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Fully nonlinear numerical simulations are performed to examine the behavior of large-amplitude
internal gravity waves incident upon a level where the Doppler-shifted frequency of the waves is
comparable to the background buoyancy frequency. Although linear theory predicts that the waves
should reflect if the Doppler-shifted frequency is greater than the buoyancy frequency, it is found
that nonlinear effects may greatly enhance the transmission of a wave packet across a reflecting
level. If the Doppler-shifted frequency is moderately less than the buoyancy frequency, then
nonlinear effects may greatly enhance the reflection of waves. A range of simulations is performed
to characterize the reflection coefficient as a function of the amplitude and spatial extent of the wave
packet. In comparison with horizontally periodic wave packets, it is found that the nonlinearly
enhanced transmission of wave packets is more significant if they are horizontally compact. This
occurs because the wave-induced mean flow effectively increases and decreases the horizontal
phase speed of the waves on the incident and trailing flank of the wave packets, respectively, and
this significantly broadens the frequency spectrum of the wavesl19@9 American Institute of
Physics[S1070-663199)01205-3

I. INTRODUCTION are evanescent, their amplitude decreasing exponentially
with distance from the level. Rigorously, the structure of an
An internal wave is a disturbance propagating under thénternal wave at a reflecting level—a “caustic’—is given by
effects of buoyancy in a fluid whose density varies withlinear theory in terms of an Airy functichLinear theory
height. These waves are known to transport momentum angssumes that the waves are monochromatic and small ampli-
energy vertically through the atmosphere and ocean, angide. The theory may be applied to small-amplitude wave
they may constitute a significant source of drag to the meapackets with a broad frequency spectrum by applying the
flow at levels where they break or dissipate. A great numbeguperposition principle. However, the behavior of large-
of studies have been devoted to understanding the behaviamplitude internal waves at a reflecting level is not so well
of internal waves as they approach a level where the meanmderstood.
flow speed is comparable to the horizontal phase speed of the Here we examine the transmission and reflection of in-
waves(e.g., Brethertori,and recently Winters and D'Asafo, ternal waves across a reflecting level by way of numerical
Lombard and Riley. Also see Lighthill! Sec. 4. This is  simulations employing the fully nonlinear equations of mo-
known as the “critical level.” In theory and as numerical tion. This work is a continuation of the studies by
simulations demonstrate, as internal waves approach a critSutherland,who examined the propagation in nonuniformly
cal level their vertical wavelength decreases to infinitesimaktratified stationary flow of horizontally periodic internal
size and their amplitude increases. Eventually, the waves ewaves incident upon a level where the background buoyancy
ther dissipate or break, and deposit momentum to the meaequency is comparable to the frequency of the incident
flow. If, as is often the case for topographically generatedvaves. Therein it was shown that for vertically compact
waves, the horizontal phase speed of the waves is less thayave packets, depending on whether the stratification de-
the mean-flow speed, then a drag is exerted on the mean flogreases greatly or moderately at a given level, weakly non-
near the critical level. linear effects act either to enhance or diminish, respectively,
Less well studied is the circumstance in which internalthe transmission of internal waves into regions where the
waves encounter a level where the density is almost uniformpuoyancy frequency is small.
In this case, the waves are expected to reflect. More gener- The weakly nonlinear effects are related to what has
ally, waves are assumed to reflect from a level where theibeen called the “self-acceleration” of internal wavesg.,
Doppler-shifted frequency equals the background buoyancgee GrimshaW, Fritts and Dunkertoh. For a horizontally
frequency:>® This is referred to hereafter as a “reflecting periodic, vertically compact wave packet, its phase speed
level,” which is distinct from a critical level. In theory, as changes due to wave, mean-flow interactibfar example,
internal waves approach a reflecting level, their verticalconsider an upward propagating wave packet whose ampli-
wavelength increases. Beyond the reflecting level the waveside decreases with height. At the leading edge of the wave
packet the mean flow accelerates due to the divergence of its
IFax: (780 492-6826; phone: (780 492-0573; electronic mail: associated momentum flux. If the waves are of large ampli-
bruce.sutherland@ualberta.ca; web: http://taylor. math.ualbertaroee tude, the acceleration may be sufficiently large that the wave-
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induced mean flow is comparable to the horizontal grougportion of the incident wave packet that is transmitted may
velocity of the wave packet. In this case, the horizontal phasbe greatly enhanced or diminished.
speed along the leading edge of the waves increases. Like- In Sec. Il the details are given of the numerical model
wise, along the trailing edge of the wave packet the meamsed to simulate the propagation of internal waves. Section
flow decelerates and the horizontal phase speed of the wavséfirst shows the results of simulations of horizontally peri-
decreases. As a consequence of symmetry, the horizontaflic and horizontally compact wave packets in uniformly
wavelength of horizontally periodic waves does not changestratified stationary fluid. These control studies demonstrate
over time. Therefore as the phase speed of the waves ihe effect of self-acceleration upon the wave structure. The
creases and decreases, the frequency increases and decreasssiits are then shown of simulations of internal waves
respectively. propagating in uniformly stratified shear flow. The spectra
In the absence of dissipation, wave breaking or otheand characteristics of the reflected and transmitted waves are
nonconservative processes, the transient passage of the waaalyzed. In Sec. IV, the reflection coefficients are calculated
packet across a fixed vertical level has no permanent effedor a range of simulations of small- and large-amplitude
upon the mean flow at that poitft}* However, the effective wave packets with different horizontal extents. A summary
changes in the wave frequency due to the self-acceleration of these results and their implications to atmospheric and
the waves can significantly affect the behavior of a waveoceanographic modeling are given in Sec. V.
packet incident upon a reflecting level. Sutherfastowed
that as a large-amplitude wave packet approaches a reflecting
level the relative changes in the wave frequency becomé. NUMERICAL MODEL
larger. Due to the superposition of the incident and reflecting . ) ) )
waves, the amplitude of the disturbance increases by as The propagation of a t\No-dlmen_S|onaI wave packet_|s
much as double that of the incident wave packet. Corre€*amined by solving the fully nonlinear, nonhydrostatic
spondingly, the changes in phase speed at the reflecting levefluations of motion with specified initial cond|t|qns for the_
can be four times as large. These changes can act to enharl@Ve packet structure and the background profiles of hori-
the transmission of internal waves across the reflecting levéiontal velocityU(z) and densityp(z). The numerical model
in the following way: as the waves reflect, the frequency of'S de;crlbed in detail in Sutherlgﬁabnly thg salient features
the waves at the trailing edge of the incident wave packefr® given below. Throughout this paper it is assumed that the
decreases, and if this reduced frequency is smaller than tHEW is uniformly stratzlfled, that is, the background squared
buoyancy frequency above the reflecting level, then a propa2uoyancy frequency; = —(g/pog)dp/dz, is constant. Here
gating wave packet is transmitted beyond the reflecting levef IS the gravitational acceleration apgy is a reference value
The wave packet has larger amplitude than one would prle density. The Boussinesq approximation is used, so that the
dict on the basis of linear transient effects alone. background density profile can be written 2¢2)=poo
If no reflecting level exists, weak nonlinearity may none- ~Ap2Z/H, in which H is the height of the domain and
theless affect the transmission of internal waves if the buoy®P (<poo) is the change in density over this height. Char-
ancy frequency is comparable to but greater than th@cteristic time(Z), length (£), and density(Ap) scales are
Doppler-shifted frequency of the incident wave packet. Inused to express the equations Qf _motlon in nondimensional
this case, because the phase speed of the waves on the intM- The equations for the vorticit,=u,—w,, and per-
dent flank of the wave packet increases, the frequency inlroation densityp, fields are
creases. If the buoyancy frequency is smaller than the in-  p¢ ,p .

creased frequency, a proportion of the wave packet reflects ﬁ:Nog D, 1)
that is larger than that predicted on the basis of linear tran-
sient effects. and
In this work, we extend these results to consider the
behavior of a wave packet that is both vertically and hori- ﬁ:W”L D,, 2

zontally compact, and which is propagating in a uniformly
stratified shear flow. A fundamental change in dynamics isn which D/Dt is the material derivative, andandw are the
expected to occur as a result of the breaking of the horizontdiorizontal and vertical velocity fields, respectivelil,
translational symmetry. Whereas a horizontally periodic=N,7 is the nondimensional buoyancy frequency. It has
wave packet is capable of accelerating the mean flow eithdseen assumed that density fluctuations occur on the scale
transiently due to wave—wave interactions, or permanenthbp= LAp/H, in which casep is identical to the nondimen-
due to wave, mean-flow interactions or dissipation, a horisional vertical displacement field, In order to approximate
zontally compact wave packet cannot directly affect thethe motion of inviscid waves while keeping the code numeri-
mean flow. Such a wave packet is capable of acceleratingally stable, the diffusion of the vorticityD,, acts only on
only the background flow across the extent of the wavescales smaller than the horizontal wave number of the wave
packet itself. It is shown that for large-amplitude internal packet. On these small length scalPg= 1/ReV?¢. Like-
waves this horizontal nonuniformity significantly enhanceswise, the diffusion of the perturbation density field acts only
the wave dispersion. As a result, the frequency spectrum afn small length scales in which ca®g=1/Re PW2p. The

the wave packet greatly broadens. As this wave packeReynolds number is set to R4000 and the Prandtl number
propagates in a shear flow toward a reflecting level, the proto Pr=1. Equations(1) and (2) are solved in a horizontally
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periodic channel with free slip boundary conditions using a

mixed spectral-infinite difference code developed originally 5 a) U(z) 6 b)lp(f’z? NN

by Smyth and Peltiel?

The vertical extent of the domain ranges froml00
=<z=100. For horizontally periodic internal waves, the hori-
zontal extent of the domair,,, is set to be exactly one

wavelength. For horizontally compact wave packets, the ~ OF

horizontal extent is set to be,=647=201. Typically, this L

is 10 to 20 times wider than the width of the wave packets

studied. As confirmed by doubling the width of the domain, " \

the periodic boundary conditions have a negligible effect g0 Ll folb— 1 v
upon the evolution of the wave packet. <0 0 -20 -10 0 10 20

The initial wave packet is vertically localized. Over the
extent that the amplitude of the initial wave packet is non-FIG. 1. The(a) background horizontal velocity profile arftl) perturbation
negligible, the background flow is stationary. Explicitly, the density field of an initial wave packet in a typical simulation.
initial wave packet is prescribed in terms of the stream func-

tion ¢(x,2),
. Studies are performed only for wave packets with verti-
px.2) =¥ (xz)ex(kxtkz)]+c.c. ©) cal wave numbek,=\2/2=0.71. This value is chosen be-
In simulations of horizontally periodic internal waves, the cause, withk,=1, periodic internal waves propagate down-
envelope of the wave packet is given by ward with the largest group velocitycy,= —2/33=
—0.38. In this casev=2/3=0.82. From linear theory, an
Wpu(X,2)=Ag expl —[2— 2o/ 7). (4 estimate of the initial amplitude of the vertical displacement
In simulations of horizontally compact wave packets, field is found to beA,=2.4%,. Thus withA,=1, for ex-
ample, the maximum initial vertical displacement is approxi-
W(x,2)=Aq exp —|z— 20|/ o)) exp( — x?120°2). (5  mately 39% of the horizontal wavelength. The vertical extent

of the wave packet is also fixed with,=5, so that approxi-
mately one vertical wavelength spans the depth of the wave
[)acket. The widtho, and amplitudeA, are allowed to vary.

As the wave packet propagates downward into flow moving
at speedU(z), linear theory predicts that the waves are
oppler-shifted with frequenc{)(z) = 0 —k,U(2).

Y The background flow is defined by

Here the amplitude iy, ando, and o, are the horizontal
and vertical extents, respectively, of the wave packet. Fo
finite oy and o,, and small-amplitudd\;, the initial wave
packet defined by Eq(3) and either(4) or (5) may be
thought of as the superposition of monochromatic wave
spanning a broad frequency range centered about a frequenc
w, determined from the wave number vectds, (k,). The
frequencyw is to be estimated from the dispersion relation-  U(z)=U;[1—tanR(z/D)]/2, (7

ship for internal waves in which U, is the flow speed well below the initial wave

_ 2 1.2 packet andD is the depth over which the background

0 =Nok/ Vi ;. ©) changes from stationary flow abore-0 to flow moving at
If 1/oy<k, and 1b,<K, (as in the case in all the studies speedU; below z=0. Throughout we seb=5. The wave
presented hejethe frequency range is sharply peaked aboupacket encounters a reflecting levelUy is sufficiently nega-

w and, for a small-amplitude wave packet, linear theory maytively large. Explicitly, this occurs if U;< J2/3-1
be applied to it as if it were monochromatic. =-0.18.

The qualitative results presented here are not sensitively The coordinate system is chosen so that the flow changes
dependent upon the form of the wave packet envelopes givesboutz=0, and the wave packet is centered initially about
by Egs.(4) and(3). The vertical structure of the envelope is (xqy,25)=(0,25). Thus the wave packet is sufficiently close
set to be exponential because this corresponds to the strud the region where the background flow changes, but the
ture of a growing and decaying wave packet. For horizoninitial wave packet amplitude near=0 is negligible.
tally compact wave packets, the horizontal structure of the  Typically, simulations are run for times betweés 0
envelope is set to be Gaussian in order to be representative ahd 200. From linear theory, we estimate that the wave
a statistical ensemble of waves with wave number spectrurpacket propagates a total vertical distance-ef76 at the end
centeredk, . of a simulation. Therefore, the vertical extent of the domain

For simplicity, the length scale is chosen so that 1 is sufficiently large that the wave packet has negligibly small
and the time scale is chosen so thgt= 1. In the Boussinesq amplitude near the top and bottom boundaries throughout the
approximation, there is no difference in the behavior of up-simulation.
ward and downward propagating wave packets. However, to  Figure 1 shows a typical initial condition for the simu-
be consistent with studies of internal waves propagatindations. Figure {a) shows the horizontal velocity profilé(z)
downward from the ocean surfatethe internal waves are with D=5, andU;=—0.2. In this case, the Doppler-shifted
prescribed initially with positive vertical wave number so frequency of the wave packet as it propagates well bedow
that the waves propagate downward. =0 is 1=1.02, and therefore a reflecting level exists near
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(1) neam| pected for a wave packet that transports forward momentum
5 a) 7(z) b) p(x.2Z) 00z o o002 downward. Figure @) shows the corresponding perturbation
4,=0.01 T * density field, p(x,z) at the same time. Although there has
wl been weak wave dispersion, the diagram demonstrates that

the extent of the wave packet and the tilt of the phase lines
are approximately the same as those of the initial wave

N -50 - packet. The centroid position of the wave packet is calcu-
lated from the weighted average of the momentum flux using
—60 | only values within 95% of the minimum value af The
width is standard deviation of this normalized distribution.
. " At time t=0 the wave packet is found to be centeredz at

-1x10-4 0 -3 -2 -1 0 ' 1 ' 2 ' 3 =25.0, as expected. The width of the wave packet is 3.7,
moderately smaller than thefolding depth,o,=5. At time

c) 7(z) d) p(x,2) -oz2s - .
0 e e SR o t=200 the wave packet is centeredzat —47.2 with width

S=0:12 4.3. According to linear theory, small-amplitude waves are

5 expected to propagate downward at the speed of the vertical
group velocitycy,~—0.38. Thus at tim¢=200, the wave
packet is expected to be localized abast —51, which is

= =80 = moderately deeper than its observed position. This discrep-

ancy occurs because the initial wave packet, being vertically

-60 - compact, is the superposition of internal waves with a range
of vertical wavelengths centered abdyt= \2/2. Thus the

-70 . wave packet is expected to propagate with vertical velocity

moderately less thaqy,.

FIG. 2. The(a) Reynolds stress profile angh) perturbation density field As in Figs. 2a) a‘_nd 2b), Figs. ZC) and Zd) ShOW the
associated with a horizontally periodic wave packet wig=0.01 in a  Reynolds stress profile and perturbation density field, respec-
control simulation at time=200. Diagrams(c) and (d) show the corre-  tively, at timet=200 for a simulation of a large-amplitude
sponding plots for a wave packet wify=0.10. wave packet withAy=0.10. In this case, the dispersion of
the wave packet is more pronounced. The Reynolds stress
profile shows multiple peaks, though the peak at the leading
edge is largest. For this leading peak, the centroid position is
atz=—46.5 and the width of the peak is 4.1. The centroid of
{he wave packet including the trailing peaks izat—44.2

with width 6.1. Thus the effect of weak nonlinearity associ-
ated with the large-amplitude wave packet is to moderately
reduce the average vertical speed of propagation of the wave
. RESULTS packet and to enhance its dispersion.

Here the results are presented of control simulations ex-  In comparison with horizontally periodic wave packets,
amining the propagation of wave packets in uniformly strati-simulations have been performed of horizontally and verti-
fied, stationary flow. These simulations serve to demonstrateally compact wave packets in uniformly stratified stationary
how nonlinearity affects the propagation and dispersion oflow. As in Fig. 2, Fig. 3 shows the Reynolds stress profiles
the waves. Following this the results are presented of a rang&d perturbation density fields at timie=200 taken from
of simulations performed to examine the behavior of internasimulations of small- and large-amplitude wave packets. The
waves incident upon a level in a background shear flownitial horizontal width of both wave packets is,= 10. Fig-
where)/Ny=1. The effect of varying the initial amplitude ures 3a) and 3b) show the structure of a small-amplitude
and horizontal extent of the wave packet is examined. wave packet withA;=0.04. The wave packet undergoes
greater dispersion compared with that of the horizontally pe-
riodic wave packet. At timé= 200, the peak amplitude of

The effect of nonlinearity upon the dispersion of internalthe perturbation density field i’|=0.04, which is almost
waves is demonstrated by comparing the behavior of smallene-third the peak amplitude at tinie= 0. The phase tilt of
and large-amplitude wave packets. The structure of horizonthe waves to the left of the wave packet center is more ver-
tally periodic wave packets at timie= 200 in a simulation are tical and the phase tilt of the waves to the right is more
shown in Fig. 2. Figure @) shows the vertical profile of the horizontal. The position of the centroid of the wave packet at
Reynolds stress per unit masgz)={u’w’), in which u’ this time isz=—48.8 with width 6.6. Thus the wave packet
andw’ are the perturbation horizontal and vertical velocities,is approximately 80% wider than the small-amplitude hori-
respectively, and the angle brackets denote the domain horzontally periodic wave packet shown in Figh2 The aver-
zontal average. The profile is shown for a simulation of aage vertical speed is approximately the same in both cases.
small-amplitude wave packet with=0.01. The Reynolds Figure 3c) shows the Reynolds stress profile and Fig.
stress is negative over the extent of the wave packet as e$(d) shows the perturbation density field at tine200 of a

z=0 in this case. Figure(lh) shows the perturbation density
field p(x,z) of an initial wave packet with amplitudéd,
=0.04 and horizontal extent,=10. The down and right-
ward tilt of the phase lines is consistent with the structure o
internal waves that propagate downward to the right.

A. Control simulations
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| | MEEN a) A,=0.04
4 a) 7(z) b) p(x,2) -005s o0 o005 2 T T y
T T [T R
| A,=0.04 I
-20 -
&1 -
N —40
L
-60 0 |
0.5 1 1.5
-80
—1x10-4 0 .
| | RN
” c) 7(z) -03 0 03 |
| A,=0.40
-20 - 7]
N —40 -
—80 1.5
-80 FIG. 4. Normalized power spectra ¢&) small-amplitude andb) large-

-0.004 0 0 20 40 60 80 100 amplitude compact wave packets at titne200, computed from perturba-
tion density fields shown in Figs(l® and 3d), respectively. Contours are

FIG. 3. As in Fig. 2 but for compact wave packet with width= 10 and in shown by intervals of 0.2.

(a) and(b) A;=0.04, and in(c) and(d) A,=0.40.

large-amplitude wave packet with,=0.40. The dispersion ©f the peak value. The spectrum shown in Fig)4of the

of the wave packet is significant in this case. The wavdarge-amplitude wave packet at titre 200 is much broader.
packet has both broad vertical and horizontal extents. Théhe horizontal wave number is centered abdyt=1.0
position of the centroid of the wave packetzis —38.2 and ~ +0.06, the width about the peak being comparable to that of
its width is 14.1. Thus, among other effects, nonlinearity act§he small-amplitude case. However, the vertical wave num-
to significantly slow the vertical speed of propagation of theber spectrum is more broadly distributed with mekn
wave packet, and this effect is much more pronounced if thé=0.97+0.47. The spectrum exhibits two strong peaks near
wave packet is horizontally compact. As discussed belowk;=0.7 andk,~0.3, and a smaller peak witk,~1.1. The
this is a consequence of the wave—wave interactions that aB@Wer spectrum is greater than 0.1 for valuekpfanging

nonuniformly over the extent of the wave packet to locallyfrom 0.1 to 1.9. This range is three times larger than the
change the phase speed of the waves. corresponding range in the small-amplitude case. Because

the wave number spectrum is broader, the frequency spec-
trum is also broader. Linear theory is used to estimate the
frequency of the waves from the wave number vector. The
The effect of weak nonlinearity upon the spectrum of thefrequency of the waves with peak power ak, (k,)
wave packet is shown in Fig. 4, which contains contour plots=(1,0.3) is 0.96, at K,,k,)=(1,0.7) is 0.82, and at
of the normalized power spectrum of tt@ small-amplitude  (Kx.k;)=(1,1.1) is 0.67. Thus, if the background flou(z),
(A=0.04) and(b) large-amplitude A=0.40) wave packets is not uniform but changes according to EJ) with U,
shown in Figs. &) and 3d), respectively. The power spec- negative, then the proportion of the wave packet that reflects
trum is computed from the square of the components of thés expected to be different for large-amplitude and small-
two-dimensional discrete Fourier transforms of the perturbaamplitude waves. This amplitude-dependent behavior is the
tion density fields. The result is normalized by its maximumresult of weakly nonlinear interactions between the waves
value. The contours in both figures range from 0.1 to 0.9 byand the wave-induced mean flow, otherwise known as the
an interval of 0.2. Figure (&) shows that the internal wave self-acceleration of the wavés.
spectrum for the small-amplitude wave packet is sharply ~As shown by Sutherlantithe wave-induced mean flow
peaked about wave number vectork,(k,)=(1.0 for horizontally periodic internal waves in uniformly strati-
+0.06, 0.6%0.12), close to the wave number vecidr, fied fluid is given approximately by the mean horizontal
0.71) prescribed to the wave packet at tirre 0. The hori-  wave pseudomomentuffl,
zontal and vertical widths in wave number sp#0e)6 and VT
0.12, respectivelyare determined from the standard devia- UsM=-"¢, ®)
tion of the power spectrum calculated for values within 95%in which ¢’ and¢’ are the perturbation vorticity and vertical

B. Wave self-acceleration
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FIG. 6. In (a) a sequence of offset Reynolds stress profiles at times
FIG. 5. Contours of- ' ¢ ™ field (black lines for (a) small-amplitude and  =0,1Q .. .,200, and in(b) the perturbation density field &t=200 from a
(b) large-amplitude compact wave packet in control simulation at time simulation of small-amplitude horizontally periodic wave packet incident
=200. The contours are superimposed on perturbation density (igalp- upon a reflecting level.
scalg which are reproduced from Figs(i8 and 3d), respectively. Contours
are shown by intervals d&) 0.0002 andb) 0.005.
This is comparable to the observed position of the small-
amplitude wave packet, and also to the position of the lower
displacement fields, respectively. This estimate is accurate foeak value ofU of the large-amplitude wave packet. It is
O(A3). The wave pseudomomentum is well defined for hori-interesting to note that the position of the stronger peak value
zontally periodic flows. For compact waves, the effect ofof U is consistent with that expected for a wave packet with
self-acceleration is demonstrated by calculating &’  the largest horizontal group velocity for whichk,(k,)
field and at each point in the field calculating the horizontal=(1/,/2) and €gx+Cq2) =(0.38-0.27). A detailed analysis

average over one Wave|engthq= 29 — §’§, }\x_ The result of the division of an initial Iarge—amplitude wave packet into
is shown in Fig. 5 from simulations at timte=200 for (8) ~ Parts is currently under investigation, but beyond the scope
small-amplitude A=0.04) and (b) large-amplitude A&  of this paper.

=0.40) wave packets in stationary, uniformly stratified fluid.

The gray scale shows the perturbation density field at thig. Periodic internal waves in a shear flow

ti f Figs. . i
ime, reproduced row&i) and 3d). Superimposed on Here the propagation of a horizontally periodic wave

these are contours of {'¢' *x. The undulations in the con- packet is examined as it propagates downward through a
tours are an artifact of the averaging procedure. Nonethelesgniformw stratified shear flow. The background flow has
the large-scale features give an adequate representation firo speed over the depth of the initial wave packet and has
where the wave-induced flow is significant. In Figabthe  yniform and negative speed at great depths. Because the ini-
contours are shown by intervals of 0.0002, the peak valugy| wave packet has positive horizontal phase speed, the
occurring near the center of the wave packebaz(=(55,  poppler-shifted frequency of the wave packed=w
—50) with valueU=0.001. In Fig. ¥b) the contours are —c .U, becomes larger as it propagates downwardQIf
shown in intervals of 0.005. In this case, there are two peakquals the buoyancy frequendy=1 at some depth, then
values occurring near x(z)=(55,—50) with value U the wave packet encounters a reflecting level. For small-
=0.025, and neaf80,—30) with valueU=0.035. From lin- amplitude internal waves, it is found that the wave packet is
ear theory, the group velocity of the initial wave packet ispartially reflected from and transmitted across a reflecting
estimated to be qj4,C4,)=(0.27,-0.38).Thus, the wave- level due to transient effecfs.
induced mean flow of the large-amplitude wave packet is as Figure 6 shows the results of a simulation of a small-
large as 10% of the horizontal group velocity and, thereforeamplitude wave packet, withy=0.01, propagating through
has an arguably significant impact upon the wave packeiuid in which the background velocity is given by E()
evolution. with U;=—0.2. In this case the Doppler-shifted frequency
From the group velocity, the position of the wave packetof the wave packet well below=0 is ,=1.02>N,.
at time t=200 is estimated to be approximatgly4,—51). Therefore, a reflecting level exists near 0. Figure 6a)
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FIG. 7. As in Fig. 6 but for a large-amplitude periodic wave packet. ) ) L
FIG. 8. The(a) Reynolds stress profile aril) perturbation density field at

time t=200 from simulation of a small-amplitude horizontally compact
wave packet of widthr,=10. Diagrams(c) and(d) are the corresponding

shows a horizontally offset sequence of profiles of the ReyPplots from a simulation of a large-amplitude wave packet.
nolds stresss(z). From left to right, the profiles are shown at
times t=0,1Q, . ..,200. Each profile is shown on a scale
ranging from —10 % to 4x10 °. Initially, 7 is negative
about a peak centered at25. The sign ofr is consistent
with the downward transport of forward momentum by the

propagating wave_packet. It encounters the reflecting_ lev his downward propagating wave packet is centered about
nearz=0 around time&=80 and then proceeds to split into 7=—34.0 with width 7.2. The upward propagating wave

tvytcr)1wave pack'e:s,done th?t colg tlnuelz to E[)ropagiltg ?ownwar acket above=0 is centered abow=32.2 with width 6.3.
with an associated negative Reynolds stiedg) orz Nonlinear effects act to reduce the width of the wave

<0].t’. an(é one I;hat tp ropagatis(;) ufpwar>d OW'”":.an asgg)c IateSacket and to increase its vertical group velocity. As will be
positive Reynolds stresr(z) or z>0]. Figure shown in Sec. IV, nonlinearity also acts to increase or de-

shows the perturbation density field tat 200 in this simu- ; ;
) . : crease the proportion of the wave packet that is reflected.
lation. The contours in the diagram range betwee®.02 prop P

and 0.02. The diagram shows two wave packets, which ca
be distinguished from the tilt of the phase lines above an
belowz=0. The right and downward tilt of the waves below As discussed above, horizontal and vertical wave disper-
z=0 is consistent with their expected downward propagasion can be enhanced for large-amplitude compact wave
tion. By calculating the position of the centroid of the per- packets due to wave self-acceleration. When a compact wave
turbation kinetic energy associated with the wave packepacket encounters a reflecting level, the superposition of the
with negative Reynolds stress, the wave packet is found to bcident and reflected wave packets effectively increases the
centered about=—33.7 with width 7.8. The right and up- amplitude of the waves and thus the dispersion of the waves
ward tilt of the waves above=0 is consistent with upward is further enhanced. Here the effect of this dispersion upon
propagation. These waves are centered akeu27.3 with  the structure of the reflected and transmitted waves is quali-
width 10.0. tatively examined.

For comparison, a simulation is performed with the same  Figure 8 shows the results at time- 200 of two simu-
initial background flow but for a large-amplitude wave lations of the propagation of small- and large-amplitude
packet withA;=0.10. As in Fig. 6, Fig. #@@ shows a se- compact wave packets. In both cases the horizontal width is
guence of profiles of(z), each profile shown on a scale o,=10. As in the simulations of horizontally periodic inter-
ranging from—10 2 to 6x 10 3. As in the small-amplitude, nal waves discussed above, the background flow speed is
case, the wave packet encounters the reflecting levelmeargiven by Eq.(7) with U;=—0.2. Thus the Doppler-shifted
=0 and splits into a transmitted, downward propagating andrequency of the wave packet well belaw0 is (1=1.02,
reflected, upward propagating wave packet. By comparisorand so a reflecting level exists near 0. Figure &) shows
the vertical width of both wave packets at late times is modthe Reynolds stress profile & 200 for a simulation of a

erately smaller. Figure(B) shows the perturbation density

field associated with the waves at tie 200. The contours

range from—0.25 to 0.25. As before, it is found that the tilt
f the phase lines below=0 is downward and to the right.

. Compact internal waves in a shear flow
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small-amplitude wave packet withy=0.04. Figure &) e 2 4,=0.04: Trans. 05 2 A;=0.04: Refl.
shows the corresponding perturbation density field over the i ] ! ]
same vertical extent. Only a fraction of the horizontal extent 1 7 or .
of the computational domain is shown. Contours range be- . I 1 sl ]
tween —0.05 and 0.05. Due to the horizontal dispersion of ] ; . @ :
the wave, the peak perturbation density is less than half that 0 7 -ie 7
of the peak value at time=0. o5 [ s L

The wave packet belo@=0 has right and downward-
tilting phase lines, and the Reynolds stress is negative over 15 S)Ao=0.40: Trans. 05 L As=0.40: Refl
its vertical extent. These characteristics are consistent with a -
downward propagating wave packet. From its perturbation T % ] °r ]
kinetic energy profile at this time, the downward propagating < o5k @% 1 _esk N i
wave packet is found to be centered abmst—40.0 with - ° 1 - ° 1
width 10.3. Consistent with the properties of upward propa- °r 1 77 §
gating internal waves, the wave packet abawed has right —05 S 18 1
and upward-tilting phase lines, and its associated Reynolds 8 . 18 08 N 18

stress is positive. It is centered abaet 28.3 with width 9.7.
Figure SC) shows the Reynolds stress profile for a Simu-FIG' 9 Normalized power spectra @) transmitted_anojb) re'flec'ted small- .

. . h . amplitude wave packet computed from perturbation density fields shown in
lation of a large-amplitude wave packet witly=0.40. Fig- g ). Diagrams(c) and (d) show the corresponding plots computed for
ure 8d) shows the corresponding perturbation density fielda large-amplitude wave packet, the perturbation density field of which is
with contours ranging from-0.3 to 0.3. As in the case with shown in Fig. &d).

Ap=0.04, the diagrams show the transmission and reflection
of the wave packet across a reflecting level rea0. In this
case, however, the structure and relative amplitude of th8.9. Figure %a) shows the power spectrum of the transmitted
wave packets are significantly different. Although initially small-amplitude wave packet. The peak power occurs at
the amplitude of the large-amplitude wave packet is terwave number K, ,k,)=(0.96+0.5,0.27-0.14). From linear
times larger than that of the small-amplitude wave packet, atheory, this corresponds to a Doppler-shifted frequency of
time t=200 the amplitude is only six times larger. 01=0.96, close to the background buoyancy frequehty
The horizontal extent of the wave packet is much=1. The horizontal wave number is 4% smaller than that of
broader. Belowz=0 its half width is approximately 25, the wave packet at time=0. Figure 9b) shows the power
compared with that of the small-amplitude wave packetspectrum of the reflected small-amplitude wave packet. For
which is approximately 17. The Reynolds stress associatethese waves, the power is sharply peaked abdytk()
with the downward propagating wave packet has multiple=(0.96+0.06,-0.63+0.09). The corresponding frequency
peaks and the magnitude of the momentum flux associated comparable to the frequency of the initial wave packet.
with it is significantly larger than the magnitude of the mo- Figure 9c) shows the power spectrum of the transmitted
mentum flux of the upward propagating wave packet abovdarge-amplitude waves. The peak in the power spectrum oc-
z=0. The centroid of the wave packet iszat —32.1 with  curs for wave numbers abouk,(k,)=(1.04+0.5,0.63).
width 9.9, which is not as deep as its counterpart in theThe width of the vertical wave number spectrum is much
simulation of the small-amplitude wave pack&ig. 8b)].  broader than the small-amplitude case. However, the hori-
Thus the average vertical speed of propagation of the waveontal wave number spectrum remains sharply peaked. The
packet belowz=0 is smaller in the large-amplitude case. weighted mean power occurs fky=0.90 with standard de-
The centroid of the upward propagating wave packet aboveiation 0.33. The power spectrum of the reflected large-
the reflecting level is az=36.5 with width 8.4. This is sig- amplitude wave packet is shown in Figd® Here the peak
nificantly higher than the depth of its small-amplitude coun-power occurs aboutk( ,k,)=(0.96+0.05~0.63), and the
terpart, and thus the average vertical speed of propagation @feighted mean power occurs fag=—0.48 with standard
the reflected wave packet is larger in the large-amplitudeleviation 0.16.
case. Thus, while nonlinear effects do not act to change the
The normalized power spectrum of the transmitted anchorizontal wave number spectrum significantly, the vertical
reflected wave packets is calculated from the perturbatiomave number spectrum and the frequency vary greatly. It is
density field as described in Sec. Il B. From simulations atinteresting to note that for the large-amplitude wave packet,
time t=200 when the transmitted, downward propagatingthe absolute values of the peak vertical wave numbers of the
and the reflected, upward propagating wave packets are sufeflected and transmitted wave packets are comparable and
ficiently spatially separated, the power spectrum is calculatedlose to the value of the vertical wave number of the initial
for the field below and above=0, respectively. Figure 9 wave packet.
shows the power spectrum for the simulations of the small  In both the small- and large-amplitude cases incident
(A=0.04) and large A=0.40) amplitude wave packets at upon a region wher€)>N, the power associated with the
time t=200. The corresponding perturbation density fieldstransmitted wave packet is significant only for positive val-
are shown in Figs. ®) and 8d), respectively. In each case ues ofk,. That is, the waves are not evanescent, but down-
the contours are shown in intervals of 0.2 ranging from 0.1 tovard propagating. For small-amplitude waves, the reflecting
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FIG. 10. The reflection coefficient as a function(®f /N, for periodic wave
packets of amplitudé,=0.01 (solid line), A;=0.10 (short-dashed line
andA,=0.15 (long-dashed ling

level acts as a filter that removes the proportion of the wave
packet associated with Doppler-shifted frequencies larger
thanN. For large-amplitude waves, this filtering acts in con-
junction with nonlinear effects that distort the spectrum of

the initial wave packet. 0.8 l 1 ' 1.2 . 1.4 . 1.8
0,/N,
IV. REFLECTION COEFFICIENTS FIG. 11. The(a) reflection coefficient as a function I, /N, for compact

. . L wave packets of amplitud&,=0.04 (solid line), Ag=0.20 (short-dashed
To quantify the degree to which incident waves reflect,jine) andA,=0.30 (long-dashed ling andA,=0.40 (dash-dotted ling (b)
the reflection coefficientR, is calculated, this acting as a Reflection coefficient for large-amplitude compact wave packet With

measure of the proportion of the wave packet that is propa=0-40 and widtho, =10 (solid line) and o, =20 (dashed ling
gating upward at timé=200. Explicitly, R is defined as the
ratio of the integral of the perturbation kinetic energy above
z=0 to the integral of this energy over the whole domain.<1.04, the proportion of the initial wave packet that is trans-
Though not shown here, the reflection coefficient has alsanitted is greater than that predicted by linear theory.
been calculated in terms of the total enefgg., the pertur- As shown above, nonlinear effects significantly broaden
bation kinetic and available potential ener@nd, for hori- the spectrum of a wave packet that is horizontally compact.
zontally periodic waves, in terms of the wave pseudomomenkigure 11 shows the reflection coefficients as a function of
tum. The calculated reflection coefficient is approximatelyQ, /N, for simulations of horizontally compact wave pack-
the same in each case. Plots of the evolution of the reflectioats. In(a) the reflection coefficients are shown for simula-
coefficient in time (not shown here demonstrate thakR  tions of wave packets with horizontal widih,=10 and a
changes by less than 5% between tirtred50 and 200. range of amplitudes fromAy=0.04 (solid ling), to A,
Figure 10 shows the reflection coefficient of horizontally =0.40 (dot-dashed ling as indicated on the diagram. When
periodic internal waves as a function of the ratio of thethe initial wave packet is of small amplitudée.g., A
Doppler-shifted frequency of the wave packet in the deep=0.04), the reflection coefficient as a function(@f /N is
fluid, Q,=w—k,U;, to the buoyancy frequendyl,=1. If  similar to that for horizontally periodic internal waves. The
Q,/Ng>1, then the initial wave packet encounters a reflectcurve agrees well with that predicted by linear theGngt
ing level nearz=0. From linear theory, plane periodice.,  shown).
monochromatig internal waves are expected to reflect en-  Due to the dispersion of compact wave packets, the am-
tirely from this level, so thatR=1. Likewise, if 1;/Ng  plitude decreases rapidly in time from its initial value. Thus
<1, from linear theory plane periodic waves are expected tdor A;<<0.10, the amplitude of the wave at time 200 is so
transmit entirely so thaR=0. However, because the vertical small that the curvéR(€},/Ny) differs insignificantly from
extent of the wave packets in the simulation is finite, thethat predicted by linear theory. For larger values of the initial
waves are not monochromatic. Indeed, for a small-amplitudamplitude, enhanced transmission of the wave packet occurs
wave packet withAy=0.01 (solid line), the reflection coef- for 1, /Ny>1. Indeed,R is significantly less than 1 over a
ficient is significantly less than 1 for<1();/Ny<1.1, and much greater range than that for horizontally periodic wave
R>0 for 0.9<Q,/Ny<1. Sutherlantf has shown that the packets. For example, &,=0.40 andQ,/N,=1.82 U=
form of this curve is well predicted by linear theory that —1.0), the reflection coefficient i®=0.89 for a compact
takes into account the initially broad power spectrum of thewave packet withr,=10, whereasR is negligibly different
simulated waves. from 1 for a periodic wave packet of comparable amplitude
If the initial wave packet is of large amplitude, the pro- at timet=200. For(),/Ny<1, the reflection of the incident
portion of the initial wave packet that is reflected is less tharwave packet is enhanced, though to a lesser degree for com-
that predicted by linear theory )4 /Ny>1.04. If Q4 /Ng pact wave packets than for periodic wave packets.
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Figure 11b) compares the reflection coefficients for a scale comparable with the wavelength of the waves. This is
simulations of large-amplitude wave packet8,€0.40) not the case for the waves studied here: in order to demon-
with horizontal widthso,=10 and 20. The plot shows that strate the steady propagation of transmitted and reflected
the reflection coefficient is generally larger for a wave packetvaves, the simulations have been set up so that the back-
of double the width over the calculated range 6&8,/N,  ground is uniform well above and well below a localized
<1.82. This result is consistent with the expectation that irregion within which the background flow varies over a
the limit of compact wave packets of very large horizontallength scale comparable with the vertical wavelength of the
extent, the reflection coefficient should approach that fomave packet.
horizontally periodic waves. Simulations of wave packets of  Weakly nonlinear theory has been applied to examine
horizontal extent significantly larger tham,=20 have not the resonant over-reflection of internal waves at a critical
been possible due to limitations in the speed and memory dével (where the phase speed of the wave equals the speed of

the computational resources available. the background flowin a thin shear layeY However, these
results cannot easily be extended to examine the reflection of
V. DISCUSSION AND CONCLUSIONS waves from a reflecting level because the incident waves

cannot couple with an unstable mode of the background

Numerical simulations have demonstrated that the am o . .
{Iow; the phase speed of the incident waves must lie outside

plitude and horizontal extent of a wave packet are significanth dictated by H " icircle theo
factors in determining the dynamics of internal waves inci- € range dictated by Howard's semicircie theorem.
In order to adapt existing weakly nonlinear theories of

dent upon a reflecting level. In particular, this work demon- . .
waves near caustics to the study of reflecting internal waves,

strates that a significantly greater proportion of incident in- traiahtf d first st Id be t : f
ternal waves may be transmitted above a reflecting level thaff Straigntiorward irst step would be o run a new series o

predicted by linear theory. Compared with horizontally peri_numerlcal S'm“'t‘?‘“oﬁs mod?hntg :)h? behEWOhr of |Intetrrr]1al
odic waves, an even greater proportion of the incident wayd/aves propagating in constant, but weak shear. in these
mulations, total reflection of the waves, independent of the

packet is transmitted for a wave packet that is horizontally_s'_ . ) : .
itial wave packet amplitude, is anticipated. However,

compact but whose horizontal extent encompasses mar} . . .
wavelengths. For example, linear theory predicts almos eakly nonlinear effects would act to shift the vertical level
100% reflection of a wave packet with amplitudg=0.40 at thlch the waves reflect. This research is currently in
that propagates across a shear flow into a region where ity 09ress.
Doppler-shifted frequency is 20% greater than the back-1 _ _
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