for small � /N0 with little change noted for sig-
nificantly nonhydrostatic waves. For this relatively large
value of � /L, the actual minimum value of the N2 profile is
Nmin�0.14N0. So waves do not become evanescent if their
frequency is smaller than Nmin. This explains why low fre-
quency waves transmit more effectively as � increases.

Even if � is moderately larger than Nmin, enhanced trans-
mission occurs in part because the effective depth of the
evanescent region is reduced. For example, consider incident
waves with frequency �=0.2N0 and horizontal wave number
k=1.0 /L. With �=0.2L, the distance over which the waves
are evanescent is Leff�0.36L and their computed transmis-
sion coefficient is T=0.276. The corresponding transmission
coefficient for these waves crossing the piecewise-constant
N2 profile having �=0 is T=0.100, but with kLeff=0.36 it is
Teff=0.53. Computing the transmission coefficient for waves
with �=0.2N0 and kL=0.36 that cross a piecewise-constant
N2 profile having N1=0.14N0 gives a similar value: T=0.54.
Thus, with ��Nmin, it is primarily the effective depth of the
evanescent region that determines their enhanced transmis-
sion. If � is moderately larger than Nmin, the depth is small.
If � is moderately smaller than N0, the depth is close to L.
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So transmission is enhanced with ��0, but the relation-
ship between T and the effective depth of the tunneling re-
gion particularly for incident waves with horizontal wave
numbers k�1 /L is nontrivial. The dispersion relation for
internal waves in fluid with buoyancy frequency N0 gives kL
as a function of � /N0 for given relative vertical wave num-
ber kzL. This is plotted as the superimposed white lines in
Figs. 1�c� and 1�d� for kzL=� /2, 3� /2, and 5� /2. The
curves show no correlations between enhanced transmission
with the vertical wave number relative to �, though we show
next that transmission is enhanced in proximity to these
curves if N1�0 and ��N1.

We next consider the circumstance in which the middle
region is weakly stratified instead of well-mixed. This situa-
tion corresponds more closely to the atmosphere, in which
the mesosphere is bounded by the relatively strongly strati-
fied stratosphere and ionosphere and it is representative of
the ocean where the seasonal and main thermoclines straddle
relatively weakly stratified water. It is also the circumstance
of the laboratory experiments we report here.

Figure 2 examines transmission through an N2 profile
with zu=L /2, zl=−L /2, N1

2 /N0
2=0.5, and �u=�l=�. As

above, it compares transmission coefficients through an ap-
proximately piecewise-constant profile with � /L=0.01, 0.1,
and 0.2.

In Figs. 2�a� and 2�b�, there are now two distinct trans-
mission regimes: one with 0���N1 and one with N1��
�N0. In the latter case, the plot exhibits similar behavior as
in Fig. 1: for fixed �, transmission drops off as kL increases.
However, if ��N1, transmission remains large for all kL
because the wave frequency is smaller everywhere than the
background buoyancy frequency. The banded pattern in this
range is due to the resonance of plane waves within the

weakly stratified region occurring if the vertical wave num-
ber of the plane wave in the weakly stratified region is ap-
proximately an integer multiple of � /L.9,19 If � is non-
negligible, transmission is enhanced in this banded region
because the depth of the weakly stratified region is not as
precisely given by L, allowing a greater range of plane waves
to be resonant. The difference in transmission rates between
the � /L=0.1 and 0.0 cases and between the � /L=0.2 and
0.0 cases is shown explicitly in Figs. 2�c� and 2�d�. As in the
case with N1=0, increasing � increases the difference but
does not substantially change the qualitative structure of the
plot. That the constant-kzL curves somewhat follow the con-
stant contours of enhanced transmission is a consequence of
the resonance condition whereby an approximately integer
multiple of half-vertical-wavelengths span the depth of the
weakly stratified region.

Between the two regimes, where ��N1�Nmin, the
transmission changes rapidly with � for kL�2. We will refer
to this as the “transition region.” For incident waves having
frequencies and horizontal wave numbers in the transition
region, uncertainties in � or N1 lead to large uncertainties in
the transmission coefficient.

C. Wave beam transmission

So far we have examined the theory for transmission of
plane waves. We will now extend this theory to that for wave
beams which are monochromatic in time but horizontally
localized in space. Assuming the waves are small-amplitude,
we can use the fact that wave beams are a superposition of
plane waves to do this. Here we will consider the transmis-
sion of a wave beam having fixed frequency but which is
horizontally localized, as is the case of waves generated from

FIG. 1. �Color� Plots of the transmission coefficient T�k ,� ;� /L ,N1
2 /N0

2� for tunneling across an unstratified layer. The background N2 profile is given by Eq.
�14� with N1=0 and transition depth �u=�l�� prescribed such that �a� � /L�0.0 and �b� � /L=0.1. The corresponding N2 profiles are shown to the right of
both plots. The difference in transmission coefficients between the � /L=0.1 and 0.0 cases and between the � /L=0.2 and 0.0 cases is given in �c� and �d�,
respectively. �Note the different color scales in these figures.� The superimposed white lines on �c� and �d� are plots of kL vs � /N0 for constant kzL=� /2,
3� /2, and 5� /2, as indicated. The code used to compute T is inaccurate where � is very small and is blacked out in this region of parameter space.
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a cylinder oscillating at fixed frequency. The approach is
similar to the Fourier transform approach of Kistovich and
Chashechkin20 and of Mathur and Peacock,12 except that
here we require the horizontal extent of our domain to be
finite, and so we cast our formula as a Fourier series.

When dealing with wave beams, as opposed to plane
waves, the expressions for the transmission coefficients now
depend on what field is used to describe the amplitude of the
incident and transmitted waves. In particular, by forming a
Fourier series of the vertical displacement field � of the in-
cident waves at a horizontal location prior to reaching the
mixed region, the vertical displacement amplitudes A�n of
waves with horizontal wave number kn are determined. Here,
kn=n2� /Lx is the wave number of the nth mode in a domain
of horizontal extent Lx. The energy flux of each plane wave
component of the incident wave beam is given by Eq. �9�
with A�→A�n. Using Eq. �10�, we can then predict the en-
ergy flux of the corresponding transmitted plane wave com-
ponent where the transmission coefficients are calculated nu-
merically for each kn and fixed �.

The transmission coefficient compares the total energy
flux of the waves having passed through the mixed region to
the total energy flux of the incident waves

Tthy =

�
n

N3

2kn
cos2 	 sin 		A�n	2Tn

�
n

N3

2kn
cos2 	 sin 		A�n	2

=

�
n

1

kn
	A�n	2Tn

�
n

1

kn
	A�n	2

. �15�

Here, Tn is the transmission coefficient for plane waves with
horizontal wave number kn. In the last expression we have
used the fact that � �and hence 	� is the same for all wave
components.

For the purposes of comparison with experiments, we
characterize the wave structure in terms of the time rate of

change of the perturbed squared buoyancy frequency given
by Eq. �6�. By composing a Fourier series of Nt

2 in the hori-
zontal x-dimension, we have, in terms of the discrete hori-
zontal wave number kn, that

Nt
2 = �

n=−N

N
1

2
Aneiknx, �16�

in which we have used the notation An�ANt
2n to represent the

amplitude of the nth mode of the Nt
2 field which has wave

number kn. The maximum mode number N is set so that
�N�2� /kN=Lx /N is much smaller than the observed char-
acteristic length scale of the wave beam. The complex am-
plitude An has magnitude equal to the half-peak-to-peak am-
plitude of the Nt

2 field corresponding to the nth mode. To
ensure the field is real, A−n=An

�, in which the star denotes
complex conjugate.

Equation �7� relates the amplitude of the vertical dis-
placement field to the amplitude of the Nt

2 field for plane
waves. Combining this with Eq. �15�, the transmission coef-
ficient defined in terms of amplitudes of the Nt

2 field is

Tthy =

�
n

1

kn
2 	An	2Tn

�
n

1

kn
2 	An	2

. �17�

III. EXPERIMENT METHODS

A. Experiment setup

Experiments were performed in a glass tank 197 cm in
length, 20 cm in width, and 50 cm in height. The tank was
filled to a depth of either 30 or 45 cm with salt-stratified fluid
using the standard “double bucket” technique.21 The stratifi-

FIG. 2. �Color� As in Fig. 1 but showing plots of transmission coefficient computed for tunneling across a weakly stratified region in which N1
2 /N0

2=0.5 and
with �a� � /L�0.0 and �b� � /L=0.1. The difference in transmission coefficients between � /L=0.1 and 0.0 case and between � /L=0.2 and 0.0 cases is given
in �c� and �d�, respectively. In each plot the vertical dashed lines indicate values of �=N1.
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cation was established such that the density at the bottom of
the tank was approximately 1.05 g /cm3 and the density at
the top of the tank was approximately 1.00 g /cm3. A front
view schematic of the tank is shown in Fig. 3.

A conductivity probe was used to measure the back-
ground density field �̄�z�. The vertically traversing probe di-
rectly measures voltage approximately 56 times/cm and, in-
terpolating from the calibration solutions, these were
converted to densities.

Internal waves were produced by a vertically oscillating
circular cylinder.22 In different experiments, one of two cir-
cular cylinders were used having radii R=1.0 cm and
R=2.4 cm. The cylinder was attached to a vertical rod sus-
pended from a main arm which in turn was attached to the
oscillating motor, as shown in Fig. 3. A pivot was used to
steady the main arm and a guide near the top of the rod was
used to keep its oscillations vertical. The cylinder was posi-
tioned near the top left side of the field of view so that the
beam traveling right and downward �the primary beam�
could be viewed clearly by the camera. The cylinder was
placed sufficiently below the surface so that the right and
upward-propagating beam did not interfere significantly with
the primary beam upon reflection from the surface. The two
beams generated to the left of the cylinder were able to
propagate freely to the far left end of the tank and did not
interfere with the primary beam. The waves were generated
with frequency � equal to the cylinder oscillation frequency
�c and the angle 	 to the vertical formed by the cross-
pattern of wave beams was set by the frequency relative to N
through the relation �8�. The range of frequencies examined
was restricted to 0.3��c /N0�0.5. Experiments with
�c /N0�0.3 produced a primary beam whose angle to the
vertical was so large �	�70°� that the transmitted beam
was outside the camera’s field of view. Experiments with
�c /N0�0.5 produced an upward-propagating beam emanat-
ing from the cylinder which reflected off the surface and
interfered significantly with the primary beam.

The rate of dissipation due to viscosity is estimated by
�R−2, in which it is assumed the cross-beam wavelength

scales with the cylinder radius R.23–25 In these experiments,
the dissipation rate ranges from 0.01 to 0.002 s−1. So the
time for significant loss of energy due to viscosity is on the
order of 100 and 500 s for small and large cylinder experi-
ments, respectively. In comparison, the vertical group veloc-
ity �given below Eq. �9�� is on the order of 1 cm/s consistent
with our observation that the wave beam reaches steady state
from the top to bottom of the domain after approximately
30 s. The time to pass from the top to the bottom of the
tunneling region over a distance less than 10 cm is therefore
significantly shorter than the viscous dissipation time. For
this reason, viscosity is not expected to play a significant role
in the wave dynamics.

In our examination of internal wave propagation in non-
uniformly stratified fluid, we specifically studied the trans-
mission of a wave beam through a relatively weakly strati-
fied layer at mid-depth in the tank. The method of creating
this weakly stratified region follows the procedure by
Sutherland.26 A gate is inserted on the right side of the tank a
distance of LL=18.5 cm or 14.5 cm from the right wall and
the fluid in the lock behind the gate is mixed thoroughly �see
Fig. 3�. The gate was then quickly vertically removed releas-
ing an intrusive gravity current that propagated horizontally
into the ambient stratified fluid at mid-depth. After the sys-
tem became stationary once more, the process had created a
region of weakly stratified fluid between 3 and 4 cm depth.
For successive experimental runs the procedure was re-
peated, broadening the depth of the mixed region and de-
creasing its minimum stratification. Each experiment has
four or more runs with the first run always being with uni-
formly stratified fluid. The background density profile �̄�z� is
measured before and after each run of the experiment. Ex-
amples of density profiles taken after successive runs of one
set of experiments are shown in Fig. 4.

Each nonuniform density profile is then empirically fit to
a smooth analytic formula of the following form:

ρ̄

zgate

HT

LT LL

guide

hinge
pivot motor

FIG. 3. Front view of the experimental setup for the oscillating cylinder
experiments. A circular cylinder is vertically oscillated using a motor. A
camera is positioned with its field of view �dotted box� including the pri-
mary beam propagating downward and to the right �solid lines�. The
surface-reflected beams and the beams traveling to the left of the cylinder
are not of significance here, as indicated by the long dashed lines. The solid
line in the graph on the right shows the density profile of uniformly stratified
fluid and the dotted line shows the profile after mixing at mid-depth by the
passage of an intrusive gravity current.
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FIG. 4. Four density profiles measured after successive intrusions in one set
of experiments. The solid line plots the uniform stratification created by
using the double bucket method. The long dashed, short dashed, and dotted
lines plot the density profiles created after repeated intrusions were released
at mid-depth causing the depth of the mixed layer to increase.
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�̄�z� = �0 + ��0

g
��zmax − z�N0

2 − � �0

2g
��N0

2 − N1
2�

� ��uLC� z − zu

�u
� − �lLC� z − zl

�l
� + zu − zl� .

�18�

Here, for brevity, we have defined LC�Z�=ln�cosh�Z��, func-
tions that were chosen because their structure formed a good
fit to the experimental profiles. Using Eq. �2�, the density
profile �18� corresponds to the squared buoyancy frequency
given by Eq. �14�.

The points of maximum curvature at the edges of the
mixed region were used to find zu and zl. N0 and N1 were
found from the slope of the best-fit lines to their respective
regions of the density profile. By symmetry of the way in
which the mixed region was formed, we assume the upper
and lower stratifications were the same and also that �u=�l

=�. These parameters were found from density profiles be-
fore and after and experiment and the resulting pair of den-
sity profiles were averaged.

Figure 5�a� shows the measured density profile and the
analytic fit to it, taken from an experiment after a single
intrusion has partially mixed the tank at mid-depth. The
resulting parameters were found to be N0=1.11 s−1,
N1=0.43 s−1, zu=−8.20 cm, zl=−11.40 cm, �=0.90 cm,
and �0=1.01 g /cm3. With these parameters, the correspond-
ing N2 profile �14� is determined as shown in Fig. 5�b�.

Note that the actual minimum of N, Nmin, is significantly
larger than N1 if ��0.2L. And so we expect the resulting
slope of the density profile at mid-depth to be larger in mag-
nitude than the measured slope, which was used to find N1.
However, comparing the analytic density profile to measure-
ments �as in Fig. 5�a��, the difference in slopes is hardly
distinguishable by eye. Separately we have performed a re-
gression analysis in an attempt to determine optimal values
of N1, �, zl, and zu that fit the measured density profile.
However, we found no clear convergence to a unique set of
these variables. Of course due to significantly noisier in situ
observations of the atmosphere and ocean and due to ex-
trapolation of observations from the location of observed
profiles to internal wave propagation sites of interest, clearly
identifying the minimum in the N2 profile would be more

challenging in practice. As a way to emphasize the uncer-
tainty in determining the actual value of N at mid-depth, in
our analysis of results we use the difference of Nmin and N1

as an objective estimate of the error in the measurement of N
in the weakly stratified region. Given the empirically deter-
mined N2 profile, we can then predict the transmission coef-
ficient for waves of given frequency and horizontal wave
number. These predictions are sensitive to the actual mini-
mum value of N2 for waves in the transition region.

B. Synthetic schlieren technique

In order to measure the properties of internal waves in
the tank, the two-dimensional synthetic schlieren method
was used.25 In our application, we placed an image of hori-
zontal black and white lines behind the tank and illuminated
it from behind with a bank of fluorescent tubes. Internal
waves cause isopycnals alternately to compress together and
to stretch apart. The corresponding refractive index changes
cause the path of light traveling through the tank from the
image to the camera to deflect. Thus the camera records an
apparent distortion of the image from which the correspond-
ing changes to the density gradient in the tank may be mea-
sured nonintrusively. The procedure is illustrated in Fig. 6.

A camera recording at 30 frames per second was placed
approximately 280 cm in front of the tank. The camera’s
field of view was the region to the right and below the cyl-
inder producing an image measuring approximately 30 cm

1 1.025 1.05
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FIG. 5. �a� Background density and �b� N2 profiles for oscillating cylinder
experiment 1b. In �a�, the thick gray line is the experimental background
density profile and the dashed black line is its best-fit analytic curve.
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(a) Snapshot at t = 50 s
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t (x, z) at t = 50 s

FIG. 6. �a� A snapshot taken from an experiment t=50 s after the cylinder
centered at the origin begins oscillating. �b� A vertical time series taken
12 cm to the right of the center of the cylinder, �c� its processed Nt

2 vertical
time series, and �d� a snapshot of the processed Nt

2 field. The vertical line in
�d� indicates the location of the vertical time series. The Nt

2 field ranges from
�0.1 to 0.1 s−3 with the grayscale indicated in �c�. In this experiment, the
stratification is uniform �N2 constant� so the primary beam propagates at a
constant angle to the vertical from the upper-left to the lower-right corner of
the image. The surface-reflected beam is evident above the primary beam. In
this experiment, N0=1.08 s−1 and �c=0.50 s−1.
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�30 cm. The resolution was approximately 15 pixels/cm in
both spatial directions. Figure 6�a� shows a snapshot taken
50 s after the cylinder started to oscillate. The apparent dis-
placement of the black and white lines behind the tank is
only barely discernible by eye near the cylinder itself �which
is centered at the origin�. The digital camera can record in-
tensity changes not discernible by eye, effectively monitor-
ing displacements as small as 1/30th of the pixel extent, or
about 0.002 cm.

In practice, a sequence was constructed of vertical time
series spaced horizontally by 1 cm. From these we accurately
measured the frequency of the oscillating wave generator and
confirmed that waves were generated with the same fre-
quency. The apparent rate of displacement of the image of
lines is proportional to the time rate of change of the squared
buoyancy frequency due to waves �Nt

2�. Working with this
field has the effect of removing long timescale changes
within the tank. Amalgamating the resulting vertical time
series, a snapshot of the Nt

2 field can be constructed at any
time.

C. The Hilbert transform

In general, the Hilbert transform takes a function and
shifts its phase by 90°, thus putting a real function into the
complex plane. Previous studies have used the Hilbert trans-
form on roll waves and hydrothermal traveling waves to de-
modulate the signal.27,28 It has recently been applied to inter-

nal gravity waves as a technique for separating the four wave
beams emanating from an oscillating source.29 As in that
work, we use the Hilbert transform to separate upward from
downward-propagating waves in a vertical time series.

Figure 7 shows an example of applying the Hilbert trans-
form to data from a laboratory experiment in which internal
waves generated by an oscillating cylinder partially transmit
through a weakly stratified region. A vertical time series im-
age and a snapshot of the Nt

2 field taken after four buoyancy
periods �time�50 s� is shown in Figs. 7�a� and 7�b�. The
corresponding Hilbert transform-filtered images are shown in
Figs. 7�c� and 7�d�, the filtering performed to reveal only the
downward-propagating waves.

For the purposes of studying internal wave transmission,
we keep only waves with positive vertical wave number
thereby filtering out upward-propagating beams. This means
that the part of the primary beam that reflects off the mixed
region is removed as well as the transmitted beam after it
reflects off the bottom of the tank.

D. Comparing theory with experiments

Once the measured Nt
2 field is filtered by the Hilbert

transform to extract only downward-propagating waves, we
are able to measure the structure of the incident wave beam
independent of the reflected beam. From this, together with
the measured structure of N2�z�, we may use Eq. �17� to
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FIG. 7. �a� Vertical time series of the Nt
2 field taken at x=12.01 cm from the

center of the cylinder and �b� the snapshot image of this field at time
t=50 s. �c� The Hilbert transform is applied to the time series to filter out
signals with negative vertical wave number �upward-propagating waves�.
�d� The corresponding filtered snapshot image. Vertical black lines in �b� and
�d� indicate the position at which slices are taken to construct the vertical
time series in �a� and �c�, respectively. The images are taken from experi-
ment 1b with corresponding density and N2 profiles shown in Fig. 5. In all
four frames, the Nt

2 field ranges from �0.1 to 0.1 s−3 as indicated by the
inset grayscale in �a�.
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FIG. 8. �a� The Hilbert-filtered snapshot also shown in Fig. 7�d� but here
with horizontal lines indicating levels at which the structure of incident and
transmitted waves are computed. The field ranges from �0.1 to 0.1 s−3 as
indicated by the grayscale to the right. The power associated with the Fou-
rier series amplitudes computed from the Nt

2 field along a horizontal slice
taken �b� above the weakly stratified region and �c� below it as indicated by
the values of z in the plot label.
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predict the proportion of energy that transmits through the
mixed region to the strongly stratified region below. The re-
sults may be compared with the measured relative energy
associated with the beam that transmits below the mixed
region.

Specifically, snapshots of the filtered Nt
2 wave field are

taken once the primary beam has reached steady state. For
the oscillating cylinder experiments, steady state is reached
after four buoyancy periods �less than 30 s�. Horizontal slices
are taken through the snapshot above and below the mixed
region at zu+� and zl−�, respectively. Taking these slices a
distance � away from the mixed region ensures that an un-
obstructed signal of the wave structure is captured, as shown
in Fig. 8. Fourier series of these horizontal slices are taken,
obtaining a sequence of amplitudes AIn and ATn, respectively,
above and below the mixed region for each wave number
kn=n2� /Lx, in which Lx is the horizontal extent of the im-
age’s field of view.

An example of this procedure is shown in Fig. 8. A
horizontal slice of the Nt

2 snapshot above the mixed region
is taken at zu+�=−8.20 cm+0.90 cm=−7.30 cm and a
horizontal slice below the mixed region is taken at zl−�
=−11.40 cm−0.90 cm=−12.30 cm, where z=0 is the cen-
ter of the cylinder. A Fourier series in the x-direction is per-
formed on both slices resulting in a plot of Fourier ampli-
tudes An=ANt

2�kn� for plane waves with discrete horizontal
wave numbers, kn. In the particular instance shown in Fig.
8�a�, the upward-propagating beam from the cylinder reflects
from the surface and partially interferes with the primary

downward-propagating beam from the cylinder. However,
windowing the time series to remove the secondary beam,
we find this negligibly changes the magnitude of the Fourier
amplitudes.

From the incident amplitudes, the predicted relative en-
ergy transmission is given by Eq. �17� with An=AIn. Sepa-
rately, we measure the relative energy transmission as

Tobs =

�
n

1

kn
2 	ATn	2

�
n

1

kn
2 	AIn	2

. �19�

The comparison of results is presented in Sec. IV.

IV. RESULTS

We begin by showing the results of experiment 1b in
which a cylinder with radius R=2.43 cm oscillates vertically
at a frequency �c=0.50 s−1 and half-peak-to-peak amplitude
A=0.43 cm. The density and N2 profile is that shown in Fig.
5. Note that �c

2�0.25�N1
2, so partial reflection and trans-

mission is anticipated. Figures 7 and 8 show corresponding
Hilbert-filtered images and the discrete amplitude spectrum
of the incident and transmitted waves.

The amplitudes and horizontal wave numbers from the
upper �incident� and lower �transmitted� horizontal slices are
used to calculate the experimental transmission coefficient of

TABLE I. Table of parameters and predicted and computed transmission coefficients for six sets of experi-
ments. Within each set, the depth of the mixed region, measured by L, increases. The error estimates in the
measurement of �c, N0, �, and L are shown in the second line of the table. Values of N1 computed from the
measured slope of the density profile at mid-depth underestimate the minimum value of the analytic profile for
N given by Eq. �14�. The value of Nmin is greater by the amount shown in parentheses. The difference between
Tobs and Tthy is greatest if �c /N1 is sufficiently close to unity and the error in N1 is sufficiently large.

Expt.
�c

�s−1�
N0

�s−1�
N1

�s−1�
�

�cm�
L

�cm� N1 /N0 � /L kcL �c /N0 �c /N1 Tobs Tthy

1b 0.50 1.11 0.43 �+0.06� 0.90 3.20 0.38 0.28 0.93 0.45 1.17 0.68 0.52

1c 0.50 1.16 0.46 �+0.01� 1.00 5.95 0.40 0.17 1.66 0.43 1.08 0.28 0.27

1d 0.50 1.20 0.34 �+0.01� 1.35 7.75 0.28 0.17 2.08 0.42 1.49 0.14 0.08

2b 0.51 1.40 0.42 �+0.07� 0.80 3.25 0.30 0.25 0.77 0.36 1.21 0.36 0.53

2c 0.51 1.40 0.33 �+0.09� 0.75 3.15 0.24 0.24 0.74 0.36 1.52 0.39 0.51

2d 0.51 1.51 0.00 �+0.31� 1.65 6.30 0.0 0.26 1.38 0.34 �1 0.18 0.23

2e 0.51 1.55 0.06 �+0.14� 1.75 8.45 0.04 0.21 1.80 0.33 8.27 0.07 0.09

3b 0.47 1.38 0.27 �+0.20� 1.10 3.50 0.20 0.31 1.88 0.34 1.73 0.09 0.49

3c 0.47 1.41 0.18 �+0.14� 1.55 6.20 0.13 0.25 3.24 0.33 2.64 0.04 0.16

3d 0.47 1.48 0.00 �+0.31� 1.55 8.15 0.0 0.19 4.08 0.32 �1 0.04 0.06

4b 0.52 1.43 0.40 �+0.13� 1.40 4.75 0.28 0.29 2.71 0.36 1.30 0.21 0.47

4c 0.52 1.52 0.36 �+0.05� 1.60 7.55 0.23 0.21 4.05 0.34 1.46 0.07 0.11

4d 0.51 1.60 0.00 �+0.19� 1.80 8.95 0.0 0.20 4.47 0.32 �1 0.02 0.02

5b 0.52 1.48 0.52 �+0.06� 1.30 5.20 0.35 0.25 2.86 0.35 1.00 0.22 0.62

5c 0.52 1.53 0.27 �+0.10� 1.60 6.95 0.18 0.23 3.71 0.34 1.92 0.11 0.08

5d 0.52 1.60 0.18 �+0.10� 2.00 9.30 0.11 0.22 4.74 0.32 2.88 0.04 0.04

6b 0.52 1.43 0.26 �+0.28� 1.35 3.80 0.18 0.36 2.17 0.36 2.02 0.18 0.55

6c 0.52 1.52 0.45 �+0.06� 1.80 7.55 0.29 0.24 4.07 0.34 1.17 0.06 0.38

6d 0.52 1.57 0.14 �+0.08� 1.65 8.48 0.09 0.19 4.40 0.33 3.77 0.03 0.02

106601-9 Transmission and reflection of internal wave beams Phys. Fluids 22, 106601 �2010�

Downloaded 14 Jul 2011 to 129.128.216.34. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



the beam from Eq. �19�. In the case of experiment 1b, 68%
of the incident energy was observed to pass through the
mixed region.

The theoretical wave beam transmission coefficient
based on the upper slice alone was calculated using Eq. �17�,
in which the corresponding transmission coefficients Tn were
calculated numerically for each kn and with �c constant.
The prediction of 52% transmission in the case of experi-
ment 1b is moderately smaller than the observed transmis-
sion coefficient.

The parameters and transmission coefficients for the ex-
periments �with sets labeled 1–6� are listed in Table I. Suc-
cessive intrusions are launched between different experi-
ments within a particular set. The first experiment in a set
�labeled “a”� has uniform stratification. As expected, the
waves propagated along a straight line with no partial reflec-
tion evident and so these trivial results are not shown in the
table. In successive experiments within a set �sublabeled “b,”
“c,” etc.�, the mixed layer depth L becomes progressively
larger with the exception of experiments 2b and 2c, for
which no intrusion was launched between experiments.

In the oscillating cylinder experiments, the horizontal
wave number spectrum of the incident wave typically peaks
around a characteristic value

kc �
2�

4R
cos 	 , �20�

consistent with theory.24

In each set the cylinder radius and wave frequency are
fixed. Hence the characteristic horizontal wave number kc

given by Eq. �20� is fixed. Therefore the parameter kcL in-
creases between successive experiments and the transmission
coefficient is expected to decrease. This is indeed the case, as
shown in the last two columns of Table I.

Although in most cases the theoretical transmission pre-
diction agrees well with experiments, some of the results
reveal significant discrepancies. We focus on three specific
experiments to explain the origin of the discrepancies.

Consider experiment 3b, in which the observed transmis-
sion is much smaller than the theoretical prediction. For

moderately large kcL, the transmission varies rapidly with
� /N0 when �c is close to Nmin. This is shown in Fig. 9,
which plots the theoretical transmission coefficients for a
range of � and k for this experiment. The theoretical trans-
mission coefficient Tthy=0.49 occurs at �c /N0=0.34 and
kcL�1.88, as indicated by the black dot in Fig. 9. The figure
shows that a small error in the experimental measurement of
N1 gives rise to large changes in the predicted transmission
coefficient. Indeed, because ��0.3L the minimum value of
N�z� determined from the graph on the right-hand side of
Fig. 9 is 70% larger than the measured value N1 used to
compute the N2 profile. This moderate overestimate of the
stratification of the mixed region results in a significant over-
prediction of the transmission coefficient from the observed
value of Tobs=0.09.

Although in experiment 5d there is a large discrepancy
between the minimum value of N�z� and the measured value
of N1, the experimental and theoretical transmissions are
relatively low and are in good agreement. The reason is evi-
dent in Fig. 10, which shows a plot of theoretical transmis-
sion coefficients for a range of � and k for this experiment.
At the cylinder frequency and characteristic wave number kc,
the theoretical transmission coefficient is Tthy=0.04. The
value is small because the waves are significantly evanescent
in the tunneling region. The frequency and wave number
themselves lie well away from the transition region so the
transmission coefficient does not vary significantly with er-
rors in the measurement of N. Thus there is little difference
between the predicted and measured value Tobs=0.04.

Finally we consider experiment 1c, whose experimental
and theoretical transmissions are relatively high and are in
good agreement. Figure 11 shows a plot of theoretical trans-
mission coefficients for a range of � and k for this experi-
ment. The theoretical transmission coefficient Tthy=0.27 oc-
curs for N1��c�Nmin, which is near the transition region.
Although the predicted transmission is sensitive to errors, in
this case the minimum value of N and the value of N1 differ
by less than 0.01 s−2. Thus the prediction well matches the
measured transmission of Tobs=0.28.
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FIG. 9. Grayscale contours of the theoretical transmission coefficient �left�
as a function of k and � for the background N2 profile �right� of experiment
3b. The black circle on the transmission plot indicates the theoretical
transmission coefficient for this experiment, where �=�c and k=kc. The
vertical dashed line indicates �=Nmin, the minimum value of N�z�. Here,
Nmin=0.34N0�N1=0.20N0 and �c=1.0Nmin=1.73N1.
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FIG. 10. As in Fig. 9 except showing the theoretical transmission coefficient
and N2 profile for experiment 5d. Here, Nmin=0.18N0�N1=0.11N0 and
�c=1.8Nmin=2.88N1.
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V. DISCUSSION AND CONCLUSIONS

Internal wave beam tunneling through a weakly stratified
layer was studied through the analysis of laboratory data and
compared with an adaptation of existing theory. Internal
waves were generated by a vertically oscillating cylinder
producing a cross-pattern of wave beams. Experimental
transmission coefficients were measured explicitly by finding
the amplitudes of the plane waves of the beam above and
below the mixed region. Theoretical transmission coeffi-
cients were computed using a numerical code that separately
determined the transmission of the plane wave components
associated with a wave beam. We found that the transmission
coefficient is sensitive to small measurement errors in the
background buoyancy frequency if the mixed region was
sufficiently deep �kcL�2� and the wave frequency was close
to the minimum buoyancy frequency of the weakly stratified
region.

The results have important consequences for predicting
the evolution of internal waves generated by localized
sources in the atmosphere. For example, internal waves gen-
erated by penetrative convection at thundercloud tops are
frequently observed to be quasimonochromatic with frequen-
cies comparable to the buoyancy frequency of the
mesosphere,16,17,30 Likewise, flow over isolated topography
creates quasimonochromatic internal waves whose frequency
is set by the background flow speed at ground level and the
characteristic horizontal extent of the hill. Ducted internal
waves are trapped in a layer outside of which their Doppler-
shifted frequency is greater than the local buoyancy fre-
quency. If they are evanescent far from the layer in which
they are trapped, they are said to be strongly ducted. In a
leaky duct, the depth of the evanescent region is comparable
to or smaller than the horizontal wavelength of waves in the
duct and above this evanescent region, the relative wave fre-
quency is sufficiently small once more so the waves can
propagate. This circumstance has been examined using
Fourier-ray tracing methods6,31 applied particularly to the
study of internal waves generated by Jan Mayen Island. In
this case, the waves had characteristic frequency and wave
number that put them in the transition region where the
transmission coefficient changes rapidly with small changes
in wave frequency. Because atmospheric observations are
likely not taken directly at the location of an observed leaky

duct, the estimate of N2 would differ from the actual in situ
profile. Therefore, estimates of the rate at which energy
escapes from the duct could be wrong by an order of
magnitude.

The same conclusion holds for studies of internal wave
tunneling between the seasonal and main thermocline in the
ocean: the ability to predict accurately the energy transport
by incident downward-propagating waves would be poor if
the wave frequency is comparable to the minimum buoyancy
frequency between the thermoclines. Because measurements
of the density profile in the ocean are sparse, predictions of
energy transfer can be considered accurate only if the waves
have characteristic frequencies and wave numbers lying out-
side the transition region. Internal waves generated by sur-
face processes are not so well understood as the generation
of monochromatic wave beams by tidal flow over bottom
topography. The frequency of the latter, being close to the
Coriolis frequency, is so much smaller than the minimum of
N between the seasonal and main thermocline that the waves
lie well outside the transition region. However, recent studies
have shown that Langmuir circulations32 and the collapse of
mixed regions33 generate downward-propagating internal
waves with a relatively narrow frequency band moderately
below the local buoyancy frequency. Assessing whether or
not these waves are able to propagate into the abyss requires
careful assessment of the ambient conditions.
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