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It is shown by way of nonlinear numerical simulations of flow restricted to two dimensions that a
compact wavepacket of large-amplitude internal gravity waves incident upon a weakly stratified
region in which the buoyancy frequency is less than the frequency of the wavepacket may partially
transmit energy into this region through the generation of a wavepacket of lower frequency. In part,
the transmission of waves occurs due to the transient nature of the forcing by the incident
wavepacket, but if the amplitude of the wavepacket is moderately large, weakly nonlinear effects
may act to significantly increase the proportion of the wavepacket that is transmitted. For a range of
simulations initialized with wavepackets of different amplitude and vertical extent, the
characteristics of the reflected and transmitted waves are analyzed and reflection coefficients are
calculated. An explanation for how the nonlinear transmission mechanism operates is given by
demonstrating that the wave induced mean-flow, which is shown to be approximately equal to the
horizontal wave pseudomomentum expressed in Eulerian variables, acts to adjust the frequency of
the incident waves. ©1996 American Institute of Physics.@S1070-6631~96!02002-2#

I. INTRODUCTION

Under many geophysical circumstances, internal gravity
waves ~IGW! may be confined to a duct~or waveguide!
within which the medium is strongly stratified and outside of
which the stratification is weak. For example, ducted IGW
have been observed to be confined below regions of low
static stability in the upper troposphere,1 and IGW confined
to the thermocline region in the ocean have been observed to
propagate long horizontal distances away from their source.2

The characteristics of ducted IGW in a horizontally homoge-
neous medium have been examined in linear theory, where
typically it is supposed that the waves are manifest as normal
modes~e.g., for a general discussion see Gill,3 Sec. 6.10!.
Weakly nonlinear theories have extended the normal mode
approach for shallow water,4,5 deep water,4,6 and water of
finite depth,7,8 and with some success these have reproduced
the observed characteristics of the long time evolution of
ducted IGW of large horizontal extent in the ocean.9,10Exact
solutions of the fully nonlinear equations for horizontally
bounded, finite-amplitude IGW in a channel of infinite hori-
zontal extent have been found by Long,11 and these have
been applied to examine numerically the nonlinear evolution
of topographically generated IGW~for example, Scinocca
and Peltier,12 among others!. Generally, most weakly and
fully nonlinear theories of ducted IGW assume that the hori-
zontal extent of the waves is large or comparable to the ver-
tical extent of the waveguide, but these approaches do not
suitably describe the transient behavior of a compact wave-
packet, the vertical extent of which is small compared with
the vertical extent of the strongly stratified region.

In linear theory, the temporal behavior of a wavepacket
of small-amplitude IGW incident upon a region where the
fluid becomes weakly stratified was first studied by

Bretherton,13 who applied the WKB approximation to the
equations of motion in a medium where the vertical varia-
tions of the squared buoyancy frequencyN2 were small over
a wavelength. His analysis also included a treatment of back-
ground shear which is not considered in detail here. He
showed that a wavepacket incident upon a levelzr whereN
equals the frequency of the waves is reflected in a finite time.
Both the ‘‘critical level’’ and the ‘‘evanescent level’’ have
been used to refer tozr , but, because the former terminology
has also been used to describe the height at which the mean-
flow equals the phase speed of an incident wave, the latter
terminology is used here. An analytic expression for the path
followed by the incident and reflected wavepacket may be
determined by ray theory except near an evanescent level,
where a caustic forms and the wave amplitude is described
locally by an Airy function ~for example, see Lighthill,14

Secs. 4.5, 4.11!. In particular, ray theory shows that upward
propagating IGW, reflect in such a way that the phase tilt of
the waves becomes more vertical as the evanescent level is
approached.

WKB based theories rest on the assumption thatN de-
creases gradually compared with the vertical wavelength of
IGW, and it is not well understood to what extent the theories
remain valid for cases in whichN varies rapidly over a ver-
tical wavelength or, indeed, for cases in which the waves are
of non-negligible amplitude.

In this paper it is demonstrated in theory and by way of
fully nonlinear numerical simulations restricted to two di-
mensions that a compact IGW wavepacket incident upon an
evanescent level may be transmitted across this presumed
barrier in the form of a propagating wavepacket of smaller
amplitude. For incident waves of small amplitude, the trans-
mission mechanism is attributed to transient forcing and may
be understood by linear theory. For incident waves of large
amplitude, however, it will be shown that under a robust
range of conditions a greater proportion of the initial wave-
packet is capable of penetrating the evanescent level by a
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weakly nonlinear mechanism in which the wave induced
mean-flow modulates the frequency of the incident waves. In
neither case is the transmission of waves into weakly strati-
fied fluid related to the phenomena of tunneling or anoma-
lous frequency dispersion~such as that studied recently by
Dostenko,15 who has examined IGW confined to two pycno-
clines in the ocean!, because the transmitted waves, once
generated, propagate upward indefinitely in uniformly strati-
fied fluid subject only to dispersion, viscous dissipation, and
thermal diffusion.

In section II the initial value problem and the details of
the model employed to solve the fully nonlinear equations of
motion are described. The various diagnostic tools that are
used to study the characteristics of the initial IGW wave-
packet and of the reflected and transmitted waves are also
discussed here. These include consideration of the finite-
amplitude expression for the horizontal wave pseudomomen-
tum, an explicit definition for which is provided at the end of
this section. In section III results of the nonlinear simulations
are presented. In particular, the evolution of small-amplitude
IGW incident upon weakly stratified fluid is considered and
the fraction of the initial wavepacket that is reflected from
this region is compared with that predicted heuristically from
linear theory. Simulations of the evolution of large-amplitude
IGW incident upon an evanescent level demonstrate how
nonlinear effects enhance the transmission of the waves. The
results of a range of simulations are analyzed in order to
demonstrate how the nonlinear mechanism is affected by
changes in the characteristics of the initial wavepacket and of
the background density profile. In section IV an explanation
of how the nonlinear mechanism operates is provided.
Therein it will be shown that the pseudomomentum of mod-
erately large-amplitude IGW in an Eulerian framework is
negligibly different from the wave induced mean-flow. The
significance of these results applied to geophysical circum-
stances is remarked upon in section V.

II. DESCRIPTION OF THE PROBLEM AND LINEAR
THEORY

Throughout this work an initial value problem is solved
in which a horizontally periodic IGW wavepacket of finite
vertical extent is superimposed at the outset of each nonlin-
ear simulation on a stationary stratified fluid in whichN2 is
constant over the vertical extent of the wavepacket.

In order to unambiguously determine the characteristics
of IGW incident to and propagating away from an evanes-
cent level, the background profile of the squared buoyancy
frequencyN2 is taken to be constant for small and largez.
Specifically, the piecewise linear form ofN2 is given by

N2~z;J,R!5H JB~51!, z<2R,

J1~J2JB!~z!/R 2R,z<0,

J, z.0,

~1!

in which N25JB for small z, N25J for large z and N2

varies linearly betweenJB andJ over a distanceR. An ex-
ample of anN2 profile which is defined by parameters
JB51, J50.6 andR55 is shown in Figure 1~a!.

The wavepacket that is superimposed on the basic state
at the start of each simulation is given in terms of the stream-
function by

c~x,z!52 Re$A exp~2uz2z0u/D !exp@ ı~kxx1kzz!#%,
~2!

in which kx andkz are the horizontal and vertical wavenum-
bers, respectively,A determines the wavepacket amplitude,
andD is the vertical extent of the wavepacket which is cen-
tered aboutz5z0!2R. Only upward propagating wave-
packets are considered here, and for thesekz is negative. The
envelope of the initial wavepacket defined with parameters
A50.15,D55, andz05220 is shown in Figure 1~b!.

The fluctuation density fieldr8 is expressed nondimen-
sionally in terms of the vertical displacement of fluid par-
ticles from their equilibrium position. For initialization, an
approximate expression, valid foruDkzu@1 and A!1, is
used to definer8 in terms of the streamfunction by using the
identity for plane IGW of horizontal phase speedcpx in uni-
formly stratified fluid withN25JB :

r852~1/cpx!c. ~3!

Using the dispersion relationship for IGW,r8 is given ex-
plicitly by

r8~x,z!522 Re$AukW u/AJB exp~2uz2z0u/D !

3exp@ ı~kxx1kzz!#%, ~4!

in which ukW u represents the magnitude of the wavenumber
vector. Figure 1~c! shows the fluctuation density field of an
IGW wavepacket defined by parametersA50.15, D55,
z05220, kx51, andkz52A2/2.20.7071. Contours are
given by an interval of 0.2.

IGW in which the wavepacket envelope varies vertically
as a top hat function or a Gaussian have also be studied, but
the exponential envelope given by equation~2! is a useful
form for analytic study, and it emulates the far field behavior
of unbounded normal modes which decrease exponentially
whereN2 and the background horizontal velocity are con-
stant.

FIG. 1. An example of the initial state of a simulation:~a! N2(z) profile for
the case withJ50.6 andR55, ~b! the streamfunction amplitude of the
initial wavepacket characterized byA50.15 andD55, ~c! and the fluctua-
tion density field shown by contours of interval 0.2 corresponding to the
initial wavepacket of wavenumber vector (kx ,kz)5(1,20.7071). Positive
~negative! values are illustrated by solid~dashed! lines.
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The nonlinear simulations are performed by numerically
solving the primitive equations for incompressible, Bouss-
inesq flow that is restricted to two spatial dimensions. Any
effects of background rotation are ignored. The fully nonlin-
ear equations for momentum conservation are

Du!

Dt!
52

1

r0

]p!8

]x!
1n¹2u! , ~5!

Dw!

Dt!
52

1

r0

]p!8

]z!
2

g

r0
r!81n¹2w! , ~6!

and the equation expressing the conservation of internal en-
ergy is

Dr!8

Dt!
5
N!
2

g
w!1k¹2r!8 . ~7!

Here the ‘‘star’’ subscript is used to indicate fields in dimen-
sional form. HereD/Dt!5]/]t!1u!]/]x!1w!]/]z! is the
material derivative,u! andw! are the horizontal and vertical
velocities, respectively,r!8 is the fluctuation density, and the
fluctuation pressurep!8 is the total pressure minus the back-
ground pressurep̄!(z) that is in hydrostatic balance with the
background densityr̄!(z). The constantr0 is a characteristic
value of r̄! . The squared buoyancy frequency is
N!
252(g/r0)dr̄! /dz! . The physical constants in the equa-

tions are the gravitational accelerationg, the kinematic vis-
cosity n, and the thermal diffusivityk.

These equations are represented numerically in a model
based on the methodology developed by Smyth and Peltier16

for the study of the evolution of Kelvin-Helmholtz and
Holmboe waves. Equations~5!, ~6!, and~7! are re-expressed
in nondimensional form by the substitutions
(x! ,z!)→L(x,z), t!→(L/U)t, (u! ,w!)→U(u,w),
r!8→(r0L/H)r8, r̄!→(r0L/H) r̄, and p!8→(r0U

2)p8,
in which L andU are characteristic length- and velocity-
scales, respectively, andH is the length-scale of background
density variations with height. For the validity of the Bouss-
inesq approximation,H@L. With these substitutions, the
nondimensional form of the equations become

Du

Dt
52

]p8

]x
1

1

Re
¹2u, ~8!

Dw

Dt
52

]p8

]z
2JBr81

1

Re
¹2w, ~9!

and

Dr8

Dt
5N2w1

1

Re Pr
¹2r8. ~10!

Here Re5UL/n is the Reynolds number, Pr5n/k is the
Prandtl number, andJB5(g/H)(L/U)2 is a characteristic
value of the nondimensional form of the squared buoyancy
frequency. Although defined similarly to the bulk Richardson
number,JB is not a measure of the stability of stratified flow
in the presence of background shear because the characteris-
tic scalesL andU are not determined from the vertical
structure of the background horizontal flowU(z) which is
taken to be constant. The scalesL andU are defined so that

the initial IGW have horizontal wavenumberkx51 and the
stratification belowz52R is characterized byJB51.

Most of the simulations discussed herein are performed
at high Reynolds number with Re55000 and with Pr51.
The Reynolds number is set to be sufficiently large that vis-
cous effects are negligible, but not so large that the numerical
stability of the calculation is forfeit. With these settings of
Re and Pr, typically only 2 percent of the initial energy of
the flow is lost due to dissipation over the duration of each
simulation.

Rather than directly integrate equations~8!–~10!, these
equations are re-expressed in the vorticity-streamfunction
form because the model then reduces to evolution equations
for only two coupled fields, namely the vorticityv and the
fluctuation densityr8. Taking the curl of equations~8! and
~9! gives the~nondimensional! vorticity equation,

Dv

Dt
5JBr8x1

1

Re
¹2v, ~11!

in whichv5uz2wx is the spanwise component of vorticity.
The streamfunction is found by inverting the elliptic differ-
ential equation,

¹2c52v, ~12!

and the components of the velocity vectoruW 5(u,w) may be
determined fromu52]c/]z andw5]c/]x.

The domain is assumed to be a horizontally periodic
channel with free slip upper and lower boundary conditions.
The channel is sufficiently wide, however, that waves are of
negligible amplitude near either boundary throughout each
simulation. Only solutions of equations~10! and~11! that are
periodic in the horizontal are considered, hence the horizon-
tal structure of the dependent fields may be represented in a
Fourier basis, so that

f ~x,z,t !5 (
m52M

M

fm~z,t !exp~ ımkxx!, ~13!

in which f may representv or r andM determines the limit
of horizontal resolution of each field. The vertical structure
of the dependent variables is represented in finite difference
form so thatv andr are sampled atP11 pointsz0 , . . . ,
zP , at regularly spaced intervals spanning the channel of
vertical extentLz , and vertical derivatives are replaced by
their second order finite difference equivalent,

] f m~zp ,t !

]z
[
f m~z~p11! ,t !2 f m~z~p21! ,t !

2Dz
, ~14!

in whichDz5Lz /P. The resulting set of evolution equations
is stepped forward in time using a leap-frog method with an
Euler backstep taken at regular time intervals to minimize
splitting errors. To ensure that the results of the simulations
are not sensitive to the spatial resolution, the results of each
simulation are compared with those determined by integrat-
ing the equations of motion for fields at twice the vertical
resolution. For the simulations presented here, the resolution
is found to be adequate for a vertical grid spacing of
Dz.0.15. The length of the channel is 2p, which is set to
support exactly one wavelength of the initial wavepacket.
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Simulations have also been performed in which the horizon-
tal extent of the channel is twice as long so that two hori-
zontal wavelengths of the initial wavepacket is supported. In
such cases, however, negligible energy was observed to be
introduced into superharmonics of wavenumber1

2 as the
wavepacket evolved.

During each simulation the wavepacket is analyzed with
a number of diagnostics that characterize the amplitude, ver-
tical group velocity, and vertical wavenumber of the trans-
mitted and reflected waves. Vertical profiles of the~nondi-
mensional! Reynolds stresst5u8w8 are calculated at
regular time intervals in order to demonstrate the direction
and intensity of the vertical flux of horizontal momentum by
IGW. An estimate of the vertical group velocitycgz1 of the
transmitted, upward propagating wavepacket is determined
by calculating at late times in each simulation the average
vertical speed of the centroid of the positive Reynolds stress
that is greater than 5% its maximum value. Likewise, an
estimate of the vertical group velocitycgz2 of the reflected,
downward propagating wavepacket is determined by calcu-
lating the average vertical speed of the centroid of the nega-
tive Reynolds stress that is less than 5% of its minimum
value. Specifically, the average speed is found between times
t595 and 100. The vertical wavenumber and frequency of
the transmitted wavepacket are determined from the phase
tilt and horizontal phase speed, respectively, of IGW at the
vertical level corresponding to the centroid of the positive
Reynolds stress at the end of each simulation~specifically, at
time t5100).

To study wave, mean-flow interactions and to find suit-
able values for reflection coefficients of IGW incident upon
an evanescent level, it is useful to examine the horizontal
pseudomomentum of IGW. The definition of pseudomomen-
tum in linear theory effectively arises from the observation
by Bretherton and Garrett17 ~and earlier by Whitham,18 who
developed a Lagrangian formulation for long surface waves!
that the energy densityE of IGW is not conserved but varies
as the waves move to heights where the speed of the back-
ground flow U is different. The nature of the interaction
between the waves and the mean-flow is elegantly expressed
for small-amplitude IGW in a slowly varying background
flow by the conservation of wave action,
A5E /„v2kxU(z)…, in which v2kxU is the intrinsic fre-
quency of the waves. As the wavepacket moves upward,v
andkx are constant, butv2kxU varies ifU(z) varies with
height,z. Because wave action is conserved, the wave en-
ergy densityE must change in proportion to the intrinsic
frequency. From this principle, conservation laws follow for
pseudoenergyE5Av ~a conserved quantity with the dimen-
sions of energy density! and horizontal pseudomomentum
M5Akx ~a conserved quantity with the dimensions of mo-
mentum density!. The fluxesF E andF M , respectively, of
these quantities must satisfy

]

]t
E52¹–F E ~15!

and

]

]t
M52¹–F M . ~16!

For small-amplitude waves, it is found thatF E5cgWE and
F M5cgWM in which cgW is the group velocity of the IGW.
Where the IGW are of large amplitude or the variation of
N2 orU with height is significant over a vertical wavelength,
however, the relationships do not necessarily hold and gen-
eral expressions must be derived for conserved quantities
like pseudomomentum and its flux. These may be found in a
Lagrangian framework using the generalized Lagrangian
mean formulation developed by Andrews and McIntyre.19,20

The conservation laws may also be expressed in an Eulerian
framework through the Hamiltonian techniques developed
by McIntyre and Shepherd21 ~see also the review given by
Shepherd22!, although the resulting formulae can have com-
plicated analytic forms that are difficult to compute numeri-
cally. The Hamiltonian method has been applied, in particu-
lar, to examine two-dimensional Boussinesq and anelastic
flow for which conservation laws have been determined by
Scinocca and Shepherd.23 For the purposes of this paper,
only the horizontal pseudomomentum M and its vertical flux
F z in the absence of initial background motion are of inter-
est. Explicitly, M is given in nondimensional form by

M5v8FZ~ r̄1r8!2Z~ r̄ !2
dZ~ r̄ !

dr̄
r8G1

dZ~ r̄ !

dr̄
r8v8,

~17!

in which Z( r̄) is height as a function of the background
density r̄, andv8 and r8 are vorticity and density fluctua-
tions, respectively. The horizontally averaged vertical flux of
horizontal pseudomomentum is given by

F̄ z5u8M1t, ~18!

in whichw8 is the vertical velocity fluctuation and, as before,
t is the Reynolds stress.

These expressions are useful both as a means of under-
standing the nonlinear mechanism by which IGW are trans-
mitted across an evanescent level and as a way of quantify-
ing the effectiveness of this mechanism. In general, reflection
coefficientsR are calculated at the end of each simulation
~at timet5100) for a range of simulations withR defined as
the fraction of the total horizontal pseudomomentum associ-
ated with waves belowz50. Pseudomomentum is chosen as
the quantity with which to defineR because, like energy and
pseudoenergy, it is accurate toO(a2) in the incident wave
amplitudea, but unlike energy in general, it is conserved
following the wave motion even ifN2 varies in space, and it
is more accurately calculated numerically than pseudoenergy
which involves the computation of differences between large
numbers. In practice, it is found that the numerically calcu-
lated domain averaged pseudomomentum changes in time,
but this change is improved if smaller time steps are taken
during the simulations. With the time step employed for the
results reported herein, the domain averaged pseudomomen-
tum increases by less than five percent over the duration of
each simulation. The value of the reflection coefficient, how-
ever, is found to be relatively insensitive to the choice of
time step.
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In summary, the group velocity of the upward (cgz1)
and downward (cgz2) propagating wavepacket, the vertical
wavenumber (k1) and frequency (v1) of the upward propa-
gating wavepacket, and the reflection coefficient (R) are
found for a range of simulations the initial states of which
are determined by equations~1! and ~2! with parameters
A,D,R,and J ~note, however, that whenJ51 the fluid is
uniformly stratified over the whole domain and the value of
R is redundant!. The wave characteristics are listed for par-
ticular simulations in Table I, and in section III entries in the
table will be referred to in the course of discussing the results
of these cases.

III. RESULTS OF THE NONLINEAR SIMULATIONS

For every simulation discussed here, the amplitudeA
and vertical extentD of the initial wavepacket vary and the
centre of the wavepacket is fixed atz05220. Likewise, the
vertical wavenumber is fixed withkz52A2/2.20.7071,
this value being set because, with horizontal wavenumber
kx51, plane IGW of these attributes have the largest upward
group velocity,cgz52/3A3.0.3849. The frequency of such
plane waves isv5A2/3.0.8165 and this is referred to here-
after as the frequency of the initial wavepacket. Simulations
have been performed for wavepackets of different vertical
wavenumber with similar qualitative results, but
kz52A2/2 is examined in detail because, with this value, a
small-amplitude wavepacket undergoes the least dispersion.

Before proceeding to discuss the evolution of IGW inci-
dent upon an evanescent level a control simulation is per-
formed in whichN251 everywhere and the initial small-
amplitude wavepacket is characterized byA50.01 and
D55. Figure 2 illustrates the state to which the wavepacket
has evolved by timet5100. The profile of the streamfunc-
tion amplitude shown in Figure 2~a! shows that the peak
amplitude of the wavepacket has decreased moderately to
.0.014 from its initial peak value 0.02. Figure 2~b! shows

contours of the fluctuation density field by intervals of 0.01
with positive~negative! contours illustrated by solid~dashed!
lines. The diagram demonstrates that the wavepacket remains
well defined and compact but has translated upward from
being centered aboutz5220 to having a peak value at
z.16.0. For the numerically simulated IGW wavepacket at
t5100, the characteristics of which are given in the first row
of Table I, the vertical group velocitycgz1.0.38, the fre-
quency v1.0.81, and the vertical wavenumber
kz1.20.72. These values do not differ greatly from the
characteristics of the initial wavepacket, and in this sense,
the wavepacket is said to be weakly dispersive.

If N25J is sufficiently small abovez50, negligible en-
ergy is transmitted into this region by IGW. IfAJ is moder-
ately smaller than the frequency of the incident wavepacket,
however, some proportion of it may be transmitted due to
transient forcing. Nonlinear simulations of small-amplitude
wavepackets support this assertion. In particular, a simula-
tion is performed for an initial IGW wavepacket character-
ized byA50.01 andD55, and the background stratification
is given by equation~1! with R50 and J50.6 so thatN
decreases discontinuously atz50 to a frequency smaller
than that of the incident wavepacket. Nonetheless, a small-
amplitude IGW wavepacket propagates upward abovez50
at late times in the simulation. This is demonstrated in Figure
3 which shows contours of the fluctuation density field at
times~a! t50, ~b! 50, and~c! 100. At each time contours are
given by intervals of 0.01. Figure 3~b! shows that the inci-
dent wavepacket with upward left to right phase tilt is inhib-
ited from propagating above the evanescent level. The re-
flected wavepacket att5100 has a downward left to right
phase tilt and amplitude almost as large as that of the initial
wavepacket. At this time, however, a small-amplitude up-
ward propagating wavepacket with upward left to right phase
tilt is also apparent abovez50. The direction of propagation
of the wavepacket is demonstrated explicitly in Figure 4
which shows horizontally offset profiles of the Reynolds
stresst at 21 successive timest50, 5, 10,...,100. Each ver-
tical profile is illustrated by short dashed lines, except for
those at timest50, 50, and 100 which are illustrated by solid
lines. The diagram clearly shows the upward flux of horizon-
tal momentum at the beginning of the simulation followed by
the reflection and partial transmission of the wavepacket at

FIG. 2. Simulation at timet5100 for case withN251 throughout the
domain and an initial small-amplitude IGW wavepacket characterized by
parametersA50.01,D55; ~a! shows the streamfunction amplitude and~b!
shows the fluctuation density field by contours of interval 0.01.

TABLE I. Characteristics of the transmitted IGW wavepacket listed for
simulations initialized with a range of different parametersA andD defining
the amplitude and depth, respectively, of the initial wavepacket, andJ andR
definingN2 in terms of its value forz.0 and the depth over which the
N2 decreases fromJB51 toJ, respectively. In each case the wavenumber of
the initial wavepacket is (kx ,kz)5(1,20.7071). The vertical group velocity
of the reflected, downward propagating wavepacketcgz2 and the transmit-
ted, upward propagating wavepacketcgz1 , the vertical wavenumberkz1 ,
and the frequencyv1 of the transmitted wavepacket, and the reflection
coefficientR are determined at the end of each simulation, as described in
the text. For comparison, the last row of the table lists the corresponding
characteristics for plane IGW in fluid withN251 everywhere.

A D R J cgz2 cgz1 kz1 v1 R

0.01 5 1.0 0.38 20.72 0.81 0.01
0.01 5 0 0.6 20.37 0.23 20.38 0.72 0.86
0.15 5 1.0 0.32 20.60 0.89 0.004
0.15 5 0 0.6 20.28 0.26 20.61 0.68 0.78
0.15 8 1.0 0.29 20.49 0.91 0.002
0.15 8 0 0.6 20.26 0.24 20.57 0.70 0.70
0.15 5 10 0.6 20.30 0.24 20.65 0.66 0.80

Plane waves 0.385 20.707 0.817 0
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late times. The characteristics of the transmitted and reflected
wavepackets are given in Table I. These show that the re-
flected wavepacket moves downward with group velocity
comparable in magnitude to the group velocity of the initial
wavepacket, but that the transmitted wavepacket moves up-
ward at a slower speed. Because the initial wavepacket
propagates with the largest vertical group velocity possible
for plane IGW, the transmitted wavepacket is expected to
propagate upward more slowly if its wave characteristics are
different. Indeed, it is composed of waves that are more ver-
tically oriented (kz1.20.38.2A2/2) and which propa-
gate with moderately smaller frequency (v1.0.72,A2/3)
than that of the initial wavepacket.

If the initial wavepacket is of large amplitude, the pro-
portion of it that is transported across the evanescent level is
significantly larger. This is demonstrated qualitatively in Fig-
ure 5, which shows contours of the fluctuation density field
by intervals of 0.15 at timest50, 50, and 100 in diagrams

~a!, ~b!, and ~c!, respectively. Att550, Figure 5~b! clearly
shows the behavior of the wavepacket as it is inhibited from
propagating into the region abovez50, where it is evanes-
cent. Nonetheless, att5100, Figure 5~c! shows both a re-
flected downward propagating and a transmitted upward
propagating wavepacket. The direction of propagation may
be inferred from the contour plots by the phase tilt of the
waves but is demonstrated explicitly in Figure 6, which
shows horizontally offset profiles of the Reynolds stress at
21 successive timest50, 5, 10, . . . , 100. Each vertical
profile is illustrated by short dashed lines, except for those at
times t50, 50, and 100 which are illustrated by solid lines.
The figure shows two peaks in the Reynolds stress profiles
after time t.75 s one positive abovez50 moving upward
and one negative belowz50 moving downward. Unlike the
small-amplitude case~Figure 4!, here the positive Reynolds
stress associated with the transmitted wavepacket is much
larger in comparison with the magnitude of the negative
Reynolds stress associated with the reflected wavepacket.
The characteristics of the waves at the end of the simulation
are listed in Table I. For the transmitted wavepacket, the
vertical group velocitycgz1.0.26; for the reflected wave-
packet, cgz2.0.28. Both values are significantly smaller
than the group velocity of the initial wavepacket. The trans-
mitted waves, of vertical wavenumberkz.20.61, have
greater vertical phase tilt, and their frequencyv1.0.68 is

FIG. 3. Fluctuation density field shown in contours by interval of 0.01 for a
simulation performed with parametersA50.01,D55, andJ50.6 at times
~a! t50, ~b! 50, and~c! 100. Although the buoyancy frequency abovez50
is smaller than the frequency of the initial wavepacket, upward propagating
IGW abovez50 are apparent at timet5100.

FIG. 4. A sequence of Reynolds stress profiles for a simulation with
A50.01,D55, andJ50.6. 21 profiles are shown from left to right at times
t50, 5, 10, . . . , 100. Profiles are shown by solid curves at timest50,
50, and 100, and by dashed curves otherwise. The scale at the top right-hand
corner indicates the range of the Reynolds stress for each profile. The dia-
gram illustrates the upward propagation of the initial wavepacket with posi-
tive Reynolds stress and the upward~downward! propagation of the trans-
mitted ~reflected! wavepackets with positive~negative! Reynolds stress at
late times.

FIG. 5. Fluctuation density field shown as in Figure 3, but for a simulation
with A50.15, D55, andJ50.6 at times~a! t50, ~b! 50, and~c! 100.
Contours are shown by an interval of 0.15

FIG. 6. A sequence of Reynolds stress profiles shown as in Figure 4, but for
a simulation withA50.15,D55, andJ50.6.

435Phys. Fluids, Vol. 8, No. 2, February 1996 B. R. Sutherland

Downloaded 25 Jul 2012 to 142.244.193.55. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



smaller than the frequency of the initial waves and margin-
ally smaller than the buoyancy frequencyAJ abovez50.
The characteristics of a wavepacket that evolves from the
same initial state but propagates under the effects of disper-
sion alone in uniformly stratified fluid are listed in Table I for
comparison. In the absence of an evanescent level, the wave-
packet propagates upward at larger group velocity~although
smaller than that expected for a small-amplitude wave-
packet!, and its frequency is significantly larger. The vertical
wavenumber, however, is comparable.

If the initial wavepacket is of small amplitude, linear
theory may be employed to estimate the proportion of the
wavepacket that is reflected from a weakly stratified region
where N25J. This is done by decomposing the vertical
structure of the wavepacket into vertical Fourier compo-
nents, determining its power spectrum, and integrating over
those components with frequency greater thanAJ to get the
proportion of the wavepacket that is reflected. Explicitly, the
vertical Fourier transform of the initial wavepacket given by
equation~2! is

ĉ~m!5E dzc~z! exp ~2ımz!

5
2AD

11@D~m2kz!#
2 exp~ ıkxx!, ~19!

from which the power spectrum is defined:

P }uĉ~m!u2. ~20!

This is normalized so that*2`
`
Pdm51. Thus, the propor-

tion of the wavepacket with vertical wavenumbers exceeding
some critical valuemc is

R 5E
mc

`

Pdm5
1

2
2
1

p

D~mc2kz!

11@D~mc2kz!#
2

2
1

p
tan21@D~mc2kz!#. ~21!

If the wavepacket is incident from below on a weakly strati-
fied region whereN25J and supposing that those Fourier
components corresponding to IGW of frequencyv,AJ are
entirely transmitted into this region and that the remaining
components are entirely reflected, then setting

mc52kxAJB
J

21, ~22!

equation~21! represents the proportion of the initial wave-
packet that is reflected.

In the limit D→` of a wavepacket of infinite vertical
extent ~plane waves!, R→1 if mc,kz and R→0 if
mc.kz ; plane waves are either entirely transmitted or re-
flected depending on whether the buoyancy frequency in the
far field is, respectively, greater than or less than the fre-
quency of the initial wavepacket. A compact wavepacket
(D finite! is capable of partial transmission, however, due to
the transient nature of the disturbance.

The reflection coefficient could more physically have
been defined in terms of the energy spectrumE
} (kx

21m2)uĉ(m)u2, or in terms of the spectrumM associ-

ated with the horizontal wave pseudomomentum for which,
using equation~17! for small-amplitude waves, it can be
shown thatM } (kx

21m2)(3/2)uĉ(m)u2. If Dkz@1, however,
uĉ(m)u2 is sharply peaked aboutm5kz , and the normalized
integrals of these two spectra are both approximately equal
to that for the power spectrum.

Figure 7 shows the reflection coefficientR as a function
of the squared buoyancy frequencyJ abovez50 calculated
from nonlinear simulations of a large-amplitude wavepacket
with A50.15 andD55 ~solid line!, and a small-amplitude
wavepacket withA50.01 andD55 ~short dashed line!, and
these are compared against the linear theory prediction given
by equations~21! and ~22! ~long dashed line!. The dotted
vertical line indicates the critical value ofJ5Jc.

2
3 which

equals the squared frequency of the initial wavepacket. ForJ
below this value, the wavepacket is incident upon an evanes-
cent level. For allJ, the reflection coefficients determined
from the simulation initialized with a small-amplitude wave-
packet are comparable to those predicted by linear theory.
The latter slightly underpredicts the amount of reflection be-
cause it does not account for the behavior of waves near a
caustic. The theoretically predicted curve and the curve de-
termined for a small-amplitude wavepacket deviate signifi-
cantly, however, from that determined from the simulation
initialized with a large-amplitude wavepacket. WhenJ&Jc
less reflection occurs and whenJ*Jc more reflection occurs.
This figure demonstrates that nonlinear effects may signifi-
cantly enhance the transmission of energy across the evanes-
cent level.

In order to develop a better understanding of how the
transmission mechanism operates, a simulation is performed,
initialized with a wavepacket of larger vertical extent. Figure

FIG. 7. Reflection coefficients calculated as a function ofJ for simulations
with D55 andA50.15 ~solid curve!, A50.01 ~short dashed curve!. The
reflection coefficients predicted from linear theory are represented by the
long dashed curve. The vertical dotted line indicates the critical value of
J5Jc5

2
3, below which the plane IGW are evanescent abovez50. This

diagram demonstrates that the transmission of IGW by finite-amplitude
wavepackets is dominantly a nonlinear effect.
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8 shows horizontally offset profiles of the Reynolds stress at
21 successive timest50, 5, ...,100, for a simulation with the
initial wavepacket characterized byA50.15 andD58. The
solid curves represent the profiles att50, 50, and 100, which
otherwise are represented by dashed curves. In comparison
with the simulation forD55 ~i.e., Figure 6!, the reflected
and transmitted wavepackets are more sharply peaked, al-
though their characteristics listed in Table I are comparable.
Figure 9 compares the reflection coefficients calculated in
the case forD55 ~solid line! with those forD58 ~dashed
line!. The coefficients are negligibly different except when
AJ is close to the frequency of the initial wavepacket in
which caseR is smaller, indicating that a wavepacket of
larger vertical extent reflects less fromz50.

Every simulation considered above supposes thatN2 de-
creases discontinuously toJ at z50. The transmission of
waves is not sensitive to this feature, however, as shown
qualitatively in Figure 10 in which horizontally offset pro-
files of the Reynolds stress are plotted for 21 successive
times t50, 5, ..., 100, in a simulation withA50.15 and
D55, and N2 given by equation~1! with R510 and
J50.6. The solid curves represent profiles fort50, 50, and
100, which otherwise are represented by dashed curves.
Compared with Figure 6, the profiles demonstrate that the
reflected and transmitted waves undergo more dispersion
than do IGW for the case in whichN2 changes discontinu-
ously, although the momentum flux associated with the trans-
mitted wavepacket is comparable in both cases. Table I
shows that the group velocity and frequency of the transmit-
ted wavepacket are only moderately smaller than the corre-
sponding wave characteristics in the discontinuousN2 case.
Figure 11, which compares the reflection coefficients as a
function ofJ for simulations with a discontinuousN2 profile
~solid line! and a continuousN2 profile withR510 ~dashed
line!, shows that there is little difference between the propor-
tion of the initial wavepacket that is transmitted in these two
cases.

An explanation for some of these quantitative results is
provided in the next section.

IV. EXAMINATION OF THE IGW TRANSMISSION
MECHANISM

In brief, the nonlinear generation mechanism depends
crucially on the adjustment of the mean-flow due to the pas-
sage of IGW of finite vertical extent. For example, consider
an upward propagating IGW wavepacket of frequencyv0

and horizontal phase speedcpx5v0 /kx , incident upon an
evanescent level atz50. Thus, abovez50 the buoyancy
frequencyAJ,v0 . Initially, the leading edge of the wave-
packet is of small amplitude and the mean-flow changes neg-
ligibly. As the centre of the wavepacket, which is of large
amplitude, approachesz50 the mean-flow is accelerated.
During this time the effective horizontal phase speed of the

FIG. 8. A sequence of Reynolds stress profiles shown as in Figure 4, but for
a simulation withA50.15,D58, andJ50.6.

FIG. 9. Reflection coefficients calculated as a function ofJ shown as in
Figure 7, but for simulations withA50.15 andD55 ~solid curve!, D58
~dashed curve!.

FIG. 10. A sequence of Reynolds stress profiles shown as in Figure 4, but
for a simulation withA50.15, D55, and continuously varyingN2 with
R510 andJ50.6.
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waves nearz50 is larger thancpx . Thus, as the mean-flow
accelerates the waves constitute a horizontally periodic dis-
turbance at the evanescent level of frequencyv.v0.AJ,
and the generation of propagating IGW abovez50 is further
inhibited. However, as the centre of the wavepacket reflects
downward and the trailing edge of the wavepacket is incident
at z50, the amplitude of the wavepacket decreases and the
mean-flow decelerates. During this time the effective hori-
zontal phase speed of the waves is smaller thancpx and the
waves constitute a horizontally periodic disturbance of fre-
quencyv,v0 . If v<AJ, the disturbance is capable of ef-
ficiently generating propagating IGW abovez50.

This process is illustrated explicitly by a closer exami-
nation of a simulation performed with an initial wavepacket
characterized byA50.15 andD55, and withN2 changing
discontinuously from 1 toJ50.6 atz50. The results of this
simulation have already been illustrated briefly by Figures 5
and 6. Figure 12 demonstrates the relationship between the
phase of the waves and the wave induced mean-flow. In~a!
contours of the fluctuation density atz50 are shown be-
tween timest50 and 100 by way of a Hovmoeller diagram.
Contours are given by intervals of 0.05, and these are shown
with respect to a reference frame moving at approximately
the same speed as the horizontal phase speed of the initial
wavepacket,cpx.0.8165. In general, the positive fluctuation
density is larger than the magnitude of the negative fluctua-
tion density because the former is a measure of upward dis-
placement of parcels from strongly stratified fluid below
z50 and the latter is a measure of the downward displace-
ment of parcels from weakly stratified fluid. Similar dia-
grams indicating the evolution in time of the fluctuation den-
sity moderately below or abovez50 exhibits the expected
symmetry between positive and negative contours. The Hov-
moeller diagram ofr8 at z50 shows that at early times IGW
appear to grow in amplitude without moving horizontally in

the moving reference frame. The phase of the waves shifts
forward substantially betweent535 and 65, during which
time the penetration of waves above the evanescent level is
further inhibited. The change in frequency of the waves
Dv at z50 due to the effective increase in the phase speed
can be estimated from the slope of the zero contour:
Dv&0.1. For t*65, while the trailing edge of the wave-
packet is incident upon the evanescent level, the phase of the
waves nearz50 shifts backward and a propagating wave-
packet is generated abovez50. The change in frequency
over this time is estimated to beDv&20.5.

The change in phase of the waves atz50 between times
t50 and 100 is compared with the wave induced mean-flow
shown in Figure 12~b!. The figure explicitly shows the accel-
eration of the mean-flow as the wavepacket grows in ampli-
tude and shifts forward in phase, and it shows how the mean-
flow decelerates as the amplitude of the reflected wavepacket
decreases and the waves shift backward in phase. The non-
linear generation of IGW above an evanescent level occurs,
therefore, when the frequency of the IGW is effectively re-
duced by the deceleration of the wave induced mean-flow. As
expected near a caustic moderately belowz50, the wave
amplitude is larger and, therefore, the frequency shift due to
this nonlinear effect is more pronounced.

Qualitatively this answers the question as to how IGW
are transmitted by nonlinear effects. These observations may
be put on more quantitative ground, however, by providing a
link between the speed of the mean-flow and the amplitude
of the waves. For inviscid, Boussinesq flow it is well known
that the acceleration of the mean-flow may be expressed in
terms of fluctuations of the horizontal velocity u8 and verti-
cal velocity w8 ~for example, see Craik,24 Sec. 11.5!. In non-
dimensional units,

]

]t
Ū52

]

]z
u8w8. ~23!

The right-hand side of the equation is just the negative di-

FIG. 11. Reflection coefficients calculated as a function ofJ shown as in
Figure 7, but for simulations withA50.15,D55, andN2 decreasing from
JB51 to J over distanceR50 ~solid curve! andR510 ~dashed curve!.

FIG. 12. ~a! Hovmoeller diagram of perturbation density field atz50 be-
tween timest50 and 100 for a simulation withA50.15, D55, andN2

discontinuous withJ50.6. Contours are shown by intervals of 0.05, the
heavy solid line representing the zero contour.~b! Wave induced mean-flow
at z50 over the same times.
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vergence of the Reynolds stresst. Thus the mean-flow is
accelerated in proportion to the square of the IGW ampli-
tude. To determine the speed of the mean-flow at a particular
time from equation~23!, however, the Reynolds stress diver-
gence at a particular level must be integrated in time.

The mean-flow speed in time is estimated for a weakly
dispersive IGW wavepacket in the following way. Suppose a
wavepacket is initially given by

c0~x,z!52 Re$F~z! exp @ ı~kxx1kzz!#%, ~24!

and assume that the vertical structure of the amplitude
changes negligibly in time as the wavepacket moves upward
at group velocitycgz so thatc(x,z,t).c0(x,z2cgzt). Then,
in the absence of any initial background motion, equation
~23! gives

Ū~z,t !.E
0

t

d t̃4kxkzF~z2cgzt̃ !F8~z2cgzt̃ !

5
2

cgz
kxkz@F2~z!2F2~z2cgzt !#. ~25!

In particular, this demonstrates that no acceleration of the
background flow occurs if the initial IGW amplitudeF(z) is
constant: monochromatic plane waves do not changeŪ.
Conversely, a compact wavepacket may accelerate the back-
ground flow to speeds as great asŪmax. 2kxkzF

2
max/cgz . A

numerical check on these predictions is given by a simula-
tion with the initial wavepacket characterized by parameters
A50.15 andD55. In uniformly stratified fluid withN251
~not shown here!, the observed peak of the mean-flow near
z50 is close to the predicted valueŪmax.0.037. In non-
uniformly stratified fluid withN25J above an evanescent
level at z50, the maximum amplitude of the incident and
reflected IGW together nearz50 is approximately twice the
maximum amplitude of the initial wavepacket. Therefore,
Ūmax is approximately four times larger. This explains why
the background flow shown in Figure 12~b! is accelerated to
such a large extent between times 35 and 65.

An explicit connection between the wave amplitude and
the wave induced mean-flow, which is valid in general, may
be attained by considering the horizontal pseudomomentum
of the waves. IfN2 is constant, equation~17! for the hori-
zontal wave pseudomomentum simplifies to

M52r8v8. ~26!

For small-amplitude waves this quantity is horizontally uni-
form and, as pointed out by Scinocca and Shepherd,23 equa-
tion ~18! simplifies to

F̄ z.t. ~27!

Even for large-amplitude IGW in non-uniformly stratified
fluid, F̄ z5t1O(a3) for waves of amplitudea. For
a&0.3, therefore, the vertical flux of horizontal pseudomo-
mentum is negligibly different from the Reynolds stress. It
follows from equations~23! and ~16! that the horizontal
pseudomomentum is negligibly different from the horizontal
mean-flow to within a constant determined by the initial con-
ditions. That is

Ū~z,t !2Ū05M2M0.2@r8v8u t2r8v8u t50#. ~28!

It is well established that the Lagrangian counterpart of this
result is exact,19 specifically that the generalized Lagrangian
mean of the velocity is precisely equal to the pseudomomen-
tum in non-rotating, non-dissipative, and adiabatic flows.
However, the conditions under which this result in a La-
grangian framework may be extended to an Eulerian frame-
work are less clear, and it is fortuitous that such a straight-
forward connection between the wave induced mean-flow
and the horizontal pseudomomentum in Eulerian variables
can be derived for the case of Boussinesq~and anelastic!
IGW.

It is interesting to examine the limit of equation~28! for
small-amplitude waves of the form of equation~24!. Defin-
ing r8 andv8 in terms of the streamfunction using equations
~3! and ~12!, respectively, gives

2r8v8.2
ukW u2

cpx
uF~z!u2. ~29!

Substituting the plane IGW expressions forcpx andcgz , this
reduces to the approximation derived from time integrating
the Reynolds stress as expressed in equation~25!.

Figure 13 shows the profiles of~a! the mean-flow and~b!
the Reynolds stress at timet550 for a simulation with an
initial wavepacket characterized by parametersA50.15 and
D55, and with discontinuousN2 such thatJ50.6 above
z50. These profiles are compared with those of~c! the hori-
zontal pseudomomentum and~d! its vertical flux calculated
at the same time using equations~17! and~18!, respectively.
There is no distinguishable difference between the Reynolds
stress and pseudomomentum flux profile, and the horizontal
pseudomomentum itself differs from the horizontal mean-
flow only nearz50 whereN2 is discontinuous. The rapid
variations of the pseudomomentum profile are attributed to

FIG. 13. A comparison at timet550 for210<z<5 of ~a! the horizontally
averaged mean-flow with~c! the horizontal pseudomomentum of waves, and
of ~b! the Reynolds stress with~d! the vertical flux of horizontal pseudomo-
mentum. The profiles are taken from a simulation withA50.15,D55, and
N2 discontinuous withJ50.6.
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the round-off error that is significant nearz50 where the
difference between large numbers is calculated.

V. DISCUSSION AND CONCLUSIONS

The qualitative understanding of the nonlinear genera-
tion mechanism helps to explain many of the results regard-
ing the reflection coefficients calculated as a function of the
squared buoyancy frequencyJ abovez50. If the frequency
of the initial wavepacketv*AJ, thenz50 is an evanescent
level and wave reflection is anticipated. Transmission of
large-amplitude waves is enhanced, however, by the reduc-
tion of the wave frequency that occurs when the wave in-
duced mean-flow decelerates as the incident wavepacket re-
flects. Conversely, if the frequency of the initial wavepacket
v&AJ, then wave transmission is anticipated. More reflec-
tion of large-amplitude waves occurs, however, because the
wave frequency increases when the wave induced mean-flow
accelerates as the wavepacket is incident upon the level
z50. Because a wavepacket reflects from an evanescent
level over a longer time if its vertical extent is larger, the
forcing frequency at this level is smaller, and the transmis-
sion mechanism is further enhanced.

In light of the relationship drawn between the phase of
the waves and speed of the mean-flow, as illustrated by Fig-
ure 12, a crude estimate may be established of the degree to
which nonlinearity enhances the transmission mechanism.
Assuming the adjustment to the phase speedDcp is directly
proportional to the acceleration of the wave induced mean-
flow, then

Dcp5T
]M

]t
, ~30!

in whichM is the horizontal wave pseudomomentum given
by equation~17! and T is the characteristic time-scale of
variations inM . That is

T .OS F 1M ]M

]t G21D . ~31!

Combined with equation~30!, the increase in frequency due
to nonlinear effects as the leading edge of the wavepacket is
incident atz50 is estimated in terms of the structure of the
initial wavepacket with horizontal pseudomomentum
M0(z) by

Dv.kx@M0~z0!2M0~z→`!#.8
ukW u2

cpx
A2. ~32!

Similarly, by the symmetry of the incident wavepacket con-
sidered here, the decrease in frequency due to nonlinear ef-
fects as the trailing edge of the wavepacket is incident at
z50 is approximatelyDv. This estimate underpredicts the
actual change in frequency because it does not take into ac-
count the increase in amplitude of the disturbance near a
caustic. Nonetheless, for the parametersA50.15,
kW5(1,2A2/2), and cpx5A2/3, equation ~32! gives
Dv.0.3, which is of the same order as that estimated from
the Hovmoeller diagram for this case~Figure 12!. Therefore,
significant nonlinear enhancement of wave transmission
across an evanescent level or of wave reflection from a level

wherev*AJ should occur whenuJ2Jcu&Dv. This pre-
dicted range of enhancement agrees well with the range over
which the reflection coefficient calculated for simulations
with a large-amplitude wavepacket~i.e., Figure 7! deviates
significantly from linear theory. A better estimate of the
range of enhancement could, perhaps, be made by develop-
ing an appropriate weakly nonlinear theory for IGW wave-
packets of small vertical extent compared with the depth of
the strongly stratified region.

Throughout it has been assumed that the initial back-
ground flow is constant at all heights. For small-amplitude
waves, ray theory predicts that the effect of introducing mod-
erate shear would be to alter the angle of incidence of the
wavepacket on the evanescent level, the angle being more
horizontal as the wavepacket approaches a level of the back-
ground flow with speed closer to that of the phase speed of
the waves. This behavior may have a significant effect upon
the fraction of energy that is transmitted across an evanes-
cent level. With or without the presence of background shear,
however, the transmission of a compact IGW wavepacket
across an evanescent level is amenable to experimental
study, and this is currently under investigation.

These results may have important implications for many
geophysical circumstances. Although ducted IGW are often
assumed to be trapped within regions of strong stratification,
it has been demonstrated that bursts of energy in the form of
compact IGW wavepackets may transmit energy away from
the duct due to their transient nature and nonlinear effects.
Such behavior may already have been observed in numerical
simulations such as those performed by Yang and Houze,25

who, in their study of IGW associated with mid-latitude
squall lines, accounted for many of the characteristics of the
ducted IGW they observed by linear theory. They remarked,
nonetheless, that large-amplitude IGW leaked into the strato-
sphere but they did not explain the mechanism for this pro-
cess.

Because it is transient and occurs on short time- and
length-scales, observation of the transmission of waves
across an evanescent level in the atmosphere or ocean may
be challenging. Nonetheless, it is interesting to speculate
upon its implications to a particular oceanographic example.
IGW have recently been proposed as a possible source of
momentum for the deep equatorial countercurrents.26,27 But
if IGW originate near the ocean surface where the energy
density is large, it remains unclear how these waves can
propagate to great depths below the thermocline where the
stratification is weak. The results presented here may help, in
part, to resolve this dilemma.
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