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Propagation and reflection of internal waves
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Fully nonlinear numerical simulations are performed to examine the behavior of large-amplitude
internal gravity waves incident upon a level where the Doppler-shifted frequency of the waves is
comparable to the background buoyancy frequency. Although linear theory predicts that the waves
should reflect if the Doppler-shifted frequency is greater than the buoyancy frequency, it is found
that nonlinear effects may greatly enhance the transmission of a wave packet across a reflecting
level. If the Doppler-shifted frequency is moderately less than the buoyancy frequency, then
nonlinear effects may greatly enhance the reflection of waves. A range of simulations is performed
to characterize the reflection coefficient as a function of the amplitude and spatial extent of the wave
packet. In comparison with horizontally periodic wave packets, it is found that the nonlinearly
enhanced transmission of wave packets is more significant if they are horizontally compact. This
occurs because the wave-induced mean flow effectively increases and decreases the horizontal
phase speed of the waves on the incident and trailing flank of the wave packets, respectively, and
this significantly broadens the frequency spectrum of the waves. ©1999 American Institute of
Physics.@S1070-6631~99!01205-2#
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I. INTRODUCTION

An internal wave is a disturbance propagating under
effects of buoyancy in a fluid whose density varies w
height. These waves are known to transport momentum
energy vertically through the atmosphere and ocean,
they may constitute a significant source of drag to the m
flow at levels where they break or dissipate. A great num
of studies have been devoted to understanding the beha
of internal waves as they approach a level where the me
flow speed is comparable to the horizontal phase speed o
waves~e.g., Bretherton,1 and recently Winters and D’Asaro,2

Lombard and Riley.3 Also see Lighthill,4 Sec. 4!. This is
known as the ‘‘critical level.’’ In theory and as numeric
simulations demonstrate, as internal waves approach a
cal level their vertical wavelength decreases to infinitesim
size and their amplitude increases. Eventually, the waves
ther dissipate or break, and deposit momentum to the m
flow. If, as is often the case for topographically genera
waves, the horizontal phase speed of the waves is less
the mean-flow speed, then a drag is exerted on the mean
near the critical level.

Less well studied is the circumstance in which intern
waves encounter a level where the density is almost unifo
In this case, the waves are expected to reflect. More ge
ally, waves are assumed to reflect from a level where th
Doppler-shifted frequency equals the background buoya
frequency.1,5,6 This is referred to hereafter as a ‘‘reflectin
level,’’ which is distinct from a critical level. In theory, a
internal waves approach a reflecting level, their verti
wavelength increases. Beyond the reflecting level the wa

a!Fax: ~780! 492-6826; phone: ~780! 492-0573; electronic mail:
bruce.sutherland@ualberta.ca; web: http://taylor.math.ualberta.ca/~bruce
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are evanescent, their amplitude decreasing exponent
with distance from the level. Rigorously, the structure of
internal wave at a reflecting level—a ‘‘caustic’’—is given b
linear theory in terms of an Airy function.4 Linear theory
assumes that the waves are monochromatic and small am
tude. The theory may be applied to small-amplitude wa
packets with a broad frequency spectrum by applying
superposition principle. However, the behavior of larg
amplitude internal waves at a reflecting level is not so w
understood.

Here we examine the transmission and reflection of
ternal waves across a reflecting level by way of numeri
simulations employing the fully nonlinear equations of m
tion. This work is a continuation of the studies b
Sutherland,7 who examined the propagation in nonuniform
stratified stationary flow of horizontally periodic intern
waves incident upon a level where the background buoya
frequency is comparable to the frequency of the incid
waves. Therein it was shown that for vertically compa
wave packets, depending on whether the stratification
creases greatly or moderately at a given level, weakly n
linear effects act either to enhance or diminish, respectiv
the transmission of internal waves into regions where
buoyancy frequency is small.

The weakly nonlinear effects are related to what h
been called the ‘‘self-acceleration’’ of internal waves~e.g.,
see Grimshaw,8 Fritts and Dunkerton9!. For a horizontally
periodic, vertically compact wave packet, its phase sp
changes due to wave, mean-flow interactions.7 For example,
consider an upward propagating wave packet whose am
tude decreases with height. At the leading edge of the w
packet the mean flow accelerates due to the divergence o
associated momentum flux. If the waves are of large am
tude, the acceleration may be sufficiently large that the wa
1 © 1999 American Institute of Physics
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 This a
induced mean flow is comparable to the horizontal gro
velocity of the wave packet. In this case, the horizontal ph
speed along the leading edge of the waves increases. L
wise, along the trailing edge of the wave packet the m
flow decelerates and the horizontal phase speed of the w
decreases. As a consequence of symmetry, the horizo
wavelength of horizontally periodic waves does not chan
over time. Therefore as the phase speed of the waves
creases and decreases, the frequency increases and dec
respectively.

In the absence of dissipation, wave breaking or ot
nonconservative processes, the transient passage of the
packet across a fixed vertical level has no permanent e
upon the mean flow at that point.10,11 However, the effective
changes in the wave frequency due to the self-acceleratio
the waves can significantly affect the behavior of a wa
packet incident upon a reflecting level. Sutherland7 showed
that as a large-amplitude wave packet approaches a refle
level the relative changes in the wave frequency beco
larger. Due to the superposition of the incident and reflect
waves, the amplitude of the disturbance increases by
much as double that of the incident wave packet. Co
spondingly, the changes in phase speed at the reflecting
can be four times as large. These changes can act to enh
the transmission of internal waves across the reflecting le
in the following way: as the waves reflect, the frequency
the waves at the trailing edge of the incident wave pac
decreases, and if this reduced frequency is smaller than
buoyancy frequency above the reflecting level, then a pro
gating wave packet is transmitted beyond the reflecting le
The wave packet has larger amplitude than one would
dict on the basis of linear transient effects alone.

If no reflecting level exists, weak nonlinearity may non
theless affect the transmission of internal waves if the bu
ancy frequency is comparable to but greater than
Doppler-shifted frequency of the incident wave packet.
this case, because the phase speed of the waves on the
dent flank of the wave packet increases, the frequency
creases. If the buoyancy frequency is smaller than the
creased frequency, a proportion of the wave packet refl
that is larger than that predicted on the basis of linear tr
sient effects.

In this work, we extend these results to consider
behavior of a wave packet that is both vertically and ho
zontally compact, and which is propagating in a uniform
stratified shear flow. A fundamental change in dynamics
expected to occur as a result of the breaking of the horizo
translational symmetry. Whereas a horizontally perio
wave packet is capable of accelerating the mean flow ei
transiently due to wave–wave interactions, or permane
due to wave, mean-flow interactions or dissipation, a h
zontally compact wave packet cannot directly affect
mean flow. Such a wave packet is capable of accelera
only the background flow across the extent of the wa
packet itself. It is shown that for large-amplitude intern
waves this horizontal nonuniformity significantly enhanc
the wave dispersion. As a result, the frequency spectrum
the wave packet greatly broadens. As this wave pac
propagates in a shear flow toward a reflecting level, the p
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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portion of the incident wave packet that is transmitted m
be greatly enhanced or diminished.

In Sec. II the details are given of the numerical mod
used to simulate the propagation of internal waves. Sec
III first shows the results of simulations of horizontally pe
odic and horizontally compact wave packets in uniform
stratified stationary fluid. These control studies demonst
the effect of self-acceleration upon the wave structure. T
results are then shown of simulations of internal wav
propagating in uniformly stratified shear flow. The spec
and characteristics of the reflected and transmitted waves
analyzed. In Sec. IV, the reflection coefficients are calcula
for a range of simulations of small- and large-amplitu
wave packets with different horizontal extents. A summa
of these results and their implications to atmospheric a
oceanographic modeling are given in Sec. V.

II. NUMERICAL MODEL

The propagation of a two-dimensional wave packet
examined by solving the fully nonlinear, nonhydrosta
equations of motion with specified initial conditions for th
wave packet structure and the background profiles of h
zontal velocityU(z) and densityr̄(z). The numerical model
is described in detail in Sutherland;7 only the salient features
are given below. Throughout this paper it is assumed that
flow is uniformly stratified, that is, the background squar
buoyancy frequency,N!

252(g/r00)dr̄/dz, is constant. Here
g is the gravitational acceleration andr00 is a reference value
of density. The Boussinesq approximation is used, so that
background density profile can be written asr̄(z)5r00

2Drz/H, in which H is the height of the domain an
Dr (!r00) is the change in density over this height. Cha
acteristic time~T!, length ~L!, and density~Dr! scales are
used to express the equations of motion in nondimensio
form. The equations for the vorticity,z5uz2wx , and per-
turbation density,r, fields are

Dz

Dt
5N0

2]r

]x
1Dz ~1!

and

Dr

Dt
5w1Dr , ~2!

in which D/Dt is the material derivative, andu andw are the
horizontal and vertical velocity fields, respectively.N0

5N!T is the nondimensional buoyancy frequency. It h
been assumed that density fluctuations occur on the s
dr5LDr/H, in which caser is identical to the nondimen
sional vertical displacement field,j. In order to approximate
the motion of inviscid waves while keeping the code nume
cally stable, the diffusion of the vorticity,Dz , acts only on
scales smaller than the horizontal wave number of the w
packet. On these small length scalesDz51/Re¹2z. Like-
wise, the diffusion of the perturbation density field acts on
on small length scales in which caseDr51/Re Pr¹2r. The
Reynolds number is set to Re51000 and the Prandtl numbe
to Pr51. Equations~1! and ~2! are solved in a horizontally
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
periodic channel with free slip boundary conditions using
mixed spectral-infinite difference code developed origina
by Smyth and Peltier.12

The vertical extent of the domain ranges from2100
<z<100. For horizontally periodic internal waves, the ho
zontal extent of the domain,Lx , is set to be exactly one
wavelength. For horizontally compact wave packets,
horizontal extent is set to beLx564p.201. Typically, this
is 10 to 20 times wider than the width of the wave pack
studied. As confirmed by doubling the width of the doma
the periodic boundary conditions have a negligible eff
upon the evolution of the wave packet.

The initial wave packet is vertically localized. Over th
extent that the amplitude of the initial wave packet is no
negligible, the background flow is stationary. Explicitly, th
initial wave packet is prescribed in terms of the stream fu
tion c(x,z),

c~x,z!5C~x,z!exp@i~kxx1kzz!#1c.c. ~3!

In simulations of horizontally periodic internal waves, th
envelope of the wave packet is given by

CPW~x,z!5A0 exp~2uz2z0u/sz!. ~4!

In simulations of horizontally compact wave packets,

C~x,z!5A0 exp~2uz2z0u/sz!exp~2x2/2sx
2!. ~5!

Here the amplitude isA0 , andsx andsz are the horizontal
and vertical extents, respectively, of the wave packet.
finite sx and sz , and small-amplitudeA0 , the initial wave
packet defined by Eq.~3! and either~4! or ~5! may be
thought of as the superposition of monochromatic wa
spanning a broad frequency range centered about a frequ
v, determined from the wave number vector (kx ,kz). The
frequencyv is to be estimated from the dispersion relatio
ship for internal waves

v5N0kx /Akx
21kz

2. ~6!

If 1/sx!kx and 1/sz!Kz ~as in the case in all the studie
presented here!, the frequency range is sharply peaked ab
v and, for a small-amplitude wave packet, linear theory m
be applied to it as if it were monochromatic.

The qualitative results presented here are not sensiti
dependent upon the form of the wave packet envelopes g
by Eqs.~4! and~3!. The vertical structure of the envelope
set to be exponential because this corresponds to the s
ture of a growing and decaying wave packet. For horiz
tally compact wave packets, the horizontal structure of
envelope is set to be Gaussian in order to be representati
a statistical ensemble of waves with wave number spect
centeredkx .

For simplicity, the length scale is chosen so thatkx51
and the time scale is chosen so thatN051. In the Boussinesq
approximation, there is no difference in the behavior of u
ward and downward propagating wave packets. Howeve
be consistent with studies of internal waves propaga
downward from the ocean surface,13 the internal waves are
prescribed initially with positive vertical wave number s
that the waves propagate downward.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Studies are performed only for wave packets with ve
cal wave numberkz5A2/2.0.71. This value is chosen be
cause, withkx51, periodic internal waves propagate dow
ward with the largest group velocitycgz522/3A3.
20.38. In this casev5A2/3.0.82. From linear theory, an
estimate of the initial amplitude of the vertical displaceme
field is found to beAj.2.45A0 . Thus withA051, for ex-
ample, the maximum initial vertical displacement is appro
mately 39% of the horizontal wavelength. The vertical exte
of the wave packet is also fixed withsz55, so that approxi-
mately one vertical wavelength spans the depth of the w
packet. The widthsx and amplitudeA0 are allowed to vary.
As the wave packet propagates downward into flow mov
at speedU(z), linear theory predicts that the waves a
Doppler-shifted with frequencyV(z)5v2kxU(z).

The background flow is defined by

U~z!5U1@12tanh~z/D !#/2, ~7!

in which U1 is the flow speed well below the initial wav
packet andD is the depth over which the backgroun
changes from stationary flow abovez50 to flow moving at
speedU1 below z50. Throughout we setD55. The wave
packet encounters a reflecting level ifU1 is sufficiently nega-
tively large. Explicitly, this occurs if U1,A2/321
.20.18.

The coordinate system is chosen so that the flow chan
aboutz50, and the wave packet is centered initially abo
(x0 ,z0)5(0,25). Thus the wave packet is sufficiently clo
to the region where the background flow changes, but
initial wave packet amplitude nearz50 is negligible.

Typically, simulations are run for times betweent50
and 200. From linear theory, we estimate that the wa
packet propagates a total vertical distance ofz.76 at the end
of a simulation. Therefore, the vertical extent of the dom
is sufficiently large that the wave packet has negligibly sm
amplitude near the top and bottom boundaries throughout
simulation.

Figure 1 shows a typical initial condition for the simu
lations. Figure 1~a! shows the horizontal velocity profileU(z)
with D55, andU1520.2. In this case, the Doppler-shifte
frequency of the wave packet as it propagates well beloz
50 is V.1.02, and therefore a reflecting level exists ne

FIG. 1. The~a! background horizontal velocity profile and~b! perturbation
density field of an initial wave packet in a typical simulation.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
z50 in this case. Figure 1~b! shows the perturbation densit
field r(x,z) of an initial wave packet with amplitudeA0

50.04 and horizontal extentsx510. The down and right-
ward tilt of the phase lines is consistent with the structure
internal waves that propagate downward to the right.

III. RESULTS

Here the results are presented of control simulations
amining the propagation of wave packets in uniformly stra
fied, stationary flow. These simulations serve to demonst
how nonlinearity affects the propagation and dispersion
the waves. Following this the results are presented of a ra
of simulations performed to examine the behavior of inter
waves incident upon a level in a background shear fl
whereV/N0.1. The effect of varying the initial amplitude
and horizontal extent of the wave packet is examined.

A. Control simulations

The effect of nonlinearity upon the dispersion of intern
waves is demonstrated by comparing the behavior of sm
and large-amplitude wave packets. The structure of horiz
tally periodic wave packets at timet5200 in a simulation are
shown in Fig. 2. Figure 2~a! shows the vertical profile of the
Reynolds stress per unit mass,t(z)5^u8w8&, in which u8
andw8 are the perturbation horizontal and vertical velocitie
respectively, and the angle brackets denote the domain h
zontal average. The profile is shown for a simulation o
small-amplitude wave packet withA50.01. The Reynolds
stress is negative over the extent of the wave packet as

FIG. 2. The~a! Reynolds stress profile and~b! perturbation density field
associated with a horizontally periodic wave packet withA050.01 in a
control simulation at timet5200. Diagrams~c! and ~d! show the corre-
sponding plots for a wave packet withA050.10.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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pected for a wave packet that transports forward momen
downward. Figure 2~b! shows the corresponding perturbatio
density field,r(x,z), at the same time. Although there ha
been weak wave dispersion, the diagram demonstrates
the extent of the wave packet and the tilt of the phase li
are approximately the same as those of the initial wa
packet. The centroid position of the wave packet is cal
lated from the weighted average of the momentum flux us
only values within 95% of the minimum value oft. The
width is standard deviation of this normalized distributio
At time t50 the wave packet is found to be centered az
525.0, as expected. The width of the wave packet is 3
moderately smaller than thee-folding depth,sz55. At time
t5200 the wave packet is centered atz.247.2 with width
4.3. According to linear theory, small-amplitude waves a
expected to propagate downward at the speed of the ver
group velocitycgz.20.38. Thus at timet5200, the wave
packet is expected to be localized aboutz5251, which is
moderately deeper than its observed position. This disc
ancy occurs because the initial wave packet, being vertic
compact, is the superposition of internal waves with a ran
of vertical wavelengths centered aboutkz5A2/2. Thus the
wave packet is expected to propagate with vertical veloc
moderately less thancgz .

As in Figs. 2~a! and 2~b!, Figs. 2~c! and 2~d! show the
Reynolds stress profile and perturbation density field, resp
tively, at time t5200 for a simulation of a large-amplitud
wave packet withA050.10. In this case, the dispersion o
the wave packet is more pronounced. The Reynolds st
profile shows multiple peaks, though the peak at the lead
edge is largest. For this leading peak, the centroid positio
at z.246.5 and the width of the peak is 4.1. The centroid
the wave packet including the trailing peaks is atz.244.2
with width 6.1. Thus the effect of weak nonlinearity asso
ated with the large-amplitude wave packet is to modera
reduce the average vertical speed of propagation of the w
packet and to enhance its dispersion.

In comparison with horizontally periodic wave packe
simulations have been performed of horizontally and ve
cally compact wave packets in uniformly stratified stationa
flow. As in Fig. 2, Fig. 3 shows the Reynolds stress profi
and perturbation density fields at timet5200 taken from
simulations of small- and large-amplitude wave packets. T
initial horizontal width of both wave packets issx510. Fig-
ures 3~a! and 3~b! show the structure of a small-amplitud
wave packet withA050.04. The wave packet undergoe
greater dispersion compared with that of the horizontally
riodic wave packet. At timet5200, the peak amplitude o
the perturbation density field isur8u.0.04, which is almost
one-third the peak amplitude at timet50. The phase tilt of
the waves to the left of the wave packet center is more v
tical and the phase tilt of the waves to the right is mo
horizontal. The position of the centroid of the wave packe
this time isz.248.8 with width 6.6. Thus the wave packe
is approximately 80% wider than the small-amplitude ho
zontally periodic wave packet shown in Fig. 2~b!. The aver-
age vertical speed is approximately the same in both cas

Figure 3~c! shows the Reynolds stress profile and F
3~d! shows the perturbation density field at timet5200 of a
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
large-amplitude wave packet withA050.40. The dispersion
of the wave packet is significant in this case. The wa
packet has both broad vertical and horizontal extents.
position of the centroid of the wave packet isz.238.2 and
its width is 14.1. Thus, among other effects, nonlinearity a
to significantly slow the vertical speed of propagation of t
wave packet, and this effect is much more pronounced if
wave packet is horizontally compact. As discussed bel
this is a consequence of the wave–wave interactions tha
nonuniformly over the extent of the wave packet to loca
change the phase speed of the waves.

B. Wave self-acceleration

The effect of weak nonlinearity upon the spectrum of t
wave packet is shown in Fig. 4, which contains contour pl
of the normalized power spectrum of the~a! small-amplitude
(A50.04) and~b! large-amplitude (A50.40) wave packets
shown in Figs. 3~b! and 3~d!, respectively. The power spec
trum is computed from the square of the components of
two-dimensional discrete Fourier transforms of the pertur
tion density fields. The result is normalized by its maximu
value. The contours in both figures range from 0.1 to 0.9
an interval of 0.2. Figure 4~a! shows that the internal wav
spectrum for the small-amplitude wave packet is shar
peaked about wave number vector (kx ,kz).(1.0
60.06, 0.6960.12), close to the wave number vector~1,
0.71! prescribed to the wave packet at timet50. The hori-
zontal and vertical widths in wave number space~0.06 and
0.12, respectively! are determined from the standard dev
tion of the power spectrum calculated for values within 95

FIG. 3. As in Fig. 2 but for compact wave packet with widthsx510 and in
~a! and ~b! A050.04, and in~c! and ~d! A050.40.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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of the peak value. The spectrum shown in Fig. 4~b! of the
large-amplitude wave packet at timet5200 is much broader
The horizontal wave number is centered aboutkx.1.0
60.06, the width about the peak being comparable to tha
the small-amplitude case. However, the vertical wave nu
ber spectrum is more broadly distributed with meankz

.0.9760.47. The spectrum exhibits two strong peaks n
kz.0.7 andkz'0.3, and a smaller peak withkz.1.1. The
power spectrum is greater than 0.1 for values ofkz ranging
from 0.1 to 1.9. This range is three times larger than
corresponding range in the small-amplitude case. Beca
the wave number spectrum is broader, the frequency s
trum is also broader. Linear theory is used to estimate
frequency of the waves from the wave number vector. T
frequency of the waves with peak power at (kx ,kz)
5(1,0.3) is 0.96, at (kx ,kz)5(1,0.7) is 0.82, and a
(kx ,kz)5(1,1.1) is 0.67. Thus, if the background flow,U(z),
is not uniform but changes according to Eq.~7! with U1

negative, then the proportion of the wave packet that refle
is expected to be different for large-amplitude and sm
amplitude waves. This amplitude-dependent behavior is
result of weakly nonlinear interactions between the wa
and the wave-induced mean flow, otherwise known as
self-acceleration of the waves.8,9

As shown by Sutherland,7 the wave-induced mean flow
for horizontally periodic internal waves in uniformly strat
fied fluid is given approximately by the mean horizon
wave pseudomomentum,14

Ū.M52z8j 8̄, ~8!

in which z8 andj8 are the perturbation vorticity and vertica

FIG. 4. Normalized power spectra of~a! small-amplitude and~b! large-
amplitude compact wave packets at timet5200, computed from perturba
tion density fields shown in Figs. 3~b! and 3~d!, respectively. Contours are
shown by intervals of 0.2.
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 This a
displacement fields, respectively. This estimate is accura
O(A0

3). The wave pseudomomentum is well defined for ho
zontally periodic flows. For compact waves, the effect
self-acceleration is demonstrated by calculating thez8j8
field and at each point in the field calculating the horizon

average over one wavelength,lx52p: 2z8j 8̄ lx. The result
is shown in Fig. 5 from simulations at timet5200 for ~a!
small-amplitude (A50.04) and ~b! large-amplitude (A
50.40) wave packets in stationary, uniformly stratified flu
The gray scale shows the perturbation density field at
time, reproduced from Figs. 3~b! and 3~d!. Superimposed on

these are contours of2z8j 8̄ lx. The undulations in the con
tours are an artifact of the averaging procedure. Nonethe
the large-scale features give an adequate representatio
where the wave-induced flow is significant. In Fig. 5~a! the
contours are shown by intervals of 0.0002, the peak va
occurring near the center of the wave packet at (x,z).(55,
250) with value Ū.0.001. In Fig. 5~b! the contours are
shown in intervals of 0.005. In this case, there are two p
values occurring near (x,z).(55,250) with value Ū
.0.025, and near~80,230! with valueŪ.0.035. From lin-
ear theory, the group velocity of the initial wave packet
estimated to be (cgx ,cgz).(0.27,20.38).Thus, the wave
induced mean flow of the large-amplitude wave packet is
large as 10% of the horizontal group velocity and, therefo
has an arguably significant impact upon the wave pac
evolution.

From the group velocity, the position of the wave pack
at time t5200 is estimated to be approximately~54,251!.

FIG. 5. Contours of2z8j 8̄ lx field ~black lines! for ~a! small-amplitude and
~b! large-amplitude compact wave packet in control simulation at timt
5200. The contours are superimposed on perturbation density fields~gray-
scale! which are reproduced from Figs. 3~b! and 3~d!, respectively. Contours
are shown by intervals of~a! 0.0002 and~b! 0.005.
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This is comparable to the observed position of the sm
amplitude wave packet, and also to the position of the low
peak value ofŪ of the large-amplitude wave packet. It
interesting to note that the position of the stronger peak va
of Ū is consistent with that expected for a wave packet w
the largest horizontal group velocity for which (kx ,kz)
5(1/A2) and (cgx ,cgz).(0.38,20.27). A detailed analysis
of the division of an initial large-amplitude wave packet in
parts is currently under investigation, but beyond the sc
of this paper.

C. Periodic internal waves in a shear flow

Here the propagation of a horizontally periodic wa
packet is examined as it propagates downward throug
uniformly stratified shear flow. The background flow h
zero speed over the depth of the initial wave packet and
uniform and negative speed at great depths. Because the
tial wave packet has positive horizontal phase speed,
Doppler-shifted frequency of the wave packet,V5v
2cpxU, becomes larger as it propagates downward. IfV
equals the buoyancy frequencyN051 at some depth, then
the wave packet encounters a reflecting level. For sm
amplitude internal waves, it is found that the wave packe
partially reflected from and transmitted across a reflect
level due to transient effects.7

Figure 6 shows the results of a simulation of a sma
amplitude wave packet, withA050.01, propagating through
fluid in which the background velocity is given by Eq.~7!
with U1520.2. In this case the Doppler-shifted frequen
of the wave packet well belowz50 is V1.1.02.N0 .
Therefore, a reflecting level exists nearz50. Figure 6~a!

FIG. 6. In ~a! a sequence of offset Reynolds stress profiles at timet
50,10, . . . ,200, and in~b! the perturbation density field att5200 from a
simulation of small-amplitude horizontally periodic wave packet incide
upon a reflecting level.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 23 Mar 2014 03:22:20



ey
at
le

he
v
o
a

t

ca
n

w
ga
r-
ke

o
-

m
e

le
,
a
n
o

od

y

lt
.
out
e

ve
be
de-
.

er-
ave
ave
the
the
ves
on
ali-

de
h is
r-
d is

ct

1087Phys. Fluids, Vol. 11, No. 5, May 1999 B. R. Sutherland

 This a
shows a horizontally offset sequence of profiles of the R
nolds stress,t(z). From left to right, the profiles are shown
times t50,10, . . . ,200. Each profile is shown on a sca
ranging from 21024 to 431025. Initially, t is negative
about a peak centered atz525. The sign oft is consistent
with the downward transport of forward momentum by t
propagating wave packet. It encounters the reflecting le
nearz.0 around timet.80 and then proceeds to split int
two wave packets, one that continues to propagate downw
with an associated negative Reynolds stress@t(z),0 for z
,0], and one that propagates upward with an associa
positive Reynolds stress@t(z).0 for z.0]. Figure 6~b!
shows the perturbation density field att5200 in this simu-
lation. The contours in the diagram range between20.02
and 0.02. The diagram shows two wave packets, which
be distinguished from the tilt of the phase lines above a
belowz50. The right and downward tilt of the waves belo
z50 is consistent with their expected downward propa
tion. By calculating the position of the centroid of the pe
turbation kinetic energy associated with the wave pac
with negative Reynolds stress, the wave packet is found t
centered aboutz.233.7 with width 7.8. The right and up
ward tilt of the waves abovez50 is consistent with upward
propagation. These waves are centered aboutz.27.3 with
width 10.0.

For comparison, a simulation is performed with the sa
initial background flow but for a large-amplitude wav
packet withA050.10. As in Fig. 6, Fig. 7~a! shows a se-
quence of profiles oft(z), each profile shown on a sca
ranging from21022 to 631023. As in the small-amplitude
case, the wave packet encounters the reflecting level nez
50 and splits into a transmitted, downward propagating a
reflected, upward propagating wave packet. By comparis
the vertical width of both wave packets at late times is m

FIG. 7. As in Fig. 6 but for a large-amplitude periodic wave packet.
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erately smaller. Figure 7~b! shows the perturbation densit
field associated with the waves at timet5200. The contours
range from20.25 to 0.25. As before, it is found that the ti
of the phase lines belowz50 is downward and to the right
This downward propagating wave packet is centered ab
z.234.0 with width 7.2. The upward propagating wav
packet abovez50 is centered aboutz.32.2 with width 6.3.

Nonlinear effects act to reduce the width of the wa
packet and to increase its vertical group velocity. As will
shown in Sec. IV, nonlinearity also acts to increase or
crease the proportion of the wave packet that is reflected

D. Compact internal waves in a shear flow

As discussed above, horizontal and vertical wave disp
sion can be enhanced for large-amplitude compact w
packets due to wave self-acceleration. When a compact w
packet encounters a reflecting level, the superposition of
incident and reflected wave packets effectively increases
amplitude of the waves and thus the dispersion of the wa
is further enhanced. Here the effect of this dispersion up
the structure of the reflected and transmitted waves is qu
tatively examined.

Figure 8 shows the results at timet5200 of two simu-
lations of the propagation of small- and large-amplitu
compact wave packets. In both cases the horizontal widt
sx510. As in the simulations of horizontally periodic inte
nal waves discussed above, the background flow spee
given by Eq.~7! with U1520.2. Thus the Doppler-shifted
frequency of the wave packet well belowz50 is V.1.02,
and so a reflecting level exists nearz50. Figure 8~a! shows
the Reynolds stress profile att5200 for a simulation of a

FIG. 8. The~a! Reynolds stress profile and~b! perturbation density field at
time t5200 from simulation of a small-amplitude horizontally compa
wave packet of widthsx510. Diagrams~c! and ~d! are the corresponding
plots from a simulation of a large-amplitude wave packet.
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 This a
small-amplitude wave packet withA050.04. Figure 8~b!
shows the corresponding perturbation density field over
same vertical extent. Only a fraction of the horizontal ext
of the computational domain is shown. Contours range
tween20.05 and 0.05. Due to the horizontal dispersion
the wave, the peak perturbation density is less than half
of the peak value at timet50.

The wave packet belowz50 has right and downward
tilting phase lines, and the Reynolds stress is negative o
its vertical extent. These characteristics are consistent w
downward propagating wave packet. From its perturbat
kinetic energy profile at this time, the downward propagat
wave packet is found to be centered aboutz.240.0 with
width 10.3. Consistent with the properties of upward pro
gating internal waves, the wave packet abovez50 has right
and upward-tilting phase lines, and its associated Reyn
stress is positive. It is centered aboutz.28.3 with width 9.7.

Figure 8~c! shows the Reynolds stress profile for a sim
lation of a large-amplitude wave packet withA050.40. Fig-
ure 8~d! shows the corresponding perturbation density fie
with contours ranging from20.3 to 0.3. As in the case with
A050.04, the diagrams show the transmission and reflec
of the wave packet across a reflecting level nearz50. In this
case, however, the structure and relative amplitude of
wave packets are significantly different. Although initial
the amplitude of the large-amplitude wave packet is
times larger than that of the small-amplitude wave packe
time t5200 the amplitude is only six times larger.

The horizontal extent of the wave packet is mu
broader. Belowz50 its half width is approximately 25
compared with that of the small-amplitude wave pack
which is approximately 17. The Reynolds stress associa
with the downward propagating wave packet has multi
peaks and the magnitude of the momentum flux associ
with it is significantly larger than the magnitude of the m
mentum flux of the upward propagating wave packet ab
z50. The centroid of the wave packet is atz.232.1 with
width 9.9, which is not as deep as its counterpart in
simulation of the small-amplitude wave packet@Fig. 8~b!#.
Thus the average vertical speed of propagation of the w
packet belowz50 is smaller in the large-amplitude cas
The centroid of the upward propagating wave packet ab
the reflecting level is atz.36.5 with width 8.4. This is sig-
nificantly higher than the depth of its small-amplitude cou
terpart, and thus the average vertical speed of propagatio
the reflected wave packet is larger in the large-amplitu
case.

The normalized power spectrum of the transmitted a
reflected wave packets is calculated from the perturba
density field as described in Sec. III B. From simulations
time t5200 when the transmitted, downward propagat
and the reflected, upward propagating wave packets are
ficiently spatially separated, the power spectrum is calcula
for the field below and abovez50, respectively. Figure 9
shows the power spectrum for the simulations of the sm
(A50.04) and large (A50.40) amplitude wave packets a
time t5200. The corresponding perturbation density fie
are shown in Figs. 8~b! and 8~d!, respectively. In each cas
the contours are shown in intervals of 0.2 ranging from 0.1
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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0.9. Figure 9~a! shows the power spectrum of the transmitt
small-amplitude wave packet. The peak power occurs
wave number (kx ,kz).(0.9660.5,0.2760.14). From linear
theory, this corresponds to a Doppler-shifted frequency
V.0.96, close to the background buoyancy frequencyN
51. The horizontal wave number is 4% smaller than that
the wave packet at timet50. Figure 9~b! shows the power
spectrum of the reflected small-amplitude wave packet.
these waves, the power is sharply peaked about (kx ,kz)
.(0.9660.06,20.6360.09). The corresponding frequenc
is comparable to the frequency of the initial wave packet

Figure 9~c! shows the power spectrum of the transmitt
large-amplitude waves. The peak in the power spectrum
curs for wave numbers about (kx ,kz).(1.0460.5,0.63).
The width of the vertical wave number spectrum is mu
broader than the small-amplitude case. However, the h
zontal wave number spectrum remains sharply peaked.
weighted mean power occurs forkz.0.90 with standard de-
viation 0.33. The power spectrum of the reflected larg
amplitude wave packet is shown in Fig. 9~d!. Here the peak
power occurs about (kx ,kz).(0.9660.05,20.63), and the
weighted mean power occurs forkz.20.48 with standard
deviation 0.16.

Thus, while nonlinear effects do not act to change
horizontal wave number spectrum significantly, the verti
wave number spectrum and the frequency vary greatly. I
interesting to note that for the large-amplitude wave pack
the absolute values of the peak vertical wave numbers of
reflected and transmitted wave packets are comparable
close to the value of the vertical wave number of the init
wave packet.

In both the small- and large-amplitude cases incid
upon a region whereV.N, the power associated with th
transmitted wave packet is significant only for positive v
ues ofkz . That is, the waves are not evanescent, but dow
ward propagating. For small-amplitude waves, the reflect

FIG. 9. Normalized power spectra of~a! transmitted and~b! reflected small-
amplitude wave packet computed from perturbation density fields show
Fig. 8~b!. Diagrams~c! and~d! show the corresponding plots computed f
a large-amplitude wave packet, the perturbation density field of which
shown in Fig. 8~d!.
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 This a
level acts as a filter that removes the proportion of the w
packet associated with Doppler-shifted frequencies lar
thanN. For large-amplitude waves, this filtering acts in co
junction with nonlinear effects that distort the spectrum
the initial wave packet.

IV. REFLECTION COEFFICIENTS

To quantify the degree to which incident waves refle
the reflection coefficient,R, is calculated, this acting as
measure of the proportion of the wave packet that is pro
gating upward at timet5200. Explicitly,R is defined as the
ratio of the integral of the perturbation kinetic energy abo
z50 to the integral of this energy over the whole doma
Though not shown here, the reflection coefficient has a
been calculated in terms of the total energy~i.e., the pertur-
bation kinetic and available potential energy! and, for hori-
zontally periodic waves, in terms of the wave pseudomom
tum. The calculated reflection coefficient is approximat
the same in each case. Plots of the evolution of the reflec
coefficient in time ~not shown here! demonstrate thatR
changes by less than 5% between timest5150 and 200.

Figure 10 shows the reflection coefficient of horizonta
periodic internal waves as a function of the ratio of t
Doppler-shifted frequency of the wave packet in the de
fluid, V15v2kxU1 , to the buoyancy frequencyN051. If
V1 /N0.1, then the initial wave packet encounters a refle
ing level nearz50. From linear theory, plane periodic~i.e.,
monochromatic! internal waves are expected to reflect e
tirely from this level, so thatR51. Likewise, if V1 /N0

,1, from linear theory plane periodic waves are expected
transmit entirely so thatR50. However, because the vertic
extent of the wave packets in the simulation is finite, t
waves are not monochromatic. Indeed, for a small-amplit
wave packet withA050.01 ~solid line!, the reflection coef-
ficient is significantly less than 1 for 1,V1 /N0,1.1, and
R@0 for 0.9,V1 /N0,1. Sutherland13 has shown that the
form of this curve is well predicted by linear theory th
takes into account the initially broad power spectrum of
simulated waves.

If the initial wave packet is of large amplitude, the pr
portion of the initial wave packet that is reflected is less th
that predicted by linear theory ifV1 /N0.1.04. If V1 /N0

FIG. 10. The reflection coefficient as a function ofV1 /N0 for periodic wave
packets of amplitudeA050.01 ~solid line!, A050.10 ~short-dashed line!,
andA050.15 ~long-dashed line!.
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,1.04, the proportion of the initial wave packet that is tran
mitted is greater than that predicted by linear theory.

As shown above, nonlinear effects significantly broad
the spectrum of a wave packet that is horizontally compa
Figure 11 shows the reflection coefficients as a function
V1 /N0 for simulations of horizontally compact wave pac
ets. In ~a! the reflection coefficients are shown for simul
tions of wave packets with horizontal widthsx510 and a
range of amplitudes fromA050.04 ~solid line!, to A0

50.40 ~dot-dashed line!, as indicated on the diagram. Whe
the initial wave packet is of small amplitude~e.g., A
50.04), the reflection coefficient as a function ofV1 /N0 is
similar to that for horizontally periodic internal waves. Th
curve agrees well with that predicted by linear theory~not
shown!.

Due to the dispersion of compact wave packets, the a
plitude decreases rapidly in time from its initial value. Th
for A0,0.10, the amplitude of the wave at timet5200 is so
small that the curveR(V1 /N0) differs insignificantly from
that predicted by linear theory. For larger values of the init
amplitude, enhanced transmission of the wave packet oc
for V1 /N0.1. Indeed,R is significantly less than 1 over
much greater range than that for horizontally periodic wa
packets. For example, ifA050.40 andV1 /N051.82 (U15
21.0), the reflection coefficient isR50.89 for a compact
wave packet withsx510, whereasR is negligibly different
from 1 for a periodic wave packet of comparable amplitu
at time t5200. ForV1 /N0,1, the reflection of the inciden
wave packet is enhanced, though to a lesser degree for c
pact wave packets than for periodic wave packets.

FIG. 11. The~a! reflection coefficient as a function ofV1 /N0 for compact
wave packets of amplitudeA050.04 ~solid line!, A050.20 ~short-dashed
line! andA050.30 ~long-dashed line!, andA050.40 ~dash-dotted line!. ~b!
Reflection coefficient for large-amplitude compact wave packet withA0

50.40 and widthsx510 ~solid line! andsx520 ~dashed line!.
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 This a
Figure 11~b! compares the reflection coefficients f
simulations of large-amplitude wave packets (A050.40)
with horizontal widthssx510 and 20. The plot shows tha
the reflection coefficient is generally larger for a wave pac
of double the width over the calculated range 0.86,V1 /N0

,1.82. This result is consistent with the expectation tha
the limit of compact wave packets of very large horizon
extent, the reflection coefficient should approach that
horizontally periodic waves. Simulations of wave packets
horizontal extent significantly larger thansx520 have not
been possible due to limitations in the speed and memor
the computational resources available.

V. DISCUSSION AND CONCLUSIONS

Numerical simulations have demonstrated that the a
plitude and horizontal extent of a wave packet are signific
factors in determining the dynamics of internal waves in
dent upon a reflecting level. In particular, this work demo
strates that a significantly greater proportion of incident
ternal waves may be transmitted above a reflecting level t
predicted by linear theory. Compared with horizontally pe
odic waves, an even greater proportion of the incident w
packet is transmitted for a wave packet that is horizonta
compact but whose horizontal extent encompasses m
wavelengths. For example, linear theory predicts alm
100% reflection of a wave packet with amplitudeA050.40
that propagates across a shear flow into a region wher
Doppler-shifted frequency is 20% greater than the ba
ground buoyancy frequency.~For reference, the maximum
vertical displacement of this wave packet initially isADz

.1, about 16% of the horizontal wavelength.! In fact, ap-
proximately 50% of a wave packet with this amplitude
transmitted below the reflecting level and where it continu
to propagate.

At present it is not obvious how the results presen
here might be efficiently employed in a general circulati
model. In these models and in analytic theories applied
understanding the impact of internal waves upon the lar
scale circulation of the atmosphere and ocean, linear the
is frequently employed to estimate at which vertical lev
incident internal waves might break or reflect. This approa
is beneficial in part because it is easily adapted to spe
computation in numerical models. In many oceanograp
and atmospheric circumstances, internal waves have b
observed with amplitudes large enough that nonlinear eff
play a significant role. The results presented here dem
strate, however, that this methodology should be app
with caution when modeling the dynamics of nonhydrosta
large-amplitude internal waves.

It is worthwhile commenting upon the possibility of ap
plying weakly nonlinear theory to elucidate further the r
sults presented here. Weakly nonlinear evolution equat
have been developed by Smith15 to model the growth in am-
plitude of surface waves near caustics, and Peregrine
Smith16 have modeled the weakly nonlinear behavior n
caustics of dispersive waves in general. The resulting eq
tions, which have the form of a Nonlinear Schro¨dinger
~NLS! equation, require that the background varies slowly
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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a scale comparable with the wavelength of the waves. Th
not the case for the waves studied here: in order to dem
strate the steady propagation of transmitted and refle
waves, the simulations have been set up so that the b
ground is uniform well above and well below a localize
region within which the background flow varies over
length scale comparable with the vertical wavelength of
wave packet.

Weakly nonlinear theory has been applied to exam
the resonant over-reflection of internal waves at a criti
level ~where the phase speed of the wave equals the spee
the background flow! in a thin shear layer.17 However, these
results cannot easily be extended to examine the reflectio
waves from a reflecting level because the incident wa
cannot couple with an unstable mode of the backgrou
flow; the phase speed of the incident waves must lie outs
the range dictated by Howard’s semicircle theorem.18

In order to adapt existing weakly nonlinear theories
waves near caustics to the study of reflecting internal wav
a straightforward first step would be to run a new series
numerical simulations modeling the behavior of intern
waves propagating in constant, but weak shear. In th
simulations, total reflection of the waves, independent of
initial wave packet amplitude, is anticipated. Howeve
weakly nonlinear effects would act to shift the vertical lev
at which the waves reflect. This research is currently
progress.

1F. P. Bretherton, ‘‘Gravity waves in shear,’’ Q. J. R. Meteorol. Soc.92,
466 ~1966!.

2K. B. Winters and E. A. D’Asaro, ‘‘Three-dimensional wave instabili
near a critical level,’’ J. Fluid Mech.272, 255 ~1994!.

3P. N. Lombard and J. J. Riley, ‘‘On the breakdown into turbulence
propagating internal waves,’’ Dyn. Atmos. Oceans23, 345 ~1996!.

4M. J. Lighthill, Waves in Fluids~Cambridge University Press, Cambridg
1978!.

5W. Blumen, ‘‘Reflection of hydrostatic gravity waves in a stratified she
flow. Part i: Theory,’’ J. Atmos. Sci.42~21!, 2255~1985!.

6S. D. Eckermann, ‘‘Influence of wave propagation on the Doppler spre
ing of atmospheric gravity waves,’’ J. Atmos. Sci.54, 2554~1997!.

7B. R. Sutherland, ‘‘Internal gravity wave radiation into weakly stratifie
fluid,’’ Phys. Fluids8, 430 ~1996!.

8R. H. J. Grimshaw, ‘‘Nonlinear internal gravity waves and their interacti
with the mean wind,’’ J. Atmos. Sci.32, 1779~1975!.

9D. C. Fritts and T. J. Dunkerton, ‘‘A quasi-linear study of gravity-wav
saturation and self-acceleration,’’ J. Atmos. Sci.41, 3272~1984!.

10A. Eliassen and E. Palm, ‘‘On the transfer of energy in stationary mo
tain waves,’’ Geofys. Publ.22, 1 ~1961!.

11D. G. Andrews and M. E. McIntyre, ‘‘Planetary waves in horizontal a
vertical shear: The generalized Eliassen-Palm relation and the mean
acceleration,’’ J. Atmos. Sci.33, 2031~1976!.

12W. D. Smyth and W. R. Peltier, ‘‘The transition between Kelvin
Helmholtz and Holmboe instability: An investigation of the overreflecti
hypothesis,’’ J. Atmos. Sci.46, 3698~1989!.

13B. R. Sutherland, ‘‘The dynamic excitation of internal gravity waves in t
equatorial oceans,’’ J. Phys. Oceanogr.26, 3214~1996!.

14J. F. Scinocca and T. G. Shepherd, ‘‘Nonlinear wave-activity conserva
laws and Hamiltonian structure for the two-dimensional anelastic eq
tions,’’ J. Atmos. Sci.49, 5 ~1992!.

15R. Smith, ‘‘Giant waves,’’ J. Fluid Mech.77, 417 ~1976!.
16D. H. Peregrine and R. Smith, ‘‘Nonlinear effects upon waves near ca

tics,’’ Proc. R. Soc. London, Ser. A292, 341 ~1979!.
17R. H. J. Grimshaw, ‘‘Resonant over-reflection of internal gravity wav

from a thin shear layer,’’ J. Fluid Mech.109, 349 ~1981!.
18L. N. Howard, ‘‘Note on a paper by John W. Miles,’’ J. Fluid Mech.10,

509 ~1961!.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 23 Mar 2014 03:22:20




