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Abstract

The current development of linear, weakly nonlinear and fully nonlinear theories
of the propagation of internal waves in continuously stratified fluid is reviewed and
new analyses are presented that demonstrate the usefulness of parcel arguments in
developing an intuition for small-amplitude internal wave dynamics. Directions for
future research are suggested.
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1 Introduction

Internal waves are characterised by periodic undulations within a fluid whose
density decreases with height. The governing dynamics are essentially the same
as those of surface waves: both move due buoyancy restoring forces. However,
whereas surface waves are confined to the interface between water and air, internal
waves can propagate both horizontally and vertically.

Internal waves occur throughout the atmosphere and ocean on scales as small
as meters and as large as thousands of kilometers. Under suitable atmospheric
conditions, clouds help visualise the waves. Where the waves push air upwards
near the wave crests the air expands in the lower pressure and it cools due to ther-
modynamic effects. If the air itself is initially saturated with water vapour, clouds
form as the vapour condenses into water droplets in the cooling air. Conversely,
the droplets evaporate near the wave troughs where the air moves downwards into
higher pressure and so heats up under compression. A typical image of internal
waves visualised by clouds is shown in Figure 1.

The equation describing the motion of internal waves in the atmosphere and
ocean are given by a remarkably simple set of partial differential equations. The
Navier-Stokes equations express conservation of momentum:

Du

Prp; = ~VPr + P18 + Frop +1V7u. (1)
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Fig. 1: Enhanced photograph showing internal waves visualised by clouds as they
propagate over floating icepacks in the Arctic ocean. The picture was taken at
9pm GMT July 23, 1999 from an airplane window while flying south of Baffin
Island in northern Canada. The wave crests propagate downward and to the
right in the picture.

Here pr is the density of the fluid, u = (u, v, w) denote the components of west-to-
east (u), south-to-north (v) and vertical (w) motion corresponding to directions X,
y and z, respectively. The pressure is denoted by p1, g = —¢z is the acceleration
due to gravity, u is the molecular viscosity, and F;qt denotes external forces that
occur due to the Earth’s rotation, namely Coriolis forces.

We neglect the effect of vertically propagating sound waves which is done
by assuming the fluid is incompressible. Thus the continuity equation, which
expresses conservation of mass, is written

Dpr
=0 2
L, e
and consequently we have
V-u=0. (3)

In these equations the material derivative,

D 0

- il ; 4
Di=a TY Vv, (4)
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introduces nonlinearity through the “advective” terms, denoted by the second
term on the right-hand-side of (4).

The five coupled partial differential equations in five unknowns, (u,p,p) de-
scribe a wide range of phenomena, including waves and turbulence occurring on
length scales as small as millimeters and as large as thousands of kilometers.

In this study, we will focus on internal wave phenomena on scales ranging from
tens of meters to planetary scales. A straightforward scaling analysis reveals that
viscosity and diffusion (for example of salt water or heat) are negligibly important
compared with the advective and pressure gradient terms in the equations.

We further simplify the equations by subdividing the pressure and density
fields into background fields (p(z) and p(z), respectively) and perturbation fields
(p(x,t) and p(x,t), respectively), and we assume that the background fields are
in “hydrostatic balance”. That is, we assume the fields are related by

dp
= = _75g. 5
i (5)
This is simply the statement that, in a stationary fluid, the pressure at a given
vertical level is set by the weight of fluid per unit area lying above that level.

Thus, substituting 4 =0 and pr =p+ p and p7 = p+ p into (1) gives

Du

Pr oy = ~VP = 92+ Froy, (6)

and the continuity equation becomes

Dp dp

= = =0. 7

Dt * wdz (™)
Further approximations may be employed resulting in different classes of wave

motion:

olf one assumes the flow is “hydrostatic” (meaning the perturbation as well
as background pressure and density fields are in balance) then one sets
Op/0z = —pg in (6). Hydrostatic internal waves propagate with frequencies
much smaller than the natural frequency of oscillation of a stratified fluid,
the “buoyancy frequency”. Waves with frequencies close to the buoyancy
frequency are said to be “non-hydrostatic”.

olf one assumes the flow is “Boussinesq” (meaning that density variations are
important only as they affect the buoyancy term) then one sets pp — pp, a
constant, in the terms before the material derivatives in (6). Boussinesq in-
ternal waves occur in fluids whose density decreases by only a small fraction
of the total density with height.
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olf one assumes the flow is “anelastic”, one instead sets pp — p in (6). This
approximation accounts for the increase in amplitude of waves with altitude
in the atmosphere as the density of air decreases by a significant fraction
from the troposphere to the middle and upper atmosphere.

olf one assumes the waves are small amplitude, then the nonlinear terms in

the material derivative may be neglected. For example, if there is no mean
background flow, then D/Dt — 0/0t.

We will consider the consequences of these different approximations in the
following sections.

2 Linear Theory

The linear theory for internal waves can be approached either through “fluid
parcel” consideration, in which the local forces acting upon an infinitesimal patch
of fluid is considered, or through partial differential equations whose solutions
express the cumulative effects of conservation principles. Both approaches are
discussed below.

2.1 Parcel Arguments

The motion of small amplitude internal waves can be understood in part from
a “parcel” argument, as illustrated in Figure 2. Consider first a fluid parcel (a
infinitesimal patch of fluid) that is vertically displaced upward by a small amount,
0z, in a surrounding stratified fluid whose density, p(z), decreases linearly with
height. The parcel, of density py, finds itself surrounded by less dense fluid and
therefore it experiences a restoring force due to buoyancy. Newton’s laws reveal
the consequent motion:

2

==l )
Here g is the acceleration due to gravity and 0p is the density difference between
the fluid parcel and the surrounding fluid at its displaced position. The density

difference can be written in terms of dz. Because |dz| is infinitessimally small
dp = —(dp/dz)dz. Thus (8) becomes

Po

d*§
o+ Nz =), )
in which, by definition
N2= 99 (10)

podz
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Fig. 2: Schematic illustrating forces acting upon a fluid parcel that is displaced
a) vertically and b) at an angle to the vertical in a stratified fluid.

Because (9) is a spring equation, it is apparent that a vertically displaced
fluid parcel will oscillate in a linear stratified fluid at a frequency N, which is
proportional to the square root of the background density gradient. Consequently,
the value N is called the buoyancy frequency (though it is also sometimes called
the Brunt-Viisala frequency after the scientists who first examined these dynamics
[75, 9]). Typical values of N in the atmosphere and ocean are around 1072571, so
vertical oscillations occur with a period on the order of tens of minutes.

Now consider the case in which a fluid parcel is displaced a small distance 0l
along a line at an angle © to the vertical, as shown in Fig. 2b. Furthermore,
assume that the fluid motion is constrained to move along this line. Although
this may seem to be an unphysical assumption, in § 2.3 a fluid parcel displaced
by an internal wave is shown to undergo exactly this diagonal linear motion.

Newton’s laws for the force along the line give

d?6l
PO = —(0p)g cos O. (11)
The cos© term enters by resolving the downward gravitational force into the
along-line direction. As before, dp can be written in terms of §/ by the relation
dp = —(dp/dz)ol cos ©. Thus (11) becomes

d?ol
e + N2 cos® O = 0. (12)

This new spring equation shows that fluid motion along a line at an angle to
the vertical occurs with frequency

w = N cos 0, (13)
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which, indeed, is the dispersion relation for internal waves when it is recognised
that cos © can be written in terms of the wavenumber vector k = (k,l,m) and its
horizontal component kg = (k,[) by

[ K2+ 12

The advantage of the derivation of (13) is that it provides physical insight into
the dynamics of internal waves. Specifically, the reason the frequency of shallow
waves, with © ~ 90°, is small is because only a small component of its motion
goes toward resisting gravitational forces.

2.2 The dispersion relation

An immediate consequence of the dispersion relation is that internal waves
cannot propagate with frequency faster than N. The phase vector for internal
waves (whose direction is perpendicular to lines of constant phase and whose
magnitude is the speed of crests moving in this direction) is

Cp = %% = %COS ©(cos ¢ cos O, sin ¢ cos O, sin O). (15)
In the last of these expressions, ¢ is defined implicitly by tan ¢ = [/k, and repre-
sents the angle between the horizontal component of the wavenumber vector and
the k-axis. Note the components of this vector is different from the phase speeds
one would measure if the waves were observed at a fixed location. For example, in
a vertical time series showing the passage of waves past a fixed horizontal location,
the crests would move vertically at a fixed horizontal position with speed w/m.
Another useful quantity derived from the dispersion relation is the group ve-
locity, cg. This denotes the velocity at which energy is transported by the waves.
Explicitly

ow 0 N
Ccg = Viw = (g—:, 8—?, %) = — sin O(cos ¢ sin O, sin P sin O, — cos O).  (16)

K|
Thus the magnitude |cg| = (N/|k|)sin ©, which may be compared with |cp| =
(N/|k]|) cos ©.

An initially surprising consequence of these equations is that the group and
phase velocities are orthogonal to each other and that if the wave transports
energy upwards, then the phase lines move downwards, and vice versa.

This is seen quite explicitly in experiments in which a cylinder oscillates verti-
cally up and down at a fixed frequency, w, in a stratified fluid. Provided w < N,
the waves propagate away from the cylinder along four beams which form a “St.
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Andrews Cross” pattern with the cylinder at the center of the cross [48]. One
branch of the waves emanating from the upper cylinder are revealed in the “syn-
thetic schlieren” image shown in Fig. 3a [69]. The wavebeam emanates upward
and to the right of the cylinder, transporting energy in a direction parallel to the
wave crests and in the direction of cg. In contrast, surface waves transport energy
in a direction perpendicular to the wave crests. The time series in Fig. 3b shows
that, whereas the group velocity is directed upward, the crests of the waves move
downward over time.

Another interesting consequence of the dispersion relation is that the verti-
cal component of the group velocity is zero for waves with © = 0 and © =
90°. The maximum vertical group velocity occurs at an intermediate angle © =

tan"!(1/v/2) ~ 35°

2.3 Partial Differential Equations

Much information can be gleaned from the dispersion relation of waves. How-
ever, one must solve the equations of motion as given by a coupled set of partial
differential equations in order to predict the inter-relationship between compo-
nents of the velocity field and perturbation density field, and to predict energy
and momentum transport by the waves.

The linearised equations of motion provide insight into the behaviour of small
amplitude internal waves. For simplicity in this discussion, we neglect the effects
of viscosity and we assume that the vertical variation of the background density
is sufficiently long compared with the scale of the waves that we can adopt the
“Boussinesq approximation”: density variations are important only as they influ-
ence buoyancy forces. The Boussinesq approximation is suitable for the study of
ocean, in which the density changes by less than 10% from the surface to ocean
floor. In the atmosphere, the approximation is useful only over scales less than
approximately 10km [63].

If we further assume that there is no mean background flow and that the
fluid is uniformly stratified (the buoyancy frequency is constant), the motion of
small-amplitude internal waves is given by differential equations describing the
conservation of mass assuming the fluid is incompressible, as given by (7 and (3),
and the linearised form of the equations describing the conservation of momentum:

ou _ _Op
Par = ox

ov dp

- - _ZF 17
ow _ o
0 8t — 81‘ gp;

In these equations py is a characteristic density of the fluid.
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a) Snapshot of wave beam
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Fig. 3: a) One of the four branches of waves generated when a cylinder oscillates
with frequency w = 0.54s7! in a tank filled with uniformly stratified salt water
solution whose salinity decreases with height as characterised by the buoyancy
frequency N = 1.0s7!. The beam propagates at an angle ~ 57° to the vertical
consistent with the predicted angle © = cos™ (w/N). b) Time series of the wave
beams showing the evolution of the waves along a vertical slice 12.5cm to the
right of the oscillating cylinder.

These equations are conveniently rewritten in matrix form in which the nota-
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tion 0y = 0/0t, etc., is adopted:

o 0 0 0 %ax u

0 o 0 0 Lo, v

0 0 o, <+ Lo, w | =0 (18)
Po PO

0 0 —2N*> 9, 0 p

o 6, d, 0 0 p

For nontrivial solutions, the determinant of the matrix in (18) must be zero.
That is

[atttVZ + NZVH28,5] b - 0 (19)

in which b is one of the five basic state fields (u,v,w, p,p), and Vy = (0,, 9y) is
the horizontal component of the gradient operator.

Fourier transforming gives the dispersion relation for internal waves in uni-
formly stratified, incompressible fluid. We assume periodic solutions of the form

b(x,y,z,t) = Apexple(kz + ly + mz — wt)], (20)

in which it is understood that the actual wave structure is given by the real part
of b. Substituting (20) in (19) gives —ww?k|* + N%*w|kg|> = 0. Taking only
non-stationary solutions, we find

ku|?
k|?’

C()Z:NZ

which is exactly the dispersion relation given by (13) and (14).

Effectively, the dispersion relation is an eigenvalue of the differential matrix
problem (18). The corresponding eigenvectors give the inter-relationship between
the basic state fields. For wave theory in general, these are known as the “polari-
sation relations”.

Defining the vertical displacement field & implicitly through the relation w =
0&/0t, the amplitude of the eigenfunctions, Ay, can each written in terms of the
the amplitude of the vertical displacement field A;. These are listed in Table 1.

Immediately apparent from the table is that the horizontal and vertical velocity
fields are in phase with each other. Thus fluid parcels undergo linear (rather than
circular) oscillatory motion due to waves. This is consistent with the assumption
made above in deriving the dispersion relation from a parcel argument.

The vertical transport of horizontal momentum per unit mass in the x-direction
is the cross-correlation, (uw), between the v and w fields. It is found by taking the
average over one period of oscillation of the product between the real parts of the
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Table 1: Polarisation relation and physically relevant correlations between basic
state fields for small-amplitude Boussinesq internal waves in the (z, z) plane with
no background rotation. As well as the basic state fields, the table lists values
of the streamfunction (¢), vorticity (¢), the change in the squared buoyancy
frequency due to stretching of isopycnals by waves (AN?) and its time derivative
(N?,). Each field b is characterised by the magnitude and phase of its complex
amplitude Ap.

Defining equation Relation to vertical displacement

Vertical displacement: § complex amplitude: A

p=—1 A, = (~dp/d=)Ae = BN2A,
u=V x (vy) Ay = —FA¢ = — T cos OA;
w= % Ay = —wAe = —1N cos©OA,
= —% Ay =12 Ag =1Nsin©A,
(=-V% A = —2[k[PA, = —NksecOA;
AN? = — 9.9 Axyz = —umN?A; = —iN?ktan©A
po 0z 3 £
N2, = % An2, = mwN?4; = —N3ksinOA;

Momentum transport po (uw) = poN? sin 20| A¢|?
Wave-induced mean flow — (C€) = L Nk sec ©]A¢|?

— 2

two fields. This can be done either by integrating in time (1. fOT Re(u)Re(w) dt),
in space (y- fo)‘“” Re(u)Re(w) dx), or in phase, by setting ¢ = k - x — wt:

2w
(uw) = 1 Re (4,€'?) Re (4,€") do
27 0
_ 1 o 1 10 * ,—10 1 1 * ,—1p
= 5 i §(Aue + AJe ) §(Awe + A, e )
= %Re (AL ALY)
= %NZ sin 20| A¢|?. (21)

Here, the star denotes the complex conjugate. Thus waves with © = 0 or © = 90°
transport no vertical momentum. For waves with the same value of the maximum
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vertical displacement, Ag, those with © = 45° transport the greatest momentum.

Another consequence of the polarisation relations is that the density field is /2
out of phase with the velocity fields. Thus internal waves transport momentum but
not mass. This is shown explicitly by following the same mathematical procedure
as that used in deriving (21): the vertical transport of mass is given by

(pw) = %Re (Ap,A,%) = 0. (22)

Another useful quantity, particularly for the study of finite-amplitude waves,
is the wave-induced mean flow. For surface waves, this is also known as “Stokes
drift” and denotes the steady unidirectional flow of water in the direction of wave
propagation. This current, which is typically much smaller than the phase speed
of the waves, is proportional to the square of the wave amplitude. In the recent
study of Hamiltonian fluid dynamics, the wave-induced mean flow is known more
generally as the “pseudomomentum” [2, 60].

For internal waves the wave-induced mean flow, for example in the x-direction,
is given explicitly in terms of the cross-correlation between the vertical displace-
ment field (§) and the y-component (y = z xX) of the vorticity field, ( = (Vxu)-y
[59, 64]

1

1
—(¢¢) = §Re (AcA™) = §Nk sec O] A¢|? (23)

2.4 Ray theory

The effect upon wave propagation of non-uniform background flow U(z) and
non-uniform stratification N?(z) can be described in an analytic theory provided
the background varies vertically on scales much larger than the vertical extent of
the waves. The mathematics are simplified in this limit by employing the “WKB”
(or sometimes the “WKBJ”, or sometimes the “Liouville-Green”) approximation
[34]. (The first to study this problem were Liouville [37] and Green [21], but later
their results were independently rederived.)

Without derivation, the salient result is given here for waves propagating in
the (z, z) plane. The path of the waves, as described by the function z(z), is given
by solving the differential equation

dz Cgz
- = _ 24
dr ¢, +U (24)

In which the components of the group velocity are given by (16).
A key to anticipating the form of solutions of (24) is to realise that, due to
the horizontal spatial invariance of the equations of motion and their boundary



12 B. R. Sutherland/Emerging Areas in Applied Mathematics

conditions, the horizontal wavenumber, k, does not change following the motion of
the waves, a consequence of Fourier series analysis. Likewise, temporal invariance
implies that the absolute frequency, w, (the frequency observed at a fixed point
in space, otherwise called the “intrinsic frequency”) of the waves do not change,
although the relative frequency (the frequency observed moving with the back-
ground flow, otherwise called the “extrinsic frequency” or, more commonly, the
“Doppler-shifted frequency”) may change as the wavepacket propagates in shear
flow.

In two particularly well studied cases one assumes that N? is constant and U
varies linearly with height as U(z) = sz (a uniform shear flow). Suppose that an
internal wave packet is situated initially at the origin and moves upward and to
the right. In the case with s > 0, one finds that the wavepacket asymptotically
approaches a vertical level z. where the background flow speed, U(z.), equals the
wavepacket’s constant horizontal phase speed, w/k. A straightforward calculation
reveals

Ze = %COS O. (25)
This height is known as the “critical level”. A more detailed analysis reveals that
as waves approach the critical level, their amplitude increases until the waves over-
turn and break. Thus a background flow, such as the jet stream in the atmosphere,
can act to shield the upper level flow from waves. Near the critical level breaking
waves deposit momentum to the mean flow and thus locally accelerate the fluid,
which further shields the upper level from waves. A dramatic example of these
dynamics are manifest in laboratory experiment that models the quasi-biennial
oscillation in the equatorial stratosphere [58].

Present-day models of the general circulation of the Earth’s atmosphere employ
heuristic schemes based, in part, upon the above remarks in order to include
the effects of drag upon the atmosphere by internal waves that originate from
mountainous terrain and which break near critical levels in the middle and upper
atmosphere [36, 54, 43].

Though successful in enabling the models to predict more realistic wind speeds,
recent work suggests this heuristic approach is too simplistic. For example, Shutts
[61, 62] has shown that waves can pass through a critical level if the flow speed
veers with height (that is, if we relax the constraint that the flow moves only in
the x-direction and instead, for example, allow the flow to blow increasingly in
the y-direction at increasing vertical levels).

Ray theory has garnered renewed interest recently in the study of small-scale
internal waves that are refracted by a spectrum of large-scale, slow frequency
internal waves, which effectively impose a time-varying background mean flow
[19, 7, 8, 6, 10]. A significant consequence of this work is to show that critical
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levels may not pose a barrier to transport by waves if the shear is time dependent.
Continuing research may help to explain, for example, the observed spectrum of
internal waves in the middle atmosphere [25]).

In a second well-studied case, one considers the circumstance in which a uni-
formly stratified flow has uniform but negative shear (s < 0). In this circum-
stance, waves with frequency w and horizontal wavenumber £ that move upward
from z = 0 are Doppler-shifted to increasing frequencies Q = w — kU = w — ksz.
Eventually, the waves reach a level z. at which the Doppler-shifted frequency
equals the buoyancy frequency. Explicitly

(1 —cosO) (26)

Similarly, wave reflection may occur in a fluid with uniform flow (U = 0) but
whose stratification weakens with height. For example, if N?(z) = Np*>(1 — 2/ H),
then

2z, = H(1 — cos ©) (27)

In either circumstance, one finds that the waves reflect from the level 2z, and
thereafter transport energy and momentum back to where they originated. When
one examines the structure of the wave near the reflection level itself, one finds that
the slope dz/dxz becomes infinitely large, in violation with the conditions required
by the WKB-approximation. At the point of reflection there are three distinct
wave groups: the incident and reflected wave below z, and an “evanescent” wave
whose amplitude decreases exponentially with height above z,.. This structure is
known as a “caustic” [34].

Ray theory has proven successful in reproducing the paths followed by exper-
imentally generated internal wave beams in uniformly stratified, uniform shear
flows [29] and in stationary, non-uniformly stratified fluids [70]. The latter ex-
periments also examined the consequences of violating the WKB-approximation,
showing that internal waves reflect from a level lower than z. if N? decreases
rapidly with height compared with the extent of the internal wave beam.

Ray theory has also proven successful in predicting the path of small-amplitude
internal wave groups in uniform shear as measured from fully nonlinear numerical
simulations [66]. However, as discussed in section 4, the theory breaks down for
waves with amplitudes as small as 1 percent of the horizontal wavelength.

2.5 Anelastic effects

To this point we have considered small-amplitude wave propagation as de-
scribed within the limits of the Boussinesq approximation. If we consider the
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propagation of waves in the atmosphere (the density of which decreases in height
by approximately 1/2 every 6 km), it is necessary to relax the constraint that
density variations are significant only in the buoyancy term of the equations of
motion. Instead we allow pp — p in (6), This is the “anelastic approximation”.
Thermodynamics play an important role for atmospheric waves in general. As
air moves up and down the fluid is heated and cooled, respectively, and so the
density of fluid parcels vary. A quantity that characterises these effects is the

potential temperature:
—2/7
O=T <3> (28)

Po

The derivation of (28) can be found in any standard textbook on dynamic meteo-
rology (e.g. see Gill [20] §3.7). Here T and p are the temperature and pressure of a
fluid parcel at some vertical level and py is a reference value of pressure, typically
taken to be py = 1000 millibars, the pressure at sea level. Physically, € repre-
sents the temperature a fluid parcel would have if brought adiabatically to sea
level. This is a particularly useful quantity because it is conserved following the
adiabatic motion of a fluid parcel. Note that while the temperature in the lower
atmosphere decreases with height, the potential temperature generally increases
with height.

In the anelastic approximation, the squared buoyancy frequency is defined in
term of the background potential temperature, g(z), by

N?=2—, (29)

There are two main differences between this definition and that given by (10):
 rather than a constant reference value, 6, appears in the denominator of the
fraction before the derivative, and there is no negative sign on the right-hand side
of the definition. The latter is consistent with the observation that in a stable
(non-convective) atmosphere, potential temperature increases with height. Thus
N? as given by (29) is generally positive.

Here we study the simplest circumstance of an isothermal atmosphere (whose
temperature 7 is independent of height) with no mean flow. In this case, thermo-
dynamics and hydrostatic balance dictates that the background pressure and den-
sity are proportional to exp(—z/Hy) where H; = RT,/g is called the “scale-height”
(~ 8.4km in the atmosphere using the value of the ideal gas constant R). One finds
that the corresponding background potential temperature is 8 = 6y exp[2(z/H)]
and N? = (2/7)g/H;,.

The partial differential equations describing the motion of small-amplitude
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internal waves is given, in matrix form, by

o 0 0 0 20, u
0 o 0 0 20, v
0 0 O & 20, w | =0. (30)
0 0 —p/gN? 0, 0 p
dy 0, 0, 0 0 p

As waves propagate upward they transport momentum, the magnitude of
which, according to (21), is proportional to the squared amplitude of the waves.
Because the density of the atmosphere decreases with height, the waves must in-
crease in amplitude with height in order to conserve momentum. Hence we assume
solutions of the form

f(z,y,2,t) = foexp(r(k - x — wt)] exp(z/2H), (31)

and substitute into (30).
The resulting matrix eigenvalue problem gives the dispersion relation for anelas-
tic waves:

2 _ ar2 |kH|2

=N 32
Rt (52)

w
in which I' = (3/14) H,~". In the limit H, — oo, (32) is identical to the dispersion
relation for Boussinesq waves, (13).

The significant difference in the dynamics is in the wave structure, as given by
(31). In reality, the waves do not grow in amplitude indefinitely, but ultimately
they overturn and break. As well as critical-level absorption, discussed in §2.4,
this is the second well-studied mechanism for wave breaking and deposition of
momentum to the mean flow in the atmosphere.

2.6 Background rotation effects

For internal waves that evolve on time scales comparable to the rotational
period of the Earth, it is also important to include the effect of Coriolis forces.
For simplicity, we return here to the Boussinesq approximation and write the
resulting equations of motion in matrix form by

8 —f 0 0 19

po % u
f o 0 0 pioay v
0 0 o, L Lo, w | =0 (33)
Po PO
0 0 —2N* 9 0 p
o 0, 90, 0 0 p
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Here the constant f = 2Q2sin ¢, is the Coriolis parameter, which depends upon
the rotational frequency of the Earth (2 = 27 /(1day)) and the local latitude ¢y.
(At the North Pole, ¢g = 90° and so f = 2Q.) The parameter f is sometimes
called the “inertial frequency” because gravity has negligible affect upon fluid
parcels moving near this frequency and thus they move only under their own
inertia. In the atmosphere and oceans at mid-latitudes, f ~ 10~*s~!, two orders
of magnitude smaller than typical values of N.

Assuming plane wave solutions of the form (20) the matrix eigenvalue problem
gives the dispersion relation

w® = N?cos? © + f?sin” © (34)

where O is again defined by (14).

Obviously, in the case f = 0 we recover (13). Equation (34) shows that f is
a low-frequency cut-off: internal waves cannot propagate with frequencies lower
than f. Internal waves with frequency close to f are called “inertia-gravity waves”.

The phase lines of inertia-gravity waves waves are almost horizontal (© ~ 90°).
A study of the corresponding polarisation relations reveal that the v and v fields
are 90° out of phase implying that fluid parcels prescribe near-horizontal elliptical
paths during the passage of the waves.

Measurements of internal waves in the atmosphere have revealed that most of
their energy spectrum is contained near inertial frequencies. For this reason, and
also because only recently large-scale atmospheric simulations have been able to
resolve the spatial structure of inertia-gravity waves, there have been numerous
theoretical and numerical studies have been performed to examine their dynamics
[15, 33]. However, because the waves are necessarily long period and exist typically
over long scales, simplified models which assume stationary background flows are
of questionable realistic value.

3 Weakly Nonlinear Theory

In the preceding section it is assumed throughout that the waves are of small
amplitude. This is a useful approximation because the analytic solutions of the
resulting linearised equations can be found for a wide variety of circumstances.

Weakly nonlinear theory describes the dynamics of waves with amplitudes
that are non-negligible but still sufficiently small that analytic solutions can be
found through perturbation theory. Typically, weakly nonlinear dynamics involve
wave-wave interactions, for which the superposition principle breaks down, and
interactions between waves and the wave-induced mean flow.

Although a great deal of work has examined the weakly nonlinear dynamics
of water waves [56, 24, 3] relatively little research has gone into studying the
corresponding internal wave dynamics.
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3.1 Modulational instability

Weakly nonlinear dynamics act to modify the dispersion relation for waves:
wyn] = (k) + wa(k) A%, (35)

in which the first term on the right-hand side of the equations is the dispersion
relation determined from linear theory (e.g. equation (13)). Considering for now
the motion in the x-direction, a periodic wave train is said to be “modulationally
stable” (remaining periodic for all time) if [76, 77]
0w
weors >0 (36)
Indeed, for deep water waves it has been shown that the waves are always mod-
ulationally unstable, even for water waves of infinitessimally small amplitude.
However, because the growth rate of the instability is proportional to amplitude,
in realistic circumstances it is unlikely to manifest itself during the life-cycle of
very small amplitude waves. The structure of this instability was described by
Benjamin and Feir [3] who showed that the energy in the spectrum repeatedly
transfers to different “sideband” wavenumbers and then transfers back to the
original wavenumber following what is known more generally as the Fermi-Pasta-
Ulam (FPU) recurrence phenomena [16].

The modulational stability of Boussinesq, non-rotating internal waves has been
examined analytically by Grimshaw [23] and both analytically and numerically by
Sutherland [67]. The latter has shown that the criterion (36) predicts that hori-
zontally periodic, vertically compact internal waves are modulationally unstable
to the growth of vertical sideband wavenumbers if their frequency is higher than
that of the waves with the fastest vertical group velocity, that is, if

0 < O, = tan"'(271/?) ~ 35°, (37)

Indeed fully nonlinear numerical simulations show the emergence of FPU recur-
rence for these waves and show that waves with © > O, remain modulationally
stable. Horizontally compact internal waves are predicted to be modulation-

ally unstable to the growth of horizontal sideband wavenumbers if © > O, =
sin™'(271/3) ~ 53°.

3.2 Wave-wave interactions

Modulational instability does not imply wave breaking, only non-steadiness
of a periodic wavetrain. However, other weakly nonlinear dynamics result in
overturning and breaking waves.
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In general, three waves of wavenumber vector k; and frequencies w;, for 1 =
1,2, 3, may interact in what is called a “resonant triad” if k3 = k; =k, and w3 =
wytws (e.g., see Phillips [57]). This amounts to requiring cos ©3 = cos ©%cos O,
in which ©; is given by (14). In practise three possible resonant couplings are of
interest: under “elastic scattering”, energy in a high frequency wave is transported
to another with nearly equal and opposite wavenumber vector; under “induced
diffusion”, energy in a low frequency wave is transported to a high frequency
wave; under “parametric subharmonic instability”, energy is extracted from a low
wavenumber mode and deposited into to high frequency waves with nearly equal
and opposite wavenumbers.

Observations of internal waves in the ocean suggest that elastic scattering and
induced diffusion both play an important role in governing the energy spectrum
of waves in the ocean interior. Both mechanisms act on time scales comparable
to one wave period [50].

For internal waves that are periodic everywhere in space, internal waves are
found to be parametrically unstable even at infinitessimally small amplitudes [28,
38]. The instability grows through resonant coupling between the initial waves
and their superharmonics (whose horizontal wavenumbers are an integer multiple
of the initial waves). Through this coupling, the superharmonic waves extract
energy from the initial waves and grow in amplitude until ultimately they break.

Though mathematically interesting, the study is not relevant to realistic cir-
cumstances for two reasons. First, typical instability growth rates are so small
that parametric instabilities would not likely develop significantly between the
time that the waves are generated and when they break. Second, parametric in-
stability is the dominant mode of instability only in the case of plane-periodic
waves. Localised internal wavepacket dynamics have been found to be governed
dominantly due to interactions between the waves and the wave-induced mean
flow [67].

3.3 Breaking instabilities

Internal waves become unstable and break if their amplitude is sufficiently
large. Linear theory predicts overturning occurs if the amplitude is so large that
dpp/0t = dp/dz + 0p/0z > 1 somewhere in the flow field. Using the polarisation
relations in Table 1, the “overturning condition” can be derived. This states that
waves propagating at angle © to the vertical are unstable if the amplitude A, of
the vertical displacement field exceeds AgT where

1
Aor = — .
o) 5 cot © (38)

Due to interactions between waves and the wave-induced mean flow, simula-
tions show that internal waves in fact are unstable at much smaller amplitudes
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unless O is close to 90°. The criterion for instability is called the “self-acceleration”
condition, which states that the waves become unstable if the wave-induced mean
flow exceeds the horizontal group velocity. Using (16) and (23), it is apparent
that the waves are unstable if

Az
27r\/§

in which A\, = 27/k is the horizontal wavelength. Thus waves with © ~ 0 (w ~ N)
are unstable to overturning and breaking even at infinitessimally small amplitudes.
Even for the most stable waves, with ©® = 45° the waves are unstable if their
amplitude is larger than 11% of the horizontal wavelength. Numerical simulations
show that the onset of instability is rapid, occurring within 5 buoyancy periods,
21 /N.

A > Agp = sin 20, (39)

3.4 Critical Level absorption

Weakly nonlinear models for internal waves in stratified shear flow have been
examined by a number of authors [40, 41, 12, 31], there emphasis being on exam-
ining the flows whose basic states are near the marginal stability boundary; that
is, for stratified shear flows with the minimum value of the gradient Richardson
number Ri = N2/(U')? ~ 1/4 [46, 26]. In a analytical-numerical study, Lamb
and Pierrehumbert [31] showed that two-dimensional internal waves originating
from topography underlying a critical layer could transmit through the layer, in
a manner reminiscent of coherent light waves been transmitted from a resonant
cavity in a laser.

3.5 Wave reflection

The interactions between waves and the wave-induced mean flow can act to
allow waves to transmit well above a reflection level, 2, that would occur in linear
theory when a wavepacket moves upward in a background flow with uniform but
negative shear, s < 0. We hypothesize that this occurs because the wave-induced
mean flow creates a local mean shear that counteracts the background shear. A
simple calculation reveals that the positive shear associated with the wave-induced
mean flow is equal to |s| when

AwR \/QUzkchos © o (40)

in which o, is the vertical width of the wavepacket [66].
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3.6 Laboratory Experiments

At present few experiments have been performed to examine the weakly non-
linear dynamics of internal waves. Resonant interactions between short and long
waves were examined analytically and experimentally by Koop and Redekopp [30].
and between equal and opposite propagating wave beams by Teoh et al [73]. The
latter observed the generation of an evanescent disturbance in the overlapping
region which consequently grew and ultimately broke.

Weakly nonlinear effects are also apparent where the upward and downward
propagating wavebeams near the cylinder overlap [69, 72]. In particular, waves
with double the frequency of oscillation of the cylinder have been observed in
tandem with the primary wavebeams. Though this could be due to wave-wave
interactions, tracking the origin of the secondary beams to the cylinder itself
implies that the beams are created due to interactions between the waves and the
viscous boundary layer surrounding the cylinder.

4 Nonlinear Theory

Unlike linear and weakly nonlinear theories, the dynamics of fully nonlinear
finite-amplitude internal waves, with very few and trivial exceptions, can be ex-
amined only through analysis of numerical simulations in which the Navier-Stokes
equations are iteratively solved in time.

4.1 Wave modulation

The propagation of two-dimensional finite-amplitude, Boussinesq internal waves
in stationary, uniformly stratified fluid has been examined by Sutherland [67].
This study both confirmed the validity of the modulational stability criterion (37)
as well as the self-acceleration condition (39). The latter was shown to be success-
ful in predicting the stability to breaking of horizontally periodic, vertically com-
pact wavepackets. Horizontally and vertically compact wavepackets were found
to be stable at moderately larger amplitudes than predicted however, particularly
for waves with small ©.

4.2 Critical level absorption

At a critical level, z., ray theory predicts the waves approaching from below
should break and be absorbed by the mean flow. However, as finite-amplitude
waves approach a critical level, one finds that the wavepackets may be partially
transmitted across z. or partial reflect below z..

Recently, computer speeds and memory have increased enough to run high-
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resolution numerical simulations of internal waves incident upon a critical level
[5, 78, 79, 14]. The simulations show that the breaking occurs due to convective
overturning modified by shear. The instability is inherently three-dimensional.
The incident wave energy is ultimately partitioned into a three main proportions
associated with 1) acceleration of the mean flow, 2) irreversible mixing of the local
stratification, and 3) a reflected wave packet. In their study of three-dimensional
waves, Winters and d’Asaro [79] showed that the proportion of the wavepacket
that deposits energy to the mean flow is sensitive to the wave amplitude and the
relative strength of the shear at the critical level.

4.3 Wave reflection

The nonlinear dynamics of finite-amplitude internal waves incident upon a
reflecting level has been studied for the case of two-dimensional, Boussinesq waves.
Sutherland [64] examined the dynamics of waves in a stationary background fluid
whose buoyancy frequency decreased from one constant value to another constant
value over a short vertical distance. A related study examined the reflection of
waves in a uniformly stratified fluid in a background flow that decreased from
one constant value to another over a short distance [65]. In both cases it was
found that a greater proportion of the incident wavepacket was transmitted across
the reflecting level if the waves were of large amplitude. Even if no reflecting
level existed, a larger proportion of finite-amplitude waves were found to reflect
from the varying region of the background wind or stratification. Both nonlinear
phenomena occurred because the wave-induced mean flow Doppler-shifted the
frequency of the incident waves.

The dynamics of finite-amplitude Boussinesq internal waves in a uniform shear
flow were examined by Sutherland [66]. Surprisingly this study revealed that
horizontally and vertically compact wavepackets may propagate well beyond a
reflection level at an approximately constant vertical speed. The results were
consistent with the transmission condition (40).

5 Conclusions

Though much is understood about the dynamics of small-amplitude waves, a
great deal is unknown about the propagation of finite-amplitude internal waves.
Some specific outstanding problems are listed here.

eConditions for modulational instability and breaking due to self-acceleration
have not yet been derived for anelastic waves or inertia-gravity waves.

oThe transmission condition has been derived and tested for waves in a uni-
formly stratified shear flow. No such test has yet been performed for waves
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in a uniform flow with decreasing stratification with height.

eThough some fully nonlinear simulations of two-dimensional non-hydrostatic
waves have been performed, their three-dimensional counterparts remain to
be examined. In particular, it would be interesting to study finite-amplitude
effects as wavepackets approach a critical level in a veering wind.

eLarge-eddy simulations (LES) model the interactions of waves near a crit-
ical layer without resolving the breaking in detail [54, 43, 49]. The em-
phasis of these studies is to evaluate whether heuristic parameterisations
of wave breaking can indeed account for discrepancies between observed
flow speeds and those predicted by models that ignore the effect of internal
waves. Though such parameterisations have been successful in improving
model predictions, the results of high-resolution simulations imply that the
heuristic methods employed are not always trustworthy. Future research
should attempt to bring LES and high resolution approaches together in a
way that allows for speedy but reliable parameterisations of breaking waves.

eFew laboratory experiments have been performed to examine finite am-
plitude effects, in part because probes give amplitude measurements at a
point and classical schlieren visualisation methods [47] reveal phase but not
amplitude information. Using the recently developed “synthetic schlieren”
method, one can measure amplitudes of a two-dimensional wave field every-
where in space and time [13]. Further experimental progress will be made
with the ongoing extension of this technique to measure three-dimensional
wave fields [17].

This review mentions only briefly here other significant and active research
areas in internal wave theory, including their interaction with rigid boundaries
([74, 4]) and turbulence ([32, 27, 53]), and their generation by flow over topography
([55]), convection ([1]), shear instability ([35, 42, 44, 18, 68, 71]) and geostrophic
adjustment ([39]).

The focus here has been on internal waves in a continuously stratified fluid,
the assumption being that the vertical extent of the stratified fluid is significantly
longer than the vertical extent of the wavepackets. Nonetheless, in many natural
circumstances internal waves are manifest at the interface between two fluids of
different (but comparable) density. With the realization that such large-amplitude
waves occur in the atmosphere (e.g. at atmospheric inversions in the form of Aus-
tralia’s Morning Glory [11, 45]) and ocean (e.g. at the thermocline and generated
by tidal flow over the continental shelf ([51, 52]), the mathematics of solitary
waves have been brought to bear upon these problems [22].
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