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Fully nonlinear numerical simulations are performed to examine the behaviour of large-amplitude
internal gravity waves incident upon a level where the Doppler-shifted frequency of the waves is
comparable with the background buoyancy frequency. Although linear theory predicts that the
waves should reect if the Doppler-shifted frequency is greater than the buoyancy frequency, it
is found that nonlinear e�ects may greatly enhance the transmission of a wavepacket across a
reecting level. If the Doppler-shifted frequency is moderately less than the buoyancy frequency,
then nonlinear e�ects may greatly enhance the reection of waves. A range of simulations is
performed to characterise the reection coe�cient as a function of the amplitude and spatial
extent of the wavepacket. In comparison with horizontally periodic wavepackets, it is found that
the nonlinearly enhanced transmission of wavepackets is more signi�cant if they are horizontally
compact. This occurs because the wave-induced mean-ow e�ectively increases and decreases
the horizontal phase speed of the waves on the incident and trailing ank of the wavepackets,
respectively, and this signi�cantly broadens the frequency spectrum of the waves.

I INTRODUCTION

An internal wave is a disturbance propagating under the
e�ects of buoyancy in a uid whose density varies with
height. These waves are known to transport momentum
and energy vertically through the atmosphere and ocean,
and they may constitute a signi�cant source of drag to
the mean-ow at levels where they break or dissipate. A
great number of studies have been devoted to understand-
ing the behaviour of internal waves as they approach a
level where the mean-ow speed is comparable with the
horizontal phase speed of the waves (e.g. Bretherton1 , and
recently Winters and D'Asaro2, Lombard and Riley3. Also
see Lighthill4 x4). This is known as the \critical level". In
theory and as numerical simulations demonstrate, as in-
ternal waves approach a critical level their vertical wave-
length decreases to in�nitesimal size and their amplitude
increases. Eventually, the waves either dissipate or break,
and deposit momentum to the mean-ow. If, as is often
the case for topographically generated waves, the horizon-
tal phase speed of the waves is less than the mean ow
speed, then a drag is exerted on the mean ow near the
critical level.

Less well studied is the circumstance in which inter-
nal waves encounter a level where the density is almost
uniform. In this case, the waves are expected to re-
ect. More generally, waves are assumed to reect from
a level where their Doppler-shifted frequency equals the
background buoyancy frequency1,5,6. This is referred to
hereafter as a \reecting level", which is distinct from a
critical level. In theory, as internal waves approach a re-
ecting level, their vertical wavelength increases. Beyond
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the reecting level the waves are evanescent, their ampli-
tude decreasing exponentially with distance from the level.
Rigourously, the structure of an internal wave at a reect-
ing level { a \caustic" { is given by linear theory in terms of
an Airy function4. Linear theory assumes that the waves
are monochromatic and small-amplitude. The theory may
be applied to small-amplitude wavepackets with a broad
frequency spectrum, by applying the superposition prin-
ciple. However, the behaviour of large-amplitude internal
waves at a reecting level is not so well understood.

Here we examine the transmission and reection of inter-
nal waves across a reecting level by way of numerical sim-
ulations employing the fully nonlinear equations of motion.
This work is a continuation of the studies by Sutherland7

who examined the propagation in non-uniformly strati�ed
stationary ow of horizontally periodic internal waves in-
cident upon a level where the background buoyancy fre-
quency is comparable with the frequency of the incident
waves. Therein it was shown that for vertically compact
wavepackets, depending on whether the strati�cation de-
creases greatly or moderately at a given level, weakly non-
linear e�ects act either to enhance or diminish, respec-
tively, the transmission of internal waves into regions where
the buoyancy frequency is small.

The weakly nonlinear e�ects are related to what
has been called the \self-acceleration" of internal waves
(e.g. see Grimshaw8, Fritts and Dunkerton9). For a hori-
zontally periodic, vertically compact wavepacket, its phase
speed changes due to wave, mean-ow interactions7. For
example, consider an upward propagating wavepacket
whose amplitude decreases with height. At the leading
edge of the wavepacket the mean-ow accelerates due to
the divergence of its associated momentum ux. If the
waves are of large amplitude, the acceleration may be suf-
�ciently large that the wave-induced mean-ow is compa-
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rable with the horizontal group velocity of the wavepacket.
In this case, the horizontal phase speed along the leading
edge of the waves increases. Likewise, along the trailing
edge of the wavepacket the mean-ow decelerates and the
horizontal phase speed of the waves decreases. As a conse-
quence of symmetry, the horizontal wavelength of horizon-
tally periodic waves does not change over time. Therefore
as the phase speed of the waves increases and decreases,
the frequency increases and decreases, respectively.

In the absence of dissipation, wave breaking or other
non-conservative processes, the transient passage of the
wavepacket across a �xed vertical level has no permanent
e�ect upon the mean-ow at that point10,11. However, the
e�ective changes in the wave frequency due to the self-
acceleration of the waves can signi�cantly a�ect the be-
haviour of a wavepacket incident upon a reecting level.
Sutherland7 showed that as a large-amplitude wavepacket
approaches a reecting level the relative changes in the
wave frequency become larger. Due to the superposition
of the incident and reecting waves, the amplitude of the
disturbance increases by as much as double that of the in-
cident wavepacket. Correspondingly, the changes in phase
speed at the reecting level can be four times as large.
These changes can act to enhance the transmission of in-
ternal waves across the reecting level in the followingway:
as the waves reect, the frequency of the waves at the trail-
ing edge of the incident wavepacket decreases, and if this
reduced frequency is smaller than the buoyancy frequency
above the reecting level, then a propagating wavepacket
is transmitted beyond the reecting level. The wavepacket
has larger amplitude than one would predict on the basis
of linear transient e�ects alone.

If no reecting level exists, weak nonlinearity may
nonetheless a�ect the transmission of internal waves if the
buoyancy frequency is comparable to but greater than the
Doppler-shifted frequency of the incident wavepacket. In
this case, because the phase speed of the waves on the
incident ank of the wavepacket increases, the frequency
increases. If the buoyancy frequency is smaller than the in-
creased frequency, a proportion of the wavepacket reects
which is larger than that predicted on the basis of linear
transient e�ects.

In this work, we extend these results to consider the
behaviour of a wavepacket that is both vertically and hori-
zontally compact, and which is propagating in a uniformly
strati�ed shear ow. A fundamental change in dynamics
is expected to occur as a result of the breaking of the hori-
zontal translational symmetry. Whereas a horizontally pe-
riodic wavepacket is capable of accelerating the mean-ow
either transiently due to wave-wave interactions, or perma-
nently due to wave, mean-ow interactions or dissipation, a
horizontally compact wavepacket cannot directly a�ect the
mean-ow. Such a wavepacket is capable of accelerating
only the background ow across the extent of wavepacket
itself. It is shown that for large-amplitude internal waves
this horizontal non-uniformity signi�cantly enhances the
wave dispersion. As a result, the frequency spectrum of the
wavepacket greatly broadens. As this wavepacket propa-
gates in a shear ow toward a reecting level, the propor-

tion of the incident wavepacket that is transmitted may be
greatly enhanced or diminished.
In section II the details are given of the numerical model

used to simulate the propagation of internal waves. Sec-
tion III �rst shows the results of simulations of horizon-
tally periodic and horizontally compact wavepackets in
uniformly strati�ed stationary uid. These control studies
demonstrate the e�ect of self-acceleration upon the wave
structure. The results are then shown of simulations of
internal waves propagating in uniformly strati�ed shear
ow. The spectra and characteristics of the reected and
transmitted waves are analysed. In section IV, the reec-
tion coe�cients are calculated for a range of simulations
of small- and large-amplitude wavepackets with di�erent
horizontal extents. A summary of these results and their
implications to atmospheric and oceanographic modelling
are given in section V.

II NUMERICAL MODEL

The propagation of a two-dimensional wavepacket is ex-
amined by solving the fully nonlinear, non-hydrostatic
equations of motion with speci�ed initial conditions for
the wavepacket structure and the background pro�les of
horizontal velocity U (z) and density �(z). The numeri-
cal model is described in detail in Sutherland7; only the
salient features are given below. Throughout this paper
it is assumed that the ow is uniformly strati�ed, that
is, the background squared buoyancy frequency, N?

2 =
�(g=�00)d�=dz, is constant. Here g is the gravitational
acceleration and �00 is a reference value of density. The
Boussinesq approximation is used, so that the background
density pro�le can be written as �(z) = �00 � ��z=H,
in which H is the height of the domain and �� (� �00)
is the change in density over this height. Characteristic
time (T ), length (L) and density (��) scales are used to
express the equations of motion in nondimensional form.
The equations for the vorticity, � = uz � wx, and pertur-
bation density, �, �elds are

D�

Dt
= N0

2 @�

@x
+ D� (1)

and

D�

Dt
= w + D�; (2)

in which D=Dt is the material derivative, and u and w
are the horizontal and vertical velocity �elds, respectively.
N0 = N?T is the nondimensional buoyancy frequency. It
has been assumed that density uctuations occur on the
scale �� = L��=H, in which case � is identical to the
nondimensional vertical displacement �eld, �. In order to
approximate the motion of inviscid waves while keeping
the code numerically stable, the di�usion of the vortic-
ity D� , acts only on scales smaller than the horizontal
wavenumber of the wavepacket. On these small length-
scales D� = 1

Re
r2�. Likewise, the di�usion of the per-

turbation density �eld acts only on small length-scales in
which case D� = 1

Re Pr
r2�. The Reynolds number is
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set to Re = 1000 and the Prandtl number to Pr = 1.
Equations (1) and (2) are solved in a horizontally peri-
odic channel with free slip boundary conditions using a
mixed spectral-�nite di�erence code developed originally
by Smyth and Peltier12.
The vertical extent of the domain ranges from �100 �

z � 100. For horizontally periodic internal waves, the
horizontal extent of the domain, Lx, is set to be exactly
one wavelength. For horizontally compact wavepackets,
the horizontal extent is set to be Lx = 64� ' 201. Typ-
ically, this is 10 to 20 times wider than the width of the
wavepackets studied. As con�rmed by doubling the width
of the domain, the periodic boundary conditions have neg-
ligible e�ect upon the evolution of the wavepacket.
The initial wavepacket is vertically localised. Over the

extent that the amplitude of the initial wavepacket is non-
negligible the background ow is stationary. Explicitly, the
initial wavepacket is prescribed in terms of the streamfunc-
tion  (x; z):

 (x; z) = 	(x; z) exp[{(kxx+ kzz)] + c.c. (3)

In simulations of horizontally periodic internal waves, the
envelope of the wavepacket is given by

	PW(x; z) = A0 exp(�jz � z0j=�z): (4)

In simulations of horizontally compact wavepackets

	(x; z) = A0 exp(�jz � z0j=�z) exp(�x2=2�x2):
(5)

Here the amplitude is A0, and �x and �z are the horizon-
tal and vertical extents, respectively, of the wavepacket.
For �nite �x and �z, and small amplitude A0, the initial
wavepacket de�ned by equation (3) and either (4) or (5)
may be thought of as the superposition of monochromatic
waves spanning a broad frequency range centred about
a frequency !, determined from the wavenumber vector
(kx; kz). The frequency ! is to be estimated from the dis-
persion relationship for internal waves

! = N0kx=

q
kx

2 + kz
2: (6)

If 1=�x� kx and 1=�z � kz (as is the case in all the stud-
ies presented here), the frequency range is sharply peaked
about ! and, for a small amplitude wavepacket, linear the-
ory may be applied to it as if it was monochromatic.
The qualitative results presented here are not sensi-

tively dependent upon the form of the wavepacket en-
velopes given by equations (4) and (3). The vertical struc-
ture of the envelope is set to be exponential because this
corresponds to the structure of a growing and decaying
wavepacket. For horizontally compact wavepackets, the
horizontal structure of the envelope is set to be Gaussian
in order to be representative of a statistical ensemble of
waves with wavenumber spectrum centred kx.
For simplicity, the length-scale is chosen so that kx = 1

and the time-scale is chosen so that N0 = 1. In the
Boussinesq approximation, there is no di�erence in the be-
haviour of upward and downward propagating wavepack-
ets. However, to be consistent with studies of internal

waves propagating downward from the ocean surface13, the
internal waves are prescribed initiallywith positive vertical
wavenumber so that the waves propagate downward.
Studies are performed only for wavepackets with verti-

cal wavenumber kz =
p
2=2 ' 0:71. This value is chosen

because, with kx = 1, periodic internal waves propagate
downward with the largest group velocity cgz = �2=3p3 '
�0:38. In this case ! =

p
2=3 ' 0:82. From linear the-

ory, an estimate of the initial amplitude of the vertical
displacement �eld is found to be A� ' 2:45A0. Thus with
A0 = 1, for example, the maximuminitial vertical displace-
ment is approximately 39% of the horizontal wavelength.
The vertical extent of the wavepacket is also �xed with
�z = 5, so that approximately 1 vertical wavelength spans
the depth of the wavepacket. The width �x and amplitude
A0 are allowed to vary. As the wavepacket propagates
downward into ow moving at speed U (z), linear theory
predicts that the waves are Doppler-shifted with frequency

(z) = ! � kxU (z).
The background ow is de�ned by

U (z) = U1[1� tanh(z=D)]=2; (7)

in which U1 is the ow speed well below the initial
wavepacket and D is the depth over which the back-
ground changes from stationary ow above z = 0 to ow
moving at speed U1 below z = 0. Throughout we set
D = 5. The wavepacket encounters a reecting level if
U1 is su�ciently negatively large. Explicitly, this occurs if
U1 <

p
2=3� 1 ' �0:18.

The co-ordinate system is chosen so that the ow
changes about z = 0, and the wavepacket is centered ini-
tially about (x0; z0) = (0; 25). Thus the wavepacket is
su�ciently close to the region where the background ow
changes, but the initial wavepacket amplitude near z = 0
is negligible.
Typically, simulations are run for times between t =

0 and 200. From linear theory, we estimate that the
wavepacket propagates a total vertical distance of z ' 76
at the end of a simulation. Therefore, the vertical ex-
tent of the domain is su�ciently large that the wavepacket
has negligibly small amplitude near the top and bottom
boundaries throughout the simulation.
Figure 1 shows a typical initial condition for the simula-

tions. Figure 1a shows the horizontal velocity pro�le U (z)
with D = 5, and U1 = �0:2. In this case, the Doppler-
shifted frequency of the wavepacket as it propagates well
below z = 0 is 
 ' 1:02, and therefore a reecting level
exists near z = 0 in this case. Figure 1b shows the per-
turbation density �eld �(x; z) of an initial wavepacket with
amplitude A0 = 0:04 and horizontal extent �x = 10. The
down and rightward tilt of the phase lines is consistent with
the structure of internal waves that propagate downward
to the right.

III RESULTS

Here the results are presented of control simulations exam-
ining the propagation of wavepackets in uniformly strati-
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�ed, stationary ow. These simulations serve to demon-
strate how nonlinearity a�ects the propagation and dis-
persion of the waves. Following this the results are pre-
sented of a range of simulations performed to examine
the behaviour of internal waves incident upon a level in
a background shear ow where 
=N0 ' 1. The e�ect of
varying the initial amplitude and horizontal extent of the
wavepacket is examined.

A CONTROL SIMULATIONS

The e�ect of nonlinearity upon the dispersion of inter-
nal waves is demonstrated by comparing the behaviour of
small- and large-amplitude wavepackets. The structure of
horizontally periodic wavepackets at time t = 200 in a sim-
ulation are shown in Figure 2. Figure 2a shows the vertical
pro�le of the Reynolds stress per unit mass, � (z) = hu0w0i,
in which u0 and w0 are the perturbation horizontal and ver-
tical velocities, respectively, and the angle brackets denote
the domain horizontal average. The pro�le is shown for a
simulation of a small-amplitude wavepacket withA = 0:01.
The Reynolds stress is negative over the extent of the
wavepacket as expected for a wavepacket that transports
forward momentum downward. Figure 2b shows the cor-
responding perturbation density �eld, �(x; z), at the same
time. Although there has been weak wave dispersion, the
diagram demonstrates that the extent of the wavepacket
and the tilt of the phase lines is approximately the same
as those of the initial wavepacket. The centroid position
of the wavepacket is calculated from the weighted aver-
age of the momentum ux using only values within 95%
of the minimum value of � . The width is the standard
deviation of this normalised distribution. At time t = 0
the wavepacket is found to be centred at z = 25:0, as ex-
pected. The width of the wavepacket is 3:7, moderately
smaller than the e-folding depth �z = 5. At time t = 200
the wavepacket is centred at z ' �47:2 with width 4:3.
According to linear theory, small-amplitude waves are ex-
pected to propagate downwards at the speed of the verti-

FIG. 1. The a) background horizontal velocity pro�le and
b) perturbation density �eld of an initial wavepacket in a
typical simulation.

cal group velocity cgz ' �0:38. Thus at time t = 200 the
wavepacket is expected to be localized about z = �51,
which is moderately deeper than its observed position.
This discrepancy occurs because the initial wavepacket,
being vertically compact, is the superposition of internal
waves with a range of vertical wavelengths centred about
kz =

p
2=2. Thus the wavepacket is expected to propagate

with vertical velocity moderately less than cgz.

FIG. 2. The a) Reynolds stress pro�le and b) perturba-
tion density �eld associated with a horizontally periodic
wavepacket with A0 = 0:01 in a control simulation at time
t = 200. Diagrams c) and d) show the corresponding plots
for a wavepacket with A0 = 0:10.

As in Figures 2a and b, Figures 2c and d show the
Reynolds stress pro�le and perturbation density �eld, re-
spectively, at time t = 200 for a simulation of a large-
amplitude wavepacket with A0 = 0:10. In this case, the
dispersion of the wavepacket is more pronounced. The
Reynolds stress pro�le shows multiple peaks, though the
peak at the leading edge is largest. For this leading peak,
the centroid position is at z ' �46:5 and the width of
the peak is 4:1. The centroid of the wavepacket including
the trailing peaks is at z ' �44:2 with width 6:1. Thus
the e�ect of weak nonlinearity associated with the large-
amplitude wavepacket is to moderately reduce the average
vertical speed of propagation of the wavepacket and to en-
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FIG. 3. As in Figure 2 but for compact wavepacket with
width �x = 10 and in a) and b) A0 = 0:04, and in c) and
d) A0 = 0:40.

hance its dispersion.
In comparison with horizontally periodic wavepackets,

simulations have been performed of horizontally and verti-
cally compact wavepackets in uniformly strati�ed station-
ary ow. As in Figure 2, Figure 3 shows the Reynolds
stress pro�les and perturbation density �elds at time
t = 200 taken from simulations of small and large-
amplitude wavepackets. The initial horizontal width of
both wavepackets is �x = 10. Figures 3a and b show the
structure of a small-amplitude wavepacket with A0 = 0:04.
The wavepacket undergoes greater dispersion compared
with that of the horizontally periodic wavepacket. At time
t = 200, the peak amplitude of the perturbation density
�eld is j�0j ' 0:04, which is almost one-third the peak
amplitude at time t = 0. The phase tilt of the waves to
the left of the wavepacket centre is more vertical and the
phase tilt of the waves to the right is more horizontal. The
position of the centroid of the wavepacket at this time is
z ' �48:8 with width 6:6. Thus the wavepacket is approx-
imately 80% wider than the small-amplitude horizontally
periodic wavepacket shown in Figure 2b. The average ver-
tical speed is approximately the same in both cases.

Figure 3c shows the Reynolds stress pro�le and Figure 3d

shows the perturbation density �eld at time t = 200 of
a large-amplitude wavepacket with A0 = 0:40. The dis-
persion of the wavepacket is signi�cant in this case. The
wavepacket has both broad vertical and horizontal extents.
The position of the centroid of the wavepacket is z ' �38:2
and its width is 14:1. Thus, among other e�ects, nonlin-
earity acts to signi�cantly slow the vertical speed of prop-
agation of the wavepacket, and this e�ect is much more
pronounced if the wavepacket is horizontally compact. As
discussed below, this is a consequence of the wave-wave
interactions that act non-uniformly over the extent of the
wavepacket to locally change the phase speed of the waves.

B WAVE SELF-ACCELERATION

The e�ect of weak nonlinearity upon the spectrum of the
wavepacket is shown in Figure 4, which contains contour
plots of the normalised power spectrum of the a) small-
amplitude (A = 0:04) and b) large-amplitude (A = 0:40)
wavepackets shown in Figures 3b and d, respectively. The
power spectrum is computed from the square of the com-
ponents of the two-dimensional discrete Fourier transforms
of the perturbation density �elds. The result is normalised
by its maximum value. The contours in both �gures range
from 0:1 to 0:9 by an interval of 0:2. Figure 4a shows
that the internal wave spectrum for the small-amplitude
wavepacket is sharply peaked about wavenumber vector
(kx; kz) ' (1:0� 0:06; 0:69� 0:12), close to the wavenum-
ber vector, (1; 0:71), prescribed to the wavepacket at time
t = 0. The horizontal and vertical width in wavenumber
space (0:06 and 0:12, respectively) are determined from
the standard deviation of the power spectrum calculated
for values within 95% of the peak value. The spectrum
shown in Figure 4b of the large-amplitude wavepacket at
time t = 200 is much broader. The horizontal wavenum-
ber is centred about kx ' 1:0 � 0:06, the width about
the peak being comparable to that of the small-amplitude
case. However, the vertical wavenumber spectrum is more
broadly distributed with mean kz ' 0:97�0:47. The spec-
trum exhibits two strong peaks near kz ' 0:7 and kz ' 0:3,
and a smaller peak with kz ' 1:1. The power spectrum is
greater than 0:1 for values of kz ranging from 0:1 to 1:9.
This range is three times larger than the corresponding
range in the small-amplitude case. Because the wavenum-
ber spectrum is broader, the frequency spectrum is also
broader. Linear theory is used to estimate the frequency
of the waves from the wavenumber vector. The frequency
of the waves with peak power at (kx; kz) = (1; 0:3) is 0:96,
at (kx; kz) = (1; 0:7) is 0:82, and at (kx; kz) = (1; 1:1)
is 0:67. Thus, if the background ow, U (z), is not uni-
form but changes according to equation (7) with U1 neg-
ative, then the proportion of the wavepacket that reects
is expected to be di�erent for large-amplitude and small-
amplitude waves. This amplitude dependent behaviour
is the result of weakly nonlinear interactions between the
waves and the wave-induced mean-ow, otherwise known
as the self-acceleration of the waves 8,9.

As shown by Sutherland7, the wave-induced mean-ow
for horizontally periodic internal waves in uniformly strat-
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FIG. 4. Normalised power spectra of a) small-amplitude
and b) large-amplitude compact wavepackets at time t =
200, computed from perturbation density �elds shown in
Figure 3b and d, respectively. Contours are shown by in-
tervals of 0:2.

i�ed uid is given approximately by the mean horizontal
wave pseudomomentum14:

U 'M = �0�0; (8)

in which �0 and �0 are the perturbation vorticity and ver-
tical displacement �elds, respectively. This estimate is ac-
curate to O(A0

3). The wave pseudomomentum is well de-
�ned for horizontally periodic ows. For compact waves,
the e�ect of self-acceleration is demonstrated by calculat-
ing the �0�0 �eld and at each point in the �eld calculat-

ing the horizontal average over one wavelength, �x = 2�:

�0�0
�x
. The result is shown in Figure 5 from simulations

at time t = 200 for a) small-amplitude (A = 0:04) and
b) large-amplitude (A = 0:40) wavepackets in stationary,
uniformly strati�ed uid. The gray-scale shows the per-
turbation density �eld at this time, reproduced from Fig-
ures 3b and d. Superimposed on these are contours of

�0�0
�x
, The undulations in the contours are an artifact of

the averaging procedure. Nonetheless, the large-scale fea-
tures give an adequate representation of where the wave-
induced ow is signi�cant. In Figure 5a the contours are
shown by intervals of 0:0002, the peak value occurring near
the centre of the wavepacket at (x; z) ' (55;�50) with
value U ' 0:001. In Figure 5b the contours are shown in
intervals of 0:005. In this case, there are two peak values
occurring near (x; z) ' (55;�50) with value U ' 0:025,
and near (80;�30) with value U ' 0:035. From linear
theory, the group velocity of the initial wavepacket is es-
timated to be (cgx; cgz) ' (0:27;�0:38). Thus, the wave-
induced mean ow of the large-amplitude wavepacket is as
large as 10% the horizontal group velocity and, therefore,
has an arguably signi�cant impact upon the wavepacket
evolution.
From the group velocity, the position of the wavepacket

at time t = 200 is estimated to be at approximately
(54;�51). This is comparable with the observed position
of the small-amplitude wavepacket, and also with the po-
sition of the lower peak value of U of the large-amplitude
wavepacket. It is interesting to note that the position of the
stronger peak value of U is consistent with that expected
for a wavepacket with the largest horizontal group velocity
for which (kx; kz) = (1;

p
2) and (cgx; cgz) ' (0:38;�0:27).

A detailed analysis of the division of an initial large-
amplitude wavepacket into parts is currently under inves-
tigation, but beyond the scope of this paper.

C PERIODIC INTERNAL WAVES IN A

SHEAR FLOW

Here the propagation of a horizontally periodic wavepacket
is examined as it propagates downward through a uni-
formly strati�ed shear ow. The background ow has
zero speed over the depth of the initial wavepacket and
has uniform and negative speed at great depths. Be-
cause the initial wavepacket has positive horizontal phase
speed, the Doppler-shifted frequency of the wavepacket,

 = ! � cpxU , becomes larger as it propagates down-
ward. If 
 equals the buoyancy frequency N0 = 1 at
some depth, then the wavepacket encounters a reecting
level. For small-amplitude internal waves, it is found that
the wavepacket is partially reected from and transmitted
across a reecting level due to transient e�ects7.
Figure 6 shows the results of a simulation of a small-

amplitude wavepacket, with A0 = 0:01, propagating
through uid in which the background velocity is given
by equation (7) with U1 = �0:2. In this case the Doppler-
shifted frequency of the wavepacket well below z = 0 is

1 ' 1:02 > N0. Therefore, a reecting level exists near
z = 0. Figure 6a shows a horizontally o�set sequence of
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FIG. 5. Contours of �0!0
�x

�eld (black lines) for a) small-
amplitude and b) large-amplitude compact wavepacket in
control simulation at time t = 200. The contours are su-
perimposed on pertubation density �eld (gray-scale) which
are reproduced from Figure 3b and d, respectively. Con-
tours are shown by intervals of a) 0:0002 and b) 0:005.

pro�les of the Reynolds stress, � (z). From left to right, the
pro�les are shown at times t = 0; 10; : : : ; 200. Each pro�le
is shown on a scale ranging from�10�4 to 4�10�5 Initially,
� is negative about a peak centered at z = 25. The sign
of � is consistent with the downward transport of forward
momentum by the propagating wavepacket. It encounters
the reecting level near z ' 0 around time t ' 80 and
then proceeds to split into two wavepackets, one that con-
tinues to propagate downward with an associated negative

Reynolds stress (� (z) < 0 for z < 0), and one that prop-
agates upward with an associated positive Reynolds stress
(� (z) > 0 for z > 0). Figure 6b shows the perturbation
density �eld at t = 200 in this simulation. The contours
in the diagram range between �0:02 and 0:02. The dia-
gram shows two wavepackets, which can be distinguished
from the tilt of the phase lines above and below z = 0.
The right and downward tilt of the waves below z = 0 is
consistent with their expected downward propagation. By
calculating the position of the centroid of the perturbation
kinetic energy associated with the wavepacket with nega-
tive Reynolds stress, the wavepacket is found to be centred
about z ' �33:7 with width 7:8. The right and upward
tilt of the waves above z = 0 is consistent with upward
propagation. These waves are centered about z ' 27:3
with width 10:0.
For comparison, a simulation is performed with the

same initial background ow but for a large-amplitude
wavepacket with A0 = 0:10. As in Figure 6, Figure 7a
shows a sequence of pro�les of � (z), each pro�le shown
on a scale ranging from �10�2 to 6 � 10�3. As in the
small-amplitude case, the wavepacket encounters the re-
ecting level near z = 0 and splits into a transmitted,
downward propagating and reected, upward propagating
wavepacket. By comparison, the vertical width of both
wavepackets at late times is moderately smaller. Figure 7b
shows the perturbation density �eld associated with the
waves at time t = 200. The contours range from �0:25 to
0:25. As before, it is found that the tilt of the phase lines
below z = 0 is downward and to the right. This downward
propagating wavepacket is centered about z ' �34:0 with
width 7:2. The upward propagating wavepacket above
z = 0 is centered about z ' 32:2 with width 6:3.
Nonlinear e�ects act to reduce the width of the

wavepacket and to increase its vertical group velocity. As
will be shown in section IV, nonlinearity also acts to in-
crease or decrease the proportion of the wavepacket that
is reected.

D COMPACT INTERNAL WAVES IN A

SHEAR FLOW

As discussed above, horizontal and vertical wave dispersion
can be enhanced for large-amplitude compact wavepackets
due to wave self-acceleration. When a compact wavepacket
encounters a reecting level, the superposition of the in-
cident and reected wavepackets e�ectively increases the
amplitude of the waves and thus the dispersion of the waves
is further enhanced. Here the e�ect of this dispersion upon
the structure of the reected and transmitted waves is qual-
itatively examined.
Figure 8 shows the results at time t = 200 of two simu-

lations of the propagation of a small- and large-amplitude
compact wavepackets. In both cases the horizontal width
is �x = 10. As in the simulations of horizontally peri-
odic internal waves discussed above, the background ow
speed is given by equation (7) with U1 = �0:2. Thus
the Doppler-shifted frequency of the wavepacket well be-
low z = 0 is 
 ' 1:02, and so a reecting level exists
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FIG. 6. In a) a sequence of o�set Reynolds stress pro�les
at times t = 0; 10; : : :200, and in b) the perturbation den-
sity �eld at t = 200 from a simulation of small-amplitude
horizontally periodic wavepacket incident upon a reecting
level.

near z = 0. Figure 8a shows the Reynolds stress pro�le at
t = 200 for a simulation of a small-amplitude wavepacket
with A0 = 0:04. Figure 8b shows the corresponding per-
turbation density �eld over the same vertical extent. Only
a fraction of the horizontal extent of the computational do-
main is shown. Contours range between �0:05 and 0:05.
Due to the horizontal dispersion of the wave, the peak per-
turbation density is less than half that of the peak value
at time t = 0.

The wavepacket below z = 0 has right and downward-
tilting phase lines, and the Reynolds stress is negative

FIG. 7. As in Figure 6 but for a large-amplitude periodic
wavepacket.

over its vertical extent. These characteristics are consis-
tent with a downward propagating wavepacket. From its
perturbation kinetic energy pro�le at this time, the down-
ward propagating wavepacket is found to be centred about
z ' �40:0 with width 10:3. Consistent with the proper-
ties of upward propagating internal waves, the wavepacket
above z = 0 has right and upward-tilting phase lines, and
its associated Reynolds stress is positive. It is centred
about z ' 28:3 with width 9:7.

Figure 8c shows the Reynolds stress pro�le for a sim-
ulation of a large-amplitude wavepacket with A0 = 0:40.
Figure 8d shows the corresponding perturbation density
�eld, with contours ranging from �0:3 to 0:3. As in the
case with A0 = 0:04, the diagrams show the transmis-
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FIG. 8. The a) Reynolds stress pro�le and b) perturbation
density �eld at time t = 200 from simulation of a small-
amplitude horizontally compact wavepacket of width �x =
10. Diagrams c) and d) are the corresponding plots from
a simulation of a large-amplitude wavepacket.

sion and reection of the wavepacket across a reecting
level near z = 0. In this case, however, the structure
and relative amplitude of the wavepackets are signi�cantly
di�erent. Although initially the amplitude of the large-
amplitude wavepacket is ten times larger than that of the
small-amplitude wavepacket, at time t = 200 the ampli-
tude is only 6 times larger.

The horizontal extent of the wavepacket is much broader.
Below z = 0 its half width is approximately 25, compared
with that of the small-amplitude wavepacket which is ap-
proximately 17. The Reynolds stress associated with the
downward propagating wavepacket has multiple peaks and
the magnitude of the momentum ux associated with it is
signi�cantly larger than the magnitude of the momentum
ux of the upward propagating wavepacket above z = 0.
The centroid of the wavepacket is at z ' �32:1 with width
9:9, which is not as deep as its counterpart in the simula-
tion of the small-amplitude wavepacket (Figure 8b). Thus
the average vertical speed of propagation of the wavepacket
below z = 0 is smaller in the large-amplitude case. The
centroid of the upward propagating wavepacket above the

FIG. 9. Normalised power spectra of a) transmitted and
b) reected small-amplitude wavepacket computed from
perturbation density �elds shown in Figure 8b. Diagrams
c) and d) show the corresponding plots computed for a
large-amplitude wavepacket, the perturbation density �eld
of which is shown in Figure 8d.

reecting level is at z ' 36:5 with width 8:4. This is signif-
icantly higher than the depth of its small-amplitude coun-
terpart, and thus the average vertical speed of propagation
of the reected wavepacket is larger in the large-amplitude
case.

The normalised power spectrum of the transmitted and
reected wavepackets is calculated from the perturbation
density �eld as described in section IIIB. From simulations
at time t = 200 when the transmitted, downward propa-
gating and the reected, upward propagating wavepackets
are su�ciently spatially separated, the power spectrum is
calculated for the �eld below and above z = 0, respec-
tively. Figure 9 shows the power spectrum for the sim-
ulations of the small (A = 0:04) and large (A = 0:40)
amplitude wavepackets at time t = 200. The corre-
sponding perturbation density �elds are shown in Fig-
ure 8b and d, respectively. In each case the contours
are shown in intervals of 0:2 ranging from 0:1 to 0:9.
Figure 9a shows the power spectrum of the transmitted
small-amplitude wavepacket. The peak power occurs at
wavenumber (kx; kz) ' (0:96 � 0:05; 0:27� 0:14). From
linear theory, this corresponds to a Doppler-shifted fre-
quency of 
 ' 0:96, close to the background buoyancy fre-
quency N = 1. The horizontal wavenumber is 4% smaller
than that of the wavepacket at time t = 0. Figure 9b
shows the power spectrum of the reected small-amplitude
wavepacket. For these waves, the power is sharply peaked
about (kx; kz) ' (0:96 � 0:06;�0:63� 0:09). The corre-
sponding frequency is comparable with the frequency of
the initial wavepacket.
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Figure 9c shows the power spectrum of the transmit-
ted large-amplitude waves. The peak in the power spec-
trum occurs for wavenumbers about (kx; kz) ' (1:04 �
0:05; 0:63). The width of the vertical wavenumber spec-
trum is much broader than the small-amplitude case. How-
ever, the horizontal wavenumber spectrum remains sharply
peaked. The weighted mean power occurs for kz ' 0:90
with standard deviation 0:33. The power spectrum of
the reected large-amplitude wavepacket is shown in Fig-
ure 9d. Here the peak power occurs about (kx; kz) '
(0:96� 0:05;�0:63), and the weighted mean power occurs
for kz ' �0:48 with standard deviation 0:16.
Thus, while nonlinear e�ects do not act to change

the horizontal wavenumber spectrum signi�cantly, the
vertical wavenumber spectrum and the frequency varies
greatly. It is interesting to note that for the large-
amplitude wavepacket, the absolute values of the peak
vertical wavenumbers of the reected and transmitted
wavepackets are comparable and close to the value of the
vertical wavenumber of the initial wavepacket.
In both the small- and large-amplitude cases incident

upon a region where 
 > N , the power associated with
the transmitted wavepacket is signi�cant only for positive
values of kz. That is, the waves are not evanescent, but
downward propagating. For small-amplitude waves, the
reecting level acts as a �lter that removes the proportion
of the wavepacket associated with Doppler-shifted frequen-
cies larger than N . For large-amplitude waves, this �lter-
ing acts in conjunction with nonlinear e�ects that distort
the spectrum of the initial wavepacket.

IV REFLECTION COEFFICIENTS

To quantify the degree to which incident waves reect, the
reection coe�cient, R, is calculated, this acting as a mea-
sure of the proportion of the wavepacket that is propagat-
ing upward at time t = 200. Explicitly, R is de�ned as
the ratio of the integral of the perturbation kinetic energy
above z = 0 to the integral of this energy over the whole
domain. Though not shown here, the reection coe�cient
has also been calculated in terms of the total energy (i.e.
the perturbation kinetic and available potential energy)
and, for horizontally periodic waves, in terms of the wave
pseudomomentum. The calculated reection coe�cient is
approximately the same in each case. Plots of the evolu-
tion of the reection coe�cient in time (not shown here)
demonstrate thatR changes by less than 5% between times
t = 150 and 200.
Figure 10 shows the reection coe�cient of horizontally

periodic internal waves as a function of the ratio of the
Doppler-shifted frequency of the wavepacket in the deep
uid, 
1 = ! � kxU1, to the buoyancy frequency N0 = 1.
If 
1=N0 > 1, then the initial wavepacket encounters a
reecting level near z = 0. From linear theory, plane peri-
odic (i.e. monochromatic) internal waves are expected to
reect entirely from this level, so that R = 1. Likewise,
if 
1=N0 < 1, from linear theory plane periodic waves are
expected to transmit entirely so that R = 0. However,
because the vertical extent of the wavepackets in the simu-

lations is �nite the waves are not monochromatic. Indeed,
for a small-amplitude wavepacket with A0 = 0:01 (solid
line), the reection coe�cient is signi�cantly less than 1
for 1 < 
1=N0

< 1:1, and R � 0 for 0:9 < 
1=N0 < 1.
Sutherland13 has shown that the form of this curve is well
predicted by linear theory that takes into account the ini-
tially broad power spectrum of the simulated waves.
If the initial wavepacket is of large amplitude, the pro-

portion of the initial wavepacket that is reected is less
than that predicted by linear theory if 
1=N0 > 1:04. If

1=N0 < 1:04, the proportion of the initial wavepacket
that is transmitted is greater than that predicted by linear
theory.
As shown above, nonlinear e�ects signi�cantly broaden

the spectrum of a wavepacket that is horizontally compact.
Figure 11 shows the reection coe�cients as a function of

1=N0 for simulations of horizontally compact wavepack-
ets. In a) the reection coe�cients are shown for sim-
ulations of wavepackets with horizontal width �x = 10
and a range of amplitudes from A0 = 0:04 (solid line), to
A0 = 0:40 (dot-dashed line), as indicated on the diagram.
When the initial wavepacket is of small amplitude (e.g.
A = 0:04), the reection coe�cient as a function of 
1=N0

is similar to that for horizontally periodic internal waves.
The curve agrees well with that predicted by linear theory
(not shown).
Due to the dispersion of compact wavepackets, the am-

plitude decreases rapidly in time from its initial value.
Thus for A0 < 0:10, the amplitude of the wave at time
t = 200 is so small that the curve R(
1=N0) di�ers in-
signi�cantly from that predicted by linear theory. For
larger values of the initial amplitude, enhanced transmis-

FIG. 10. The reection coe�cient as a function of 
1=N0

for periodic wavepackets of amplitude A0 = 0:01 (solid
line), A0 = 0:10 (short-dashed line) and A0 = 0:15 (long-
dashed line).
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FIG. 11. The a) reection coe�cient as a function of

1=N0 for compact wavepackets of amplitude A0 = 0:04
(solid line), A0 = 0:20 (short-dashed line) and A0 =
0:30 (long-dashed line), and A0 = 0:40 (dash-dotted
line). b) Reection coe�cient for large-amplitude com-
pact wavepacket with A0 = 0:40 and width �x = 10 (solid
line) and �x = 20 (dashed line).

sion of the wavepacket occurs for 
1=N0 > 1. Indeed, R
is signi�cantly less than 1 over a much greater range than
that for horizontally periodic wavepackets. For example,
if A0 = 0:40 and 
1=N0 = 1:82 (U1 = �1:0), the reec-
tion coe�cient is R = 0:89 for a compact wavepacket with
�x = 10, whereas R is negligibly di�erent from 1 for a peri-
odic wavepacket of comparable amplitude at time t = 200.
For 
1=N0 < 1, the reection of the incident wavepacket is
enhanced, though to a lesser degree for compact wavepack-
ets than for periodic wavepackets.

Figure 11b compares the reection coe�cients for sim-
ulations of large-amplitude wavepackets (A0 = 0:40) with
horizontal widths �x = 10 and 20. The plot shows that the
reection coe�cient is generally larger for a wavepacket
of double the width over the calculated range 0:86 <

1=N0 < 1:82. This result is consistent with the expec-
tation that in the limit of compact wavepackets of very
large horizontal extent, the reection coe�cient should ap-
proach that for horizontally periodic waves. Simulations of
wavepackets of horizontal extent signi�cantly larger than
�x = 20 have not been possible due to limitations in the
speed and memory of the computational resources avail-
able.

V DISCUSSION AND CONCLUSIONS

Numerical simulations have demonstrated that the ampli-
tude and horizontal extent of a wavepacket are signi�cant
factors in determining the dynamics of internal waves in-
cident upon a reecting level. In particular, this work
demonstrates that a signi�cantly greater proportion of in-
cident internal waves may be transmitted above a reecting
level than predicted by linear theory. Compared with hor-
izontally periodic waves, an even greater proportion of the
incident wavepacket is transmitted for a wavepacket that
is horizontally compact but whose horizontal extent en-
compasses many wavelengths. For example, linear theory
predicts almost 100% reection of a wavepacket with am-
plitude A0 = 0:40 that propagates across a shear ow into
a region where its Doppler shifted frequency is 20% greater
than the background buoyancy frequency. (For reference,
the maximumvertical displacement of this wavepacket ini-
tially is A�z ' 1, about 16% of the horizontal wavelength.)
In fact, approximately 50% of a wavepacket with this am-
plitude is transmitted below the reecting level and where
it continues to propagate.
At present it is not obvious how the results presented

here might be e�ciently employed in a general circulation
model. In these models and in analytic theories applied
to understanding the impact of internal waves upon the
large-scale circulation of the atmosphere and ocean, linear
theory is frequently employed to estimate at which vertical
levels incident internal waves might break or reect. This
approach is bene�cial in part because it is easily adapted to
speedy computation in numerical models. In many oceano-
graphic and atmospheric circumstances, internal waves
have been observed with amplitudes large enough that non-
linear e�ects play a signi�cant role. The results presented
here demonstrate, however, that this methodology should
be applied with caution when modelling the dynamics of
non-hydrostatic large-amplitude internal waves.
It is worthwhile commenting upon the possibility of ap-

plying weakly nonlinear theory to elucidate further the re-
sults presented here. Weakly nonlinear evolution equations
have been developed by Smith15 to model the growth in
amplitude of surface waves near caustics, and Peregrine
and Smith16 have modelled the weakly nonlinear behaviour
near caustics of dispersive waves in general. The resulting
equations, which have the form of a Nonlinear Schr�odinger
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(NLS) equation, require that the background varies slowly
on a scale comparable with the wavelength of the waves.
This is not the case for the waves studied here: in order
to demonstrate the steady propagation of transmitted and
reected waves, the simulations have been set up so that
the background is uniform well above and well below a lo-
calised region within which the background ow varies over
a length-scale comparable with the vertical wavelength of
the wavepacket.
Weakly nonlinear theory has been applied to examine

the resonant over-reection of internal waves at a critical
level (where the phase speed of the wave equals the speed
of the background ow) in a thin shear layer17. However,
these results cannot easily be extended to examine the re-
ection of waves from a reecting level because the in-
cident waves cannot not couple with an unstable mode of
the background ow; the phase speed of the incident waves
must lie outside the range dictated by Howard's semicircle
theorem18.
In order to adapt existing weakly nonlinear theories

of waves near caustics to the study of reecting internal
waves, a straightforward �rst step would be to run a new
series of numerical simulations modelling the behaviour of
internal waves propagating in constant, but weak shear. In
these simulations, total reection of the waves, indepen-
dent of the initial wavepacket amplitude, is anticipated.
However, weakly nonlinear e�ects would act to shift the
vertical level at which the waves reect. This research is
currently under progress.
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