Internal gravity wave radiation into weakly stratified fluid
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It is shown by way of nonlinear numerical simulations of flow restricted to two dimensions that a
compact wavepacket of large-amplitude internal gravity waves incident upon a weakly stratified
region in which the buoyancy frequency is less than the frequency of the wavepacket may partially
transmit energy into this region through the generation of a wavepacket of lower frequency. In part,
the transmission of waves occurs due to the transient nature of the forcing by the incident
wavepacket, but if the amplitude of the wavepacket is moderately large, weakly nonlinear effects
may act to significantly increase the proportion of the wavepacket that is transmitted. For a range of
simulations initialized with wavepackets of different amplitude and vertical extent, the
characteristics of the reflected and transmitted waves are analyzed and reflection coefficients are
calculated. An explanation for how the nonlinear transmission mechanism operates is given by
demonstrating that the wave induced mean-flow, which is shown to be approximately equal to the
horizontal wave pseudomomentum expressed in Eulerian variables, acts to adjust the frequency of
the incident waves. €1996 American Institute of Physids$$1070-663(196)02002-2

I. INTRODUCTION Brethertont® who applied the WKB approximation to the
equations of motion in a medium where the vertical varia-
Under many geophysical circumstances, internal gravitytions of the squared buoyancy frequemtywere small over
waves (IGW) may be confined to a dudor waveguid¢  a wavelength. His analysis also included a treatment of back-
within which the medium is strongly stratified and outside ofground shear which is not considered in detail here. He
which the stratification is weak. For example, ducted IGWshowed that a wavepacket incident upon a leyeihereN
have been observed to be confined below regions of lovequals the frequency of the waves is reflected in a finite time.
static stability in the upper troposphérand IGW confined  Both the “critical level” and the “evanescent level” have
to the thermocline region in the ocean have been observed tseen used to refer g , but, because the former terminology
propagate long horizontal distances away from their sotircehas also been used to describe the height at which the mean-
The characteristics of ducted IGW in a horizontally homoge-flow equals the phase speed of an incident wave, the latter
neous medium have been examined in linear theory, whergrminology is used here. An analytic expression for the path
typically it is supposed that the waves are manifest as normdbllowed by the incident and reflected wavepacket may be
modes(e.g., for a general discussion see Giec. 6.10  determined by ray theory except near an evanescent level,
Weakly nonlinear theories have extended the normal mod@here a caustic forms and the wave amplitude is described
approach for shallow watér, deep watef;® and water of |ocally by an Airy function (for example, see Lighthift?
finite depth]® and with some success these have reproducegecs. 4.5, 4.11 In particular, ray theory shows that upward
the observed characteristics of the long time evolution ofpropagating IGW, reflect in such a way that the phase tilt of
ducted IGW of large horizontal extent in the océdfiExact  the waves becomes more vertical as the evanescent level is
solutions of the fully nonlinear equations for horizontally approached.
bounded, finite-amplitude IGW in a channel of infinite hori- WKB based theories rest on the assumption thade-
zontal extent have been found by Lotgand these have creases gradually compared with the vertical wavelength of
been applied to examine numerically the nonlinear evolutionGw, and it is not well understood to what extent the theories
of topographically generated IGWor example, Scinocca remain valid for cases in whicN varies rapidly over a ver-
and Peltier? among othens Generally, most weakly and tical wavelength or, indeed, for cases in which the waves are
fully nonlinear theories of ducted IGW assume that the hori-of non-negligible amplitude.
zontal extent of the waves is large or comparable to the ver-  |n this paper it is demonstrated in theory and by way of
tical extent of the waveguide, but these approaches do ndilly nonlinear numerical simulations restricted to two di-
suitably describe the transient behavior of a compact wavemensions that a compact IGW wavepacket incident upon an
packet, the vertical extent of which is small compared withevanescent level may be transmitted across this presumed
the vertical extent of the strongly stratified region. barrier in the form of a propagating wavepacket of smaller
In linear theory, the temporal behavior of a wavepacketamplitude. For incident waves of small amplitude, the trans-
of small-amplitude IGW incident upon a region where themission mechanism is attributed to transient forcing and may
fluid becomes weakly stratified was first studied bybe understood by linear theory. For incident waves of large
amplitude, however, it will be shown that under a robust
dFax: [44] 1223 337918, phone:[44] 1223 337900; e-mail; range of conditions a greater proportion of the initial wave-
brs21@damtp.cam.ac.uk packet is capable of penetrating the evanescent level by a
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weakly nonlinear mechanism in which the wave induced
mean-flow modulates the frequency of the incident waves. In 190
neither case is the transmission of waves into weakly strati-
fied fluid related to the phenomena of tunneling or anoma- 0
lous frequency dispersiofsuch as that studied recently by
Dostenko'® who has examined IGW confined to two pycno- -10
clines in the ocean because the transmitted waves, once ¥
generated, propagate upward indefinitely in uniformly strati- =20
fied fluid subject only to dispersion, viscous dissipation, and

a) N2 profile b) l¥'| profile ¢) p' field

thermal diffusion. -30
In section Il the initial value problem and the details of o L
the model employed to solve the fully nonlinear equations of -405 0.5 0 01 02 03

motion are described. The various diagnostic tools that are

used to study the characteristics of the initial IGW wave-FiG. 1. An example of the initial state of a simulatida) N2(z) profile for
packet and of the reflected and transmitted waves are alsbe case with)=0.6 andR=5, (b) the streamfunction amplitude of the
discussed here. These include consideration of the finjtgbitial wavepacket characterized y=0.15 andD =5, (c) and the fluctua-

. . . ion density field shown by contours of interval 0.2 corresponding to the
amplitude e>§p_re55|_or_1 _for the hO!’IZO_I’lta| Wé_lve I:)SeUdOmomerinitial wavepacket of wavenumber vectok,(k,)=(1,—0.7071). Positive
tum, an explicit definition for which is provided at the end of (negativg values are illustrated by soligiashed lines.
this section. In section Il results of the nonlinear simulations
are presented. In particular, the evolution of small-amplitude _ _ _

IGW incident upon weakly stratified fluid is considered and ~ The wavepacket that is superimposed on the basic state
the fraction of the initial wavepacket that is reflected fromat the start of each simulation is given in terms of the stream-
this region is compared with that predicted heuristically fromfunction by

Iinear'thgory. Simulations of the evolution of large-amplitude ¥(x,2)=2 REA exp(—|z—2z,|/D)ex 1 (kx+k,2) ]},

IGW incident upon an evanescent level demonstrate how

nonlinear effects enhance the transmission of the waves. Thﬁ which k. andk. are the horizontal and vertical wavenum
results of a range of simulations are analyzed in order t x z

demonstrate how the nonlinear mechanism is affected b§c's: respectivelyh determines the wavepacket amplitude,

changes in the characteristics of the initial wavepacket and ) nd(IjD |sbthetzv_ert|(;al eétegt ?f the wa(\j/epacket V}'_h'Ch 'S cen-
the background density profile. In section IV an explanation ered aboulz=zp=—R. Lnly upward propagating wave-
of how the nonlinear mechanism operates is providedpaCketS are cons_ld_e_red here, and for th_qse negative. The
Therein it will be shown that the pseudomomentum of mod_envelope of the initial wavepacket defined with parameters
. : : . _A=0.15,D=5, andzy=—20 is shown in Figure (b).
erately large-amplitude IGW in an Eulerian framework is The fi ion densitv field’ i d di
negligibly different from the wave induced mean-flow. The e fluctuation density fiel@" is expressed nondimen-

significance of these results applied to geophysical circumff'cl)na”fy n ‘t‘?‘m.”s of 'tlhlf _vert|cal .?lspIaFc e”?e.’:.t I(') f ftly id par-
stances is remarked upon in section V. icles from their equilibrium position. For initialization, an

approximate expression, valid fgDk,|>1 and A<1, is
used to defing’ in terms of the streamfunction by using the
identity for plane IGW of horizontal phase speggj in uni-
formly stratified fluid withN?=Jg

. - . p'=—(1lcp) . )
Throughout this work an initial value problem is solved ) . _ . L
in which a horizontally periodic IGW wavepacket of finite USINg the dispersion relationship for IGW, is given ex-
vertical extent is superimposed at the outset of each nonlirPlicitly by

Il. DESCRIPTION OF THE PROBLEM AND LINEAR
THEORY

ear simulation on a stfitionary stratified fluid in whisR is p'(%,2)=—2 Re{A|IZ|/\/J_B exp(—|z—zo|/D)
constant over the vertical extent of the wavepacket.
In order to unambiguously determine the characteristics X exg 1(kx+kzz) 1}, (4)

of IGW incident to and propagating away from an evanes-

cent level, the background profile of the squared buoyancI e(\:/\tlgﬁcrllii|k&r;efc;ezﬁgsist?ﬁerﬁsgtrlljlg:i%i 3];;2(; V\;?evlgn;n;aer
frequencyN? is taken to be constant for small and lamge - 719 y

o . A L IGW wavepacket defined by parametets=0.15, D=5,
Specifically, the piecewise linear form dF is given b
P y P g y Zo=—20, k,=1, andk,=— \J2/2=—-0.7071. Contours are

Je(=1), z=-R, given by an interval of 0.2.
N2(z;:J,R)=1 J+(J—Jg)(z2)/R —R<z=0, (1) IGW in which the wavepacket envelope varies vertically
as a top hat function or a Gaussian have also be studied, but
the exponential envelope given by equati@ is a useful
in which N2=Jg for small z, N>=J for large z and N>  form for analytic study, and it emulates the far field behavior
varies linearly betweedg andJ over a distanc&k. An ex-  of unbounded normal modes which decrease exponentially
ample of anN? profile which is defined by parameters whereN? and the background horizontal velocity are con-
Jg=1,J=0.6 andR=5 is shown in Figure (B). stant.

J, z>0,
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The nonlinear simulations are performed by numericallythe initial IGW have horizontal wavenumbkg=1 and the
solving the primitive equations for incompressible, Bouss-stratification belowz= —R is characterized byg=1.
inesq flow that is restricted to two spatial dimensions. Any  Most of the simulations discussed herein are performed
effects of background rotation are ignored. The fully nonlin-at high Reynolds number with Re5000 and with Pr1.

ear equations for momentum conservation are The Reynolds number is set to be sufficiently large that vis-
, cous effects are negligible, but not so large that the numerical
Du, - i P, +V2y (5) stability of the calculation is forfeit. With these settings of
Dt, Po Xy * Re and Pr, typically only 2 percent of the initial energy of
, the flow is lost due to dissipation over the duration of each
Dw, = Lap. gp, + V2w (6) simulation.
Dt, po 9Z. po * * Rather than directly integrate equatiof@®—(10), these

quations are re-expressed in the vorticity-streamfunction

and the equation expressing the conservation of internal e ) X
orm because the model then reduces to evolution equations

ergy is
gy for only two coupled fields, namely the vorticity and the
Dp. N2 5 fluctuation densityp’. Taking the curl of equation&) and
Dt, = EW*“L kVp,. (@) (9) gives the(nondimensionalvorticity equation,
Here the “star” subscript is used to indicate fields in dimen- DPe =~ 1 _,
. . —=Jgp'yt ==V, 11
sional form. HerdD/Dt, =d/dt,+u,d/dx,+w,dldz, is the Dt Re

material derivativeu, andw, are the horizontal and vertical

velocities, respectivelyy, is the fluctuation density, and the
fluctuation pressure., is the total pressure minus the back-
ground pressurp, (2) that is in hydrostatic balance with the
background density, (z). The constanp, is a characteristic V2y=—w, (12

value of p,. The squared buoyancy frequency is ) -

N2=—(g/po)dp. /dz,. The physical constants in the equa- and thg components of the velocity vector (u,w) may be

tions are the gravitational acceleratign the kinematic vis- detérmined fro'rru': —dyloz andw=a¢/<9x_. o

cosity », and the thermal diffusivity. The domain is assumed to be a horizontally periodic
These equations are represented numerically in a mod&hannel with free slip upper and lower boundary conditions.

based on the methodology developed by Smyth and Péitier The channel is sufficiently wide, however, that waves are of

for the study of the evolution of Kelvin-Helmholtz and negligible amplitude near either boundary throughout each

Holmboe waves. Equatior(s), (6), and(7) are re-expressed simulation. Only solutions of equatio($0) and(11) that are
in  nondimensional form by the  substitutions periodic in the horizontal are considered, hence the horizon-

(X,,2)— Z(%2), (A2t (u,,w,)—2/(u,w), tal structure of the dependent fields may be represented in a

in which w=u,—w, is the spanwise component of vorticity.
The streamfunction is found by inverting the elliptic differ-
ential equation,

p.=(po 717", pu(po1.7)p, and p.—(po7)p’,  Fourter basis, so that

in which 4" and 7# are characteristic length- and velocity- M

scales, respectively, an# is the length-scale of background f(x,zt)= > fo(zt)expimkx), (13
m=-M

density variations with height. For the validity of the Bouss-
inesq approximation,7>_Z. With these substitutions, the i which f may represend or p andM determines the limit

nondimensional form of the equations become of horizontal resolution of each field. The vertical structure
Du ap’ 1 of the dependent variables is represented in finite difference
—=——+—V2, (8)  form so thatw andp are sampled aP+1 pointszg, ... ,
Dt X Re . .
Zp, at regularly spaced intervals spanning the channel of
Dw ap’ 1, vertical extentlL,, and vertical derivatives are replaced by
ot Tz —Jgp’ + ?eV W, (9)  their second order finite difference equivalent,
and ﬂfm(Zp,t)z fm(z(p+1):t)_fm(z(p—l)yt) (14)
dz 2Az ’
Dp’
Br - N2w-+ s PrVZp’. (100 inwhichAz=L,/P. The resulting set of evolution equations

is stepped forward in time using a leap-frog method with an
Here Re=%/“lv is the Reynolds number, Pmw/k is the Euler backstep taken at regular time intervals to minimize
Prandtl number, andg=(g/.7%)(#17/)? is a characteristic ~splitting errors. To ensure that the results of the simulations
value of the nondimensional form of the squared buoyancyre not sensitive to the spatial resolution, the results of each
frequency. Although defined similarly to the bulk Richardsonsimulation are compared with those determined by integrat-
number,Jg is not a measure of the stability of stratified flow ing the equations of motion for fields at twice the vertical
in the presence of background shear because the charactenigsolution. For the simulations presented here, the resolution
tic scales.”# and 7% are not determined from the vertical is found to be adequate for a vertical grid spacing of
structure of the background horizontal flow(z) which is  Az=0.15. The length of the channel igr2 which is set to
taken to be constant. The scalesand 7/ are defined so that support exactly one wavelength of the initial wavepacket.
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Simulations have also been performed in which the horizon- ¢
tal extent of the channel is twice as long so that two hori- It M=-V-7y. (16)
zontal wavelengths of the initial wavepacket is supported. In
such cases, however, negligible energy was observed to Ber small-amplitude waves, it is found tha'fE=c_;E and
introduced into superharmonics of wavenumigeas the _gfszc_;M in which 5; is the group velocity of the IGW.
wavepacket evolved. Where the IGW are of large amplitude or the variation of
During each simulation the wavepacket is analyzed withN2 or U with height is significant over a vertical wavelength,
a number of diagnostics that characterize the amplitude, vekowever, the relationships do not necessarily hold and gen-
tical group velocity, and vertical wavenumber of the trans-eral expressions must be derived for conserved quantities
mitted and reflected waves. Vertical profiles of #mondi-  |ike pseudomomentum and its flux. These may be found in a
mensional Reynolds stressr=u’w’ are calculated at Lagrangian framework using the generalized Lagrangian
regular time intervals in order to demonstrate the directiormean formulation developed by Andrews and Mcint}té’
and intensity of the vertical flux of horizontal momentum by The conservation laws may also be expressed in an Eulerian
IGW. An estimate of the vertical group velocity,, of the  framework through the Hamiltonian techniques developed
transmitted, upward propagating wavepacket is determinefly Mcintyre and Shephefd (see also the review given by
by calculating at late times in each simulation the averageshephertf), although the resulting formulae can have com-
vertical speed of the centroid of the positive Reynolds stresplicated analytic forms that are difficult to compute numeri-
that is greater than 5% its maximum value. Likewise, ancally. The Hamiltonian method has been applied, in particu-
estimate of the vertical group velocity, of the reflected, lar, to examine two-dimensional Boussinesq and anelastic
downward propagating wavepacket is determined by calcuffiow for which conservation laws have been determined by
lating the average vertical speed of the centroid of the negaScinocca and Shepheftl.For the purposes of this paper,
tive Reynolds stress that is less than 5% of its minimunonly the horizontal pseudomomentum M and its vertical flux
value. Specifically, the average speed is found between timesg;, in the absence of initial background motion are of inter-
t=95 and 100. The vertical wavenumber and frequency ogst. Explicitly, M is given in nondimensional form by
the transmitted wavepacket are determined from the phase

tiit and horizontal phase speed, respectively, of IGW at thg,— Z(p+p')—2Z(p)— dz(_p) ' d%(_p) p'w',
vertical level corresponding to the centroid of the positive dp dp

Reynolds stress at the end of each simulatapecifically, at (17)
time t=100). in which Z(p) is height as a function of the background

To study wave, mean-flow interactions and to find suit-densityp, andw’ andp’ are vorticity and density fluctua-
able values for reflection coefficients of IGW incident upontions, respectively. The horizontally averaged vertical flux of
an evanescent level, it is useful to examine the horizontahorizontal pseudomomentum is given by
pseudomomentum of IGW. The definition of pseudomomen-  _ ____
tum in linear theory effectively arises from the observation - 7z=u'M+r, (18
by Bretherton and Ga_\rréft(and earlier by Whithanf who iy \whichw! is the vertical velocity fluctuation and, as before,
developed a Lagrangian formulation for long surface waves _ s ihe Reynolds stress.
that the energy density of _IGW is not conserved but varies These expressions are useful both as a means of under-
as the waves move to heights where the speed of the backianging the nonlinear mechanism by which IGW are trans-
ground flow U is different. The nature_ of the interaction nitted across an evanescent level and as a way of quantify-
between the waves and the mean-flow is elegantly expressgg the effectiveness of this mechanism. In general, reflection
for small-amplitude IGW in a slowly varying background cqefficients.7 are calculated at the end of each simulation
flow by the conservation of wave action, (4timet=100) for a range of simulations with defined as
A=l(0—kU(2)), in which —k,U is the intrinsic fre-  he fraction of the total horizontal pseudomomentum associ-
quency of the waves. As the wavepacket moves upward, ateq with waves below= 0. Pseudomomentum is chosen as
andk, are constant, bub—k,U varies if U(z) varies with  the quantity with which to define? because, like energy and
height,z. Because wave action is conserved, the wave eMsseudoenergy, it is accurate @a2) in the incident wave
ergy densityZ must change in proportion to the intrinsic ampjitudea, but unlike energy in general, it is conserved
frequency. From this principle, conserva.tion !aws follpw forfollowing the wave motion even K2 varies in space, and it
pseudoenergf =Aw (a conserved quantity with the dimen- jg more accurately calculated numerically than pseudoenergy
sions of energy densilyand horizontal pseudomomentum \\hich involves the computation of differences between large
M=Ak, (a conserved quantity with the dimensions of Mo-mpers. In practice, it is found that the numerically calcu-
mentum density The fluxes7¢ and. 7y, respectively, of |3teq domain averaged pseudomomentum changes in time,
these quantities must satisfy but this change is improved if smaller time steps are taken
during the simulations. With the time step employed for the
results reported herein, the domain averaged pseudomomen-

J
—E=-V.7¢ (15  tum increases by less than five percent over the duration of
ot ; . . -
each simulation. The value of the reflection coefficient, how-
ever, is found to be relatively insensitive to the choice of
and time step.
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TABLE |. Characteristics of the transmitted IGW wavepacket listed for

simulations initialized with a range of different paramet@randD defining 40 a) ly'| profile at t=100 40 b) p’ contours at =100
the amplitude and depth, respectively, of the initial wavepacketJamtiR L

defining N? in terms of its value forz>0 and the depth over which the 30 30

N? decreases frog=1 toJ, respectively. In each case the wavenumber of

the initial wavepacket isl( ,k,) = (1,—0.7071). The vertical group velocity 201 20

of the reflected, downward propagating wavepaakgt and the transmit-
) - 10 10

ted, upward propagating wavepackgt, , the vertical wavenumbek,, , | |

and the frequencyw, of the transmitted wavepacket, and the reflection oL oF

coefficient.72 are determined at the end of each simulation, as described in

the text. For comparison, the last row of the table lists the corresponding -10

characteristics for plane IGW in fluid witN2=1 everywhere.

1 ] _ I
00006 001 o015 10

FIG. 2. Simulation at timet=100 for case withN?>=1 throughout the
Cyz Cyz+ K+ W, N domain and an initial small-amplitude IGW wavepacket characterized by
parameteré=0.01, D =5; (a) shows the streamfunction amplitude &l

A D R J

0.01 5 1.0 038 -0.72 0.81 0.01 shows the fluctuation density field by contours of interval 0.01.

0.01 5 0 06 -037 023 -0.38 072 086

0.15 5 1.0 0.32 -0.60 0.89 0.004

0.15 5 0O 06 -028 026 -0.61 068 0.78

015 8 1.0 029 -049 091 0002 contours of the fluctuation density field by intervals of 0.01
015 8 0 06 -026 024 -057 070 070  yith positive(negativé contours illustrated by solittashed
0.15 5 10 06 -030 024 -065 0.66 0.80

lines. The diagram demonstrates that the wavepacket remains
Plane waves 0.385 —0.707 0.817 0 well defined and compact but has translated upward from
being centered about=—20 to having a peak value at
z=16.0. For the numerically simulated IGW wavepacket at
t=100, the characteristics of which are given in the first row
of Table I, the vertical group velocitg,,, =0.38, the fre-
quency w,=0.81, and the wvertical wavenumber
k,,=—0.72. These values do not differ greatly from the

found for a range of simulations the initial states of whichcharacteristics of the initial wavepacket, and in this sense,
are determined by equation@) and (2) with parameters M€ wavepacketis said to be weakly dispersive.

A,D,R,and J (note, however, that whed=1 the fluid is It NZ=J is sufficiently small above=0, negligible en-
uniformly stratified over the whole domain and the value of€r9Y IS transmitted into this region by IGW. {fJ is moder-

R is redundant The wave characteristics are listed for par- ately smaller than the frequenqy of the incident yvavepacket,
ticular simulations in Table 1, and in section IIl entries in the "OWever, some proportion of it may be transmitted due to

table will be referred to in the course of discussing the resultfransient forcing. Nonlinear simulations of small-amplitude
of these cases. wavepackets support this assertion. In particular, a simula-

tion is performed for an initial IGW wavepacket character-
IIl. RESULTS OF THE NONLINEAR SIMULATIONS ?zed. byA=0.01 aqu=5, gnd the background stratification
is given by equation(1) with R=0 andJ=0.6 so thatN

For every simulation discussed here, the amplitdde gecreases discontinuously a&0 to a frequency smaller
and vertical extenD of the initial wavepacket vary and the than that of the incident wavepacket. Nonetheless, a small-
centre of the wavepacket is fixed &= —20. Likewise, the amplitude IGW wavepacket propagates upward above
vertical wavenumber is fixed with,= —\2/2~—0.7071,  at late times in the simulation. This is demonstrated in Figure
this value being set because, with horizontal wavenumbeg which shows contours of the fluctuation density field at
k=1, plane IGW of these attributes have the largest upwargimes(a) t=0, (b) 50, and(c) 100. At each time contours are
group velocity,c,= 2/3/3=0.3849. The frequency of such given by intervals of 0.01. Figure(§ shows that the inci-
plane waves iso= \/2/3=0.8165 and this is referred to here- dent wavepacket with upward left to right phase tilt is inhib-
after as the frequency of the initial wavepacket. Simulationdted from propagating above the evanescent level. The re-
have been performed for wavepackets of different verticaflected wavepacket dt=100 has a downward left to right
wavenumber with  similar qualitative results, but phase tilt and amplitude almost as large as that of the initial
k,=— \J2/2 is examined in detail because, with this value, awavepacket. At this time, however, a small-amplitude up-
small-amplitude wavepacket undergoes the least dispersioward propagating wavepacket with upward left to right phase

Before proceeding to discuss the evolution of IGW inci-tilt is also apparent above=0. The direction of propagation
dent upon an evanescent level a control simulation is peref the wavepacket is demonstrated explicitly in Figure 4
formed in whichN?=1 everywhere and the initial small- which shows horizontally offset profiles of the Reynolds
amplitude wavepacket is characterized By=0.01 and stressr at 21 successive timdés=0, 5, 10,...100. Each ver-
D =5. Figure 2 illustrates the state to which the wavepacketical profile is illustrated by short dashed lines, except for
has evolved by timé=100. The profile of the streamfunc- those at time$=0, 50, and 100 which are illustrated by solid
tion amplitude shown in Figure(& shows that the peak lines. The diagram clearly shows the upward flux of horizon-
amplitude of the wavepacket has decreased moderately tal momentum at the beginning of the simulation followed by
=0.014 from its initial peak value 0.02. Figuréb® shows the reflection and partial transmission of the wavepacket at

In summary, the group velocity of the upwardg(, )
and downward ¢y, ) propagating wavepacket, the vertical
wavenumberK, ) and frequency® ) of the upward propa-
gating wavepacket, and the reflection coefficient)( are
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20 a) p': t=0 b) p": =50 c) p: t=100 a) p': t=0 b) p': t=50

20

FIG. 3. Fluctuation density field shown in contours by interval of 0.01 for a FIG. 5. Fluctuation density field shown as in Figure 3, but for a simulation
simulation performed with parametefs=0.01, D=5, andJ=0.6 at times ~ With A=0.15, D=5, andJ=0.6 at times(a) t=0, (b) 50, and(c) 100.
(@ t=0, (b) 50, and(c) 100. Although the buoyancy frequency abave0  Contours are shown by an interval of 0.15
is smaller than the frequency of the initial wavepacket, upward propagating
IGW abovez=0 are apparent at time=100.
(@, (b), and(c), respectively. Att=50, Figure %b) clearly
shows the behavior of the wavepacket as it is inhibited from
late times. The characteristics of the transmitted and reflectggropagating into the region abowe=0, where it is evanes-
wavepackets are given in Table |. These show that the rezent. Nonetheless, at=100, Figure %c) shows both a re-
flected wavepacket moves downward with group velocityflected downward propagating and a transmitted upward
comparable in magnitude to the group velocity of the initial propagating wavepacket. The direction of propagation may
wavepacket, but that the transmitted wavepacket moves ufpe inferred from the contour plots by the phase tilt of the
ward at a slower speed. Because the initial wavepacketvaves but is demonstrated explicitly in Figure 6, which
propagates with the largest vertical group velocity possibleshows horizontally offset profiles of the Reynolds stress at
for plane IGW, the transmitted wavepacket is expected t®1 successive times=0, 5, 10, ... , 100. Each vertical
propagate upward more slowly if its wave characteristics arerofile is illustrated by short dashed lines, except for those at
different. Indeed, it is composed of waves that are more vertimest=0, 50, and 100 which are illustrated by solid lines.
tically oriented k,,=—0.38>— \/5/2) and which propa- The figure shows two peaks in the Reynolds stress profiles
gate with moderately smaller frequency (=0.72</2/3)  after timet=75 s one positive above=0 moving upward
than that of the initial wavepacket. and one negative below=0 moving downward. Unlike the
If the initial wavepacket is of large amplitude, the pro- small-amplitude casé&rigure 4, here the positive Reynolds
portion of it that is transported across the evanescent level istress associated with the transmitted wavepacket is much
significantly larger. This is demonstrated qualitatively in Fig-larger in comparison with the magnitude of the negative
ure 5, which shows contours of the fluctuation density fieldReynolds stress associated with the reflected wavepacket.
by intervals of 0.15 at times=0, 50, and 100 in diagrams The characteristics of the waves at the end of the simulation
are listed in Table I. For the transmitted wavepacket, the
vertical group velocityc,,, =0.26; for the reflected wave-

. ] acket, c,,_=0.28. Both values are significantly smaller
7 Profiles: 1=0, 5, ... 100 sele: 0001 00,0001 P gz , S 9 y
20 —_ T T T T than the group velocity of the initial wavepacket. The trans-
ST I O A mitted waves, of vertical wavenumbér,~—0.61, have
101 AR B A b . greater vertical phase tilt, and their frequensy =0.68 is
EE RN
oF [ \\__\ * 4 /: ,,' -
N \\\ ) z’l ‘ .
S i o0 7 Profiles: 1=0, 5, ... 100
~1o} SRR AN A 2 T
—20F R EEEEEEEERA to- L
EEERERREERRRD h
-30 L O I S I N I oF '
t=0 1=50 =100 N LN
-10F .
FIG. 4. A sequence of Reynolds stress profiles for a simulation with N
A=0.01,D=5, andJ=0.6. 21 profiles are shown from left to right at times ok P
t=0, 5, 10, ... , 100. Profiles are shown by solid curves at titre8, -2 Co
50, and 100, and by dashed curves otherwise. The scale at the top right-hand b
corner indicates the range of the Reynolds stress for each profile. The dia- -30 —t—

gram illustrates the upward propagation of the initial wavepacket with posi- t=0 t=50 t=100

tive Reynolds stress and the upwddbwnward propagation of the trans-

mitted (reflected wavepackets with positivénegative Reynolds stress at  FIG. 6. A sequence of Reynolds stress profiles shown as in Figure 4, but for
late times. a simulation withA=0.15,D=5, andJ=0.6.
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smaller than the frequency of the initial waves and margin- Reflection Coefficients: D=5.0, k =—0.7071
ally smaller than the buoyancy frequen@ﬁ abovez=0. 1 i S N — "
The characteristics of a wavepacket that evolves from the I N
same initial state but propagates under the effects of disper- N
sion alone in uniformly stratified fluid are listed in Table | for r |
comparison. In the absence of an evanescent level, the wave-
packet propagates upward at larger group velo@tihough
smaller than that expected for a small-amplitude wave-
packej, and its frequency is significantly larger. The vertical
wavenumber, however, is comparable.

If the initial wavepacket is of small amplitude, linear
theory may be employed to estimate the proportion of the
wavepacket that is reflected from a weakly stratified region [ A=0.01
where N>=J. This is done by decomposing the vertical
structure of the wavepacket into vertical Fourier compo-
nents, determining its power spectrum, and integrating over
those components with frequency greater thdnto get the ) . ) , )
proportion of the wavepacket that is reflected. Explicitly, the Bz 04 ojs 08
vertical Fourier transform of the initial wavepacket given by
equation(2) is

K05

FIG. 7. Reflection coefficients calculated as a functiod é6r simulations

. with D=5 andA=0.15 (solid curve, A=0.01 (short dashed curyeThe

W m):j dzy(z) exp(—1m2) reflection coefficients predicted from linear theory are represented by the
long dashed curve. The vertical dotted line indicates the critical value of

J:chg, below which the plane IGW are evanescent abawed. This

_ 2AD K (19) diagram demonstrates that the transmission of IGW by finite-amplitude
T 1+ [ D(m-— kz)]? exp(l XX)' wavepackets is dominantly a nonlinear effect.

from which the power spectrum is defined:

P oc|1,7;(m)|2. (200  ated with the horizontal wave pseudomomentum for which,

L . o using equation(17) for small-amplitude waves, it can be
This is normalized so thaf”..7dm=1. Thus, the propor- ¢, that 7 « (k2+m?) 32| J(m) 2. If Dk,>1, however,
tion of the wavepacket with vertical wavenumbers exceedingm(m”z is sharply )E)eaked abom=k. and the normalized

Z

some critical valuem, is integrals of these two spectra are both approximately equal
» 1 1 D(m.—k,) to that for the power spectrum.
=] Jdm=o—— _ 2 Figure 7 shows the reflection coefficiert as a function
me 2 7 1+[D(m.—k,)]
of the squared buoyancy frequengybovez=0 calculated
1 from nonlinear simulations of a large-amplitude wavepacket
— —tan {D(me—ky)]. (2D with A=0.15 andD =5 (solid line), and a small-amplitude
oL . wavepacket wittA=0.01 andD =5 (short dashed lineand
If the wavepacket 'S incident from below on a weakly strati-y a6 are compared against the linear theory prediction given
fied region whereN<=J gnd supposing that those Fourier by equations(21) and (22) (long dashed ling The dotted
components corresponding to IGW of frequenay: VJ are  yeriical line indicates the critical value df=J.=2 which

entirely transmitted into this region and that the remainingequmS the squared frequency of the initial wavepacketJFor

components are entirely reflected, then setting below this value, the wavepacket is incident upon an evanes-
Jg cent level. For allJ, the reflection coefficients determined
me.= —ky T 1, (220 from the simulation initialized with a small-amplitude wave-

packet are comparable to those predicted by linear theory.

equation(21) represents the proportion of the initial wave- The latter slightly underpredicts the amount of reflection be-
packet that is reflected. cause it does not account for the behavior of waves near a

In the limit D—o of a wavepacket of infinite vertical caustic. The theoretically predicted curve and the curve de-
extent (plane waveg .2—1 if m.<k, and .2—0 if termined for a small-amplitude wavepacket deviate signifi-
m¢.>K,; plane waves are either entirely transmitted or re-cantly, however, from that determined from the simulation
flected depending on whether the buoyancy frequency in thinitialized with a large-amplitude wavepacket. Whas J,
far field is, respectively, greater than or less than the frefess reflection occurs and whée: J. more reflection occurs.
quency of the initial wavepacket. A compact wavepacketThis figure demonstrates that nonlinear effects may signifi-
(D finite) is capable of partial transmission, however, due tocantly enhance the transmission of energy across the evanes-
the transient nature of the disturbance. cent level.

The reflection coefficient could more physically have In order to develop a better understanding of how the
been defined in terms of the energy spectruf  transmission mechanism operates, a simulation is performed,
o« (k2+m?)|y(m)|?, or in terms of the spectrum associ- initialized with a wavepacket of larger vertical extent. Figure
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scale: F——+— T Profiles: t=0, 5, ... 100

20 7 Profiles: t=0, 5, ... 100 -0.025 0 0.025 20 s MR
101 ; 4 U
of e 2T T
N - ( N i‘ :‘ ,‘\ \\‘\ %
-10F :l',"" '___,f _ -10} | g N \* s g?/
=' e
-20- 3 } 1 Rr T
-30 . = : -30 S T
t=0 t=50 £=100 t=0 t=50 t=100

0FIG. 10. A sequence of Reynolds stress profiles shown as in Figure 4, but
{or a simulation withA=0.15, D=5, and continuously varying\? with
R=10 andJ=0.6.

FIG. 8. A sequence of Reynolds stress profiles shown as in Figure 4, but f
a simulation withA=0.15,D=8, andJ=0.6.

8 shows horizontally offset profiles of the Reynolds stress at ~ Every simulation considered above supposes Kifade-

21 successive timds=0, 5, ...,100, for a simulation with the creases discontinuously th at z=0. The transmission of
initial wavepacket characterized By=0.15 andD=8. The Waves is not sensitive to this feature, however, as shown
solid curves represent the profiles at0, 50, and 100, which qualitatively in Figure 10 in which horizontally offset pro-
otherwise are represented by dashed curves. In comparisé#es of the Reynolds stress are plotted for 21 successive
with the simulation forD=5 (i.e., Figure 6, the reflected timest=0, 5, ..., 100, in a simulation wittA=0.15 and
and transmitted wavepackets are more sharply peaked, dp=5. and N given by equation(l) with R=10 and
though their characteristics listed in Table | are comparable)=0.6. The solid curves represent profiles fer0, 50, and
Figure 9 compares the reflection coefficients calculated ift00, which otherwise are represented by dashed curves.
the case foD =5 (solid line) with those forD =8 (dashed Compared with Figure 6, the profiles demonstrate that the
line). The coefficients are negligibly different except whenreflected and transmitted waves uzndergo more dispersion
JJ is close to the frequency of the initial wavepacket inthan do IGW for the case in whicN“ changes discontinu-

which case7 is smaller, indicating that a wavepacket of ously, although the momentum flux associated with the trans-
larger vertical extent reflects less fraze: 0. mitted wavepacket is comparable in both cases. Table |

shows that the group velocity and frequency of the transmit-
ted wavepacket are only moderately smaller than the corre-
sponding wave characteristics in the discontinubidscase.
. — Figure 11, which compares the reflection coefficients as a
| Reflection lCoeff1f:1entsl. A=0.15, sz'0'7971 function of J for simulations with a discontinuous? profile
~~~~~~ (solid line) and a continuoudl? profile with R=10 (dashed
line), shows that there is little difference between the propor-
] tion of the initial wavepacket that is transmitted in these two
. cases.
N . . An explanation for some of these quantitative results is
provided in the next section.

®0.5r T IV. EXAMINATION OF THE IGW TRANSMISSION
D=5 MECHANISM

In brief, the nonlinear generation mechanism depends
crucially on the adjustment of the mean-flow due to the pas-
sage of IGW of finite vertical extent. For example, consider
an upward propagating IGW wavepacket of frequemgy
and horizontal phase speegd,=w/k,, incident upon an
8 . ! . ! . ! . evanescent level at=0. Thus, abovez=0 the buoyancy

frequency\/j< wq. Initially, the leading edge of the wave-
packet is of small amplitude and the mean-flow changes neg-
FIG. 9. Reflection coefficients calculated as a functionJashown as in IIgIbIY' As the centre of the wavepacket, W,hICh is of large
Figure 7, but for simulations wité=0.15 andD=5 (solid curve, D=8 amplitude, approachez=0 the mean-flow is accelerated.
(dashed curve During this time the effective horizontal phase speed of the

............. D=8
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100 : b) U: 2=0

[
b E 50
1 -
®0.5- -
R=0 \
............. R=10 \
1 PR S R T N SR SR 1
0 % 0.05 0.1
| 1 U(z=0)
N ] FIG. 12. (a) Hovmoeller diagram of perturbation density fieldzt0 be-
) ] . ] . ] RN tween timest=0 and 100 for a simulation witlh=0.15, D=5, andN?
B2 04 08 08

discontinuous withJ=0.6. Contours are shown by intervals of 0.05, the

heavy solid line representing the zero contdby.Wave induced mean-flow
at z=0 over the same times.
FIG. 11. Reflection coefficients calculated as a functiord ghown as in

Figure 7, but for simulations witth=0.15, D=5, andN? decreasing from
Jg=1 to J over distanceR=0 (solid curve and R=10 (dashed curve

the moving reference frame. The phase of the waves shifts

forward substantially between=35 and 65, during which
waves neaz=0 is larger tharc,,. Thus, as the mean-flow time the penetration of waves above the evanescent level is

accelerates the waves constitute a horizontally periodic didurther inhibited. The change in frequency of the waves
turbance at the evanescent level of frequency wy> NA)

Aw atz=0 due to the effective increase in the phase speed
and the generation of propagating IGW abawe0 is further

can be estimated from the slope of the zero contour:
inhibited. However, as the centre of the wavepacket reflectd w=<0.1. Fort=65, while the trailing edge of the wave-

downward and the trailing edge of the wavepacket is incidenpacket is incident upon the evanescent level, the phase of the
at z=0, the amplitude of the wavepacket decreases and theaves neaz=0 shifts backward and a propagating wave-

mean-flow decelerates. During this time the effective hori-packet is generated abowe=0. The change in frequency
zontal phase speed of the waves is smaller tygrand the

over this time is estimated to hkw=< —0.5.
waves constitute a horizontally periodic disturbance of fre-

The change in phase of the wavezatO between times
quencyw<wq. If w=<+/J, the disturbance is capable of ef- t=0 and 100 is compared with the wave induced mean-flow
ficiently generating propagating IGW aboxe: 0.

shown in Figure 1@). The figure explicitly shows the accel-
This process is illustrated explicitly by a closer exami- eration of the mean-flow as the wavepacket grows in ampli-

nation of a simulation performed with an initial wavepackettude and shifts forward in phase, and it shows how the mean-
characterized byA=0.15 andD =5, and withN? changing

flow decelerates as the amplitude of the reflected wavepacket
discontinuously from 1 td=0.6 atz=0. The results of this decreases and the waves shift backward in phase. The non-

simulation have already been illustrated briefly by Figures 3inear generation of IGW above an evanescent level occurs,
and 6. Figure 12 demonstrates the relationship between tHerefore, when the frequency of the IGW is effectively re-

phase of the waves and the wave induced mean-flog)in duced by the deceleration of the wave induced mean-flow. As
contours of the fluctuation density at=0 are shown be-

expected near a caustic moderately belbwO, the wave
tween timeg=0 and 100 by way of a Hovmoeller diagram. amplitude is larger and, therefore, the frequency shift due to

Contours are given by intervals of 0.05, and these are showfis nonlinear effect is more pronounced.
with respect to a reference frame moving at approximately — Qualitatively this answers the question as to how IGW
the same speed as the horizontal phase speed of the initiale transmitted by nonlinear effects. These observations may
wavepackete,,=~0.8165. In general, the positive fluctuation be put on more quantitative ground, however, by providing a
density is larger than the magnitude of the negative fluctualink between the speed of the mean-flow and the amplitude
tion density because the former is a measure of upward di®f the waves. For inviscid, Boussinesq flow it is well known
placement of parcels from strongly stratified fluid belowthat the acceleration of the mean-flow may be expressed in
z=0 and the latter is a measure of the downward displaceterms of fluctuations of the horizontal velocity and verti-
ment of parcels from weakly stratified fluid. Similar dia- cal velocity W (for example, see Craf, Sec. 11.5 In non-
grams indicating the evolution in time of the fluctuation den-dimensional units,
sity moderately below or above=0 exhibits the expected P
symmetry between positive and negative contours. The Hov-

_tJ:_E u'w’, (23)
moeller diagram op’ atz=0 shows that at early times IGW

appear to grow in amplitude without moving horizontally in The right-hand side of the equation is just the negative di-
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vergence of the Reynolds stress Thus the mean-flow is

a) Mean-flow profile b) Reynolds stress

accelerated in proportion to the square of the IGW ampli- 5 5

tude. To determine the speed of the mean-flow at a particular

time from equation(23), however, the Reynolds stress diver- . or op

gence at a particular level must be integrated in time. sk sl
The mean-flow speed in time is estimated for a weakly

dispersive IGW wavepacket in the following way. Suppose a -10 , 10 ,

wavepacket is initially given by 0 W, 0L 70 . 0.02
Uo(X,2)=2 Re{q)( z) exp[1(kx+ kzz)]}' (24 5 ¢) Pseudomomentum 5 d) Pseudomomentum flux

and assume that the vertical structure of the amplitude

changes negligibly in time as the wavepacket moves upward . or or

at group velocitycy, so thatys(X,z,t) = (X,z—Cg4,t). Then, 5L 5L

in the absence of any initial background motion, equation

(23 gives ~10 ' o 1% ' 0.0

M g,

— t - -
U(z,t)zJ didk,k,®(z—cy D ®' (z—cyf)
0

FIG. 13. A comparison at time=50 for —10<z<5 of (a) the horizontally
averaged mean-flow witft) the horizontal pseudomomentum of waves, and
= — kxkz[¢)2(2) - (I)Z(z— cgzt)]_ (25 of (b) the Reynolds stress witfd) the vertical flux of horizontal pseudomo-
Cyz mentum. The profiles are taken from a simulation wits 0.15,D =5, and

. . . N? discontinuous with)=0.6.
In particular, this demonstrates that no acceleration of the

background flow occurs if the initial IGW amplitudi(z) is
constant: monochromatic plane waves do not chadge _ _
Conversely, a compact wavepacket may accelerate the back- U(z,t)—Uyg=M—-My=—[p’o'|;—p ' ®'|i=0]- (28

~ 2
ground flow to speeds as greatldga,=~ 2Kk O max/Cgz . A It is well established that the Lagrangian counterpart of this

numerical check on these predictions is given by a SImUIafesult is exact? specifically that the generalized Lagrangian

tion with the initial wavepacket characterized by parameters, .. of the velocity is precisely equal to the pseudomomen-

. o ! o e T
A—to.%]S andrI]D—St.hln utr)nformlé/ straﬂflefdﬂfllwd W'thl;ll =1 tum in non-rotating, non-dissipative, and adiabatic flows.
(not shown herg the observed peak of the mean-flow nearHowever, the conditions under which this result in a La-

z=0 is close to the predicted Z\TIuemaX:O'OW' In"non-  grangian framework may be extended to an Eulerian frame-
uniformly stratified fluid withN“=J above an evanescent qy are less clear, and it is fortuitous that such a straight-

leve| atz=0, the maximum amplitude OT the incid_ent and ¢orward connection between the wave induced mean-flow
refle_cted IGW tqgether neal=_0_|_s, approximately twice the 54 the horizontal pseudomomentum in Eulerian variables
maximum amplitude of the initial wavepacket. Therefore,Can be derived for the case of Boussindaqd anelastic
Umax is approximately four times larger. This explains why g

the background flow shown in.Figure b2 is accelerated to It is interesting to examine the limit of equati¢28) for
such a large extent between times 35 and 6S. small-amplitude waves of the form of equati(2¥). Defin-

An explicit connection between the wave amplitude anding " ande’ in terms of the streamfunction using equations
the wave induced mean-flow, which is valid in general, May(3) and(12), respectively, gives

be attained by considering the horizontal pseudomomentum

of the waves. IfN? is constant, equatiofil7) for the hori- |é 2 )
o lifi —p'w'=2 |P(2)]°. (29
zontal wave pseudomomentum simplifies to Cpx
M=-p'w'. (26)  Substituting the plane IGW expressions & andcg,, this

reduces to the approximation derived from time integrating
the Reynolds stress as expressed in equafién
Figure 13 shows the profiles ¢d) the mean-flow an¢b)

the Reynolds stress at tinte=50 for a simulation with an
‘9}22 , (27) initial wavepgcket'chara.cterized by paramet&rs0.15 and

D=5, and with discontinuoutN? such thatJ=0.6 above
Even for large-amplitude IGW in non-uniformly stratified z=0. These profiles are compared with thoséafthe hori-
flud, .7,=7+0(a® for waves of amplitudea. For zontal pseudomomentum ard) its vertical flux calculated
a=<0.3, therefore, the vertical flux of horizontal pseudomo-at the same time using equatiofi&) and(18), respectively.
mentum is negligibly different from the Reynolds stress. ItThere is no distinguishable difference between the Reynolds
follows from equations(23) and (16) that the horizontal stress and pseudomomentum flux profile, and the horizontal
pseudomomentum is negligibly different from the horizontalpseudomomentum itself differs from the horizontal mean-
mean-flow to within a constant determined by the initial con-flow only nearz=0 whereN? is discontinuous. The rapid
ditions. That is variations of the pseudomomentum profile are attributed to

For small-amplitude waves this quantity is horizontally uni-
form and, as pointed out by Scinocca and Shephéedjua-
tion (18) simplifies to
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the round-off error that is significant near=0 where the where w=+/J should occur whenJ—J|<Aw. This pre-

difference between large numbers is calculated. dicted range of enhancement agrees well with the range over
which the reflection coefficient calculated for simulations
V. DISCUSSION AND CONCLUSIONS with a large-amplitude wavepackéte., Figure 7 deviates

- . . significantly from linear theory. A better estimate of the
The qualitative understanding of the nonlinear genera:
. ) . range of enhancement could, perhaps, be made by develop-
tion mechanism helps to explain many of the results regardi-n an aoprooriate weakly nonlinear theory for IGW wave-
ing the reflection coefficients calculated as a function of the N pprop y y

packets of small vertical extent compared with the depth of
squared buoyancy frequendyabovez=0. If the frequency o .
f the initial wavepacketv= JJ, thenz=0 is an evanescent the strongly stratified region.
? | and flacti T ticioated. T . f Throughout it has been assumed that the initial back-
c€vel and wave refiection 1S anticipated. Transmission Ol ,nq fiow is constant at all heights. For small-amplitude

Igrge—amplltude waves is enhanced, however, by the red.ug'/aves, ray theory predicts that the effect of introducing mod-
tion of the wave frequency that occurs when the wave in-

S erate shear would be to alter the angle of incidence of the
duced mean-flow decelerates as the incident wavepacket re. 9

flects. Conversely. if the fr N t the initial wav ket avepacket on the evanescent level, the angle being more
ects. Lonversely, € frequency of the al Wavepacket, . i ontal as the wavepacket approaches a level of the back-
0s \/3 then wave transmission is anticipated. More reflec

. : ‘ground flow with speed closer to that of the phase speed of
tion of Iarge-amphtude Waves occurs, hovyever, because t e waves. This behavior may have a significant effect upon
wave frequency increases when the wave induced mean-flome fraction of energy that is transmitted across an evanes-

aicg Ieéates as the Wavep?(cket ;IS mcu;ient upon the Iev%m level. With or without the presence of background shear,
z=0. Because a wavepacket reflects from an evanescewaever, the transmission of a compact IGW wavepacket
level over a longer time if its vertical extent is larger, the ;..o an evanescent level is amenable to experimental
forcing frequency at this level is smaller, and the transmis-Study and this is currently under investigation

S|on| mlgcgan]lsrrr]l IS f:th_her E_nhgnced.b he oh ¢ These results may have important implications for many

h n light o dt € re;tl?nﬁ P ranT etwein the pd &E)SGFQ geophysical circumstances. Although ducted IGW are often

the waves and speed o the mgan- ovt\)li'ar? ldusftr:;l]ted Y F%ssumed to be trapped within regions of strong stratification,
ure 12,a crude gstlmate may be establis 1€0 0 the egree ithas been demonstrated that bursts of energy in the form of
which nonlinearity enhances the transmission meChan'Sn?:ompact IGW wavepackets may transmit energy away from

Assum|.ng the adjustment to 'the phase Spﬁeg_ is directly  yhe guct due to their transient nature and nonlinear effects.
proportional to the acceleration of the wave induced meang ,h behavior may already have been observed in numerical

flow, then simulations such as those performed by Yang and H&uze,
M who, in their study of IGW associated with mid-latitude
Acp=7 R (30 squall lines, accounted for many of the characteristics of the

. ) . ) _ducted IGW they observed by linear theory. They remarked,
in which M is the horizontal wave pseudomomentum givenponetheless, that large-amplitude IGW leaked into the strato-

by equation(17) and.7 is the characteristic time-scale of sphere but they did not explain the mechanism for this pro-

variations inM. That is cess.
1 oM1-1 Because it is transient and occurs on short time- and
T = ( M ot ) (31)  length-scales, observation of the transmission of waves

across an evanescent level in the atmosphere or ocean may
Combined with equatiok30), the increase in frequency due be challenging. Nonetheless, it is interesting to speculate
to nonlinear effects as the leading edge of the wavepacket ispon its implications to a particular oceanographic example.
incident atz=0 is estimated in terms of the structure of the IGW have recently been proposed as a possible source of
initial - wavepacket with horizontal pseudomomentummomentum for the deep equatorial countercurréhtsBut

Mo(2) by if IGW originate near the ocean surface where the energy
|IZ|2 density is large, it remains unclear how these waves can

Aw=k[M(zg) —Mg(z—>)]=8 A2, (32)  propagate to great depths below the thermocline where the
Cpx stratification is weak. The results presented here may help, in

Similarly, by the symmetry of the incident wavepacket con-Part, to resolve this dilemma.
sidered here, the decrease in frequency due to nonlinear ef-
fects as the trailing edge of the wavepacket is incident aACKNOWLEDGMENTS
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