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We examine the flows induced by horizontally modulated, vertically confined (or
guided), internal wavepackets in a stratified, Boussinesq fluid. The wavepacket induces
both an Eulerian flow and a Stokes drift, which together determine the Lagrangian
transport of passive tracers. We derive equations describing the wave-induced flows
in arbitrary stable stratification and consider four special cases: a two-layer fluid,
symmetric and asymmetric piecewise constant (‘top-hat’) stratification and, more
representative of the ocean, exponential stratification. In a two-layer fluid, the
Stokes drift is positive everywhere with the peak value at the interface, whereas
the Eulerian flow is negative and uniform with depth for long groups. Combined, the
net depth-integrated Lagrangian transport is zero. If one layer is shallower than the
other, the wave-averaged interface displaces into that layer making the Eulerian flow
in that layer more negative and the Eulerian flow in the opposite layer more positive
so that the depth-integrated Eulerian transports are offset by the same amount in each
layer. By contrast, in continuous stratification the depth-integrated transport due to
the Stokes drift and Eulerian flow are each zero, but the Eulerian flow is singular
if the horizontal phase speed of the induced flow equals the group velocity of the
wavepacket, giving rise to a single resonance in uniform stratification (McIntyre,
J. Fluid Mech., vol. 60, 1973, pp. 801–811). In top-hat stratification, this single
resonance disappears, being replaced by multiple resonances occurring when the
horizontal group velocity of the wavepacket matches the horizontal phase speed of
higher-order modes. Furthermore, if the stratification is not vertically symmetric,
then the Eulerian induced flow varies as the inverse squared horizontal wavenumber
for shallow waves, the same as for the asymmetric two-layer case. This ‘infrared
catastrophe’ also occurs in the case of exponential stratification suggesting significant
backward near-surface transport by the Eulerian induced flow for modulated oceanic
internal modes. Numerical simulations are performed confirming these theoretical
predictions.
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1. Introduction
For surface gravity wavepackets, the balancing role of the Eulerian return flow to

compensate for the Stokes transport (Stokes 1847), which is divergent on the scale
of the packet, is well-established (Longuet-Higgins & Stewart 1962; McIntyre 1981;
van den Bremer & Taylor 2015) and has recently been extended to include the effect
of underlying stratification (Haney & Young 2017). Vertically propagating internal
wavepackets in a uniformly stratified fluid, on the other hand, do not have a Stokes
drift, but only induce an Eulerian flow. Whereas the wave-induced flow for compact
three-dimensional wavepackets consists of a purely horizontal localized circulation that
translates with the wavepacket, known as the Bretherton flow, horizontally localized,
spanwise infinite vertically propagating internal wavepackets resonate with the induced
flow to generate long internal waves, whose vertical phase speed equals the vertical
group velocity of the wavepacket (Bretherton 1969; Tabaei & Akylas 2007; van den
Bremer & Sutherland 2014, 2018).

Unlike vertically propagating internal gravity waves, horizontally modulated internal
modes induce both a Stokes drift and an Eulerian flow. Focusing on periodic internal
modes in uniform stratification, the Stokes drift has been computed by Thorpe
(1968), and was shown to behave as a mode-2n disturbance in the vertical, when
formed in response to a mode-n wave for positive integers n. The occurrence of
induced Eulerian flows was neglected in this case because of the lack of horizontal
modulations of the waves. Al-Zanaidi & Dore (1976) showed that the Stokes drift in
a thin-thermocline model was opposite in the interior of the thermocline compared
to the drift in the outer layers. These authors also recognized that an Eulerian flow
may significantly modify mass transport when multiple frequencies are present. The
Eulerian flow of internal modes in uniform stratification was considered by McIntyre
(1973). Grimshaw (1977) considered the mean flow for arbitrary stratification, as well
its effect on weakly nonlinear evolution. As in the case of the Stokes drift, McIntyre
(1973) and Grimshaw (1977) showed that a wavepacket composed of mode-n waves
induces an Eulerian flow with the structure of mode-2n long waves. Grimshaw (1977),
and subsequently Grimshaw (1981) and Liu & Benney (1981), considered the effect
of this Eulerian mean flow on weakly nonlinear propagation by deriving a nonlinear
Schrödinger equation, in which the Eulerian mean flow represents the nonlinear term.
In particular, if the phase speed of the induced flow matches that of the group speed
of the packet, then the induced horizontal flow in theory can become infinitely large
and the scaling assumptions underlying the nonlinear Schrödinger equation are no
longer valid. In response to this, Koop & Redekopp (1981) proposed a coupled
pair of partial differential equations governing the exchange of energy between long
and short internal waves subject to this resonance. When integrated numerically,
this system compared well with their experiments, in which the long waves were
generated separately and not induced by a packet of shorter waves.

For interfacial waves on a two-layer fluid, Hunt (1961) computed the superharmonics
at second (and third) order (reviewed in Thorpe (1968)), but not the Stokes drift or
the Eulerian induced flow. Keady (1971), who was interested in the upstream response
to a small body (or equivalently a weak dipole) moving at the interface between two
layers of different density and depth, formulated equations for the Eulerian mean
flow and the response of the wave-averaged interface, but focused solely on the latter.
In Keady (1971), a body moving at constant speed does work on the fluid, and the
wave-averaged interface thus jumps discretely at the position where the impulse is
applied and displaces into the shallower layer just behind the impulse. Grimshaw &
Pullin (1985) derived a nonlinear Schrödinger equation describing the modulational

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

30
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f A
lb

er
ta

 L
ib

ra
ri

es
, o

n 
09

 F
eb

 2
01

9 
at

 1
8:

36
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.30
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


350 T. S. van den Bremer, H. Yassin and B. R. Sutherland

stability of interfacial waves in a two-layer fluid and in doing so formulated equations
describing the wave-induced Eulerian mean flow, which constitutes the nonlinear term
in their nonlinear Schrödinger equation. More recently, Song (2004) evaluated the
complete second-order solution in response to a summation of linear waves with
different frequencies. The second-order frequency difference components in Song
(2004) correspond to the wave-induced Eulerian mean flow.

This paper examines the total Lagrangian transport, as made up from the Stokes
drift and the induced Eulerian flow, by two-dimensional, Boussinesq, horizontally
modulated, vertically confined (or guided) internal waves in arbitrary stratification.
We consider solutions for four special cases: interfacial waves in a two-layer fluid
(exploring in detail the implications of Keady (1971) and Grimshaw & Pullin (1985));
internal waves in symmetric and asymmetric top-hat stratification in which the density
varies linearly in the middle layer and is constant above and below (designed to draw
the connection between previous studies of two-layer and uniform stratification); and
internal waves in exponential stratification (designed to be more representative of
oceanic stratification).

The paper is laid out as follows. After introducing the governing equations in § 2,
theoretical solutions from perturbation theory are presented in § 3. In § 4 solutions
are found for the special cases, in analytic form for wavepackets in a two-layer fluid
and in top-hat stratification and computed numerically through a Galerkin analysis for
exponential stratification. In § 5, we describe the set-up of numerical simulations and
compare their results to theoretical predictions. We draw conclusions in § 6.

2. Governing equations
We restrict ourselves to the examination of two-dimensional, vertically confined

(or guided), Boussinesq internal waves, neglecting the effects of background rotation,
diffusion and viscosity. The equations of motion are given by the laws of conservation
of momentum, internal energy and volume for an incompressible fluid in the x–z plane

Du
Dt
=−

1
ρref
∇p+ bẑ,

Db
Dt
=−N2w, ∇ · u= 0, (2.1a−c)

in which b = −gρ/ρref is the buoyancy, u = (u, w) is the velocity vector with
components in the x̂ and ẑ directions, ρ and p are respectively the wave fluctuation
density and pressure, g is gravity and ρref is the characteristic density. The right-hand
side of (2.1b) involves the squared buoyancy frequency, which is related to the
gradient of the background or hydrostatic equilibrium density ρ0(z) by N2

=

−(g/ρref ) dρ0/dz. In a uniformly stratified fluid N2 is a positive constant. The total
density ρtot is given by the sum of the background density and the wave fluctuation
density: ρtot(x, t) = ρ0(z) + ρ(x, t). Similarly, ptot(x, t) = p0(z) + p(x, t), where the
background hydrostatic pressure p0 can be found by solving dp0/dz = −ρ0(z)g. We
orient the horizontal axis so that the horizontal phase velocity of the wave is in the
direction of x̂, and ŷ represents the spanwise direction. Because we consider only
waves that are two-dimensional or spanwise uniform, we can define the streamfunction
ψ , so that (u,w)= (−∂zψ, ∂xψ).

Equations (2.1a–c) can be combined and written as a linear operator L acting on
ψ forced by nonlinear terms N :(

∂tt(∂xx + ∂zz)+N2∂xx
)︸ ︷︷ ︸

≡ L

ψ =∇ · [∂t(ζu)− ∂x(bu)]︸ ︷︷ ︸
≡ N

, (2.2)

in which ζ = ∂zu− ∂xw denotes the spanwise vorticity.
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3. Perturbation theory
We consider quasi-monochromatic waves of small amplitude. The condition that

the wave amplitude is small is expressed by α ≡ k||A|| � 1, where a0 ≡ ||A|| is the
maximum amplitude of the vertical displacement of the waves and k the horizontal
wavenumber. Below, we will consider the first two orders. The total Lagrangian
velocity is given by the sum of the Stokes drift and the induced Eulerian flow, which
both arise at second order in α (cf. Bühler 2014):

uL = uS + uE, (3.1)

where we have omitted the superscripts normally denoting the order in α.

3.1. Linear solutions: O(α)

Linear or ‘small-amplitude’ internal waves satisfy Lψ (1)
= 0 (cf. (2.2)), in which the

superscript denotes the order in α. Crucially, we require the stratification N to be
a continuous function of z in order for the system (2.1) and thus (2.2) to hold. In
other words, care must be taken at interfaces, where the density jumps discretely
and N is locally unbounded. We suppose that, rather than being horizontally periodic,
the disturbance is manifest as a quasi-monochromatic wavepacket modulated in x
about a central wavenumber k and frequency ω. While the wave crests advance at
the phase speed cp = ω/k, the wavepacket as a whole translates in the x-direction at
the group velocity cg = ∂ω/∂k, while slowly dispersing. Explicitly, we assume the
vertical displacement field and the streamfunction respectively have the form

η(1) = {A0(X, T)η̂0(z)+ εA1(X, T)η̂1(z)} exp[ı(kx−ωt)] +O(αε2), (3.2)

ψ (1)
= {P0(X, T)ψ̂0(z)+ εP1(X, T)ψ̂1(z)} exp[ı(kx−ωt)] +O(αε2), (3.3)

in which it is understood that the actual fields are given by the real part of these
expressions. The quantities η̂0(z), η̂1(z), ψ̂0(z) and ψ̂1(z) denote the (dimensionless)
vertical structure functions. To obtain leading-order solutions for the induced mean
flow, it is only necessary to consider the first two terms in the multiple-scale
expansion in the small parameter ε≡ (|k|σ)−1. Setting 0<ε� 1 ensures the horizontal
wavelength of the waves is much smaller than the horizontal extent of the wavepacket
σ , so that the wavepacket is quasi-monochromatic. The envelopes A0, A1, P0 and P1
depend upon the slow scales X= ε(x− cgt) and T = ε2t. The corresponding time T for
evolution of the wavepacket in this translating frame is of order ε2, representing the
relatively slow dispersion of the wavepacket. In fact, dispersion does not influence the
induced flows at leading order, as will be evident below. Substituting the proposed
linear solutions (3.2)–(3.3) into (2.1), equations can be obtained describing these and
related fields at the first two orders in ε. Somewhat arbitrarily, all the polarization
relations are expressed in terms of A0, η̂0 and η̂1, as summarized in table 1.

3.1.1. Vertical structure functions
Evidently, the vertical structure functions η̂0, η̂1, ψ̂0 and ψ̂1 cannot be chosen

independently. In fact, by considering the linearized (in α) governing equations (2.1)
at zeroth order in ε, it can be shown that η̂0= ψ̂0, and both vertical structure functions
satisfy the same modal equation:

d2 η̂0

dz2
+

(
N2

ω2
− 1
)

k2η̂0 = 0. (3.4)
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Linear field O(αε0) O(αε1)

Streamfunction ψ (1)
−cpA0η̂0 −ı

cp

k
A0,X(η̂1 + (1− χ)η̂0)

Horizontal velocity u(1) cpA0η̂
′

0 ı
cp

k
A0,X(η̂

′

1 + (1− χ)η̂
′

0)

Vertical velocity w(1)
−ıωA0η̂0 cpA0,X(η̂1 − χη̂0)

Horizontal displacement ξ (1) ı
1
k
η̂′0 −

1
k2

A0,X(η̂
′

1 + η̂
′

0)

Vertical displacement η(1) A0η̂0 ı
1
k

A0,X η̂1

Buoyancy b(1) −N2A0η̂0 −ı
1
k

N2A0,X η̂1

Vorticity ζ (1) −
1
cp

N2A0η̂0 −ı
1
ω

N2A0,X(η̂1 + (χ − 1)η̂0)

Pressure per mass p(1)/ρref c2
pA0η̂

′

0 ı
c2

p

k
A0,X(η̂

′

1 + 2(1− χ)η̂′0)

Velocity potential φ(1) −ı
cp

k
A0η̂

′

0
cp

k2
A0,X(η̂

′

1 + (2− χ)η̂
′

0)

TABLE 1. Expressions for the linear, O(α), fields at order ε0 (second column) and order ε1

(third column) in a stratified (N 6= 0) or unstratified layer (N = 0). The fields are given in
terms of the amplitude envelope and its X-derivative, and in terms of the vertical structure
functions of the vertical displacement and its derivatives (cf. (3.2)). The actual fields are
found by adding the O(ε0) and O(ε1) terms, multiplying by exp[ı(kx−ωt)] and taking the
real part of the result. We have defined χ ≡ cg/cp. Note that the velocity potential φ only
exists in layers without stratification (N = 0).

For stratification prescribed by N2(z), this differential eigenvalue problem can be
solved for η̂0 and the corresponding dispersion relation ω(k), both of which depend
upon the vertical mode number. Crucially, equation (3.4) must be solved subject
to no-flow boundary conditions at the two confining horizontal walls to ensure the
solution propagates only horizontally. At the next order in ε, we obtain the differential
equation describing the vertical structure function η̂1, as well as ψ̂1(

1
k2

d2

dz2
+

N2

ω2
− 1
)
η̂1 = 2

(
(1− χ)

N2

ω2
− 1
)
η̂0, (3.5)

where we have defined χ ≡ cg/cp. We further find that η̂1 = ψ̂1 − (1 − χ)η̂0.
Alternatively, the compatibility condition (3.5) can be regarded as a definition of
the group velocity (see appendix B for details). Below, we will show that only the
vertical structure function η̂0 is required to compute the Stokes drift and the induced
Eulerian flow.

3.1.2. Stokes drift
One can follow the methodology first performed by Stokes (1847) to derive the

order amplitude-squared displacement of fluid parcels by a horizontally periodic
internal mode. Generally, the Stokes drift is given by

uS ≡ u(1)x ξ
(1) + u(1)z η

(1), (3.6)
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Lagrangian transport by vertically confined internal gravity wavepackets 353

in which the x and z subscripts denote partial derivatives, ξ and η are the horizontal
and vertical displacements, respectively, and the overline denotes averaging over the
fast time scales of the waves. From the polarization relations for internal modes in
table 1 and using (3.4), we find the following leading order

uS =
1
4

cp|A0|
2 d2η̂2

0

dz2
, wS =−

1
4

cp(1+ χ)ε∂X|A0|
2 dη̂2

0

dz
. (3.7a,b)

Equation (3.7a) corresponds to that derived by Thorpe (1968) (his appendix 6).
We note in passing that the Stokes drift (3.7) is divergent (∇ · uS 6= 0), which

is generally true for Lagrangian velocities even in incompressible fluids. Indeed,
we can readily confirm that (3.7) satisfies the identity for volume conservation
∇ · uS = (1/2)∂tzz(η(1))2 from generalized Lagrangian-mean theory (equation (9.4) of
Andrews & McIntyre (1978)), shown here correct to leading order for our case (see
also McIntyre (1988) for a discussion of the analogous effect for surface waves).

3.2. Second-order solutions: O(α2)

The induced Eulerian is found by substituting the linear polarization relations from
table 1 into the right-hand side of (2.2) keeping only the slow response at order
amplitude squared. In doing so, superharmonic terms involving exp[±2ı(kx−ωt)] are
neglected as they do not influence the mean Lagrangian transport. After some algebra
(see appendix A), we find that the forcing is given by (see also section 4 of Grimshaw
(1977))

N = ε2cp

[
1
4
(1+ 2χ) (1− χ)N2 dη̂2

0

dz
−

1
2
χ 2 dN2

dz
η̂2

0

]
∂XX|A0|

2, (3.8)

where we note that only the zeroth-order vertical structure function η̂0 plays a role.
The streamfunction ψ

(2)
describing the order amplitude-squared flows induced by this

nonlinear self-interaction of the wavepacket satisfies Lψ
(2)
=N , with L given on the

left-hand side of (2.2). The expression for the O(α2) induced buoyancy is given from
(2.1b) to be ∂tb

(2)
=−N2∂xψ

(2)
− ∂x(u(1)b(1))− ∂z(w(1)b(1)). Again using the polarization

relations in table 1, we find

b
(2)
=

1
cg

N2ψ
(2)
+

1
4

[(
1−

1
χ

)
N2 dη̂2

0

dz
+

dN2

dz
η̂2

0

]
|A0|

2. (3.9)

From (3.9) we can obtain an expression for the mean displacement of the equidensity
lines

η(2) =−
1
cg
ψ
(2)
−

1
4

[(
1−

1
χ

)
dη̂2

0

dz
+

1
N2

dN2

dz
η̂2

0

]
|A0|

2, (3.10)

in which the last term can be neglected where N2 is constant.
Assuming strong stratification (N/ω =O(1)), examining a solution that evolves on

the slow scale X= ε(x− cgt) and then extracting the leading-order terms in the linear
operator, up to O(α2ε2), gives from (2.2)

ε2∂XX(c2
g∂zz +N2)ψ

(2)
(X, z)=N . (3.11)
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®0(z) ®0(z)

®0(z)
ßeN2(z) N2(z)

D+

D-

∂
H

(a) (b) (c)

D

D

z = 0

z = -H

z = 0

z = 0 d + ∂

d - ∂

z

FIGURE 1. (Colour online) Illustration of the special cases examined: (a) interfacial waves
in a two-layer fluid, (b) internal waves in a three-layer fluid with top-hat stratification N
and (c) internal waves in exponential stratification with e-folding depth σe. In all cases
the total height of the domain is H and D = H/2. In (a) and (b) z is defined upwards
from the vertical centre of the domain.

where N is given by (3.8). Integrating twice in X, we see that ψ
(2)

can be represented
by

ψ
(2)
(X, z)=N0|A0(X)|2Ψ (z), (3.12)

in which Ψ (z) is the (non-dimensional) vertical structure of the induced flow and
N0 is a characteristic value of the background buoyancy frequency. Thus the vertical
structure of the induced streamfunction is given by the solution of

c2
gΨ
′′
+N2Ψ =

cp

N0

{[
1
4
(1+ 2χ) (1− χ)

]
N2 dη̂2

0

dz
−

1
2
χ 2 dN2

dz
η̂2

0

}
. (3.13)

Once Ψ (z) has been found from (3.13), the induced horizontal flow can be computed
as

u(2) =−N0|A0|
2 dΨ

dz
. (3.14)

4. Solutions for special cases
In this section, we solve for the Stokes drift uS and the induced Eulerian flow

uE ≡ u(2) for the special cases illustrated in figure 1. We begin by finding analytic
solutions for interfacial waves in a two-layer fluid (§ 4.1). We then consider internal
waves in symmetric top-hat stratification (§ 4.2), comparing and contrasting the
solutions with those for interfacial waves in a symmetric two-layer fluid in § 4.1 and
for internal waves in uniform stratification (McIntyre 1973). The case of asymmetric
top-hat stratification is examined next (§ 4.3), wherein it is shown that, like in the
two-layer case, the induced Eulerian flow becomes very large for shallow internal
waves even if the stratification is only moderately asymmetric. Finally, we compute
solutions for the case of internal waves in exponential stratification (§ 4.4).

4.1. Two-layer fluid
We consider a two-layer Boussinesq fluid with upper-layer depth D+ and density ρ+
and lower-layer depth D− and density ρ−. In this case, the forcing equation (2.2)
readily reduces to Laplace’s equation in the two layers: ∇2φ+ = 0 for z> δ+ ηI(x, t)
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Lagrangian transport by vertically confined internal gravity wavepackets 355

and ∇2φ− = 0 for z< δ + ηI(x, t), where ηI(x, t)≡ η(x, z= δ, t) denotes the vertical
displacement of the interface with neutral position z= δ, and + and − denote the top
and bottom layers, respectively. The total depth is H, D=H/2, D+=D− δ, and D−=
D + δ. These two equations must be solved subject to no-flow boundary conditions
at the top and bottom and three boundary conditions at the interface. The boundary
conditions are, respectively, a kinematic boundary condition for the velocities in the
top layer, a kinematic boundary condition for the velocities in the bottom layer and a
dynamic boundary condition setting the pressure at either side of the interface to be
equal, given here using Bernoulli’s equation:

∂ηI

∂t
+ u±

∂ηI

∂x
−w± = 0 for z= δ + ηI(x, t), (4.1)

g′ηI =
∂φ+

∂t
+

1
2
|∇φ+|

2
−
∂φ−

∂t
−

1
2
|∇φ−|

2 for z= δ + ηI(x, t), (4.2)

where g′ ≡ 2g(ρ− − ρ+)/(ρ− + ρ+) is the reduced gravity. No-normal-flow conditions
at these boundaries require w+→ 0 as z→D and w−→ 0 as z→−D.

4.1.1. Linear solutions: O(α)
Although the polarization relationships in table 1 hold in each layer, we must still

identify explicit solutions for the vertical structure functions, including the matching
condition between the layers. To do so, it is convenient to express the linear solution
in terms of a velocity potential, which has the form

φ(1) = {C0(X, T)φ̂0(z)+ εC1(X, T)φ̂1(z)} exp[ı(kx−ωt)] +O(αε2), (4.3)

where we can show that C0 = −ıcpA0, φ̂0(z) = η̂′0/k, C1 = (cp/k)A0,X and φ̂1(z) =(
η̂′1 + (2− χ)η̂

′

0

)
/k (cf. table 1). We obtain for the vertical structure function

η̂0(z)=


sinh(k(D− z))

sinh(kD+)
δ 6 z 6 D,

sinh (k(D+ z))
sinh(kD−)

δ > z >−D,
(4.4)

which is continuous in z in order to satisfy the kinematic interfacial boundary
condition (4.1). From the linearized dynamic interfacial boundary condition (4.2), we
obtain

g′η(1)I =
∂φ

(1)
+

∂t
−
∂φ

(1)
−

∂t
for z= δ. (4.5)

Hence φ̂0(z) is not continuous across the interface. We thus recover the well-known
linear dispersion relation at O(α1ε0):

ω2
= g′k

1
CT+ +CT−

, (4.6)

in which we have defined CT± = coth(kD±) for convenience.
Furthermore, it is readily evident that the pressure jump across the interface

1p(1) ≡ p(1)+ (z = δ) − p(1)− (z = δ) = −ρref g′A0 (from table 1 and (4.4)) and the
linearized total pressures infinitesimally above and below the interface are equal
(p(1)tot,+|z=δ+ηI = p(1)+ |z=δ−ρ+gη(1)I = p(1)tot,−|z=δ+ηI = p(1)− |z=δ−ρ−gη(1)I ). The explicit O(α1ε1)
solution is given in appendix B.1 for completeness.
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Fields Values at z= δ± Correlations Values at z= δ±

η
(1)
I A0 u(1)η(1)I ∓

ω

2 tanh(kD±)
|A0|

2

φ(1) ±ı
ω

k tanh(kD±)
A0

∂2φ(1)

∂t∂z
η
(1)
I −

1
2
ω2
|A0|

2

u(1) ∓
ω

tanh(kD±)
A0

1
2
|∇φ(1)|2

cosh(2kD±)
4 sinh2(kD±)

ω2
|A0|

2

w(1)
−ıωA0 — —

∂φ(1)

∂t
−ω2A0 — —

∂2φ(1)

∂t∂z
−ω2A0 — —

TABLE 2. For interfacial waves in a two-layer Boussinesq fluid, expressions for the
amplitude of the linear, O(αε0), fields in the top (plus sign) and bottom (minus sign) layers
evaluated at z= δ and the relevant leading-order wave-averaged products between pairs of
fields. Values are given in terms of the amplitude envelope of the interfacial displacement
A0. The actual fields at the interface are found by multiplying by exp[ı(kx − ωt)] and
taking the real part of the result.

4.1.2. Stokes drift and transport
By substituting in the vertical structure function (4.4) into the general expression

for the Stokes drift (3.7), we obtain

uS,± =
1
2

cpk2
|A0|

2 cosh(2k(D∓ z))
sinh2(kD±)

, wS,± =±
1
4

cpk(1+ χ)ε∂X|A0|
2 sinh(2k(D∓ z))

sinh2(kD±)
.

(4.7a,b)
We define the Stokes transport in each layer QST,± as a second-order Eulerian quantity
given by vertically integrating the linear Eulerian velocity from the boundary to the
time-varying linear interface ηI . Explicitly,

QST,± ≡±

∫
±D

δ+η
(1)
I

u(1)± dz=∓u(1)±
∣∣∣

z=δ
η
(1)
I =

1
2
ω coth(kD±)|A0|

2, (4.8)

in which the overline denotes averaging over the fast scales of the waves and we have
only retained O(α2) terms. To derive (4.8) we have used the polarization relationships
in table 1 with the vertical structure function (4.4) and its derivative evaluated at z= δ,
as given explicitly in table 2. Consequently, we note that the Stokes transport is equal
to the vertical integral of the horizontal Stokes drift (4.7a) in each layer.

4.1.3. Wave-induced Eulerian flow
The mean-flow forcing equation (2.2) simply reduces to the Laplace equation in

both layers (cf. (3.8)). The forcing of an Eulerian mean flow instead comes from the
two nonlinear interfacial boundary conditions. Following a Stokes expansion of the
kinematic interfacial boundary condition DηI/Dt=w at z= δ+ ηI , we have at second
order in amplitude:

∂φ
(2)
±

∂z
−
∂η

(2)
I

∂t
= ε∂Xu(1)± η

(1)
I =∓

1
2
ωCT±ε∂X|A0|

2 for z= δ. (4.9)
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The forcing on the right-hand side corresponds to the divergence of the Stokes
transport (4.8). Similarly, from a Stokes expansion of Bernoulli’s equation and
equality of total pressures on either side of the interface, we have

g′η(2)I +
∂φ

(2)
−

∂t
−
∂φ

(2)
+

∂t
=
∂2φ

(2)
+

∂z∂t
η
(1)
I +

1
2
|∇φ

(1)
+ |

2 −
∂2φ

(2)
−

∂z∂t
η
(1)
I −

1
2
|∇φ

(1)
− |

2 for z= δ,

=
1
4
ω2(CT2

+
−CT2

−
)|A0|

2 for z= δ, (4.10)

in which the correlations in table 2 have been used to evaluate the forcing at the
interface. We note that our (4.9), (4.10) are equivalent to (2.9) in Keady (1971) and
(3.2)–(3.3) in Grimshaw & Pullin (1985). Because we assume a Boussinesq fluid,
equations (4.9), (4.10) imply in the symmetric case that the set-down or set-up of
the wave-averaged interface is zero (η(2)I = 0). It is therefore not possible to recover
from (4.9), (4.10) the case of surface gravity waves, in which the overlying density
is zero (cf. non-Boussinesq) and the wave-averaged free surface sets down.

Although a general solution for the mean flow in both layers φ
(2)
+

and φ
(2)
−

and
the wave-averaged interface η

(2)
I can be found, we additionally assume that the

wavepacket extent is broad compared to the layer depths (σ � D±). In this limit,
the Eulerian return flow is shallow and horizontally local to the overlying packet,
unlike the more general non-local return flow that arises when this assumption is
not made. This non-local return flow can be much wider than the overlying packet
(cf. McIntyre (1981) for such non-local return flow for surface gravity waves). In the
limit σ �D±, it is more convenient to find solutions in terms of the streamfunction.
Explicitly, we assume solutions of the form ψ

(2)
±
(x̃, z) = (B±ω/H)(D ∓ z)|A0|

2 and
η
(2)
I (x̃) = (B0/H)|A0|

2, in which B± and B0 are constants to be determined and we
have introduced the translating coordinate x̃ ≡ x − cgt, which is related to the slow
variable X through X= εx̃. Substituting these into (4.9), in which ∂zφ

(2)
±
= ∂xψ

(2)
±

, gives
two equations relating the coefficients B0 and B±. Taking the x-derivative of (4.10),
using ∂xφ

(2)
±
= −∂zψ

(2)
±

, and substituting for ψ
(2)
±

and η
(2)
I yields a third equation in

the three coefficients. Solving the resulting system of simultaneous equations gives
an explicit expression for ψ

(2)
±

from which the horizontal induced Eulerian flow is
found to be

u(2)
±
=ωkf±(kD+, kD−)|A0|

2, (4.11)

where

f±(kD+, kD−)≡
1

4kHD
(CT+ +CT−)

(
2χ 2
+ χkD∓(CT∓ −CT±)− 2kD∓CT±

)
, (4.12)

in which χ ≡ cg/cp,
D= kD(CT+ +CT−)− χ 2, (4.13)

and D=D+D−/H. We can also obtain the wave-averaged interface:

η
(2)
I =

1
4HD

(
2χk(D− CT+ −D+ CT−)+ k2DH(CT2

+
−CT2

−
)
)
|A0|

2. (4.14)

In the symmetric case (D≡D+ =D−), it is clear from (4.14) that η(2)I = 0. In this
case f±(kD, kD)=−1/(2kD tanh(kD)) and hence the total volume flux QS+QE is zero
in each layer.
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−0.5

0

0.5
Top-layer Stokes transport Top-layer induced Eulerian transport

Top-layer total volume flux Set-up/set-down

−0.5

0

0.5

(a)

(c)

(b)

(d)

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

Qs,+/(|A0|2�g�/H)

(Qs,+ + QE,+)/(|A0|2�g�/H)

-̇(2)/(|A0|2/H)

QE,+/(|A0|2�g�/H)

0 1 2 3
˚H

∂/H

∂/H

4 0 1 2 3
˚H

4

FIGURE 2. (Colour online) For interfacial waves in a two-layer Boussinesq fluid, regime
diagram for the total volume flux (QS +QE)/(

√
g′/H|A0|

2) in the top (a) and bottom (b)
layers, their sum (c), as well as the magnitude of the wave-averaged interface (d). Note
that the colour scale is chosen to saturate for large negative values.

In the asymmetric case, the induced Eulerian flow is changed significantly,
particularly in the long-wave limit kD±� 1, in which case CT±' 1/(kD±)+ (kD±)/3,
χ ' 1 − k2DH/3 and, from (4.13), D ' k2DH, in which D = D+D−/H and
H = D+ + D− is the total domain depth. Thus the induced Eulerian flow becomes
singular in this limit and likewise the Eulerian transport in each layer is singular:

QE,±

|A0|
2
√

g′/H
=∓

12
(kH)2

δ/H(
1− 4(δ/H)2

)3/2 +O(k̂0). (4.15)

It is evident from (4.15) that the long-wave singularity only occurs for unequal layer
depths (δ̂ 6= 0). As a consequence, the induced Eulerian transport becomes very large
for shallow interfacial wavepackets in an asymmetric two-layer fluid.

This is illustrated in figure 2, which plots the transport in the top layer as a
function of kH and δ/H, with δ ≡ (D− − D+)/2 denoting the interfacial position
away from the centre (see figure 1a). While the Stokes transport (figure 2a) shows
a modest increase with decreasing kH and increasing δ/H, the induced Eulerian
flow becomes significantly negative if δ/H > 0 (shallower upper-layer depth) and
significantly positive if δ/H < 0 (deeper upper-layer depth). Correspondingly, the
wave-averaged interface displaces significantly into the shallowest layer. The set-up
or set-down of the wave-averaged interface thus enhances the (negative) return flow
in the shallowest layer.
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4.1.4. Lagrangian displacements
As a wavepacket passes horizontally, Lagrangian fluid parcels are displaced

according to the sum of the Stokes drift uS and the Eulerian flow uE. For the
particular case of a wavepacket with a horizontally Gaussian amplitude envelope
A0(x̃)= a0 exp[−x̃2/(2σ 2)], the two associated net displacements can be obtained from
integrating (4.7a) and (4.11) with respect to time between t→±∞

1xS = uS (x̃= 0)
√

πσ/cg =
σ

2
√

π(k|a0|)
2 cosh 2k(D± ∓ z)
χ sinh2 kD±

, (4.16)

1xE = uE (x̃= 0)
√

πσ/cg =
σ

2
√

π(k|a0|)
2 f±(kD+, kD−)

χ
. (4.17)

4.2. Symmetric top-hat stratification
Next, we derive explicit analytic solutions for the Stokes drift, induced flows
and Lagrangian displacements resulting from mode-1 internal modes in top-hat
stratification in which the fluid is unstratified near the top and bottom of the domain
and has uniform stratification in between (figure 1b). Generally, the stratification is
prescribed in a domain of total depth H = 2D such that

N2(z)=

0 d+ δ < z 6 D,
N2

0 −d+ δ 6 z 6 d+ δ,
0 −D 6 z<−d+ δ.

(4.18)

For simplicity, in this section we consider the symmetric case in which δ = 0.
The more algebraically cumbersome asymmetric case with 0 < |δ| < 1 ≡ D − d
will be considered in the next section (§ 4.3) with a focus on the case |δ|/1� 1.
Besides providing analytic solutions, consideration of symmetric top-hat stratification
demonstrates how the induced Eulerian flow and Stokes drift transition from the case
of uniform stratification (for which d = D = H/2) to the case of a two-layer fluid
with interface at mid-depth (for which d→ 0 with N2

0 increasing so that N2
0 d = g′/2

is kept constant).

4.2.1. Linear solutions: O(α)
As for the two-layer case, the polarization relationships in table 1 hold in each

of the two unstratified layers as well as the stratified layer. We proceed to identify
explicit solutions for the vertical structure functions, including the matching condition
between the layers. Using (3.4), the vertical structure function η̂0 satisfies

η̂′′0 − k2η̂0 = 0 for d< |z|<D,
η̂′′0 + γ

2η̂0 = 0 for |z|6 d,

}
(4.19a,b)

in which γ = k (N2
0/ω

2
− 1)1/2. Explicit solutions to (4.19a,b) are found by applying

matching conditions at the ‘interface’ between the stratified and unstratified fluid,
namely at z = ±d in a linear approximation. Explicitly, the kinematic and dynamic
interface conditions require that both η̂0 and its vertical derivative η̂′0 are continuous
at z = ±d, as is evident from the entries for the vertical displacement and pressure
in table 1, respectively. These two pairs of matching conditions at the interfaces
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together with the requirement that w = 0 at z = ±D give the following vertical
structure function for even modes:

η̂0 =


cos γ d
sinh k1

sinh k(D− z) d< z 6 D,

cos γ z |z|6 d,
cos γ d
sinh k1

sinh k(D+ z) −d> z >−D,

(4.20)

in which 1= D− d. Furthermore, they give the dispersion relation, given implicitly
by the condition

k coth k1= γ tan γ d. (4.21)

In the limit of uniform stratification (d→D, 1→ 0), we have γD= (2j− 1)π/2 for
positive integers j. Thus for the lowest even mode ( j = 1) we have γ → m = π/H.
In the limit of a two-layer fluid (d→ 0, 1→D), we have tan γ d' γ d. Thus (4.21)
becomes

γ ∼ (k coth kD)1/2d−1/2 (4.22)

and the dispersion relation for the two-layer fluid ((4.6) with D= D+ = D−) can be
recovered. Although we will not examine the case of odd modes in detail, it is relevant
for the discussion below to note that the dispersion relation for odd modes (whose
streamfunction varies as sin γ z for |z|6 d) satisfies

k coth k1=−γ cot γ d. (4.23)

For completeness, the explicit O(α1ε1) solution for the vertical structure function η̂1
is given in appendix B.2.

4.2.2. Stokes drift and transport
By substituting the vertical structure function (4.20) into the general expression

for the Stokes drift (3.7), we can obtain the Stokes drift for even modes in top-hat
stratification

uS =
1
2

cpk2
|A0|

2



[
cos γ d
sinh k1

]2

cosh 2k(D− z) d< z 6 D,

−
γ 2

k2
cos 2γ z |z|6 d,[

cos γ d
sinh k1

]2

cosh 2k(D+ z) −d> z >−D.

(4.24)

Even though the vertical structure function η̂0 in (4.20) is continuously differentiable
at |z| = d, the second derivative is discontinuous. Thus the Stokes drift has jump
discontinuities where the background density gradient changes discontinuously.

The (Eulerian) Stokes transport (as defined in (4.8)) in each layer is found in
general to be

QST =

{
1
4γ cp sin (2γ d) |A0|

2 d< |z|6 D,
−

1
2γ cp sin (2γ d) |A0|

2
|z|6 d,

(4.25)

which, using (4.21), equals the vertical integral of the Stokes drift (4.24).
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In the two-layer limit for which d � D with N2
0(2d) = g′ kept constant, we find

γ ∼
√

k coth(kD)/d. Thus where d < |z|< D, equation (4.24) recovers the prediction
(4.7) for the Stokes drift in a symmetric two-layer fluid. However, unlike the case
of a two-layer fluid, the total Stokes transport is zero. This indicates that the Stokes
transport in the stratified layer is retrograde to the flows above and below and that it
becomes infinitely large as the layer becomes infinitesimally thin. Indeed, evaluating
(4.24) at z = 0 assuming d/D � 1 gives uS(z = 0) ' −[g′k/(4ωd)] |A0|

2, although
the total Stokes transport in this layer QST = −[ω/tanh kD]|A0|

2 is finite. This is an
indication of singular behaviour associated with transport properties in the limit of an
infinitesimally thin interface. Specifically, the mode-2-like structure evident in (4.24)
is not permitted in a two-layer fluid.

Finally, we note that in the limit of uniform stratification (d → D, γ → m),
equation (4.24) gives

uS =−
1
2

m2

|k|
N0|A0|

2 cos(2mz), (4.26)

in which γ →m= π/H is the vertical mode number of the lowest even mode. This
is the result previously found by Thorpe (1968).

4.2.3. Wave-induced Eulerian flow
We focus our attention on the case in which the wavepacket is long relative to

the depth of the unstratified layer (σ/∆� 1). In that case, we can seek a separable
solution for the Eulerian mean flow of the form ψ

(2)
=N0|A0(X)|2Ψ (z), in which N0 is

the characteristic buoyancy frequency and the non-dimensional vertical structure Ψ (z)
is given by the solution of (3.13). Solving separately in each layer specifically for
even-mode wavepackets gives the general solution

Ψ =

b+ µ (D− z) d< z 6 D,
b0 sinµz+ β∆ sin 2γ z |z|6 d,
b− µ (D+ z) −d> z >−D,

(4.27)

in which

β∆ =
1
4
γ

µ

1
χ
(1+ 2χ) (1− χ)

[(
2γ
µ

)2

− 1

]−1

, (4.28)

µ≡N0/cg and, as before, χ ≡ cg/cp. The constants b0 and b± in (4.27) are found by
kinematic and dynamic matching conditions at z = ±d evaluated at order amplitude
squared.

Explicitly, the kinematic condition requires the vertical displacement to be
continuous across each interface. Using (3.10) at |z| = d we have

η(2)
∣∣

z=±d =

[
−µΨ +

1
4

(
1
χ
− 1
)

dη̂2
0

dz

]∣∣∣∣
z=±d

|A0|
2, (4.29)

where we can ignore the singularity in dN2/dz at |z| = d, as dN2/dz= 0 in both layers
on either side of the interface. Given that η̂0 and η̂′0 vary continuously, we must have
from (4.29) that Ψ is continuous at z=±d.

The dynamic matching condition requires that total pressure at order amplitude
squared is continuous. From the horizontal momentum equation, expressed here in
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terms of the total pressure for convenience, we determine the order amplitude-squared
horizontal pressure gradient at z=±d+ η from a Stokes expansion around z=±d

1
ρref

∂

∂x

[
p(2)tot +

∂p(1)tot

∂z
η(1)
]∣∣∣∣

z=±d

=

[
−
∂u(2)

∂t
−
∂2u(1)

∂z ∂t
η(1) −

∂u(1)u(1)

∂x
−
∂u(1)w(1)

∂z

]∣∣∣∣
z=±d

.

(4.30)

Using the polarization relations in table 1, averaging over the fast scales and
integrating over one slow X derivative gives after some manipulation

1
ρref

[
p(2)tot +

∂p(1)tot

∂z
η(1)

]∣∣∣∣∣
z=±d

=

[
−cgN0Ψ

′

+
1
4

c2
p

(
2χη̂0η̂

′′

0 − (η̂
′

0)
2
)]∣∣∣∣

z=±d∓
|A0|

2, (4.31)

where we note that only the zeroth-order vertical structure function η̂0 plays a role,
as for the mean-flow forcing equation (3.8). Now, insisting that the left-hand side of
(4.31) is continuous at the interfaces and noting that η̂′′0 is discontinuous at z = ±d,
we find that Ψ

′

is discontinuous at the interfaces such that the jump in Ψ
′

from the
unstratified to stratified side of each interface is

J ≡Ψ
′

|d+ −Ψ
′

|d− =Ψ
′

|−d− −Ψ
′

|−d+ =
1
2

N0

cp
cos2 γ d. (4.32)

The discontinuity of Ψ
′

indicates that, like the Stokes drift, the Eulerian induced flow
jumps discontinuously at the interfaces. From (4.24), the jump in the Stokes drift is
of equal but opposite sign, so that the Lagrangian velocity uL= uS+ uE is continuous
across the interface.

Applying these two matching conditions to the general solution for Ψ in (4.27), we
find

b0 =−
β∆(sin 2γ d+ 2γ1 cos 2γ d)+ J1

sinµd+µ1 cosµd
, (4.33)

b± =±
β∆(sin 2γ d cosµd− (2γ /µ) cos 2γ d sinµd)− (J/µ) sinµd

sinµd+µ1 cosµd
. (4.34)

With these expressions the predicted induced Eulerian flow is

uE = cg µ
2
|A0|

2

{
±b± |d|< z 6 D,
−(b0 cosµz+ β∆(2γ /µ) cos 2γ z) |z|6 d. (4.35)

Profiles of the induced Eulerian flow and Stokes drift together with their sum (the
Lagrangian flow), are plotted in three cases with symmetric top-hat stratification in the
first row of figure 3. In all three cases, uE and uS have opposite sign at the middle,
top and bottom of the domain, though it is not always the case that these flows act
destructively to produce the Lagrangian flow. Generally, it is true that uS|z=0 < 0 and
uS|z=±D>0 and that uS|z=0 becomes increasingly negative as d/D becomes smaller. For
long waves (kH� 1), uE is opposite-signed to uS at the middle, top and bottom of
the domain. However, uE can change sign and indeed become very large for moderate
kH. This dynamics is examined in detail below.
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FIGURE 3. (Colour online) For top-hat stratification, vertical profiles of the Stokes drift
(red), the induced Eulerian flow (blue) and the total Lagrangian flow (black) with indicated
values of non-dimensional wavenumber kH, half-depth of the stratified layer d and upward
displacement of the mid-point of the stratified layer from z = 0, δ. All velocities are
normalized by |A0|

2N0/H, as denoted by the tilde. Panels (a–c) correspond to symmetric
cases, whereas (d–f ) show asymmetric cases.

In the uniform stratification limit, d → D, equation (4.35) recovers the result
previously found by McIntyre (1973) and Grimshaw (1977):

uE =
1
2

m2

|k|
(1+ 2m2/|k|2)(1−m2/|k|2)

1− 4m6/|k|6
N0|A0|

2 cos(2mz), (4.36)

in which m = π/H is the vertical wavenumber of the mode-1 wavepacket. Different
from the Stokes drift, uE exhibits a singularity at a critical horizontal wavenumber
kc ≡ (41/3

− 1)1/2m ' 0.766m. At this value, corresponding to µ ≡ N0/cg = 2γ →
2m, the group velocity of the wavepacket is equal to the horizontal phase and group
speed of the long mode-2 induced flow, N0/(2m). Thus the singularity is an indication
of the induced flow being resonantly excited (McIntyre 1973). For k > kc (k < kc)
the mode-2 disturbance flow has faster (slower) speed than the wavepacket. Crucially,
(4.36) predicts a change in sign of the induced flow as k changes from being greater
than kc. For k > kc, uS and uE are opposite signed. If k < kc, on the other hand, the
flows add constructively to make up the Lagrangian flow.

In the two-layer fluid limit, it follows that b± → ∓N0d/(cpµD) and uE →

−ω|A0|
2/(2D tanh kD). The induced Eulerian flow for |z| > d in this limit is thus
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364 T. S. van den Bremer, H. Yassin and B. R. Sutherland

equal to that found for the Eulerian flow in a two-layer fluid (4.11) (provided D� σ ,
in both cases). On the other hand, the Eulerian velocity for |z|< d becomes infinitely
large, while the volume flux remains finite, as follows because the vertically integrated
Eulerian flow in any top-hat stratification is always zero. Like the Stokes drift, taking
d→ 0 is a singular limit owing to the mode-2-like vertical structure of (4.27) and
(4.35), which is not permitted in a two-layer fluid.

Interestingly, while µ = 2m gave rise to a singularity in the case of uniformly
stratified fluid, the corresponding apparent singularity occurring for µ= 2γ disappears
if d < D. Nevertheless, new singularities appear corresponding to zeros of the
denominator, sinµd+µ1 cosµd, appearing in the coefficients b0 and b± in (4.33) and
(4.34). By examination of the odd-mode dispersion relation (4.23) in the long-wave
limit (as appropriate for the horizontally long, odd-mode structures induced by the
wavepacket, cf. (4.27)), it is clear that the singularities occur when the induced
flow corresponds to an odd mode with γ in (4.23) replaced by µ = N0/cg. These
singularities occur if kH is larger than 1, in which case cg is small and µ is
correspondingly large.

In general, the structure of the induced Eulerian flow as it depends upon kH can
be quite complex, as illustrated figure 4, which plots versus kH values of γ and µ,
the predicted flow at the centre and top of the domain, as well as the velocity jump
at |z| = d in two circumstances for which the relative depth of the stratified region is
d= 0.5D and 0.1D. The induced flows at z= 0 and z=D show the resonance peaks
occurring for kH ' 3 and 5 for d = 0.5D. Multiple resonance peaks occur for still
larger kH in both cases with d= 0.5D and 0.1D.

As in the case of the Stokes transport for wavepackets in this three-layer
stratification, the transport due to the Eulerian flow in the middle layer (|z| < d),
QE = −2cgµ

2b+∆|A0|
2, is equal and opposite to the sum of the Eulerian transport

in the upper and lower layers. However, the depth-integrated flows QS and QE in
each layer are opposite but not equal and opposite, reflecting displacements of the
wave-averaged interfaces. Hence there is differential Lagrangian transport over the
depth of the passing wavepacket. Such effects will be considered in more detail in
the following examination of flows induced in asymmetric top-hat stratification.

4.3. Asymmetric top-hat stratification
As in the case of a two-layer fluid, when the stratification is asymmetric a long-wave
resonance appears in the limit kH� 1. To demonstrate this, we repeat the procedure
above in the circumstance in which εδ ≡ |δ|/∆� 1, namely for a small asymmetry.
Our intention is to show that even for small non-zero εδ, the qualitative nature of the
Eulerian induced flow changes from a mode-2 structure to a predominately mode-1
structure whose flow can be significant compared with the O(α) horizontal velocity
of the waves if their horizontal wavenumber is small.

4.3.1. Linear solutions: O(α)
The vertical structure of the waves is given generally by

η̂0 =

B+ sinh k(D− z) d+ δ < z 6 D,
B0 cos γ z+ B1 sin γ z −d+ δ 6 z 6 d+ δ,
B− sinh k(D+ z) −D 6 z<−d+ δ.

(4.37)

Seeking solutions for even modes we take B0 = 1. As will be shown, B1 is small if
εδ is small.
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FIGURE 4. (Colour online) For symmetric top-hat stratification, (a,b) dispersion relation
coefficients showing µ (solid lines) and γ (long-dashed lines). Below are plotted
normalized values associated with the predicted induced Eulerian flow (long-dashed lines,
blue) and the Stokes drift (short-dashed lines, red) and their sum (solid black lines) (c,d)
at the vertical centre of the domain, (e,f ) at the top of the domain, and (g,h) also showing
the velocity jump at the interfaces at z=±d where N2 changes from N2

0 to 0. Flow values
are normalized by |A0|

2N0/H, as denoted by the tilde. In (a,c,e,g) d= 0.5D= 0.25H and
in (b,d,f,h) d= 0.1D= 0.05H. The upward arrows on the bottom axes indicate particular
values of kH examined in theory and numerical simulations (see § 5).
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For notational convenience, we define the following:

C± = cosh[k∆(1± εδ)], C0 = cosh(k∆), S± = sinh[k∆(1± εδ)], S0 = sinh(k∆),
c± = cos[γ d(1± εδ∆/d)], c0 = cos(γ d), s± = sin[γ d(1± εδ∆/d)], s0 = sin(γ d).

}
(4.38)

Continuity of η̂0 and its derivative gives the implicit dispersion relation

0 = (kC−c+ − γ S−s+)(kC+s− + γ S+c−)+ (kC−s+ + γ S−c+)(kC+c− − γ S+s−)
' 2(kC0c0 − γ S0s0)(kC0s0 + γ S0c0)+O(ε2

δ ). (4.39)

In the last expression the first term in parenthesis gives the dispersion relation for
even modes, while the second term gives the dispersion relation for odd modes in the
case εδ = 0. That the correction for finite εδ enters at order ε2

δ demonstrates that the
dispersion relation is relatively insensitive to breaking symmetry.

Imposing continuity of η̂0 and its derivatives gives the following expressions for the
coefficients in terms of B0:

B1 = B0
kC+c− − γ S+s−
kC+s− + γ S+c−

' εδB0
∆(k2
+ γ 2)S0c0

kC0s0 + γ S0c0
+O(ε2

δ ), (4.40)

B± = B0
γ

kC∓s± + γ S∓c±
' B0

γ

k0C0s0 + γ S0c0

[
1∓ εδ

∆(k2
+ γ 2)S0s0

kC0s0 + γ S0c0

]
+O(ε2

δ ), (4.41)

in which we note that the denominator in these expressions is non-zero for even
modes in the long-wave limit. Hence B1 is small if εδ is small, as expected.
Consequently, from (3.7a), the Stokes drift and transport should be similar to that for
the symmetric case given by (4.24).

4.3.2. Wave-induced Eulerian flow
The vertical structure of the Eulerian induced flow is given generally by

Ψ =


b+µ(D− z) d+ δ < z 6 D,
b0 sinµz+ b1 cosµz+ β∆[(B2

0 − B2
1) sin 2γ z− 2B0B1 cos 2γ z] −d+ δ 6 z 6 d+ δ,

b−µ(D+ z) −D 6 z<−d+ δ.
(4.42)

We require continuity of Ψ and jumps in Ψ
′

at the interfaces by analogy with (4.32)
in which J±=N0/(2cp)B2

±
S∓ are the jumps at the upper (upper signs) and lower (lower

signs) interface. For εδ small, these are given approximately by J±'B2
0(J0± εδJ1), in

which

J0 =
1
2

N0cpS2
0(kC0s0 + γ S0c0)

−2 and J1 = 2J0

(
(k2
+ γ 2)1S0s0

kC0s0 + γ S0c0
− k1

C0

S0

)
.

(4.43a,b)

It is straightforward, though algebraically cumbersome, to solve for the coefficients
b0, b1 and b±. In particular, in the limit of small εδ, we arrive at the following
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approximate expressions for the coefficients b0 and b1 in (4.42):

b0 ' −
B2

0

µ1C0 + S0
[1J0 + β∆[2γ1(c2

0 − s2
0)+ 2s0c0]] +O(ε2

δ ),

b1 ' −εδ
B2

0

µ1S0 − C0
[∆(J0 − J1)− (µ1

2)S0(1J0 + β∆[2γ1(c2
0 − s2

0)+ 2s0c0])]

+β∆

[
(2γ1)2(2s0c0)− 2

∆(k2
+ γ 2)S0c0

kC0s0 + γ S0c0
(2γ1(2s0c0)+ (c2

0 − s2
0))

]
+O(ε2

δ ),


(4.44)

in which C0 = cos(µd) and S0 = sin(µd). Of course, if εδ = 0, then b1 = 0 and we
recover the fact that the induced flow has odd structure in z. However, the denominator
in b1 turns out to be small for long waves. Explicitly, we find µ' γ (1+ (3/2)k2/γ 2),
C0 ' c0 − (3/2)(k2/γ 2)(γ d)s0 and S0 ' s0 + (3/2)(k2/γ 2)(γ d)c0. Together with the
dispersion relation (4.39), which suggests γ1c0 − s0 + O(ε2

δ ) = 0, we find that the
denominator varies as k2. Also in the limit kH→ 0, β→ 0 as a consequence of χ→ 1.
Hence for long waves in moderately asymmetric top-hat stratification we have

b1 '−
εδ

(kH)2
2γ1H2(J0 − J1)

3d(γ1c0 + s0)
. (4.45)

Likewise, by continuity of Ψ , this implies that b± is large if kH � ε
1/2
δ . Hence,

modulated wave packets containing long waves are expected to induce large Eulerian
flows in the unstratified regions at the top and bottom of the domain.

This is illustrated in figure 3(d–f ) in all of which kH= 0.3 and d= 0.5D, and δ/H
equals 0.001 (εδ = 0.004), 0.01 (εδ = 0.04) and 0.1 (εδ = 0.4). A slight breaking of
symmetry is observed in the first case, but this becomes pronounced in the second
case for which (kH)2= 2.25εδ, in which case uE adopts a dominant mode-1 structure.
In the final case with (kH)2� εδ the induced Eulerian flow is an order of magnitude
larger than the Stokes drift and so dominates the Lagrangian flow.

Figure 5 shows the induced Eulerian flows at the top and bottom of the domain as
a function of kH in cases with d = 0.5D and with δ = 0.01H (a) and δ = 0.1H (b).
Both flows increase in magnitude as a power law with decreasing kH. The flow in
the shallower top layer is moderately larger (for small kH).

Figure 6 illustrates the induced Eulerian and total Lagrangian transport in the
top and middle layer as it depends upon δ/H and kH. The transport in the lower
layer is given by that in the top layer when δ→−δ. As well as the strong induced
flows occurring near the resonance about kH ∼ 3, there is a clear near resonance
occurring for wavepackets composed of long waves in which the flow is negative in
the shallower layer and negative throughout the stratified layer. Such large transport
disappears when the flows are of strictly equal depth.

4.4. Exponential stratification
4.4.1. Linear solutions: O(α)

For an arbitrary stratification prescribed by N2, the vertical structure of internal
modes can be found through a Galerkin analysis. Shifting vertical coordinates so that
z lies in the range 0 6 z 6 H, N2 is decomposed into a Fourier cosine series and η̂
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FIGURE 5. (Colour online) As in figure 4(e), but for asymmetric top-hat stratification and
showing on a log–log plot the magnitude of the Eulerian induced flows at both the top and
bottom of the domain. The middle of the stratified region of half-depth d= 0.5D is shifted
vertically from z= 0 by (a) δ = 0.01H and (b) δ = 0.1H. Flow values are normalized by
|A0|

2N0/H, as denoted by the tilde. The dotted line indicates a power law dependence of
(kH)−2.
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FIGURE 6. (Colour online) For asymmetric top-hat stratification, transport resulting from
Eulerian induced flows (a,c) and the total volume flux (b,d). The middle stratified layer
extends over −D/2 + δ < z < D/2 + δ. The volume fluxes in the unstratified top layer
(D/2+ δ < z<D) are shown in (a) and (b). The volume fluxes in the stratified layer are
shown in (c) and (d).

is decomposed into a Fourier sine series: η̂ =
∑

j Aj sin( jm0z), with m0 = π/H. Thus
(3.4) is reduced to a matrix eigenvalue problem for the eigenvector of coefficients
Am with corresponding eigenvalue being the squared frequency ω2. The lowest
mode corresponds to that with the highest frequency. This procedure is applied to
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FIGURE 7. (Colour online) For exponential stratification, (a) profiles of the background
stratification with h = 0.1H (thin solid line), vertical structure of mode-1 waves having
kH= 0.3 (dashed line) and the vertical structure of the Eulerian induced flow normalized
by its maximum absolute value (thick blue solid line), and (b) corresponding profiles of
the Stokes drift (dashed red line), induced Eulerian flow (dashed blue line) and Lagrangian
flow (black line), all normalized by N0|A0|

2/H, as denoted by the tilde.

exponential stratification given by

N2
=N2

0 exp(z/σe), (4.46)

for −H 6 z6 0. The resulting predicted vertical structure of η̂0 is shown in figure 7(a)
for the case with σe = 0.1H and kH = 0.3. The predicted group velocity is found by
finding the frequencies of the lowest mode with wavenumbers 1.01k and 0.99k and
so estimating cg ' [ω(1.01k)−ω(0.99k)]/(0.02k).

4.4.2. Wave-induced Eulerian flow
Following a similar Galerkin procedure to solve (3.13), the resulting matrix equation

is used to find the vertical structure of the Eulerian induced flow Ψ (z). From
this, we construct the streamfunction of the induced flow ψ

(2)
= N0|A0|

2Ψ and the
corresponding Eulerian induced flow u(2) = −∂zψ

(2)
, which is shown in figure 7(a)

for the case with σe = 0.1H and kH = 0.3. In this figure Ψ has been normalized by
is maximum absolute value. It is evident that the induced flow has a very similar
vertical structure to the linear vertical structure function, consistent with long-wave
resonant excitation. In fact, the magnitude of |Ψ | is very large. The corresponding
profiles of the Stokes drift, the induced Eulerian flow and the Lagrangian flow are
shown in figure 7(b), illustrating that the Eulerian flow is indeed dominant and drives
the strong negative flow at the surface.

As anticipated by the discussion of induced flows in asymmetric two-layer and top-
hat stratification, the induced Eulerian flow increases as kH decreases for exponential
stratification, as shown in figure 8. The induced Eulerian flows at the top and bottom
vary as (kH)−2, for small kH, as expected. For kH = 0.1 the speeds of the induced
Eulerian flow at the surface and bottom are each three orders of magnitude larger than
the corresponding Stokes drift. The values are so large that the speed at the surface
can be comparable with the horizontal flow due to the waves themselves if a0/H ∼
(kH)−2

� 1. Evidently, for large kH we also observe resonances.
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FIGURE 8. (Colour online) As in figure 5, but showing flows induced by waves in
exponential stratification with e-folding depth σe = 0.1H.

5. Numerical simulations
As a test of the theory and also to provide insight into the dynamics of the induced

Eulerian flow for wavepackets near resonance, we have performed fully nonlinear
numerical simulations of small-amplitude wave packets composed of internal modes
in uniform, exponential and top-hat-like stratification. We use a two-dimensional,
Boussinesq code that solves the Navier–Stokes equations for the evolution of the
fields of vorticity and buoyancy in a horizontally spectral, vertically finite-difference
grid, imposing horizontally periodic and vertically free-slip boundary conditions. The
codes uses a leap-frog method to advance in time with Euler backsteps taken every
20 steps. The code has been used previously to simulate the evolution of horizontally
periodic vertical modes in non-uniformly stratified fluid (Sutherland 2016). Details
about the code resolution and the treatment of diffusion for the simulations presented
here are given in appendix C.

In all the simulations presented here, we consider internal wavepackets whose
initial horizontal amplitude envelope is a Gaussian centred at the origin with standard
deviation σ . That is, A0(x, t = 0) = a0 exp(−x2/2σ 2). In simulations of wavepackets
containing waves with kH = 3 (kH = 0.3) we set σ = 20H (σ = 50H). To neglect
weakly nonlinear feedbacks between the induced flow and the wavepacket evolution,
we set the maximum vertical displacement amplitude of the wavepacket to be small
so that a0 = 0.01H, and the steepness a0k is less than 0.03 in all of the simulations
presented herein. For prescribed stratification N2(z) and horizontal wavenumber k,
the vertical structure of the waves in the wavepacket and its corresponding frequency
are found by solving the eigenvalue problem (3.4) through a Galerkin method (see
§ 4.4). Having found the vertical structure of the vertical displacement, the code is
initialized by setting the vorticity and buoyancy fields according to values in table 1.
In most simulations, the predicted induced Eulerian flow is superimposed on the
initial wavepacket. However, for illustrative purposes, in simulations of wavepackets
in uniform stratification we also consider the generation and evolution of the induced
flow from a wavepacket having no predicted Eulerian flow superimposed at the outset.

The induced flow of the time-evolving wavepacket is visualized through two
methods. To visualize the induced Eulerian flow, the horizontal velocity field is
low-pass Fourier filtered to eliminate the horizontal velocity associated with motions
having horizontal wavenumber greater than k/4. We assess Lagrangian transport
by computing the displacement of fluid parcels due to the wavepacket. A passive
displacement field is assumed initially to have zero displacement everywhere. As time
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FIGURE 9. (Colour online) For numerical simulations with uniform stratification,
snapshots of the Eulerian horizontal velocity uE induced by a Gaussian wavepacket with
(a) kH = 3 (k ' 0.95m), (b) kH = 2.42 (k ' 0.77m ' kc) and (c) kH = 1 (k ' 0.32m)
shown at times (left-to-right) N0t=200, 400 and 1000. In these simulations, only the linear
solutions are prescribed as initial conditions; the predicted Eulerian induced flow is not
superimposed. The vertical dashed lines indicate one standard deviation of the wavepacket
either side of its central location at the indicated time. The colour scales shown in (a,d,g)
also indicate the corresponding scales in (b,e,h) and (c,f,i).

progresses in the simulations, the local velocity field at the location of the displaced
parcel is computed through a bilinear interpolation of the nearest four grid points to
the parcel and this is used to compute the new displacement. In plotting results, the
very large displacements that fluctuate on small spatial scales due to the waves in
the wavepacket are Fourier filtered in the same way that the horizontal velocity field
is filtered to reveal the induced flow.

5.1. Uniform stratification: with no initial superimposed Eulerian flow
To demonstrate the nature of the large induced Eulerian flows near resonance and the
reversal of the flows occurring for waves having wavenumbers on either side of the
critical wavenumber, we performed simulations of mode-1 Gaussian wavepackets in
uniform stratification having relative horizontal wavenumbers kH= 3, 2.42 and 1, and
in all cases with σ = 20H. The waves have vertical structure η̂ = cos(mz) with m=
π/H. Hence the relative wavenumbers correspond to k/m ' 0.955, 0.770 and 0.318,
respectively. The middle case is close to the resonant wavenumber kc ' 0.766m.

Figure 9 shows the evolution of the Eulerian flow induced by wavepackets that
begin their evolution centred at x = 0 without the predicted induced Eulerian flow
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being superimposed. In each of figure 9(a–c), the Fourier-filtered horizontal velocity
field u is shown at times N0t = 200, 400 and 1000. As the wavepacket propagates,
the mode-2 structure of the Eulerian induced flow becomes apparent and grows in
magnitude as the wavepacket propagates to the right. Unlike the prediction that the
horizontal structure should be that of a squared Gaussian, the induced flow instead
changes sign going horizontally from the rear to leading flank of the wavepacket.
This is the result of an ‘error wave’ that forms when the predicted Eulerian flow
is not prescribed as an initial condition. This error wave has opposite sign to the
predicted Eulerian flow, so that, together with the predicted Eulerian flow itself, the
initial horizontally integrated momentum at any height is zero, as prescribed. Unlike
the predicted Eulerian flow, which is slaved to the linear packet and travels at its
group speed, the error wave travels at the long-wave speed associated with a mode-2
disturbance: ce =N0/(2m)' 0.16N0H.

In the case with kH = 3 (figure 9a), the mode-2 induced error wave moves at a
horizontal speed faster than the wavepacket, namely ce > cg ' 0.12N0H. As a result,
by N0t= 1000 it has advanced well ahead of the wavepacket itself. Diagnostics (not
shown) reveal that the induced flow travelling with the packet evolves to have the
structure and amplitude predicted by theory. In the case with kH = 1 (figure 9c), the
error wave moves slower than the group speed of the packet cg ≈ 0.275N0H. Thus,
the induced mode-2 error wave lags behind the wavepacket.

The simulation of the near-resonant wavepacket with horizontal wavenumber
kH = 2.42 is shown in figure 9(b). In this case, the long mode-2 error wave has
nearly the same group speed as the wavepacket itself. Even by N0t = 1000, the
trailing and leading flanks of the induced flow, representing, respectively, the predicted
induced Eulerian flow slaved to the packet and the free error wave, both underlie
the wavepacket and the amplitude of the disturbance continues to grow, as the
error wave slowly separates from the induced flow. Theory predicts that the steady
state amplitude of the wave has a positive induced flow at mid-depth of magnitude
' 0.0093N0H, which is still an order of magnitude larger than the size of the induced
disturbance at time N0t= 1000, as shown in figure 9(b).

Presumably, if the simulation were run for much longer time in a much wider
domain, one would eventually see the rear flank of the induced disturbance align
underneath the wavepacket and reach the steady amplitude predicted by theory,
while the leading flank would passively propagate ahead at its moderately larger
group velocity. Although we have not explicitly performed such long simulations,
confidence in this assumption is further supported by simulations (not shown) in
which the predicted Eulerian induced flow is superimposed upon the wavepacket at
the outset and is observed to propagate steadily with the wavepacket without change
in structure or amplitude. The amplitudes would have to be sufficiently small for no
exchange of energy between the mean flow and the linear waves to take place. For
exact resonance, consideration of such exchange is beyond the scope of this paper.

5.2. Top-hat-like stratification

We approximate the discontinuous N2 profile given by (4.18), by a pair of hyperbolic
tangent profiles:

N2
=

1
2 N2

0 {tanh[(z+ d+ δ)/σd] − tanh[(z− d+ δ)/σd]} , (5.1)

in which the characteristic thickness of the transition from high to low stratification
was set to be σd= 0.02H. For the simulations with top-hat-like stratification presented

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

30
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f A
lb

er
ta

 L
ib

ra
ri

es
, o

n 
09

 F
eb

 2
01

9 
at

 1
8:

36
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.30
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Lagrangian transport by vertically confined internal gravity wavepackets 373

0.5

-0.001 0 0.001 -0.0001 0 0.0001

-0.0005 0 0.0005 -0.002 0 0.002

0z/H

(a) (b)

(c) (d)

-0.5

0.5

0z/H

x/H

-0.5

-50 0 50 100 -50 0 50 100 150

-50 0 50 100
x/H

-50 0 50 100 150

(1/N0H)u-(2) (1/N0H)u-(2)

(1/N0H)u-(2) (1/N0H)u-(2)

Îx-L/H = 0.2 Îx-L/H = 0.02

Îx-L/H = 0.05 Îx-L/H = 0.2

N0t = 1000

N0t = 1500

N0t = 500

N0t = 500

FIGURE 10. (Colour online) For numerical simulations with top-hat-like stratification,
snapshots from simulations with δ = 0 and (a) d = 0.5D and kH = 3, (b) d = 0.5D
and kH = 0.3 and (c) d = 0.1D and kH = 3, as well as an asymmetric case with (d)
δ = 0.1H, d = 0.5D and kH = 0.3. The Gaussian wavepacket has amplitude a0 = 0.01H.
The wavepacket width is σ = 20H in cases with kH = 3 and is σ = 50H in cases with
kH= 0.3. Panels show the Fourier low-pass filtered horizontal flow (colour scale) at times
indicated and filtered parcel displacements (white arrows, with scale indicated by the black
arrow).

here, the predicted Eulerian flow was superimposed on the initial wavepacket centred
at the origin.

Snapshots of the low-pass filtered horizontal flow and Lagrangian displacements
computed from four simulations are shown in figure 10 while corresponding profiles
of the measured Lagrangian displacements taken in the lee of the wavepacket at late
times in the simulation is compared with theory in figure 11.

Starting with the symmetric cases (δ= 0), figure 10(a) shows the Eulerian induced
flow at N0t = 1000 from a simulation with D = 0.5d, kH = 3 and σ = 20H. The
wavepacket is observed to move steadily to the right at the predicted group speed
of the wavepacket with a forward Eulerian induced mean flow at mid-depth and
retrograde motion near the top and bottom boundaries of the domain. Although the
Stokes drift is opposite in sign to the Eulerian induced flow, figure 11(a) clearly
shows the superposition of these flows, which gives the Lagrangian flow, correctly
predicts the observed Lagrangian displacements. Likewise, the complicated structure
of the predicted Lagrangian displacements in the case of a thin interface (figures 10(c)
and 11c) are correctly predicted with the very large displacements due to the Eulerian
flow in the stratified middle layer being nearly cancelled by the displacement due to
the Stokes drift in this layer. In simulations with longer wavelength waves and wider
wavepacket extent such that σ = 50H (figure 10b), the induced Eulerian flow and
displacements are an order of magnitude smaller in comparison with the corresponding
case with kH = 3. However, this changes if the stratification is asymmetric such that
δ= 0.1H (figures 10d and 11d). In this case, as predicted, the induced Eulerian flow
takes on a vertical structure closer to a mode-1 wave and the magnitude of the flow
as well as the displacements are more than 20 times larger than the corresponding
case with δ = 0.
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∂ = 0, d = 0.5D, kH = 3
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∂ = 0, d = 0.5D, kH = 0.3

∂ = 0.01H, d = 0.5D, kH = 0.3

FIGURE 11. (Colour online) Corresponding to each of the simulations shown in figure 10,
predicted displacements due to the Stokes drift (1xS/H, red), the induced Eulerian flow
(1xE/H, blue) and the total Lagrangian flow (1xL/H, black) as the result of the passage
of a Gaussian wavepacket in symmetric and asymmetric top-hat-like stratification. Solid
lines indicate the displacements determined by multiplying the magnitude of the analytic
predictions for the Stokes drift, the induced Eulerian flows and their sum by

√
πσ/cg.

Dashed lines indicate the displacements predicted by applying a Galerkin analysis to
the smoothed N2 profile used in numerical simulations. Black dotted lines indicate
displacement profiles extracted at the end of each numerical simulation at a distance 2σ
in the lee of the wavepacket centre (i.e. at x= cgt− 2σ ).

5.3. Exponential stratification
Finally, we consider the induced flow and Lagrangian displacements associated
with an exponentially decreasing N2 profile (4.46), more representative of oceanic
stratification. Snapshots of the full horizontal velocity, including that associated with
waves in the wavepacket, and the Fourier-filtered horizontal velocity are shown in
figure 12. In this case with the stratification having e-folding depth σe = 0.1H and
the waves having kH = 0.3, the induced flow is comparable to if not larger than the
flow due to the waves themselves even though the wave amplitude is a0 = 0.01H.
Apparently, the result of Doppler-shifting by the induced flow has affected the
dispersion of the waves in the wavepacket as evident from the uneven spacing of
crests.

Profiles of the predicted displacements and those measured in simulations are
shown in figure 13 for cases with σe = 0.2H and kH = 1 and with σe = 0.1H and
kH = 0.3. In both cases the Eulerian flow decreases monotonically from a positive
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FIGURE 12. (Colour online) From a numerical simulation having exponential stratification
with e-folding scale σe= 0.1H and a wavepacket with a0= 0.01H, kH= 0.3 and σ = 50H,
snapshots at N0t= 3000 of (a) the full horizontal velocity field associated with both the
waves and their induced Eulerian flow and (b) the Fourier-filtered horizontal flow showing
the induced Eulerian flow alone as well as the filtered parcel displacements.

-1.0

-0.8

-0.6

z/H

-0.4

-0.2

0(a) (b)

-20 -15 -10 -5 0 5-0.2 -0.1 0
ÎxE/H, ÎxS/H, ÎxL/H ÎxE/H, ÎxS/H, ÎxL/H

0.1

FIGURE 13. (Colour online) As in figure 11 but for two simulations with exponential
stratification having e-folding depth (a) σe = 0.2H and (b) 0.1H. In (a) the Gaussian
wavepacket is initialized with kH = 1 and σ = 20H and in (b) kH = 0.3 and σ = 50H,
as in the simulation shown in figure 12. In both simulations a0 = 0.01H.

value at depth to a negative value at the surface. Following from our insights derived
from the asymmetric two-layer and the asymmetric top-hat cases, the more negative
Eulerian flow near the top and the more positive Eulerian flow near the bottom is a
manifestation of the inherent ‘asymmetry’ of the exponential profile with these flows
being larger if the upper layer is ‘thinner’ and the relative horizontal wavenumber is
smaller. In the case shown in figure 13(a), the displacements measured in the lee of
the wavepacket exactly matches the predicted Lagrangian displacements. However, in
the case of long waves in shallower stratification in figure 13(b), the induced Eulerian
flow acts back upon the waves so that the Lagrangian displacement at the surface
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is smaller in magnitude than predicted. As in the work of Grimshaw (1977), it is
expected that a nonlinear Schrödinger equation or similar weakly nonlinear model
could be formulated to predict the observed displacements. However, the development
and application of such a theory lies beyond the scope of this work.

6. Conclusions

We have derived general formulae for the Eulerian induced flow and the Stokes
drift generated by horizontally modulated, vertically confined (or guided) internal
wavepackets in a two-dimensional, Boussinesq fluid with arbitrary stable stratification.
The predictions are validated by numerical simulations through comparing velocity
and net displacement profiles. To gain insight into the connection between flows
induced by interfacial waves and internal waves in continuous stratification, analytic
solutions were found for the Stokes drift and Eulerian flow induced by waves in a
two-layer fluid and in top-hat and exponential stratification.

In a symmetric two-layer fluid, the Stokes drift is positive everywhere with peak
value at the interface, whereas the Eulerian flow is negative and uniform with depth
for long groups. Combined, the net depth-integrated Lagrangian transport is zero in
each layer, unless one layer is shallower than the other, in which case wave-averaged
interface displaces into that layer making the Eulerian flow in that layer more negative
and the Eulerian flow in the opposite layer more positive by the same amount. The
depth-integrated flow across the whole fluid remains zero. By contrast, in continuous
stratification the depth-integrated transport due to the Stokes drift and Eulerian flow
are each zero. As the depth of the stratified layer in symmetric top-hat stratification
becomes small, approaching the case of waves on a thin interface, the Stokes drift and
the induced Eulerian flow in the uniform-density top and bottom layers approaches
those predicted for interfacial waves in a two-layer fluid. However, the velocities
within the stratified layer become larger as the interface becomes thinner. This is a
consequence of the requirement that the vertically integrated Stokes drift and induced
Eulerian flows each must be zero for waves in continuously stratified fluid. Because
the velocities in the top and bottom layers have the same sign, the velocity in the
stratified layer has opposite sign and must integrate over the small interface thickness
to be equal and opposite to the integral of the velocities in the unstratified layers.
While the mode-1 waves are sinuous, the corresponding Stokes drift and Eulerian
velocities have a varicose vertical structure which can only exist in continuously
stratified fluid, not in a two-layer fluid.

Both cases with top-hat and exponential stratification exhibit spikes in the induced
Eulerian flow at finite horizontal wavenumber, and these can be attributed to
resonances which occur when the vertical structure of the induced Eulerian flow
corresponds to a mode moving with the same horizontal speed as the group velocity
of the wavepacket, as noted originally by McIntyre (1973) for the case of uniform
stratification. Importantly, while not possible with uniform stratification, another near
resonance is apparent for wavepackets containing small horizontal wavenumber waves
in vertically asymmetric stratification: the Eulerian induced flow is found to vary as
the inverse square of the horizontal wavenumber. For asymmetric two-layer interfacial
waves, it is manifest as the effect of the displacement of the wave-averaged interface
into the shallower layer, enhancing in magnitude the negative Eulerian flow in that
layer. For relatively long waves in exponential stratification, this ‘infrared catastrophe’
is dominant and causes large negative Eulerian flows in the ‘shallower’ region near
the surface.
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While this idealized study has generally examined the problem of transport by
internal waves, the most obvious eventual application of this work is to understand
transport by oceanic internal modes such as those generated by tidal flow over
submerged ridges that emanate in the far field primarily as mode-1 internal tides
(e.g. Martin, Rudnick & Pinkel 2006). We have introduced a step in this direction
by demonstrating that our model correctly predicts the Stokes drift and Eulerian
induced flows for vertically confined internal waves in stratification that decreases
exponentially with depth. Consistent with the analytic models, this study shows that
both these flows contribute to the net Lagrangian transport. However, the infrared
catastrophe associated with long-wave resonance suggests that the induced Eulerian
flow should dominate and may even be so large as to influence the evolution of the
waves themselves.

Away from resonance, the combined action of dispersion and nonlinearity not
included herein will cause the packet to change shape slowly, as might be captured
to leading order by a nonlinear Schrödinger equation (Grimshaw 1977, 1981; Liu &
Benney 1981). When the change is slow (away from resonance), the change in the
net Lagrangian displacement will likely be small. At resonance, when infinite mean
flows are predicted by second-order theory, the nonlinear Schrödinger equation breaks
down and a system has to be formulated in which there is energy transfer between
the linear waves and the mean flow as done by Koop & Redekopp (1981). The
problem can no longer simply be thought of as steady in the reference frame of the
packet. As the bound mean flow is a solution to the linear dispersion equation itself,
we can superimpose an arbitrary mean flow as a free wave and the problem becomes
dependent on initial conditions and needs to be conceptually redefined. Close to
resonance, it will take very long for such an arbitrary mean flow to separate from
the packet and its bound mean flow.

Future work aims to explore transport and long-wave resonance in more realistic
detail through including the effects of background rotation (see recent work by Wagner
& Young (2016) and Thomas, Bühler & Shafer Smith (2018)) and allowing for the
wavepacket to have finite spanwise extent.
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Appendix A. Nonlinear forcing
From table 1, we can readily evaluate the following products occurring in the

nonlinear forcing term N :

u(1)ζ (1) =−
1
4

N2
|A0|

2 dη̂2
0

dz
, (A 1)

w(1)ζ (1) =− 1
4 N2 (1− 2χ) ε∂X|A0|

2η̂2
0, (A 2)

u(1)b(1) =−
1
4

N2cp|A0|
2 dη̂2

0

dz
, (A 3)
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w(1)b(1) =+ 1
4 N2cpχε∂X|A0|

2η̂2
0, (A 4)

where we have only given the leading-order contributions to the mean flow at second
order in amplitude.

Appendix B. Vertical structure of vertical displacement at O(αε)

In addition to its forcing equation (3.5) and the no normal-flow boundary conditions
w(z=±D)= 0, which imposes η̂1(z=±D)= 0, the O(αε) vertical structure function
η̂1 must satisfy the relevant matching conditions at the ‘interface’. The kinematic
condition requires that η̂1 is continuous across the interface in all three cases, but the
dynamic boundary condition is different in each case.

B.1. Two-layer fluid: interfacial waves

Where N2(z) = 0 the forcing equation (3.5) and the no normal-flow boundary
conditions w(z=±D)= 0 allow a (continuous) solution of the form

η̂1,±(z)= a0,± sinh(k(D∓ z))+ a1,±k(D∓ z) cosh(k(D∓ z)), (B 1)

where the first term corresponds to the homogeneous solution η̂0, and (3.5) requires in
particular that a1,± =−1/ sinh kD± with no restrictions on the homogeneous solution
and thus a0,±. Equality of linearized total pressures at the interface, p(1)tot,+(z= δ+ ηI)=

p(1)+ (z = δ) − ρ+g η
(1)
I = p(1)tot,−(z = δ + ηI) = p(1)− (z = δ) − ρ−g η

(1)
I , gives the linear

matching condition

1p(1)

ρref
≡

p(1)+ − p(1)−
ρref

=−g′η(1)I for z= δ, (B 2)

which becomes at O(αε) using table 1 and the dispersion relationship (4.6)

η̂′1,+ − η̂
′

1,− + 2(1− χ)
(
η̂′0,+ − η̂

′

0,−

)
=−

k
tanh kD+ + tanh kD−

η̂1 for z= δ. (B 3)

The constant a0,± can be freely chosen (cf. homogeneous solution) and we set a0,±=0.

B.2. Symmetric top-hat stratification
The forcing equation (3.5) and the no-flow boundary conditions w(z=±D)= 0 allow
a (continuous) solution of the form

η̂1 =

a0 sinh k(D− z)+ a1k(D− z) cosh(k(D− z)) d< z 6 D,
a2 cos γ z+ a3γ z sin γ z |z|6 d,
a0 sinh k(D+ z)+ a1k(D+ z) cosh (k(D+ z)) −d> z >−D,

(B 4)

where we have 4 coefficients still be determined. Having invoked symmetry, we
focus on the ‘interface’ between the top unstratified layer and the stratified layer.
From the forcing equation (3.5) in the outer layer and inner layer, we obtain
a1 = −cos γ d/sinh k∆ and a3 = 1 + χ/(ω2/N2

− 1), respectively. From the
kinematic condition, we require that η̂1 is continuous across the interface at z = d.
For top-hat stratification, the hydrostatic pressure does not make a contribution to
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the linear dynamic matching condition, and we simply require that the pressure is
continuous across the interface and thus so is η̂′1. We can solve these two conditions
simultaneously to give

a0 =
cos γ d
sinh k∆

(
1+

2k∆
sinh 2k∆

)
, a2 =

(
1+

γ d
tan γ d

) 1−
2k∆

sinh 2k∆

1+
2γ d

sin 2γ d

, (B 5a,b)

where we have used

χ ≡
cg

cp
=

γ 2

γ 2 + k2

1−
1−

2k∆
sinh 2k∆

1+
2γ d

sin 2γ d

 . (B 6)

Appendix C. Details of numerical simulations
For numerical stability, Laplacian diffusion is applied to the basic-state fields, but

only to disturbances with horizontal wavenumbers higher than four times that of the
horizontal wavenumber of waves in the wavepacket. The Reynolds number, based on
the maximum buoyancy frequency N0 and domain depth H is Re = (N0H2)/ν = 105.
The Prandtl number is 1. Although the Reynolds number is much smaller than that
for typical geophysical flows and the Prandtl number is smaller than that associated
with relative heat (or salt) diffusion, these diffusive processes negligibly affect the
dynamics, especially as the selective application of diffusion means that neither the
waves nor the induced flow experience diffusion.

In practice, we find the predicted Eulerian flow is well reproduced in simulations
run at relatively low resolution and coarse time steps. However, for quantitative
accuracy the simulations reported upon with uniform and exponential stratification
had a vertical resolution of H/128 and a horizontal resolution of k−1/16 with
time steps taken at intervals of 0.01N−1

0 . In top-hat-like stratification the vertical
resolution was taken to be H/256 ' 0.004H in order to resolve the transitions from
zero to strong stratification over a distance σd ' 0.02H. In all cases, for accurate
determination of the Lagrangian flow, for which parcel displacements associated with
the Stokes drift as well as Eulerian flow needed to be resolved, the simulations
required shorter time steps of 0.001N−1

0 . The simulations were run for a duration
allowing the wavepacket to propagate a distance of at least 6σ so that the vertical
profile of the Lagrangian displacement could be extracted sufficiently ahead of the
wavepacket’s initial position and sufficiently far behind its final position – a distance
of approximately 3σ . Depending upon the stratification and wavenumber, which set
the horizontal group velocity of the wavepacket, simulations took between two and
six days to run on a Mac desktop computer with a 2.2 GHz Intel Core i7 processor.
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