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In non-uniform stratification, horizontally propagating internal waves with the vertical
structure of a single mode self-interact to excite superharmonics. Baker & Sutherland
(J. Fluid Mech., vol. 891, 2020, R1) showed that a vertical mode-1 parent wave
of sufficiently small amplitude dominantly excites a vertical mode-1 superharmonic
with double the horizontal wavenumber. Through theory, assuming a parent wave of
sufficiently small amplitude, they showed that the superharmonics grew and decayed
periodically due to the parent forcing frequency being off-resonant with the natural
frequency of the superharmonic. Here, we extend this theory to allow for larger parent
wave amplitudes and/or stronger resonant forcing, as would occur at lower latitudes,
where the influence of background rotation is small. The resulting coupled system of
nonlinear ordinary differential equations is shown to well predict the evolution of the
internal tide as determined in fully nonlinear numerical simulations. With strong nonlinear
forcing, successive superharmonics grow to non-negligible amplitudes in what we call
the ‘superharmonic cascade’. The phase relationship between the superharmonics is such
that when superimposed, the internal tide transforms into a solitary wave train, consistent
with the predictions of well-established shallow-water models, particularly that of the
Ostrovsky equation, which is an extension of the Korteweg–de Vries equation accounting
for background rotation. This work thus gives new insight into internal solitary wave
generation. The model equations have less restrictive assumptions than models based upon
shallow-water theory, and because they are quickly solved, these provide a potentially
powerful new tool to examine the nonlinear evolution of the internal tide.
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1. Introduction

Through its oscillatory motion across variable bottom topography, it is estimated that
1 TW of the power of the barotropic tide is converted into internal (baroclinic) tides
(Wunsch & Ferrari 2004). The internal tides consequently transmit energy throughout the
oceans until the energy is converted to smaller and smaller scales, ultimately resulting
in turbulent mixing (MacKinnon et al. 2017). At its generation site, the oscillation
of the barotropic tide over sufficiently steep submarine topography launches vertically
propagating beams (Balmforth, Ierley & Young 2002; Legg & Adcroft 2003). After
these beams interact with the near-surface stratification, they are observed to transform
into horizontally propagating low-vertical-mode disturbances, dominated primarily by the
lowest (mode-1) disturbance. In some regions, notably the South China Sea, the internal
tide is observed to transform into a relatively large amplitude train of internal solitary
waves (Alford et al. 2010; Li & Farmer 2011). In other locations, the waves are observed
to propagate long distances without any such transformation (Alford 2003; Alford et al.
2007; MacKinnon et al. 2013; Klymak et al. 2016). The work presented here examines
what influences the nonlinear steepening of the internal tide, focusing upon the initial
amplitude of the vertical mode-1 internal tide and the latitude at which it propagates. We
will show that the potential for steepening is enhanced as the influence of the Coriolis
force lessens (near the equator), and that this steepening can be seen to result from the
sequential excitation of mode-1 disturbances having progressively higher superharmonic
horizontal wavenumbers.

Inspired by observations of the apparent localized generation of solitary waves in the
central Bay of Biscay (New & Pingree 1990, 1992), laboratory and numerical studies
showed that successive superharmonics can be excited by an upward-propagating internal
wave beam incident upon a pycnocline (Grisouard, Staquet & Gerkema 2011; Wunsch &
Brandt 2012; Diamessis et al. 2014).

More recent studies have shown that even in the absence of vertically propagating
internal wave beams, horizontally propagating two-dimensional (spanwise-invariant)
internal modes self-interact to excite superharmonics provided that the background
stratification is non-uniform (Sutherland 2016; Wunsch 2017; Baker & Sutherland 2020).
Most of these studies focused upon the steady state co-existence between the internal tide
(which we refer to here as the ‘parent wave’) having horizontal wavenumber k, and its
superharmonic with double the horizontal wavenumber, 2k. By ‘steady state’, it is meant
that the amplitudes of the parent and superharmonic waves are constant in time. However,
Baker & Sutherland (2020) showed that ultimately, such a steady state does not evolve
from a horizontally periodic internal mode: starting with no superharmonics, the parent
wave excites internal waves that grow and decay periodically in amplitude, provided that
the amplitude of the parent wave is sufficiently small. In our companion paper (Sutherland
& Yassin 2022), we likewise show that ultimately, a steady state does not evolve from
horizontally modulated internal modes. This occurs because the natural frequency, ω2,
of the superharmonic wave is nearly double the frequency, ω, of the parent wave. The
mismatch between the ω2 and 2ω frequencies initially leads to the constructive growth of
the superharmonic followed by its destructive decay. The resulting beat frequency of the
superharmonics is set by the degree of mismatch between the frequencies, as represented
by the non-dimensional parameter ε = ((2ω)2 − ω2

2)/(2ω)
2. Because this parameter is

small, the self-interaction of a vertical mode-1 parent wave excites a nearly pure vertical
mode-1 superharmonic disturbance.

In the study by Baker & Sutherland (2020), the beat frequency of the 2k-superharmonic
was predicted to be εω, and the maximum amplitude of the superharmonic relative to
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The nonlinear evolution of internal tides

the amplitude parent wave was set by the ratio α/ε, in which α is the ratio of the initial
maximum vertical displacement of the parent wave to the characteristic depth of the
stratification. That study, which focused exclusively on the interactions between the parent
and the 2k-superharmonic alone, was shown to be accurate provided that α/ε � 1. For
larger α/ε, the growth of higher superharmonics cannot be ignored. The main theoretical
advance of this paper is to relax the restriction that α/ε is small, and so consider
interactions between the parent wave and an arbitrary number of its superharmonics.

It is certainly possible for internal tides in the ocean to have sufficiently large amplitude
such that α/ε � 1. This is particularly true for internal tides near the equator, in which
case ω2 � 2ω (and ε � 1) because the dispersion relation relating ω to k is approximately
linear for long waves (kH � 1, with H being the ocean depth) if the Coriolis parameter is
zero. For this reason, the parameter regime of our study is motivated by observations of
the internal tide that emanates south-west of Hawaii towards the equator.

In § 2 we review the far-field observations of the internal tide south-west of Hawaii.
These are used to motivate the parameter regimes explored in our study. We then present,
in § 3, the theory leading to a coupled system of nonlinear ordinary differential equations
describing the growth (and possible decay) of successive superharmonics. Solutions as
they depend upon the parent wave amplitude and latitude of propagation are given therein.
Section 4 describes the fully nonlinear code used to simulate the evolution of the internal
tide. Therein it is shown that the predictions in § 3 well represent the fully nonlinear results.
Observing that the model predicts that the internal tide transforms into an internal solitary
wave train if α/ε is large, § 5 reviews models based on shallow-water theory that likewise
produce solitary wave trains. Their predictions are then compared to our model. Discussion
and conclusions are presented in § 6.

2. Parameter regime

For the parameters explored in this study, we focus on the ‘Farfield’ observations of
the internal tide that propagated south-west of the Hawaiian Islands (Rainville & Pinkel
2006). These observations, taken over 40 days in the autumn of 2001, were made 430 km
south-west of Oahu at a latitude of 18.39◦N. The Coriolis parameter at that latitude was
0.0000459 s−1, in which here, and throughout this paper, we write s−1 to represent radians
per second. The ocean depth at the Farfield location was H � 5200 m.

Measurements of temperature and conductivity (salinity) taken between the surface
and 800 m depth showed that the background density profile decreased approximately
exponentially with depth below a 100 m deep surface mixed layer. In particular, the
buoyancy frequencies at 100 m and 800 m depth were approximately 10 and 2 cycles per
hour (c.p.h.), respectively. From these data, we estimate the background squared buoyancy
frequency profile below z0 = −100 m to be N2(z) � N2

0 e(z−z0)/d, with N0 � 0.017 s−1

(� 9.7 c.p.h.) and d � 218 m.
From measurements of both the isopycnal displacements and baroclinic energy flux,

the dominant disturbances to the background took the form of vertical mode-1 internal
tides at the semi-diurnal frequency of the lunar (M2) tide, ω � 0.000141 s−1. Satellite
altimetry and numerical modelling determined the horizontal wavelength of the M2
internal tide to be approximately 150 km (Rainville et al. 2010). The corresponding
horizontal wavenumber is k � 4.2 × 10−5 m−1.

The root-mean-square isopycnal displacements of the semi-diurnal tide was largest
between 400 and 700 m depth, with values � 25 m at the spring tides, and � 5 m at
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the neap tides (Rainville & Pinkel 2006). From this we estimate the half peak-to-peak
displacement to be A0 � 15 (±10) m.

We use these data to cast the key variables of our study as non-dimensional parameters
that will guide approximations used in the following theory section as well as setting
variables used in numerical simulations. The e-folding depth of the stratification relative
to the ocean depth is d/H � 0.04. The relative Coriolis and internal tide frequencies
are f /N0 � 0.003 and ω/N0 � 0.008, respectively. The relative horizontal wavenumber
is kH � 0.2. The half peak-to-peak amplitude relative to the ocean depth is A0/H �
0.003 (±0.002). Taken relative to the e-folding depth of the stratification, we have
α ≡ A0/d � 0.075(±0.050).

We are particularly interested in the behaviour of the internal tide as it travels south
towards the equator, where f = 0. Thus we neglect variations in bottom depth and assume
that kH � 0.2 is fixed. For simplicity, the equations are solved on the f -plane, with the
evolution of the internal tide examined separately at different fixed values of f between
0.003N0 and 0.

3. Theory

Here, we present the theory for superharmonic excitation induced by a horizontally
propagating, vertical mode-1 internal wave. After presenting the equations of motion,
the vertical structure equation and polarization relations for small-amplitude internal
waves are presented. Evolution equations are then derived for superharmonics excited
by triad interactions between internal modes. In this work, we ignore the self-interaction
of waves leading to an induced Eulerian flow (Bühler 2014; van den Bremer, Yassin &
Sutherland 2019). This is because, as is shown in our companion paper (Sutherland &
Yassin 2022), superharmonics are near-resonant with the parent wave, whereas the induced
Eulerian flow is not. Hence this flow has negligible influence upon the parent wave and its
superharmonics.

3.1. Equations of motion
We consider the motion of inviscid, non-diffusive, incompressible Boussinesq fluid on the
f -plane in a horizontally periodic channel bounded above and below by free-slip boundary
conditions. The waves in this domain are taken to be two-dimensional, having structure
in the along-wave (x) and vertical (z) directions. Although there can be motion in the
spanwise (y) direction, the fields of interest are independent of y.

The momentum equations are

Du
Dt

− fv = − 1
ρ0

∂p
∂x
,

Dv
Dt

+ fu = 0,
Dw
Dt

= − 1
ρ0

∂p
∂z

+ b, (3.1a–c)

in which D/Dt ≡ ∂t + u∂x + w∂z is the material derivative, u, v and w are the components
of velocity in the x, y and z directions, respectively, b = −gρ/ρ0 is the buoyancy, p and ρ
are the pressure and density fluctuations, respectively, and ρ0 is the characteristic density.
In these expressions, gravity (g) and the Coriolis parameter ( f ) are assumed to be constant.
From internal energy conservation, we have

Db
Dt

= −N2w, (3.2)

in which N2(z) = −(g/ρ0) dρ̄/dz is the squared buoyancy frequency, and ρ̄(z) is the
background density. In a uniformly stratified fluid, ρ̄ increases linearly with depth and N2
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is constant. In this study, N2 is taken to be z-dependent, as is necessary for the excitation
of superharmonics.

By assuming that the fluid is incompressible, the x- and z-velocity components can be
written in terms of the streamfunction ψ :

u = −∂ψ
∂z
, w = ∂ψ

∂x
. (3.3a,b)

Taking the curl of the x- and z-momentum equations gives an equation for the evolution of
the spanwise vorticity, ζ ≡ ∂zu − ∂xw:

Dζ
Dt

= −∂b
∂x

+ f
∂v

∂z
. (3.4)

These nonlinear equations can be manipulated to be written as a linear operator acting on
the streamfunction ψ , being forced by nonlinear terms (Wunsch 2017; Baker & Sutherland
2020):

Lψ = ∇ · F , (3.5)

in which
L ≡ ∂tt∇2 + N2∂xx + f 2∂zz (3.6)

and
F ≡ ∂t(uζ )− ∂x(ub)+ f ∂z(uv). (3.7)

Here, ∇2 = ∂xx + ∂zz is the Laplacian, and t, x and z subscripts denote the corresponding
partial derivatives. In solving the above equations, the domain is taken to be bounded
above and below by free-slip horizontal boundaries at z = 0 and z = −H.

3.2. Small-amplitude waves
Laying the groundwork for the nonlinear studies that follow, here we describe the initial
structure of the internal tide, which we refer to hereafter as the ‘parent wave’, and then
generalize this to describe the structure and polarization relations associated with the
parent wave and its superharmonics.

The parent wave has a prescribed horizontal wavenumber k, and vertical displacement
amplitude A0. Although in reality the internal tide is modulated spatially, it is unnecessary
to include these dynamics in the consideration of superharmonic excitation. The
streamfunction characterizing the parent wave is given by

ψ(1) = 1
2
ωd
k
α a1(T) ψ̂1(z) ei(kx−ωt) + c.c., (3.8)

in which c.c. denotes the complex conjugate, and a1(T) represents the slow time (T)
evolution of amplitude, to be discussed in detail below. Somewhat arbitrarily, we have
introduced d to be the characteristic vertical scale of variation of N2(z), so that α ≡ A0/d
is the non-dimensional initial amplitude of the parent wave, expressed as the maximum
vertical displacement relative to d. Substituting (3.8) into Lψ(1) = 0 gives an eigenvalue
problem for the vertical structure ψ̂1 and its associated frequency ω:

ψ̂ ′′
1 + k2 N2 − ω2

ω2 − f 2 ψ̂1 = 0, ψ̂1(−H) = ψ̂1(0) = 0. (3.9)

As justified below (see also Baker & Sutherland 2020), we consider only superharmonics
having the vertical structure of mode-1 waves for which ψ̂1(z) > 0 for −H < z < 0.
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Figure 1. (a) Profiles of exponential stratification with d = 0.04H and N = N0 at z0 = −0.019H (thick black
line) and of the same exponential stratification but with N = 0 above z = −0.019H (red line). (b) The
corresponding vertical structure functions of mode-1 waves. The structure was computed for k = 0.2H and
f = 0.003N0. In both cases, only the top 30 % of the full domain height is plotted.

These eigenfunctions are normalized so that max{ψ̂1} = 1. The vertical structure is plotted
in figure 1 as computed for waves in exponential stratification,

N2(z) = N2
0 e(z−z0)/d for −H ≤ z ≤ 0, (3.10)

and in exponential stratification that includes a surface mixed layer

N2(z) =
{

0 z0 < z ≤ 0,
N2

0 e(z−z0)/d −H ≤ z ≤ z0.
(3.11)

In both cases, we set d = 0.04H and z0 = −0.019H, equivalent to a 100 m deep mixed
layer in an ocean of depth H = 5200 m. These plots demonstrate that the vertical structure
is not particularly sensitive to the presence of a mixed layer. The peak in the vertical
structure occurs at depth −0.14H (approximately 700 m depth), which is comparable to
the maximum isopycnal displacements observed at the Farfield site south-west of Hawaii
(Rainville & Pinkel 2006).

The evolution of the parent wave is given by a1(T), in which T = εt describes the slow
time variation (ε � 1) of the parent wave due to interactions with the superharmonics
that it excites. With the streamfunction defined by (3.8), the initial non-dimensional
amplitude of the parent wave is a1(0) = 1. As in Baker & Sutherland (2020), we will
show that the small parameter ε is determined by the degree to which the forcing of the
2k-superharmonic by the parent wave at frequency 2ω is off-resonant with the natural
frequency ω2 of the mode-1 superharmonic.

The parent wave self-interacts through the nonlinear terms in (3.7) to excite a
superharmonic with wavenumber 2k. The parent wave and its 2k-superharmonic can then
interact creating higher superharmonics, modifying the amplitude of the parent wave and
superharmonics in time.

For convenience, we write the streamfunction for each of the parent (n = 1) and its
superharmonics (n = 2, 3, . . .) as

ψ(n) = 1
2
α
ωd
k
ψn ein(kx−ωt) + c.c., (3.12)

in which
ψn = an(T) ψ̂n(z), n = 1, 2, 3, . . . . (3.13)
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The nonlinear evolution of internal tides

Field Polarization relation

ψn anψ̂n

un −anψ̂
′
n

vn i f
nω anψ̂

′
n

wn inkanψ̂n

bn N2 k
ω

anψ̂n

ζn
k2

ω2
N2−f 2

ω2
n−f 2 ω

2
nanψ̂n

Table 1. Expressions for the polarization relations of the fields with horizontal wavenumber nk, n = 1, 2, . . ..
The actual fields are found by multiplying by α(ωd/k) exp[in(kx − ωt)]/2 and adding the complex conjugate.
In these expressions, primes on ψ̂n denote z-derivatives.

The vertical structure is given by the solution to the eigenvalue problem

ψ̂ ′′
n + (nk)2

N2 − ω2
n

ω2
n − f 2 ψ̂n = 0, ψ̂n(−H) = ψ̂n(0) = 0, n = 1, 2, 3, . . . , (3.14)

in which ωn is the natural frequency of a vertical mode-1 wave having wavenumber nk. As
in (3.8), the amplitude an(T) of the waves is assumed to depend upon a slow time scale
T = εt.

The expression for ψ(n) supposes that the frequency of the wave with wavenumber nk is
nω. This assumption is made because integer multiples of the parent wave frequency result
from wave–wave interactions in the nonlinear terms. However, for n > 1, the frequency nω
is not equal to the natural frequency ωn of the mode-1 wave with wavenumber nk, although
the difference in frequencies may be close, as demonstrated in the next subsection. It is
this slight mismatch that leads to off-resonant forcing of successive superharmonics.

Given the streamfunction of the parent wave and its superharmonics, the other fields
appearing in the nonlinear terms of F in (3.7) can be found from the polarization relations.
These expressions are listed in table 1.

3.3. Superharmonic cascade
Now consider the triad interaction in which a wave having wavenumber lk interacts with
a wave having wavenumber mk to force a disturbance with wavenumber nk, in which n =
l + m. Here, l, m and n can be negative as well as positive integers, with negative numbers
arising from the complex conjugate terms in the polarization relations. From (3.7), the
nonlinear forcing of nk-waves by mk- and lk-waves is given by

∇ · F ml = ∇ · [∂t(umζl)− ∂x(umbl)+ f ∂z(umvl)], |m|, |l| ≥ 1, (3.15)

in which n = m + l.
To find the response to the forcing, we use (3.6) to expand Lψ(n), with time derivatives

acting upon an(T) as well as the complex exponential. However, assuming that ε is small,
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the term ε2 d2an/dT2 can be neglected. Thus we find, for n = 1, 2, 3, . . .,

Lψ(n) � 1
2
α
ωd
k
(nk)2

N2 − f 2

ω2
n − f 2

[
2inωε

dan

dT
+ [(nω)2 − ω2

n]an

]
ψ̂n ein(kx−ωt). (3.16)

As in Baker & Sutherland (2020), we recognize that ω2 � 2ω, and so define the slow time
evolution parameter ε to be

ε ≡ 4ω2 − ω2
2

4ω2 . (3.17)

For convenience, we make the following definition:

B1 = 0, Bn = 2
n(n − 1)

n2ω2 − ω2
n

4ω2 − ω2
2
, n = 2, 3, . . . . (3.18a,b)

In particular, B2 = 1 and empirical calculations show that Bn ∼ 1 for sufficiently small
n ≥ 2 and f /N0 not negligibly small. Explicit approximate analytical expressions for Bn
are given in Appendix A.

With these definitions, (3.16) becomes

Lψ(n) � α
ωd
k
(in3k2ωε)

N2 − f 2

ω2
n − f 2

[
dan

dT
− i(n − 1)ωBnan

]
ψ̂n ein(kx−ωt). (3.19)

Equating (3.15) and (3.19), we get the following equation for the forcing of waves having
wavenumber nk:[

dan

dT
− i(n − 1)ωBnan

]
(N2 − f 2)ψ̂n = − i

ε

ω2
n − f 2

n3kω2d
e−in(kx−ωt) α−1

∑
m+l=n

∇ · F ml.

(3.20)
In the sum, n ≥ 1, m ≥ l, and both m and l are non-zero integers, since here we
are neglecting the generation of and interactions with the induced Eulerian flow. By
construction, the complex exponentials in front of and (implicitly) within the sum cancel
out.

While the vertical structure of the forcing on the right-hand side can be seen as a
superposition of vertical modes, the response to this forcing is dominantly a mode-1
disturbance (Baker & Sutherland 2020). The forcing of the mode-1 wave is found using the
orthogonality of modes under the weight N2 − f 2. Thus multiplying both sides of (3.20)
by ψ̂n and integrating in z from −H to 0 gives the ordinary differential equation governing
the time evolution of an(T). The result is a hierarchy of equations written explicitly in
terms of the amplitude functions an:

dan

dT
− i(n − 1)ωBnan = −iα

ω

ε

∑
m+l=n,m≥l

Emlamal, n = 1, 2, 3, . . . , (3.21)

in which l is non-zero and a−l = a	l , the complex conjugate of al. The coefficients Eml are
real and positive constants. Explicitly, for m = l (and n = 2m) these are

Emm = 1
8n

d
ω2

n − f 2

ω2

[∫ 0

−H
(N2 − f 2)ψ̂2

n dz

]−1

×
{(

1 + 1
2

nmω2 + f 2

ω2
m − f 2

)∫ 0

−H

dN2

dz
ψ̂2

mψ̂n dz

}
, (3.22)
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and for m > l (and n = m + l),

Eml = 1
4n

d
ω2

n − f 2

ω2

[∫ 0

−H
(N2 − f 2)ψ̂2

n dz

]−1

×
{[

1 + ml
n2

(
nlω2 + f 2

ω2
l − f 2

+ nmω2 + f 2

ω2
m − f 2

)]∫ 0

−H

dN2

dz
ψ̂mψ̂lψ̂n dz

+ ω2

n

(
m2

ω2
m − f 2 − l2

ω2
l − f 2

)∫ 0

−H
(N2 − f 2)(lψ̂ ′

mψ̂lψ̂n − mψ̂mψ̂
′
l ψ̂n) dz

+ f 2 1
n2

∫ 0

−H
l(m − 2l)

N2 − ω2
l

ω2
l − f 2

ψ̂ ′
mψ̂lψ̂n + m(l − 2m)

N2 − ω2
m

ω2
m − f 2 ψ̂mψ̂

′
l ψ̂n dz

+ f 2 ml
n2

∫ 0

−H

N2 − ω2
l

ω2
l − f 2

ψ̂mψ̂
′
l ψ̂n + N2 − ω2

m

ω2
m − f 2 ψ̂

′
mψ̂lψ̂n dz

}
, (3.23)

in which ω−l = ωl and ψ̂−l = ψ̂l.
The expressions for the interaction coefficients simplify significantly if we assume that

the primary wave and the most significant excited superharmonics (n ≤ n	) can all be
treated as long waves, with (n	k)H � 1. Their derivations are given in Appendix A. In
particular, this analysis shows that, independent of f , the dominant contribution to Eml
comes from the term involving dN2/dz, and that Eml � 2Ejj if m > l and m + l = 2j.

Table 2 lists values of these coefficients as they depend upon the characteristic
wavenumber of the internal tide, the e-folding depth of the stratification and the relative
Coriolis parameter. The coefficients Eml change little with the variations in kH, d/H and
f /N0, which is consistent with the long-wave approximations (A2) and (A3). The most
significant changes occur for ε, which decreases rapidly as f /N0 goes to zero. Consistent
with (A7), the coefficient B3 is close to 8/9 for sufficiently large f , but B3 � 2 if f = 0.

The coefficients ε, Bn and Eml were also computed for stratification having a surface
mixed layer given approximately by (3.11), though to avoid the singularity in dN2/dz,
a hyperbolic tangent function was used to connect the uniform-density layer to the
exponential stratification over a distance 0.1z0. The values were found to differ by less than
3 % of the values in the table, consistent with a surface mixed layer having little effect upon
the vertical structure function, as shown in figure 1. The coefficients were more sensitive
to changing the stratification at depth by weakening the exponential decay at depth of the
buoyancy frequency to be more representative of that in the abyss. A detailed exploration
of the influence of the structure of the stratification upon the interaction coefficients goes
beyond the scope of our present study.

In the special case of the self-interaction of the parent, as determined by the coupling
coefficient E11, (3.22) shows that this leads to superharmonics only if the fluid is
non-uniformly stratified, as has been noted previously (Wunsch 2015, 2017; Sutherland
2016; Varma & Mathur 2017; Baker & Sutherland 2020).

Baker & Sutherland (2020) examined the truncated system of equations involving
only the parent self-interaction creating a 2k-superharmonic, and the 2k-superharmonic
interacting with the parent so as to modify the parent. Respectively, these are given
explicitly by

da2

dT
− iωa2 = −iα

ω

ε
E11a2

1,
da1

dT
= −iα

ω

ε
E2,−1a2a	1. (3.24a,b)
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B.R. Sutherland and M.S. Dhaliwal

kH d/H f /N0 ε B3 E2,−1 E3,−2 E1,1 E3,−1 E2,1

0.1 0.04 0.010 0.65 0.89 0.31 0.33 0.31 0.46 0.79
0.1 0.04 0.004 0.38 0.89 0.34 0.35 0.34 0.60 0.95
0.1 0.04 0.003 0.27 0.89 0.36 0.36 0.36 0.65 1.01
0.1 0.04 0.002 0.15 0.89 0.37 0.38 0.37 0.71 1.08
0.1 0.04 0.001 0.045 0.91 0.39 0.39 0.38 0.76 1.14
0.1 0.04 0 0.0009 1.99 0.39 0.39 0.39 0.78 1.17
0.2 0.04 0.010 0.46 0.89 0.33 0.35 0.33 0.56 0.89
0.2 0.04 0.004 0.15 0.91 0.37 0.38 0.37 0.71 1.07
0.2 0.04 0.003 0.096 0.92 0.38 0.38 0.38 0.74 1.10
0.2 0.04 0.002 0.047 0.96 0.39 0.39 0.38 0.76 1.13
0.2 0.04 0.001 0.015 1.14 0.39 0.39 0.39 0.78 1.15
0.2 0.04 0 0.0035 1.97 0.39 0.39 0.39 0.78 1.16
0.2 0.08 0.010 0.27 0.90 0.37 0.38 0.37 0.67 1.03
0.2 0.08 0.004 0.067 0.98 0.40 0.40 0.39 0.77 1.15
0.2 0.08 0.003 0.041 1.04 0.40 0.40 0.40 0.79 1.17
0.2 0.08 0.002 0.022 1.17 0.40 0.40 0.40 0.80 1.18
0.2 0.08 0.001 0.010 1.52 0.40 0.41 0.40 0.80 1.19
0.2 0.08 0 0.006 1.96 0.40 0.41 0.40 0.81 1.19

Table 2. Non-dimensional coefficients used to compute the evolution of the parent wave with horizontal
wavenumber k and its first two superharmonics, 2k and 3k (n	 = 3). The background N2 profile is exponential,
given by (3.10). In all cases, z0 = −0.019H and the e-folding depth of the stratification is d = 0.04H or 0.08H,
as indicated. The Coriolis parameter, given relative to N0 � 0.017 s−1, ranges from values near Hawaii to f = 0
at the equator as well as the case f /N0 = 0.01.

If the parent wave amplitude is sufficiently small, then the influence of the
superharmonic upon the parent can be neglected, in which case a1(T) = 1, and the
first equation gives a2(T) = E11(α/ε)[1 − exp(iωT)]. Recalling that T = εt, this shows
that the superharmonic grows and decays periodically with frequency εω. Also, the
2k-superharmonic grows to amplitude ∝ α/ε with respect to the parent. So the truncation
of equations leading to (3.24a,b) is valid provided that α/ε � 1 (Baker & Sutherland
2020).

If α/ε � 1, then the 2k-superharmonic can grow to non-negligible amplitude with
respect to the parent. If the relative amplitude is fixed, but α/ε is large due to ε being
small, then the 2k-superharmonic would remain large for longer times owing to the
smaller beat frequency εω. Thus, in this circumstance, it is anticipated that the parent
and 2k-superharmonic should excite higher superharmonics.

Such considerations are not just a theoretical exercise. Although realistic internal tides
have small amplitude, circumstances can exist where α/ε � 1 as a consequence of ε being
smaller than α. This is particularly likely near the equator where the cut-off frequency f
in the dispersion relation goes to zero so that, approaching the limit of very long waves
(kH → 0), ω ∝ k. Hence 2ω(k) = ω2 ≡ ω(2k), in which case ε = 0. This is illustrated in
figure 2, for which the dispersion relation is computed for mode-1 waves in exponential
stratification with e-folding depth d = 0.04H. At latitudes where f /N0 = 0.008, ω2 is
moderately offset from 2ω so that ε � 0.18 for kH = 0.2. However, at the equator there is
near perfect resonance between the parent mode forcing frequency at 2ω and the natural
frequency of the 2k-superharmonic, as indicated by the low value of ε � 0.007. Even for a
parent tide with a relatively small vertical displacement amplitude A0 = 5 m in an ocean of
depth H � 5 km and stratification with e-folding depth d � 200 m, the non-dimensional
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Figure 2. For mode-1 waves in stratification given by (3.10) with d = 0.04H and z0 = −0.019H, plots of
the dispersion relation and comparison of 2ω with ω2, with (a) f = 0.003N0, and (b) f = 0. Plots of the
corresponding values of ε are shown in (c) for f = 0.003N0 and f = 0.
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N0t

5 × 104
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5 × 104
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(b)(a) (c)

(d ) ( f )

Figure 3. Time evolution of the amplitudes an, shown for the parent (n = 1, solid black lines) and the first five
superharmonics (n = 2, dark blue; n = 3, medium blue; n = 4, light blue; n = 5, dashed green; n = 6, dashed
pale green), computed for (a–c) f = 0.003N0 (ε � 0.096), and (d–f ) f = 0, (ε � 0.0035), and for amplitudes
(a,d) α = 0.025, (b,e) α = 0.075, and (c, f ) α = 0.125. In all cases, k = 0.2H and the background stratification
is exponential with N = N0 at z0 = −0.019H and d = 0.04H, and the solutions of (3.21) were found by setting
a truncation level of n	 = 20.

amplitude α � A0/d = 0.025 is larger than ε. This implies that progressively higher
superharmonics may be excited as internal tides approach the equator.

For given stratification, Coriolis parameter and parent wave horizontal wavenumber, the
coefficients in (3.21) can be evaluated up to some truncation level n ≤ n	. There are then
n	 coupled equations involving terms with both m ≤ n	 and |l| < n	. For α/ε � 1, it is
sufficient to choose n	 = 2, leading to the pair of equations given by (3.24a,b). For the
studies below of the internal tide approaching the equator, α/ε can be much larger than
1. In these cases, convergence of solutions is found by including superharmonics up to
n	 = 20.

The system of ordinary differential equations was solved by straightforward time
integration with equally spaced time steps ΔT . With ΔT = 0.001 and n	 = 20, MATLAB
integrated the equations over the time of one beat period 2π/(εω) in � 10 s of real time
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on a single 2.7 GHz core. After the solutions were found, the results were rescaled to
time t = T/ε. The results are shown in figure 3 for cases in which the Coriolis parameter
is representative of that near Hawaii and at the equator. Amplitudes are based upon
observations of the tide between the neap and spring cycles.

For the smallest amplitude case with f = 0.003N0, only superharmonics with n � 3
grow to significant amplitude, as expected from the small value of α/ε � 0.26. These
grow and decay in amplitude with the predicted beat period 2π/(εω) � 7700/N0. The
parent wave amplitude barely deviates from its initial value in this case. In all the other
cases considered, successive superharmonics are excited, with these growing to significant
amplitude while the parent wave amplitude decreases substantially. Notably, the cascade is
not monotonic with energy progressively passing to higher superharmonics. Particularly in
cases with f = 0, high-order superharmonics rapidly grow to amplitudes larger than a2, but
the 2k-superharmonic can then dominate once more (for example, at time N0t � 40 000 if
α = 0.025, as shown in figure 3(d), and at time N0t � 23 000 if α = 0.075, as shown in
figure 3e).

It may seem that the competing superharmonics would manifest as a form of wave
turbulence. However, as shown below, the superposition of superharmonics in cases with
α/ε � 1 results in the manifestation of a coherent, though not steady, solitary wave train.
Finally, we note that the truncated system of equations leads to an energy conservation
relation, at least for n	 ≤ 3. As shown in Appendix B, even as superharmonics grow at the
expense of the parent wave, the sum of the squared amplitudes of all the waves remains
close to |a1(T = 0)|2 = 1.

4. Fully nonlinear solutions

For the purposes of testing the above prediction for the evolution of the internal tide,
we performed fully nonlinear numerical simulations and ran diagnostics to compare the
evolution of the primary wave amplitude and the amplitudes of each superharmonic.

The fully nonlinear equations were solved using the code described in detail in
Sutherland (2016). The two-dimensional rotating Boussinesq equations were solved in
a rectangular domain with horizontally periodic boundary conditions, and free-slip
conditions at the top and bottom of the domain. Explicitly, the code solved the time
evolution equations for spanwise vorticity (ζ ), spanwise velocity (v), and the buoyancy
b:

ζt = −uζx − wζz − bx + fvz + Re−1 Dζ, (4.1)

vt = −uvx − wvz − fu + Re−1 Dv, (4.2)

bt = −ubx − wbz − N2b + Re Pr−1 Db, (4.3)

which are extensions, respectively, of (3.4), (3.1b) and (3.2) to include viscous and
diffusive terms. The fields were discretized vertically on an evenly spaced grid, and
horizontally in terms of their horizontal Fourier components. The diffusion operator D
is a Laplacian operator acting only upon horizontal Fourier components with horizontal
wavenumbers greater than 32k, in which k is the prescribed horizontal wavenumber of the
parent wave. The Reynolds number Re = H2N0/ν was set to 105, and the Prandtl number
Pr was set to 1. Although these values are smaller than realistic oceanographic values,
they serve to damp numerical noise. Because no diffusivity was applied to disturbances
with wavenumbers smaller than 32k, the parent wave and superharmonics that grow to
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The nonlinear evolution of internal tides

significant amplitude were not attenuated. At any time, the streamfunction was found by
solving ζ = −∇2ψ and, from this, u and w were found using (3.3a,b).

The background squared buoyancy frequency in all simulations presented here was
exponential, given by (3.10) with d/H = 0.04 and z0 = −0.019H. The code worked in
non-dimensional variables, with length and time scales set effectively by prescribing
H = 1 and N0 = 1. However, for clarity, all variables below are given in units of H and
N0.

In the simulations presented here, the horizontal wavenumber was prescribed by
kH = 0.2, and the Coriolis parameter was given by either f = 0.003N0 or f = 0. For
given k and f , the vertical structure of the primary wave and its frequency was found
by using a Galerkin method to solve (3.9), extracting the lowest frequency solution that
corresponds to a mode-1 wave. The polarization relations were then used to initialize the
code with the corresponding spanwise vorticity, spanwise velocity and buoyancy fields
for one wavelength of the parent wave. In the simulations presented here the maximum
vertical displacement amplitude, A0, was set to be A0 = 0.001H, 0.003H and 0.005H,
corresponding to α = 0.025, 0.075 and 0.125, respectively.

We begin by examining the evolution of a relatively small amplitude internal tide
with A0 = 0.001H in background rotation representative of that near Hawaii, for which
f = 0.003N0 (for dimensional units, see § 2). For the primary wave with kH = 0.2,
its frequency is ω � 0.0085N0, and from the frequency of the 2k-superharmonic, we
have ε = 0.096. Because α/ε ∼ 0.26 is somewhat smaller than 1, only the lowest
superharmonics are expected to grow to significant amplitude, and they are anticipated
to beat with a period 2π/(εω) � 7.7 × 103/N0. With N0 = 0.017 s−1, this corresponds to
a time of 5.2 days.

The results of the simulation and comparisons with theory are shown in figure 4.
Here we choose to represent the results in terms of the horizontal velocity. A snapshot
of the total horizontal velocity is shown at time N0t = 4000, corresponding to 2.7
days (figure 4a). This time is approximately half the predicted beat period of the
superharmonics. To reveal more clearly the superharmonics, figure 4(b) plots the
horizontal velocity field after subtracting the signal from the primary wave. The snapshots
show that the horizontally periodic structure of the parent wave is slightly modulated by
the growth of superharmonics. At the surface, the positive (waveward) flow of the total
horizontal velocity (figure 4a) extends over a shorter horizontal extent than the negative
flow, and it is larger in magnitude than the negative flow. Primarily, this is a consequence
of the positive flow of the 2k-superharmonic interfering constructively with the positive
flow of the parent wave, and interfering destructively with its negative flow.

By Fourier decomposing the horizontal flow at the surface at each time, we compare the
time evolutions of the simulated amplitude of the primary wave and its superharmonics
with those predicted by theory. Explicitly, from the predicted amplitudes, an(T) = an(εt),
the magnitude of the surface flow associated with disturbances of horizontal wavenumber
nk is ‖un‖ = α(ωd/k) |ψ̂ ′(0)| an. Figure 4(c) shows excellent agreement between the
simulated and predicted amplitudes of the primary wave and its first two superharmonics.
Unlike the theory, the simulations exhibited small-scale oscillations about the predicted
parent wave amplitude. These were due predominantly to weak interactions between the
parent wave and the induced Eulerian flow, which has a mixed mode-1/mode-2 structure
(Sutherland & Yassin 2022). The results show that for the moderately small value of α/ε
in this simulation, only the 2k- and 3k-superharmonics grow to significant amplitude, and
the amplitude of the parent wave decreases only slightly by the time the superharmonics
have grown to their largest amplitude at N0t � 4000.
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Figure 4. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.689. From a simulation with
f = 0.003N0 and A0 = 0.001H (α = 0.025), snapshots at N0t = 4000 of (a) the total horizontal velocity
field and (b) the horizontal velocity field with the parent wave removed. (c) The simulated (dotted lines)
and predicted (solid lines) peak horizontal velocity at z = 0 associated with the parent wave (black) and
superharmonics with n = 2 (blue), n = 3 (red) and n = 4 (green). In all cases, kH = 0.2 and the background
stratification is exponential with N = N0 at z0 = −0.019H and d = 0.04H.

By increasing the parent wave amplitude or by considering the wave evolution at
lower latitudes, hence smaller f and larger ε, higher superharmonics grow to significant
amplitude and the parent wave amplitude decreases non-negligibly. This is shown in the
results of five simulations plotted in figure 5. Here, only the total horizontal velocity
field is shown in the left-hand snapshots. The right-hand plots show the time evolution
of the peak horizontal velocity at z = 0 for the parent wave and for the 2k-, 3k- and
4k-superharmonics. Higher superharmonics also grow to significant amplitude, but these
are not plotted. Focusing on the right-hand plots, we see that the prediction of theory
agrees well with the results of numerical simulations. For α/ε � 1, a superharmonic
cascade becomes more evident with higher superharmonics being excited and the parent
wave amplitude decreasing significantly. In the cases with f = 0, ω � 0.0080 and ε �
0.0035, the predicted beat period resulting from interactions between the parent wave
and the 2k-superharmonic alone is 2π/(εω) � 2 × 105/N0 (equivalent to � 136 days).
Although the range of times examined in figures 5(c–e) is much smaller than the beat
period, the superharmonics are observed to grow to substantial amplitude owing to the
large values of α/ε.

In all cases with α/ε � 1, the superposition of superharmonics upon the parent wave
eventually results in the formation of a solitary wave train. This is characterized by a
sequence of localized disturbances with enhanced positive flow near the surface. As shown
in the next section, each localized disturbance is associated with a wave of depression,
where the isopycnal displacement has maximum downward extent. More waves in the
wave train occur and develop more rapidly if α/ε is larger. Thus although multiple
superharmonics are excited, their phase relationship results in a coherent wave pattern
rather than devolving into a random wave field. Such patterns have also been produced
through separate models based upon extensions of shallow-water theory. The comparison
between our theory and the shallow-water models is presented next.

5. Comparison with shallow-water theory

Several studies have examined the nonlinear evolution of the internal tide through
extensions of shallow-water theory. Here, we compare the predictions of our model with
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Figure 5. (There are supplementary movies for (b,e).) As in figures 4(a,b), showing (left) snapshots of the total
horizontal velocity field at N0t = 4000 and (right) the simulated (dotted) and predicted (solid) time evolutions
of the peak surface horizontal velocity for the parent and first three superharmonics for five different cases,
with: (a) f = 0.003N0, A0 = 0.003H, α/ε � 0.78; (b) f = 0.003N0, A0 = 0.005H, α/ε � 1.30; (c) f = 0,
A0 = 0.001H, α/ε � 7.1; (d) f = 0, A0 = 0.003H, α/ε � 21; and (e) f = 0, A0 = 0.005H, α/ε � 36.

two models, namely the Ostrovsky (hereafter KdV-f) equation (Ostrovsky & Stepanyants
1989) and the Miyata–Choi–Camassa equations (Miyata 1988; Choi & Camassa 1999),
adapted to include the influence of rotation (Helfrich & Grimshaw 2008). The latter model
we refer to hereafter as the MCC-f equations.

The KdV-f equation is an extension of the Korteweg–de Vries (KdV) equation that
includes the influence of background rotation. Following the notation used above, it is
assumed that the vertical displacement field associated with the waves is separable, so
ξ(x, z, t) = η(x, t) ψ̂(z), in which η satisfies (Ostrovsky & Stepanyants 1989)

∂

∂x

[
∂η

∂t
+ c0

∂η

∂x
+ αkη

∂η

∂x
+ βk

∂3η

∂x3

]
= f 2

2c0
η. (5.1)
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Here, c0 is the long-wave speed found in a system with zero background rotation, and
αk and βk are parameters respectively representing the importance of nonlinearity and
non-hydrostatic effects. These are determined explicitly in terms of the vertical structure
function ψ̂ (Benney 1966; Grimshaw & Helfrich 2012). Explicitly, in the Boussinesq
approximation, we have

αk = 3
2

c0

∫
(ψ̂ ′)3 dz∫
(ψ̂ ′)2 dz

, βk = 1
2

c0

∫
ψ̂2 dz∫
(ψ̂ ′)2 dz

. (5.2a,b)

Given that the scale of η is A0 = αd, the scale of the nonlinear term relative to the
advection term is dααk/c0 ∼ α, and the scale of the non-hydrostatic term relative to
the advection term is βkk2/c0 ∼ d2k2. In these approximations, it is assumed that ψ̂ ′
scales as 1/d, the inverse characteristic depth of the stratification. The scale of the term
representing the influence of rotation relative to advection is f 2/(c0k)2 ∼ ( f /ω)2. The
approximations leading to (5.1) assume that these three scales are in balance and small:
α ∼ (dk)2 ∼ ( f /ω)2 � 1.

The MCC-f equations have been formulated for a two-layer system, in which the
upper layer has depth h1, and the density jump between the lower and upper layer is
represented by the reduced gravity g′. The coupled equations are cast in terms of the
upper-layer depth in the presence of an interfacial wave, h = h1 − η, the horizontal
velocity differences between the lower and upper layers in the along-wave direction,
U = u2 − u1, and across-wave direction, V = v2 − v1, and in terms of the barotropic
transport in the across-wave direction, Q = v1h + v2(H − h). The barotropic transport
in the along-wave direction is assumed to be zero: u1h + u2(H − h) = 0. Explicitly, the
MCC-f equations are (Helfrich & Grimshaw 2008)

∂h
∂t

= ∂

∂x

[
Uh

(
1 − h

H

)]
, (5.3)

∂U
∂t

= ∂

∂x

[
1
2

U2
(

1 − 2
h
H

)
+ g′h

]
+ fV + (D2 − D1), (5.4)

∂V
∂t

= −U
[

V
1
H
∂h
∂x

− ∂V
∂x

(
1 − 2

h
H

)
+ ∂Q
∂x

+ f
]
, (5.5)

∂Q
∂t

= − ∂

∂x

[
UVh

(
1 − h

H

)]
. (5.6)

Here, the non-hydrostatic terms are represented by D1 and D2:

Di = 1
hi

∂

∂x

[
1
3

h3
i

(
∂2ui

∂x ∂t
+ ui

∂2ui

∂x2 −
(
∂ui

∂x

)2
)]

, i = 1, 2, (5.7)

in which h2 = H − h1.
In order to compare our model results, for which the background stratification is

continuous, to this two-layer model, we use (5.2a,b), in which the vertical structure
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The nonlinear evolution of internal tides

function is that for a two-layer stratification. Thus we find

c0 =
√

g′H̄, αk = −3
2

c0
1
H̄

(
1 − 2

h1

H2L

)
, βk = 1

6
c0H2LH̄, (5.8a–c)

in which H̄ = h1(H2L − h1)/H2L, and H2L is the total equivalent depth. These equations
can be inverted so that, for given c0, αk and βk (determined from a system with continuous
stratification), we determine the equivalent total depth and upper-layer depth, given
respectively by

H2L = 4
αkβk

c2
0

[
1 +

√
1 + 3c3

0

2α2
kβk

]
, (5.9)

h1 = 2
αkβk

c2
0

+ H2L/2. (5.10)

For proper comparison with our theory and the KdV-f equation, the equivalent reduced
gravity should be defined based upon the shallow-water speed cf , determined from the
dispersion relation that includes the influence of background rotation. Explicitly, cf =
(ω2 − f 2)1/2/k and g′ = c2

f /H̄.
We solved the KdV-f equation by Fourier transforming η in x, and then time-evolving

the Fourier amplitudes. The MCC-f model was discretized in space with x-derivatives
approximated by centred second-order finite differences. Both models were advanced
in time using a fourth-order Adams–Bashforth–Moulton predictor–corrector scheme.
The corrector step was iterated until the magnitude of the relative difference between
successive fields was less than a tolerance of 10−6. These equations were solved in
MATLAB. Integrating in time up to N0t = 5000 was accomplished in seconds using
our equations, in minutes for the KdV-f equation, and in about an hour for the MCC-f
equations.

We compare the predictions of our theory with the KdV-f and MCC-f predictions for
the two cases considered in figures 5(a,d), for which A0 = 0.003H, and f = 0.003N0 and
f = 0. For the exponential stratification prescribed for those cases, the corresponding
vertical structure functions give the coefficients of the KdV-f equation to be c0 �
0.040N0H, αk � −0.80N0, βk � 0.00060N0H3 and f 2/(2c0) � 0.00011N0 in the case
f = 0.003N0. The equivalent parameters for the two-layer system of the MCC-f equations
are H2L � 1.31H, h1 � 0.073H and g′ � 0.023N2

0H.
The predictions of the three models are shown in figure 6. For both cases with f =

0.003N0 and f = 0, there is good qualitative agreement between the three models. All
show the emergence of a single localized wave of depression in the case with f = 0.003N0,
and a solitary wave train in the case with f = 0. Quantitatively, the MCC-f model gives the
poorest agreement, predicting that the waves are narrower with more waves in the wave
train.

Despite these minor discrepancies, it is reassuring that our superharmonic cascade
model reproduces the results of the well-established shallow-water models when the
parameters governing the amplitude and the importance of non-hydrostatic effects are in
the appropriate regime.

6. Conclusion

We have extended the model of Baker & Sutherland (2020) to include resonances between
a vertical mode-1 internal tide and an arbitrary number of its mode-1 superharmonics.
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N0t = 3000
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−1
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−3 0 3 −3 3 −30 0 3

(e)

(b)(a) (c)

(d ) ( f )

Figure 6. Comparison of vertical displacement predicted by (a,d) the superharmonic cascade (SHC) model,
(b,e) the KdV-f equation, and (c, f ) the MCC-f model, in cases with kH = 0.2, A0 = 0.003 and (a–c) f =
0.003N0, and (d–f ) f = 0. For SHC and KdV-f, the background stratification is exponential with N = N0 at
z0 = −0.019H and d = 0.04H. For MCC-f, the equivalent parameters of the two-layer system are computed
from the corresponding coefficients computed for the KdV-f equation. In all cases, the displacement is plotted
at evenly spaced times, as indicated in (d), with successive times being vertically offset. The plots are given in
a frame of reference moving with the phase speed cp of the parent wave.

The key parameter determining how many superharmonics contribute to the nonlinear
evolution of the tide is given by α/ε, which measures the relative amplitude of the
parent wave to the relative beat frequency of the parent wave and its 2k-superharmonic. If
α/ε � 0.1, then superharmonics greater than 2k play a non-negligible role in the evolution
of the tide. A periodic growth and decay of low superharmonics occurs if α/ε � 1. For
larger α/ε, a superharmonic cascade occurs, resulting in the internal tide transforming
into a internal solitary wave train. The structure of this wave train is consistent with
the predictions of well-established shallow models, KdV-f and MCC-f, that include weak
non-hydrostatic effects and the influence of rotation.

Our model provides new physical insight into the processes leading to internal solitary
wave trains. Generally, with the main assumption being that the parent wave and
all superharmonics have a vertical mode-1 structure, the system of coupled ordinary
differential equations predicts the fully nonlinear evolution of the internal tide with
no restrictions on the degree to which the initial wave is non-hydrostatic (through
the parameter βkk2/c0 ∼ (kd)2), large-amplitude (through the parameter α = A0k) or
influenced by rotation (through the parameter f 2/(c0k)2 ∼ ( f /ω)2). The solution of
the coupled equations agrees very well with the results of fully nonlinear numerical
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The nonlinear evolution of internal tides

simulations, demonstrating that it is reasonable to restrict superharmonic disturbances
to have vertical mode-1 structure. Furthermore, being a system of coupled ordinary
differential equations, not involving spatial derivatives, solutions can be found quickly
on a single processor in comparison with the KdV-f and MCC-f models.

Our study was focused upon examining a parameter regime consistent with observations
of the M2 internal tide that emanates south-westward from Hawaii toward the equator.
Though we could also have applied to the model to study the well-documented formation
of internal solitary wave trains in the South China Sea (e.g. see Alford et al. 2010; Li &
Farmer 2011), our interest here is in the increasing influence of nonlinear effects upon the
evolution of the internal tide as it approaches the equator. Using parameters based upon
observations, we predict that the internal tide near Hawaii would be only weakly perturbed
by superharmonics during the neap tide, but a solitary wave would develop during the
spring tide. This would develop in a time of the order of 4000/N0 � 3 days. In that
time, the tide would have propagated at the group velocity cg � 0.037HN0 � 3.3 m s−1, a
distance of � 780 km. This distance is sufficiently small to justify the approximation used
in theory and simulations to predict the emergence of solitary waves on the f -plane.

Of course, other than the assumption that the disturbances have a mode-1 vertical
structure, there are several other simplifying assumptions of the model: it is restricted to
two dimensions (being spanwise-invariant), it ignores background currents, the domain
depth and Coriolis parameter are assumed to be constant, and the parent wave is
periodic. Future theoretical work will relax the assumption of constant H and f using
the Wentzel–Kramers–Brillouin (WKB) approximation, and the influence of the finite
spanwise extent of internal tide beams will also be considered. In a companion paper,
we relax the assumption of periodicity of the internal tide to examine a spatially
modulated internal tide both in theory and simulations (Sutherland & Yassin 2022).
Therein it is shown that the self-interaction of the internal tide and its superharmonics
leads to a near-steady forcing of an induced Eulerian flow whose magnitude remains
sufficiently small to have negligible influence upon the evolution of the internal tide and
its superharmonics.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.689.

Funding. This research was funded in part by Natural Sciences and Engineering Research Council (NSERC)
of Canada. Simulations were made possible through a resource allocation from Compute Canada applied to the
supercomputers ‘graham’ and ‘cedar’.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Bruce R. Sutherland https://orcid.org/0000-0002-9585-779X.

Appendix A. Long-wave approximation

In developing the theory in § 3 for the excitation of superharmonics and their interactions,
the only approximation made was that the primary wave and superharmonics all had a
mode-1 vertical structure. No restriction was put on the frequency of the waves relative
to f or N0. Because our motivation is to examine the evolution of an internal tide, for
which kH � 1 and ω � N0, we may further simplify the expressions for the interaction
coefficients (3.22) and (3.23) as well as the slow phase-shift coefficients Bn given by
(3.18a,b).

If f = 0, then the vertical structure ψ̄ of long waves is given by the solution for
mode-1 waves of the eigenvalue problem ψ̄ ′′ = −(1/c2)N2ψ̄ in which the eigenvalue is
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the long-wave speed c. This follows by taking f = 0 in (3.9) and assuming ω � N0. The
corresponding dispersion relation is

ω2 � c2k2, (A1)

for kH � 1. Putting f = 0 in (3.22) and using ωn = c(nk), we find

Emm � n
4

d

[∫ 0

−H
N2ψ̄2 dz

]−1 [∫ 0

−H

dN2

dz
ψ̄3 dz

]
, (A2)

in which n = 2m. Similarly for m > l, using the approximate dispersion relation in (3.23)
and using n = m + l, we find

Eml � n
2

d

[∫ 0

−H
N2ψ̄2 dz

]−1 [∫ 0

−H

dN2

dz
ψ̄3 dz

]
. (A3)

This is just twice the value of Emm for the same value of n.
If |f | > 0, then the vertical structure of long waves satisfies ψ̄ ′′ = −κ2(N2/f 2 − 1)ψ̄ ,

and the dispersion relation is

ω2 � f 2(1 + k2/κ2), (A4)

in which κ is the eigenvalue. We can then simplify (3.22) by writing ω2
n − f 2 �

f 2(nk)2/κ2. If we further assume ‖N‖ � f , then the self-interaction coupling coefficients
simplify to

Emm � n
4

d
1

1 + k2/κ2

[∫ 0

−H
N2ψ̄2 dz

]−1 {(
k2

κ2 + n2 + 2
2n2

)[∫ 0

−H

dN2

dz
ψ̄3 dz

]}
.

(A5)
To estimate the Eml interaction coefficients, we further assume that ωn � N0
for the nk-superharmonics of interest. Hence we can write (N2 − ω2

n)/(ω
2
n − f 2) �

(N2/f 2)(nk)2/κ2. The expression in (3.23) thus simplifies to

Eml � n
2

d
1

1 + k2/κ2

[∫ 0

−H
N2ψ̄2 dz

]−1 {(
k2

κ2 + n2ml + m2 + l2

2n2ml

)[∫ 0

−H

dN2

dz
ψ̄3 dz

]}
.

(A6)
For the exponential stratification given by (3.10) with d = 0.04H and z0 = −0.019H,

the empirical solution of the eigenvalue problem gives κH � 25 f /N0 for f � 0.003N0.
Hence at these low latitudes, (k/κ)2 � 7.1 � 1 for a primary wave with kH = 0.2. This
allows us to approximate further (A5) and (A6), resulting in the expressions found for
f = 0 given respectively by (A2) and (A3).

In the case with |f | > 0, we can use the dispersion relation (A4) to find approximate
expressions for the time phase-shift coefficients Bn in (3.18a,b). Explicitly,

Bn � 2
3

n + 1
n

, n = 2, 3, . . . . (A7)

This decreases from 1 to 2/3 as n increases from 2.
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Appendix B. Energy conservation

As shown by Baker & Sutherland (2020), the coupled pair of equations given by (3.24a,b)
leads to an energy conservation relation

|a1|2 + E2,−1

E1,1
|a2|2 = const. (B1)

Similarly, the system of equations truncated at n	 = 3 leads to the following conservation
law:

|a1|2 + E2,−1

E1,1
|a2|2 +

(
E3,−2

E2,1
+ E3,−1

E2,1

E2,−1

E1,1

)
|a3|2 = const. (B2)

These relations may be simplified further using the approximate formulae for the
interaction coefficients given by (A2) and (A3). The integrals in these expressions cancel
upon taking the ratio of the interaction coefficients, so that

Eml

Epq
�
{
(m + l)/( p + q) m /= l, p /= q,
(m + l)/p m /= l, p = q.

(B3)

In particular, E2,−1/E1,1 � 1, E3,−2/E2,1 � 1/3 and E3,−1/E2,1 � 2/3. Hence in (B1)
and (B2), we have, respectively, |a1|2 + |a2|2 � 1 and |a1|2 + |a2|2 + |a3|2 � 1, in which
we have used the initial conditions a1(0) = 1 and an(0) = 0 for n ≥ 2.
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