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Theory and numerical simulations show that the nonlinear self-interaction of
internal modes in non-uniform stratification results in energy being transferred to
superharmonic disturbances forced at twice the horizontal wavenumber and frequency
of the parent mode. These disturbances are not in themselves a single mode, but
a superposition of modes such that the disturbance amplitude is largest where
the change in the background buoyancy frequency with depth is largest. Through
weakly nonlinear interactions with the parent mode, the disturbances evolve to
develop vertical-scale structures that distort and modulate the parent mode. Because
pure resonant wave triads do not exist in non-uniformly stratified fluid, parametric
subharmonic instability (PSI) is not evident even though noise is superimposed
upon the initial state. The results suggest a new mechanism for energy transfer to
dissipative scales (from large to small vertical scale and with frequencies larger and
smaller than that of the parent mode) through forcing superharmonic rather than
subharmonic disturbances.
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1. Introduction
Through interactions with submarine topography, the barotropic tide excites internal

modes (Balmforth, Ierley & Young 2002; Llewellyn-Smith & Young 2002; Peacock,
Echeverri & Balmforth 2008). As observed in the Hawaiian Ocean Mixing Experiment,
near the generation site the superposition of modes form beams (Martin, Rudnick
& Pinkel 2006). But further away the disturbance field is dominated by mode-one
internal waves (Rainville & Pinkel 2006). An outstanding question is how the energy
associated with these waves cascades to smaller scales where it can efficiently mix
and dissipate. One proposed possibility is the occurrence of parametric subharmonic
instability (PSI), in which energy from the parent wave is resonantly extracted by a
pair of small-scale waves with subharmonic frequencies (Phillips 1960). A particularly
dramatic manifestation of the evolution of subharmonic waves resulting from PSI
was predicted to occur near the critical latitude of 28.9◦ where the M2 internal
tidal frequency is twice the local inertial frequency. Through numerical simulations,
MacKinnon & Winters (2005) showed that northward propagating mode-one internal
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modes in uniformly stratified fluid restricted to the x–z plane undergo a ‘subtropical
catastrophe’ in which subharmonic waves grew at the expense of the M2 tide and
then dissipated significantly as they approached the critical latitude, their northward
group speed slowing to zero. In an attempt to observe this phenomenon occurring
north-east of Hawaii, bicoherence spectra were constructed and these suggested
a connection between the observed internal mode and inertial waves. However,
significant dissipation was not evident (Alford et al. 2007; MacKinnon et al. 2013).
Furthermore, evidence of high bicoherence is questionably linked to the physical
process of PSI (Chou et al. 2014). Observations in the North Pacific and in the
South China Sea were likewise inconclusive about whether PSI alone could explain
the occurrence of high dissipation and shear near the critical latitude (Hibiya &
Nagasawa 2004; Alford 2008). Because the theory for PSI for internal waves applies
strictly to internal waves in uniformly stratified fluid, the fact that PSI was not
clearly observed is not surprising. This paper aims to investigate how non-uniform
stratification affects the stability and evolution of internal modes showing, in particular,
that superharmonics are immediately generated having largest amplitude where the
stratification changes most rapidly in the vertical.

In idealized studies, ocean modellers sometimes approximate the stratification as
uniform. This is justified by the Wentzel–Kramers–Brillouin (WKB) approximation,
through which sinusoidal modes in uniform stratification can, through a coordinate
transformation, be stretched to approximate modes in non-uniform stratification
(e.g. see Sutherland 2010, § 3.5.2). But this procedure is accurate only for high
modes, which have vertical structure smaller than the scale of variations of the
background stratification. It is questionably applied to mode-one waves.

In stratification representative of the ocean, mode-one waves represent sinusoidal
undulations of thermocline and so one might approximate them better as interfacial
waves in a two-layer fluid. But PSI does not occur for interfacial waves restricted to
the x–z plane. This is evident from the conditions for PSI. In general, given a parent
wave of frequency ω0 and wavenumber k0, a pair of subharmonic waves may be
resonantly generated with wavenumbers k1 and k2 satisfying the wavenumber relation
(Hasselmann 1962)

k0 = k1 ± k2, (1.1)

and the corresponding frequency relation

ω0 =ω1 ±ω2, (1.2)

in which ωi satisfies the dispersion relation ωi =ω(ki) for i= 0, 1 and 2.
For interfacial waves in x–z plane, ki= ki is scalar. So the resonance conditions give

two equations in the two unknowns, k1 and k2. Because ω is a concave function of k,
the only solution is trivial: two-dimensional waves in a two-layer fluid are not unstable
to PSI. By contrast, for internal modes in the x–z plane in uniformly stratified fluid,
ki = (ki, mi). So the resonance conditions give three equations in the four unknowns
(k1, m1) and (k2, m2): PSI can occur for a range of subharmonic waves with energy
being extracted most efficiently by waves with half the frequency of the parent wave
(Lombard & Riley 1996).

In reality, mode-one waves of the thermocline lie between the extremes of interfacial
waves of a two-layer fluid and sinusoidal modes in uniform stratification. Theory has
been developed to predict the occurrence and growth rate of subharmonic waves in
stratification more representative of the ocean (Young, Tsang & Balmforth 2008). This
focused upon the particular circumstance in which the internal tide had nearly twice
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the inertial frequency so that subharmonics were excited at the inertial frequency itself.
In simulations by Hazewinkel & Winters (2011), a modulated tide was forced in non-
uniform stratification and allowed to propagate northward toward the critical latitude.
Here, as in the study of MacKinnon & Winters (2005), the development of PSI was
evident south of the critical latitude and the subharmonics were then observed to halt
their northward advance at the critical latitude. Neither of these studies examined or
reported upon the excitation of superharmonics.

The excitation of superharmonics was reported in the work by Diamessis et al.
(2014), who examined by way of theory and numerical simulations the reflection of
a horizontally and vertically propagating internal wave beam from a localized region
of strong stratification. In this case the beam imposed a frequency and horizontal
wavenumber upon the disturbances in the model thermocline, so the parent wave
was not necessarily a pure mode. Also, the theory assumed a steady response in
which the superharmonic had fixed frequency 2ω0. In the study presented here the
evolution of moderately large-amplitude mode-one waves in non-uniform stratification
is examined. Superharmonics are shown to grow in amplitude and, because their
structure corresponds to a superposition of vertical modes, their frequency is not
equal to the forcing frequency of 2ω0.

In § 2 the nonlinear equations are manipulated to show that in non-uniform
stratification internal modes directly excite disturbances that have twice the horizontal
wavenumber and are forced with twice the frequency of the parent wave. The weakly
nonlinear interaction of these superharmonics with the parent wave back upon the
parent wave is also considered. The numerical simulations in § 3 first examine
the evolution of modes in idealized top-hat-like stratification. Simulations are then
presented for a mode-one wave at a model thermocline, showing that superharmonic
excitation is dominant in this circumstance as well. Implications of this work are
discussed in § 4.

2. Theory
The fully nonlinear equations for two-dimensional motion in the y–z plane of

inviscid, incompressible, Boussinesq fluid on the f plane with arbitrary stratification
are given in terms of the spanwise vorticity, ζ = wy − vz = −∇2ψ , and buoyancy,
b=−gρ/ρ0 (in which g is gravity and ρ0 is a characteristic density):

ζt − fuz − by =−(vζy +wζz), (2.1)

and
bt +N2(z) w=−(vby +wbz), (2.2)

in which the subscripts denote derivatives. The horizontal and vertical velocities are
given by derivatives of the streamfunction ψ by v =ψz and w=−ψy. The spanwise
velocity, u, is given by the x-momentum equation:

ut − fv =−(vuy +wuz). (2.3)

Being on the f -plane, the Coriolis parameter, f , is taken to be constant. The
squared buoyancy frequency, defined in terms of the background density gradient
by N2=−(g/ρ0) dρ̄/dz, is generally a function of z, being constant only for the case
of uniformly stratified fluid.

For small-amplitude disturbances, the nonlinear terms on the right-hand sides of
(2.1) and (2.2) are negligible. The resulting coupled linear partial differential equations
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can be Fourier transformed in horizontal space and time so that a particular mode can
be written

ψ(y, z, t)=A ψ̂(z)eı(`y−ωt) + c.c. (2.4)

b(y, z, t)=A b̂(z)eı(`y−ωt) + c.c., (2.5)

in which ‘c.c.’ denotes the complex conjugate, ` is the horizontal wavenumber (in the
y-direction) and ω is the frequency of the particular vertical mode in question. The
vertical structure of the streamfunction, ψ̂ , and the corresponding frequency are found
from the solution of the eigenvalue problem

ψ̂ ′′ +
(

N2(z)−ω2

ω2 − f 2

)
`2ψ̂ = 0. (2.6)

The vertical structure of the buoyancy is given in terms of ψ̂ from the linear terms
in (2.2):

b̂=− `
ω

N2ψ̂. (2.7)

For conceptual convenience, the (possibly complex) amplitude A is set so that ψ̂
(hence also b̂) is a real-valued function with maximum value, ‖ψ̂‖, being order unity.

Of course, if N =N0 is constant, then analytic solutions of (2.6) are readily found:
ψ̂ = sin(kmz). For a domain of depth H, the vertical wavenumber holds discrete values
km =mπ/H for positive integers, m. The corresponding dispersion relation is

ω2 = N2
0`

2 + f 2k2
m

`2 + k2
m

. (2.8)

In general, if N varies with z, then ψ̂ and ω(`, km) must be determined numerically
as an eigenvalue problem for each mode number, m.

Now consider the self-interaction of a single mode through the nonlinear terms in
(2.1) and (2.2). Using (2.6) to recast second derivatives of ψ̂ in terms of ψ̂ and
simplifying, the nonlinear terms in the vorticity equation become

−(−ψz∇2ψy +ψy∇2ψz) → −i
dN2

dz
`3

ω2 − f 2
A 2ψ̂2e2i(`y−ωt) + c.c. (2.9)

Using (2.7), the nonlinear terms in the buoyancy equation become

−ψzby +ψybz → i
dN2

dz
`2

ω
A 2ψ̂2e2i(`y−ωt) + c.c. (2.10)

The forcing terms have similar structure to the right-most expressions of Diamessis
et al. (2014, equations (7) and (8)), though those equations ignore rotation and assume
steady state resulting from an incident vertically propagating wave beam transferring
energy to superharmonics. The right-hand sides of (2.9) and (2.10) express the
contribution of the advective terms upon the time rate of change of superharmonic
vorticity and buoyancy, respectively.

Crucially, both terms are multiplied by the z-derivative of N2. If the stratification
is uniform, both nonlinear terms vanish. This is just the well-known result that
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monochromatic internal waves in uniformly stratified fluid are an exact solution of the
fully nonlinear equations of motion. This is true whether the waves are unbounded or
confined as modes. (For uniform stratification, the advection terms of the momentum
equations do not vanish upon substituting the sinusoidal structure of the vertical
modes in a channel. But from the diagnostic pressure equation (computed from the
divergence of the momentum equations), it is found that the order amplitude-squared
pressure resulting from the advection terms has a gradient force that exactly cancels
the forcing from the advection terms. Working with vorticity, rather than momentum
and pressure, makes it clear that even vertically confined modes are an exact solution
of the fully nonlinear equations in uniform stratification.) In the examination of
PSI of modes in uniformly stratified fluid, it is necessary to suppose that (through
noise) the given parent internal mode interacts with other small amplitude internal
modes through the nonlinear terms (Bouruet-Aubertot, Sommeria & Staquet 1995).
Depending upon their wavenumber and frequency, the small waves may grow at the
expense of the parent mode.

By contrast, equations (2.9) and (2.10) show that disturbances in non-uniformly
stratified fluid are created by the parent mode even in the absence of noise. But
the vertical structure of the forcing does not correspond to that of any one mode.
It is strongest where N2 changes most rapidly with z, whereas modes tend to have
largest amplitude where N itself is largest. The forcing has twice the horizontal
wavenumber and frequency as the parent mode and so, at least initially, it gives rise
to superharmonic disturbances with the same horizontal phase speed as the parent
mode. This synchronization means that the amplitude of the disturbance initially grows
linearly in time. Because the excited disturbance is a superposition of vertical modes
having wavenumber 2` and because each vertical mode has a different frequency the
disturbances are not expected to maintain the phase speed of the parent mode. In
particular, smaller vertical scale modes have smaller frequency and so are expected
to move with slower phase speed than that of the parent mode.

As an example, consider the dispersion relation for vertical modes in top-hat-like
stratification for which the squared buoyancy frequency is

N2 = 1
2

N2
0

[
tanh

(
z− z−
σ

)
− tanh

(
z− z+
σ

)]
. (2.11)

If 0<σ �D≡ z+− z−, then N2'N2
0 for z−< z< z+ and N2' 0 otherwise. Assuming

the domain extends vertically from −H to 0, the stratified layer is symmetrically
positioned in the vertical domain if z̄≡ (z+ + z−)/2=−H/2.

Figure 1 plots the dispersion relation for modes with horizontal wavenumber
` = 0.1π/H and 0.2π/H. In the symmetric case with z̄ = −0.5H, the mode-one
parent wave with horizontal wavenumber `0 = 0.1π/H has frequency ω0 ' 0.090N0.
According to (2.9), the forcing excites a disturbance with horizontal wavenumber
2`0. However, in this symmetric case the vertical structure of the forcing is an odd
function about the midpoint of the domain because the derivative of N2 is equal
and opposite on either flank of the stratified region. (This is shown explicitly in
the corresponding simulation presented in the next section.) Therefore, the excited
superharmonic disturbance should be dominated by a superposition of even modes.
But the frequency of the mode-two wave with ` = 2`0 is 0.072N0, and the other
even modes have still lower frequencies, all of which are well below the forcing
frequency 2ω0 ' 0.180N0. Thus, the forcing resulting from the self-interaction of the
parent mode does not directly excite a single superharmonic mode. Rather, it leads to
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FIGURE 1. Dispersion relation showing frequency as a function of mode number for
modes in stratification given by (2.11) with σ = 0.016 H, D=0.5 H and (a) z̄=−0.5H and
(b) z̄=−0.35H. In each plot the dispersion relation is plotted for waves with horizontal
wavenumber `0 = 0.1π/H (solid line and solid triangles) and `0 = 0.2π/H (dashed line
and open squares), as indicated in the legend in (a).

the development of a superposition of modes that are superharmonic horizontally in
space but with smaller temporal frequency than the parent mode. Simulations show
that the consequent nonlinear evolution of the system gives rise to disturbances with
frequencies both smaller and larger than the parent mode.

If the stratification is asymmetric, the forcing may put more energy into the
mode-one superharmonic. In particular, for the case with z̄=−0.35H, the frequency
of the mode-one parent wave with `0 = 0.1π/H is ω0 = 0.083N0. The mode-one
superharmonic with ` = 2`0 has frequency 0.164N0, close to the forcing frequency
of 2ω0. Hence, the forcing can result in reinforcement of a mode-one superharmonic
though with some leftward drift as a consequence of the moderately lower frequency.

The latter behaviour is somewhat consistent with the examination of Diamessis et al.
(2014), whose model assumed that an internal wave beam incident upon a localized
region of enhanced stratification would excite superharmonics with exactly twice the
horizontal wavenumber and frequency of the beam.

As the amplitude of the excited disturbance becomes sufficiently large it can
interact nonlinearly with the parent mode itself. To gain some insight into such weakly
nonlinear effects, consider the interaction between the parent mode and superharmonic
disturbance that results in forcing at the horizontal wavenumber and frequency of the
parent mode. At early times the vorticity field of the superharmonic, ζ2, is assumed to
have the structure of the forcing so that, from (2.9), ζ2 = iεζ̂2 exp[2i(`y− ωt)] + c.c.,
in which ε represents the real-valued amplitude after some small time and the
complex number i has been pulled out explicitly to emphasize that the superharmonic
disturbance is 90◦ out of phase with the parent mode. Given the vertical structure
ζ̂2(z), which is proportional to dN2/dz, one can go on to find the corresponding
streamfunction, ψ2 = iεψ̂2 exp[2i(`y−ωt)] + c.c., in which ψ̂2 is the solution of

ψ̂ ′′2 − 4`2ψ̂2 =−ζ̂2. (2.12)

The corresponding horizontal and vertical velocity fields are v2 = iεψ̂ ′2 exp[2i(`y −
ωt)] + c.c., and w2 = 2`εψ̂2 exp[2i(`y−ωt)] + c.c., respectively.
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The forcing to the vorticity field of modes with wavenumber ` resulting from
nonlinear parent–superharmonic interactions is given by

−(v2ζ
?
y + v?ζ2y)− (w2ζ

?
z +w?ζ2z), (2.13)

in which the starred quantities are the complex conjugates of the fields corresponding
to the parent mode. Explicitly, in terms of ψ̂ , ψ̂2 and ζ̂2, the vertical structure of the
forcing is

−ε
[
`3 N2 − f 2

ω2 − f 2

(
ψ̂ ′2ψ̂

? + 2ψ̂2ψ̂
?′
)
+ `

(
2`2

ω2 − f 2
(N2)′ψ̂2ψ̂

? − ζ̂ ′2ψ̂? − 2ζ̂2ψ̂
?′
)]

.

(2.14)
Though complicated, there are two points to be made from this expression. First, the
forcing is in phase with the parent mode. That is to say, if arbitrarily we suppose ψ̂ is
real-valued, then (2.14) is real-valued. Second, whereas the second term in the square
brackets of (2.14) is large only where N2 varies rapidly, the first term can be broadly
distributed in the vertical.

This suggests that weakly nonlinear effects can act so that superharmonics
effectively deplete energy from the parent mode as they grow to large amplitude.
However, there is no resonant feedback, as in the case of parametric superharmonic
instability, because the structure of the forcing given by (2.14) does not have the
same structure as the parent mode and the disturbances created by the forcing are
not necessarily phase-locked to the parent mode.

To understand how these disturbances interact as the superharmonics grow in time
requires a numerical solution, as examined in the next section.

3. Simulations
The simulations were set up in a two-dimensional horizontally periodic channel

with free-slip upper and lower boundary conditions. The background was taken be
stationary with stratification prescribed in terms of a profile of the squared buoyancy
frequency, N2. Two distinct N2 profiles were prescribed.

In a series of idealized studies, the stratification was defined by the top-hat-like N2

profile given by (2.11). The vertical extent of the domain, H, was used to characterize
the length scale and the time scale was characterized in terms of the buoyancy
frequency N0. In all cases the extent of the transition from unstratified to strongly
stratified fluid was σ = 0.016H. The width of the stratified region, D≡ z+ − z−, was
typically set to 0.5H. In most of these simulations the stratified layer was centred in
the domain with −H 6 z 6 0 so that z̄≡ (z+ + z−)=−H/2.

In another series of simulations, the stratification was chosen to be more
representative of the seasonal thermocline of the ocean with

N2 =N2
0 tanh(z/L1) exp[(z− z0)/L2]. (3.1)

Typical length scales were set by L1 = 50 m, L2 = 200 m and z0 = −100 m. Time
scales were set by N0, but conceptually this could be taken to be 0.01 s−1. The vertical
extent of the domain in these simulations was taken to be H = 500 m.

Given N2, the eigenvalue problem posed by (2.6) with zero Dirichlet boundary
conditions was solved by a Galerkin method. Explicitly, N2 and ψ̂ were written
as truncated Fourier cosine series so that the differential equation was transformed
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to an algebraic matrix equation, which was solved using the Jacobi method (Press
et al. 2007). Specifically, for given horizontal wavenumber `0 of the parent wave, the
vertical structure was extracted for the streamfunction, ψ̂ , of the vertical mode-one
disturbance and its corresponding eigenvalue, which gave the frequency ω0. From this
the corresponding vorticity and buoyancy fields were prescribed and superimposed on
the background in a domain containing two horizontal wavelengths of the mode. The
phase was set so that the maximum vorticity occurred at z = 0. The amplitude was
set by specifying the maximum vertical displacement, A0, and using linear theory to
determine the corresponding amplitudes of the vorticity and buoyancy fields.

In order to allow for the possible occurrence of PSI, noise was superimposed
on the initial state. Explicitly, noise was added to the streamfunction in horizontal
wavenumber (`) and vertical wavenumber (km) space so that the amplitude of the
noise dropped off as ω−1k−2

m , in which ω was estimated from the dispersion relation
(2.8) with a low-frequency cut-off of 0.01 N0 superimposed in non-rotating cases
( f = 0). The linear-theory polarization relations for internal waves were then used
to estimate the corresponding noise to the vorticity and buoyancy fields which, after
being transformed to `–z space, was weighted by N2(z). The magnitude of the noise
was set so that the maximum perturbation to the vorticity field was approximately
10 % of the maximum amplitude of the parent mode.

Given the initial condition, the evolution of the mode was found by solving the
fully nonlinear vorticity–buoyancy equations, (2.1) and (2.2), with the addition of
dissipative terms. The vorticity and buoyancy fields were spectral in the horizontal
and discretely represented at evenly spaced grid points in the vertical (Sutherland
& Peltier 1994). For numerical stability, Laplacian diffusive terms were added to
both the vorticity and buoyancy equations, but diffusion acted only upon disturbances
with horizontal wavenumber greater than four times the horizontal wavenumber of
the parent mode. In most simulations, the corresponding Reynolds number acting on
these high-wavenumber modes was Re≡N0/(`

2
0ν)> 106.

In the simulations reported upon here, the fields were resolved with 513 grid points
in the vertical and with 256 horizontal wavenumbers. The horizontal and vertical
resolution were doubled in some cases to ensure the results were not sensitive to
resolution.

The focus here is upon horizontally long waves such that the horizontal wavenumber
of the primary mode is `0= 0.1π/H. The typical amplitude is taken to be moderately
large so that A0 = 0.05H/π (A0`0 = 0.005). The evolution of modes is considered in
non-rotating and rotating environments. In the latter case, the Coriolis parameter is
typically taken to be f = 0.01N0.

Figure 2 shows snapshots taken from a simulation of a long wave in top-hat-like
stratification with no background rotation. The Galerkin analysis finds that the
corresponding mode-one disturbance has frequency ω0 = 0.090N0 (see figure 1a). Its
associated vorticity together with superimposed noise is shown in figure 2(a). In the
corresponding panel to the right the vorticity associated with the parent mode has
been subtracted to reveal the initial superimposed background noise.

The snapshots at later times are shown in a frame of reference moving at the
horizontal phase speed, ω0/`0, of the parent mode. The phase of the parent mode
changes little between the initial and final times shown. However, its structure is
modified significantly by small-scale disturbances. By non-dimensional time N0t = 6
(approximately one buoyancy period), the growth of superharmonic disturbances (with
` = 2`0) is evident in the mode-filtered vorticity plot to the right. As predicted, the
superharmonic disturbances are largest on either flank of the stratified region and the
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FIGURE 2. (Colour online) Snapshots at six different times of (a,c,e,g,i,k) total vorticity,
ζ and (b,d, f,h,j,l) corresponding mode-filtered vorticity ζ̃ taken from a simulation with
a symmetric stratified layer having D = 0.5H and z̄ = −0.5H, the structure of which is
illustrated by the N2 profile plotted to the left in the mode-filtered vorticity plot at Nt= 0
(black curve): (a,b) N0t= 0; (c,d) N0t= 6; (e, f ) N0t= 25; (g,h) N0t= 50; (i,j) N0t= 100;
(k,l) N0t= 200. The initial parent wave amplitude and wavenumber are A0= 0.05H/π and
`0 = 0.1π/H, respectively. The system is not rotating ( f = 0). The time of each snapshot
is indicated in the upper-left of each vorticity plot. The colour bars to the upper-right
indicate the range for each field. The snapshots are shown in a reference frame moving
with the horizontal phase speed of the mode, ω0/`0. See supplementary movie 1 available
at http://dx.doi.org/10.1017/jfm.2016.108.

http://dx.doi.org/10.1017/jfm.2016.108
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FIGURE 3. (Colour online) Evolution of the mode-filtered kinetic energy normalized by
the initial kinetic energy of the parent mode for the simulation shown in figure 2 but
extending up time non-dimensional time N0t = 400 (about 64 buoyancy periods). Curves
show the total disturbance energy (solid) and the fraction associated with disturbances
having the same horizontal wavenumber as the parent mode (solid red) and having
superharmonic horizontal wavenumber ` = 2`0 (solid blue). The fraction of the energy
in superharmonic disturbances is further partitioned into that associated with sinusoidal
waves having vertical wavenumber 2π/H (short-dashed), 4π/H (long-dashed) and 6π/H
(dash-dotted).

peak is 90◦ out of phase with the parent mode. At non-dimensional time N0t = 25
(approximately four buoyancy periods) these disturbances dominate on the flanks and
remain stationary in the frame of reference moving with the horizontal phase speed
of the parent mode, consistent with the prediction that the superharmonic disturbance
has phase speed 2ω0/(2`0)=ω0/`0. At this time the total vorticity field is significantly
distorted as a consequence of the superimposed superharmonic disturbances.

As time progresses, due to weakly nonlinear interactions between the disturbance
field and the parent mode, the disturbance field becomes non-stationary, slowing with
respect to the rightward advance of the parent mode as viewed in the absolute frame
of reference. These structures develop finer vertical-scale structures on the flanks while
superharmonic disturbances also propagate within the well-stratified region. By non-
dimensional time N0t= 200 (approximately 32 buoyancy periods) the vorticity field of
the parent mode is everywhere distorted as a consequence of significant superharmonic
disturbances.

Figure 3 shows the time evolution of the mode-filtered kinetic energy (ρ0(|ũ|2 +
|w̃|2)/2) partitioned by horizontal wavenumber. This clearly demonstrates that the
energy from the parent mode is transferred primarily to superharmonic disturbances
having horizontal wavenumber ` = 2`0 with a small fraction transferring back to
disturbances having the same horizontal wavenumber as the primary mode. The
energy in the superharmonics modulates in time as the vertical structure of the
superharmonic disturbances change.

A detailed examination of the vertical wavenumber spectrum as it evolves in
time is shown in figure 4. This is computed for disturbances of all horizontal
wavenumbers, not just the superharmonics. The time evolution of the leading power
spectrum components is shown in figure 3. Because the initial excited disturbances
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FIGURE 4. (Colour online) Vertical wavenumber spectrum as it evolves in time, shown
by the colour scale representing the logarithm of relative disturbance kinetic energy, as
indicated to the lower right of the plot. This analysis is performed for the simulation
shown in figure 2.

are localized in the vertical the Fourier spectrum exhibits multiple peaks. As time
progresses the power peaks sometimes in low even modes, sometimes in low odd
modes. But all the time more power is gained by higher vertical wavenumbers.

Even at late times this cascade to fine vertical scale is not a consequence of
PSI. To demonstrate this, the evolution of the frequency spectrum over time was
computed. The frequency itself was determined from the (complex-valued) amplitude
ζ̂`km = A`km exp(iφ`km) of the mode-filtered vorticity field in horizontal and vertical
wavenumber space and from its time derivative dζ̂`km/dt = Ȧ`km exp(iφ̇`km). Explicitly,
the frequency of the (`, km) mode is

ω(`, km)=− Ȧ`km

A`km

sin(φ̇`km − φ`km). (3.2)

The kinetic energy computed for the (`, km) mode is associated with this frequency.
The results are binned so that the sum of kinetic energies associated with disturbances
having frequency in the range ωi − 1ω/2 < ω 6 ωi + 1ω/2 is associated with
frequency ωi = i1ω for i= 1 to 1000. The bin size is taken to be 1ω= 0.001N0.

The results of this analysis is shown in figure 5. At early times, the disturbance
frequency is sharply peaked moderately below the superharmonic frequency, 2ω0,
with the peak power decreasing in frequency by half over approximately the first two
buoyancy periods. For example, at non-dimensional time N0t= 6, the peak occurs for
frequency ω/N0 ' 0.1475 ± 0.0010 with KE/KE0 ' 8.7 × 10−6. The kinetic energies
associated with neighbouring frequencies are two orders of magnitude smaller. At
this time a secondary peak occurs moderately below the parent-mode frequency such
that KE/KE0 ' 6.4× 10−7 for ω/N0 ' 0.0605± 0.0010.

Although the self-interaction of the parent mode results in forcing at frequency 2ω0
and horizontal wavenumber 2`0, the resulting vertically localized excited disturbance is
a superposition of vertical modes. Each of those modes has a frequency determined by
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FIGURE 5. (Colour online) As in figure 4 but showing the frequency spectrum as it
evolves in time. The arrows along the bottom of the plot indicate the frequencies of the
parent mode (ω0) and its first two superharmonics.

2`0 and the vertical mode number. It is because frequency decreases with increasing
vertical mode number (see figure 1a) that the high vertical modes associated with the
vertically localized disturbance have frequency smaller than 2ω0. As time progresses
the kinetic energy becomes distributed over a larger number of peaks that nonetheless
are narrow-banded in frequency. Disturbances appear with peak frequencies vacillating
about ω0 while other disturbances have frequencies close to zero and 3ω0. At no time
is there evidence of the spontaneous resonant growth of a subharmonic pair of waves
with frequency ω0/2.

So far analyses have been presented for the ‘base’ simulation with parameters D=
0.5H, z̄=−0.5H, `= 0.1 π/H, A0= 0.05H/π and f = 0. Qualitatively similar results
are found from the analyses of simulations run with different parameters. For example,
figure 6 shows snapshots at N0t= 50 taken from simulations in which (a,b) the depth
of the strongly stratified region is wider, (c,d) the stratified layer is asymmetrically
situated closer to the top of the domain, (e, f ) the horizontal wavelength is twice as
large, (g,h) the amplitude is twice as large and (i,j) there is background rotation. Each
of these pairs of panels should be compared with the two panels in the fourth row of
figure 2, corresponding to time N0t= 50 of the base simulation.

In all five cases, superharmonics with `= 2`0 develop with disturbance amplitudes
being largest on the flanks of the stratified region. The disturbance amplitude is
relatively small in the case with D = 0.8H. The disturbances are weakly manifest
within the stratified region being perturbed by high vertical wavenumber noise, a
remnant from the noise used to initialize the simulation. Even after N0t = 400, PSI
is not observed in this circumstance. In the asymmetric case with z̄ = −0.35H
(figure 6c,d), the disturbance amplitude is small on the flank of the stratified region
close to the top of the domain, but significant disturbances develop on the lower
flank around z ' −0.6H. The vorticity field simultaneously exhibits superharmonic
disturbances with `= 2`0 within the stratified region above the lower interface and it
exhibits harmonic disturbances with `= `0 below that interface.

In the simulation with longer parent mode (figure 6e, f ), the disturbance amplitude
is relatively large, but the structure of the disturbances on either flank of the
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FIGURE 6. (Colour online) Snapshots of total vorticity (a,c,e,g,i) and mode-filtered
vorticity (b,d, f,h,j) taken at non-dimensional time N0t= 50 from five different simulations
having the same parameters as that shown in figure 2 but with one of the following
parameters changed: (a,b) D= 0.8H, (c,d) z̄=−0.35H, (e, f ) `0 = 0.05 π/H, (g,h) A0 =
0.10H/π and (i,j) f = 0.05N0.

stratification is not so complex at this time. However, the simulation with a relatively
large-amplitude parent mode (figure 6g,h) shows significant perturbations at this time
with visual evidence for energetic disturbances in modes with `= `0 and 2`0. In the
simulation with background rotation (figure 6i,j), the time N0t = 50 corresponds to
ft= 2.5, or about 0.4 inertial periods. The disturbance amplitude is relatively smaller
at this time, though the structure of the disturbance field is not that different in
structure from the simulation with no rotation.

By way of quantitative comparison, we examine the kinetic energy associated with
the peak frequency as it evolves over the first few buoyancy periods of the five
simulations with vertically symmetric stratification. The results are shown in figure 7.
The solid black curve can be identified in this figure from the peak frequencies and
corresponding energies shown in figure 5 for times up to N0t= 30. In simulations with
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FIGURE 7. Value of the relative peak frequency and its corresponding relative kinetic
energy computed from five simulations up to five buoyancy periods from the start of
the simulation. Arrows indicate the direction of time for each curve. The solid curve is
determined from the simulation with snapshots shown in figure 2 with the four parameters
indicated in the upper part of the legend. The four other lines are the results from
simulations in which one of the four parameters is changed as indicated in the lower part
of the legend. In all cases, z̄=−0.5H.

`0 = 0.05π/H and with f = 0.05N0, the peak frequency follows the same trajectory
after the first few time steps, though at times beyond N0t the trajectory of the peak
frequency becomes more erratic as lower and higher harmonics gain dominant energy.
In the simulation with the larger amplitude parent wave, the peak frequency again
becomes manifest with value moderately below 2ω0, decreasing as the energy grows,
and then begins to increase again. Compared with the simulation in which the parent
mode has half the amplitude, the kinetic energy of the peak disturbance is four
times larger, as expected. In the simulation with D= 0.8H, the peak frequency again
decreases as the disturbance grows, but the kinetic energy of the peak disturbance is
two orders of magnitude smaller than in the corresponding simulation with D= 0.5H.

Because the vertical structure of the forcing in the asymmetric case with
z̄=−0.35H has non-negligible projection upon the mode-one wave with `= 2`0 and
because this mode has frequency comparable with the forcing frequency, 2ω0, the time
evolution of the frequency spectrum, shown in figure 8, exhibits strong reinforcement
of disturbances with frequency near 2ω0, as well as of higher harmonics.

Returning to the problem of mode-one oceanic internal waves, figure 9 shows
snapshots taken from a simulation in which the stratification is representative of
the oceanic seasonal thermocline as given by (3.1) with L1 = 50 m, L2 = 200 m
and z0 = −100 m. With these values, the peak squared buoyancy frequency was
'1.03N2

0 . This simulation was run with background rotation prescribed by f = 0.01N0.
The simulation was initialized with a small-amplitude long internal mode and the
simulation ran up to times N0t= 400, corresponding to 64 buoyancy periods or about
0.6 inertial periods. Simulations were run for times an order of magnitude larger and
with larger f , but this made little difference to the evolution as far as the growth and
evolution of superharmonic disturbances was concerned.
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FIGURE 8. (Colour online) As in figure 5 but showing the temporal evolution of the
frequency spectrum computed in a simulation with asymmetric stratification such that
z̄=−0.35H. The other simulation parameters are the same as the case shown in figure 2.
See supplementary movie 2.
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FIGURE 9. (Colour online) As in figure 2 but for a simulation with stratification
representative of the seasonal thermocline: (a,b) N0t= 0; (c,d) N0t= 200; (e, f ) N0t= 400.
The parent mode is initialized with `0 = 0.001 s−1 and amplitude A0 = 5 m. The Coriolis
parameter is f = 0.01N0. See supplementary movie 3.

As time progressed, superharmonics were again excited and, superimposed on the
parent mode, these acted to enhance and narrow the regions of positive vorticity while
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FIGURE 10. (Colour online) As in figure 5 but for the simulation with snapshots shown
in figure 9, representing the evolution of the frequency spectrum for a mode at a model
thermocline.

the regions of negative vorticity broadened and became weaker. Also evident is the
growth of finescale vertical structures dominantly with horizontal wavenumber 2`0.

The energetics, shown in figure 10, reveal that the majority of energy is transferred
initially to superharmonics with frequency 2ω0 and that disturbances with this
frequency persist in time while disturbances with frequency 3ω0 also grow to
significant amplitude. These disturbances slowly modulate the parent wave, but persist
with their structure having largest amplitude around z = −z0. Unlike the simulations
in which N2 was prescribed with a top-hat-like profile, here N2 varies gradually over
the depth of the domain, and by comparison the excited disturbances are not as
localized in the vertical: their structure maps more closely onto a mode of the system
with wavenumber 2`0. Importantly, the simulations showed no evidence of PSI.

4. Conclusions
Theory and simulations conclusively show that an internal mode in non-uniformly

stratified fluid immediately excites superharmonic disturbances that have twice the
horizontal wavenumber, `0, of the parent mode. The forcing frequency is also twice
the frequency of the parent mode, so the forcing is stationary with respect to the
horizontal phase speed of the parent mode. However, because the forcing is greatest
where the gradient in N2 is greatest, the excited disturbances are not in themselves
modes but a superposition of vertical modes with horizontal wavenumber 2`0. Each
of these modes have different frequencies, and so the excited disturbances eventually
drift with respect to the parent mode. Thus, the transfer of energy from parent to
superharmonic modes is not resonant in the way that subharmonic waves resonantly
interact with a parent sinusoidal internal wave in uniformly stratified fluid. The
weakly nonlinear interaction between the superharmonics and the parent mode is
more complex, resulting in structures that propagate vertically through the stratified
region and which evolve to have horizontal phase speeds different from that of the
parent mode. In asymmetric cases for which the forcing has a significant vertical
mode-one component for waves with horizontal wavenumber 2`0, the superharmonics
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persist in structure and act to modulate the parent wave. This is the circumstance for
simulations of waves in a model oceanic thermocline.

The results of this study are not meant to imply that PSI does not occur at
all. Even in non-uniform stratification, wavepackets with vertical wavelength and
wavepacket extent sufficiently small compared with the scale of variations of the
background stratification could be considered as propagating in uniform stratification
and so might be susceptible to PSI provided the wavepacket itself contains multiple
wavelengths (Bourget et al. 2013; Karimi & Akylas 2014). In particular, a numerical
study of a wave beam incident from below upon a region of rapidly decreasing
background stratification found the appearance of superharmonics where dN2/dz
was large with PSI occurring in the reflected beam passing through nearly uniform
stratification (Zhou & Diamessis 2013; Diamessis et al. 2014). Also, simulations of
mode-one internal tides in non-uniform stratification generated by a modulated forcing
frequency at the southern boundary showed their breakdown to PSI (Hazewinkel &
Winters 2011). In this case N2 decreased slowly and monotonically with depth so
that the excitation of superharmonics was weak. The modulated forcing frequency,
which was designed to represent the spring–neap cycle, may also have played a role
in enhancing the occurrence of PSI. The appearance of superharmonics may not be
pronounced in this case because the amplitude relative to the horizontal wavenumber
is small: A0`0� 1. Hence, the nonlinear forcings (2.9) and (2.10) are weak.

Clearly more should be done to investigate the self-interaction of internal modes in
non-uniformly stratified fluid and its impact upon the excitation of small vertical-scale
superharmonic disturbances. Future investigations will thoroughly explore the effect of
background stratification and rotation and the parent mode wavelength and amplitude
upon the transfer of energy to small vertical-scale disturbances over long times.
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