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ABSTRACT

As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects de-

velop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the

structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger

equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic

waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than

the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their am-

plitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at

the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence

attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower al-

titudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This

prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of sim-

ulations is performed to quantify where overturning actually occurs.

1. Introduction

As a direct consequence of the conservation of mo-

mentum, internal gravity waves grow in amplitude as

they propagate upward through the atmosphere’s de-

creasing background density (Eliassen and Palm 1961;

Bretherton 1966). This anelastic growth and the critical-

level interactions were considered by Lindzen (1981) to

be the most important mechanisms by which internal

waves ultimately break and irreversibly deposit their

momentum to the background. In particular, that work

used linear theory to predict where internal waves would

grow to such large amplitudes that they would overturn

and thereafter continually deposit momentum so as to

maintain a critical overturning amplitude. This heu-

ristic was incorporated into so-called gravity wave drag

schemes used to capture momentum transport and de-

position by subgrid-scale internal waves in general cir-

culation models (McFarlane 1987; Palmer et al. 1986;

Scinocca and McFarlane 2000). Their inclusion improved

predictions of the mean zonal winds and temperatures in

the middle atmosphere (McLandress 1998).

Although efficient and intuitive, it is questionable to

use linear theory to make predictions concerning the

nonlinear process of breaking. Here we focus specifi-

cally on the nonlinear dynamics that influence the evo-

lution of a quasi-monochromatic wave packet that grows

anelastically to moderately large and ultimately over-

turning amplitudes.

A wave packet that is horizontally periodic and ver-

tically localized induces a transient horizontal wind that

is analogous to the ‘‘Stokes drift’’ for surface waves. We

refer to this here as the ‘‘wave-induced mean flow.’’

Through quasi-linear numerical simulations Dunkerton

(1981) showed that the wave-induced mean flow can

modify the background flow, thereby changing the break-

ing height of the waves. Later studies confirmed that large-

amplitude wave packets behaved qualitatively differently

than the predictions of linear theory because of nonlinear

interactions with the mean flow near a critical level (Fritts

and Dunkerton 1984). These interactions, referred to

as ‘‘self-acceleration,’’ resulted in changes to the phase

speed, vertical wavenumber, and group velocity asso-

ciated with the wave packet. These quantities increased

at the wave packet’s leading edge and decreased at its

trailing edge. This caused the wave packet envelope to
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spread vertically, modifying it to such a degree that it

could propagate beyond its original critical level.

Even in the absence of background flow, sufficiently

large-amplitude internal wave packets can induce a mean

flow that Doppler-shifts the waves so as to change the

structure of the wave packet itself. This feedback has

been identified as the primary mechanism governing the

weakly nonlinear evolution of a Boussinesq wave packet

(Grimshaw 1975; Akylas and Tabaei 2005; Sutherland

2006b) and of a non-Boussinesq internal wave packet

in a liquid (Dosser and Sutherland 2011).

One expression for the wave-induced mean flow arises

from Hamiltonian fluid mechanics as the pseudomo-

mentum per unit mass (Scinocca and Shepherd 1992) or

through simple consideration of the circulation around

a loop formed by an isentrope before and after it is dis-

placed by a wave (e.g., see Sutherland 2010, section 3.4).

Explicitly, for a horizontally periodic wave with vertical

displacement j(x, z, t) and spanwise vorticity j(x, z, t), its

wave-induced mean flow is

U(z, t) [ 2hjzi. (1)

Here the angle brackets denote averaging over one hor-

izontal wavelength. This order amplitude-squared form

of the wave-induced mean flow is accurate for small-

amplitude waves and has been shown to be a good ap-

proximation for Boussinesq waves close to breaking

amplitudes (Sutherland 2001, 2006b).

The evolution of a weakly nonlinear Boussinesq in-

ternal gravity wave packets in uniformly stratified fluid

in a background that is stationary in the absence of

waves is prescribed by the nonlinear Schrödinger equa-

tion (Akylas and Tabaei 2005; Sutherland 2006b)

›tA 1 cgz›zA 5 ı
1

2
vmm›zzA 2 ıkUA, (2)

in which A(z, t) is the amplitude envelope of a quasi-

monochromatic wave packet with wavenumber vector

k 5 (k, m) 5 (k, m) and frequency v. The second term

on the left-hand side of (2) describes the vertical trans-

lation of the wave at the group speed cgz 5 vm, in which

the subscript denotes the derivative of the frequency v

with respect to the vertical wavenumber m. The first

(linear) term on the right-hand side of (2) describes the

dispersion of the wave packet and the second (nonlinear)

term describes the Doppler-shifting of the waves by the

wave-induced mean flow U } jAj2.

The sign of the coefficients of the linear and nonlinear

terms on the right-hand side of (2) determine the mod-

ulational stability of the wave packet (Whitham 1974;

Phillips 1981). In particular, because kU is positive for

Boussinesq wave packets they are modulationally stable

if their frequency is sufficiently small that vmm . 0.

Explicitly, this occurs if v , N/
ffiffiffi
2
p

, in which N is the

buoyancy frequency. Such wave packets broaden faster

than the rate predicted by linear dispersion and their

amplitude decreases more rapidly. In contrast, Boussinesq

internal wave packets are modulationally unstable if

N/
ffiffiffi
2
p

, v , N. If sufficiently large, the amplitude

envelope of these waves narrows and the peak ampli-

tude increases. The analogous phenomenon that occurs

for a packet of surface waves in deep water is known as

Benjamin–Feir instability (Benjamin and Feir 1967). If

their finite-amplitude evolution is well described by the

surface-wave equivalent equation to (2), the amplitude

growth reaches a peak and then decreases as energy is

transferred to waves in sideband frequencies. The process

then repeats through the process of Fermi–Pasta–Ulam

recurrence (Fermi et al. 1974). By adding higher-order

linear and nonlinear terms to the nonlinear Schrödinger

equation for Boussinesq waves, the recurrence phenom-

ena were found to be modified through the deceleration

of the wave packet’s vertical advance (Sutherland 2006b).

Likewise, the modulational stability and symmetry

breaking of modulationally unstable wave packets were

observed in the study of internal waves moving upward

through a non-Boussinesq liquid (Dosser and Sutherland

2011). The weakly nonlinear and fully nonlinear models

study the anelastic-like dynamics of amplitude growth

resulting from significantly decreasing background den-

sity with height. However, the internal energy and mass

conservation equations were those for an incompressible

liquid. Because the amplitude grew as the wave packet

propagated to greater heights, even waves with initially

small amplitudes evolved to become weakly and then

fully nonlinear. By growing faster than exponentially,

modulationally unstable wave packets were found to

overturn below the height predicted by linear theory.

Conversely, modulationally stable wave packets over-

turned above the predicted overturning height.

One purpose of the work presented here is to examine

the weakly nonlinear evolution of anelastic internal wave

packets in a gas, as appropriate for the study of atmo-

spheric internal waves. This is done in section 2 where

we develop an alternate derivation of the wave-induced

mean flow and then derive the fourth-order accurate

nonlinear Schrödinger equation for anelastic waves. Its

solution demonstrates the early stages in the evolution

of modulationally unstable, stable, and marginally un-

stable wave packets. In section 3 we describe the fully

nonlinear numerical model used to simulate wave packets

in an anelastic gas. Its results are first compared with the

predictions of the nonlinear Schrödinger equation, dem-

onstrating both the validity of the assumptions going into

the weakly nonlinear theory and the accuracy of the
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nonlinear code. In that section we go on to characterize

where overturning of wave packets first occurs relative

to the breaking heights predicted by linear theory. The

implications of these results for gravity wave drag pa-

rameterizations are discussed in section 4.

2. Weakly nonlinear evolution

The theory developed here for the linear and weakly

nonlinear evolution of anelastic internal wave packets

assumes that the background in the absence of waves

is isothermal (uniformly stratified) and stationary. The

influence of Coriolis forces is neglected. The quasi-

monochromatic wave packets themselves are assumed

to exist in the x–z plane, being horizontally periodic but

having nontrivial structure in the vertical. We begin by

developing formulas for the wave-induced mean flow

and use these to develop a nonlinear Schrödinger (NLS)

equation describing the weakly nonlinear evolution of

the wave packets. Finally, solutions are presented for

three circumstances demonstrating the modulational sta-

bility and instability of the wave packets as they depend

on vertical wavenumber.

a. Wave-induced mean flow

Whether linear or nonlinear, horizontally periodic wave

packets induce a horizontal mean flow U [ U(z, t). This

follows immediately from writing the horizontal momen-

tum equation in flux form and averaging in x over one

horizontal wavelength:

›

›t
(rU) 5 2

›

›z
(rhuwi). (3)

Here r(z) is the background density; u and w denote

fluctuation horizontal and vertical velocities, respec-

tively, associated with the waves; and the angle brackets

denote averaging over one horizontal wavelength.

The momentum flux rhuwi of upward-propagating

waves is smaller at the wave packet’s leading edge than

near its center. It is this divergence in the momentum

flux resulting from vertical variations of the amplitude

envelope that leads to transient acceleration and de-

celeration of the background horizontal flow as the wave

packet passes by.

Specifically, consider the case of an isothermal atmo-

sphere with exponentially decreasing background density

given by

r(z) 5 r0 exp(2z/H), (4)

in which H is the density scale height. We may denote the

fluctuation velocity components associated with a small-

amplitude, horizontally periodic, quasi-monochromatic

anelastic internal wave packet by

u(x, z, t) 5 RefAu exp[ı(kx 1 mz 2 vt)]ez/2Hg,

w(x, z, t) 5 RefAw exp[ı(kx 1 mz 2 vt)]ez/2Hg, (5)

in which Re denotes the real part. The amplitude envel-

opes Au and Aw are (possibly complex-valued) functions

of vertical space and time and so the momentum flux

rhuwi5 (1/2)r
0

Re(A
u
Aw

w ) is also a function of z.

As shown by Dosser and Sutherland (2011) through

manipulation of (3), the wave-induced mean flow of a

quasi-monochromatic wave packet is related directly

to the momentum flux per unit mass by

U 5 huwi/cgz. (6)

This expression is analogous to the relationship between

mean energy hEi and mean vertical energy flux hFEi 5

cgzhEi. Using the polarization relations for anelastic

waves (see section 2b and Table 1), we may write U ex-

plicitly in terms of the amplitude envelope Aj of the

vertical displacement field:

U 5 2
1

2

1

cgz

mv2

k
jA

j
j2ez/H 5

1

2
NKjA

j
j2ez/H , (7)

in which K 5 (k2 1 m2 1 1/4H2)1/2. The same result is

arrived at by using the polarization relations to compute

2hjzi, as in (1).

TABLE 1. The dispersion and polarization relations for plane an-

elastic internal waves in uniformly stratified, stationary fluid. The re-

lationship between the mass-streamfunction amplitude Ac0 and the

amplitudes of other fields including the horizontal u and vertical w

velocity, the vorticity z, the vertical displacement j, and the fluctuation

potential temperature u and density r, in which u 5 kx 1 mz 2 vt and

K2 5 k2 1 m2 1 1/(4H2). Throughout, the frequency and horizontal

wavenumber are taken to be positive, corresponding to rightward

propagating waves. For upward propagating waves, m , 0.

Field Relation to Ac0

c 5 Re(r0Ac0eiue2z/2H) Ac0

u 5 Re(Au0eiuez/2H) Au0 5 2ım 1
1

2H

� �
A

c0

w 5 Re(Aw0eiuez/2H) Aw0 5 ik Ac0

z 5 Re(Az0eiuez/2H) Az0 5 K2Ac0

j 5 Re(Aj0eiuez/2H) A
j0 5 2

K

N
A

c0

u 5 Re(Au0eiuez/2H) A
u0

5 u9
K

N
A

c0

r 5 Re(Ar0eiue2z/2H) A
r0

5 2
r0

H
u

K

N
A

c0

Dispersion relation and its derivatives

v 5 Nk/K

cgz 5 vm 5 2Nkm/K3

vmm 5 2N(3m2 2 K2)k/K5

vmmm 5 3N(3K2 2 5m2)km/K7

Wave-induced mean flow

U 5
1

2

K3

N
jA

c0j
2ez/H 5

1

2
NKjA

j0j
2ez/H
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If a wave packet is initialized with small amplitude and

is vertically localized about some arbitrary vertical level,

which we take here to be z 5 0, then (7) shows that the

wave-induced mean flow grows exponentially with height

as the waves propagate upward. Eventually this tran-

sient flow will become so large that it will Doppler-shift

the waves, thus changing their structure and consequent

evolution. It is this feedback that primarily controls the

weakly nonlinear evolution of the waves as they grow to

large amplitude.

b. Equations of motion and linear theory

In developing a weakly nonlinear theory for anelastic

internal wave packets, we begin by considering the fully

nonlinear equations for an inviscid, ideal, anelastic gas

(Ogura and Phillips 1962; Lipps and Hemler 1982) that

includes an average horizontal flow U:

DuT

Dt
5 2$

p

r
1

g

u
uz, (8)

$ � (ruT) 5 0, (9)

DuT

Dt
5 0. (10)

In (8) and (10), the material derivative is D/Dt 5

›t 1 uT � $, with $ [ (›x, ›z). The T subscripts denote

the total value of a field. Explicitly, the total pressure,

density, and potential temperature are respectively

decomposed into background and fluctuation com-

ponents as P
T

5 p(z) 1 p(x, t), r
T

5 r(z) 1 r(x, t), and

u
T

5 u(z) 1 u(x, t). Likewise the total velocity is written

in terms of the horizontally averaged horizontal flow

U and the fluctuation velocity u 5 (u, w) by uT [

(U 1 u, w). If we assume the background flow is sta-

tionary in the absence of waves, then U 5 U (z, t) is

nothing but the wave-induced mean flow given by (6)

and (7); it is the transient wind, analogous to the Stokes

drift for surface waves, resulting from the presence of

the waves themselves.

The background potential temperature is given in

terms of the background temperature T and pressure p by

u 5 T( p/P0)2k, (11)

in which P0 is a reference pressure and k ’ 2/7. In a iso-

thermal atmosphere for which T 5 T0, the background

density and potential temperature change exponentially

with height with r given by (4), p 5 P0 exp(2z/H), and

u 5 T0ez/H
u . (12)

In terms of temperature the density scale height is H 5

RT0/g, in which R is the gas constant for air and g is the

acceleration of gravity. Here we assume that Hu 5 H/k is

sufficiently larger than H that adopting the anelastic ap-

proximation is reasonable (Klein 2009). By assuming an

isothermal atmosphere, the corresponding stratification

is uniform in that the squared buoyancy frequency

N2 5
g

u

du

dz
5

g

H
u

(13)

is constant with height.

The evolution of small-amplitude doubly periodic

waves is straightforwardly found by linearizing the above

equations (which involves setting U, an order amplitude-

squared quantity, to zero). Thus we arrive at the disper-

sion relation

v2 5 N2 k2

k2 1 m2 1
1

4H2

. (14)

The structure of the waves is prescribed through the po-

larization relations, which interrelate the complex-valued

amplitudes of various fields. In what follows, it is conve-

nient to represent each in terms of the mass stream-

function c, which, using (9), is implicitly defined so that

u 5 2
1

r

›c

›z
and w 5

1

r

›c

›x
. (15)

For periodic waves,

c 5 Refr0A
c0 exp[ı(kx 1 mz 2 vt)]e2z/2Hg

5 r0A
c0 cos(kx 1 mz 2 vt)e2z/2H . (16)

In the bottom expression we have arbitrarily set the phase

of the wave so that Ac0 5 jAc0j is real-valued, representing

the magnitude of the mass streamfunction at z 5 0.

Some fields grow and others decay exponentially with

height, as indicated in the top portion of Table 1. The left

column shows the exponential dependence on z of the

velocity, vorticity, vertical displacement, and other fields.

The right column relates the (complex valued) amplitude

of each field at z 5 0 to the mass streamfunction ampli-

tude at z 5 0. For reference, Table 1 also lists expressions

for the dispersion relation and its m derivatives and it

gives an explicit formula for the wave-induced mean flow

in terms of the mass streamfunction and the vertical dis-

placement amplitudes.

To describe a horizontally periodic, vertically local-

ized, quasi-monochromatic wave packet at time t 5 0, it

is sufficient to replace the constant amplitude Ac0 with

the amplitude envelope Ac(z, t 5 0) 5 Ac0 f(z) in which

max f 5 1. Likewise this substitution gives formulas for
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the initial amplitude envelope of the other fields. Next we

develop a theory that predicts how the amplitude enve-

lopes change in time if the waves are small and moder-

ately large amplitude.

c. Weakly nonlinear theory

The first step in deriving a weakly nonlinear equation

describing the evolution of small- and moderately large-

amplitude anelastic waves is to manipulate the fully non-

linear equations of motion to a reduced set of coupled

equations. Taking the curl of the momentum equations

gives the vorticity equation

›tz 1
g

u
›xu 5 2u � $z 2

1

H
wz 2 U›xz 2 Uzt

2 wUzz 2
1

H
Uzw, (17)

in which the subscripts denote partial derivatives and

z 5 ›zu 2 ›xw 5 2
1

r
=2c 1

1

H

›c

›z

� �
(18)

is the spanwise component of vorticity.

Equation (10) is also rewritten by putting only those

terms that are linear in fluctuation quantities on the left-

hand side of the equation:

›tu 1 wu9 5 2u � $u 2 U›xu. (19)

Together with (15) and (18), (17) and (19) form two

coupled equations in c and u, in which it is understood

that the wave-induced mean flow U is itself quadratically

related to these quantities. The coupled equations can be

combined using linear operations to eliminate u from the

left-hand sides of (17) and (19). Abstractly, the result may

be written

Lc 5 N2(c, u) 1 NU(U; c, u), (20)

in which L [ ›zz›tt 1 (1/H)›ztt 1 ›xxN2 is a linear dif-

ferential operator, N2 involves quadratic products of c

and/or u and their derivatives, and NU involves U and its

derivatives and quadratic products of U and its de-

rivatives with c or u and their derivatives.

The next step is to write c in the form of a horizontally

periodic, vertically confined wave packet in which the

maximum initial amplitude Ac0 5 j2(N/K)Aj0j and the

vertical extent s are represented in terms of the real-valued

nondimensional parameters a [ kjAj0j and � [ (ks)21,

respectively. Explicitly, we write

c(x, z, t) 5 Re[r0aA(Z, T)eı(kx1mz2vt)e2z/2H], (21)

in which Z [ �z and T [ �t. It follows from the polari-

zation relations (see Table 1) that we can write U [

a2V(Z, T), in which V 5 (K/2N)jAj2ez/H does not de-

pend upon the wave packet’s initial amplitude.

These expressions are substituted into (20) and terms

involving eikx are then extracted from both sides of the

equation. This operation has the result of neglecting the

quadratic nonlinear terms denoted by N2 in (20), consis-

tent with the assumption that the initial weakly nonlinear

behavior is governed solely by interactions between the

wave packet and the mean flow it induces. The z and

t derivatives in (20) are rewritten in terms of Z and T

derivatives acting on A through ›z / �›z 1 ig and ›t /
�›T 2 iv, in which g 5 m 1 l/2H.

Next we form a regular perturbation expansion of A,

A 5 A0 1 aA1 1 a2A2 1 � � � , (22)

with a corresponding expansion of V 5 V0 1 aV1 1 � � �,
and we suppose that dispersion and nonlinearity are

balanced so that � ; a� 1.

From the resulting equation involving A0, A1, . . . , we

derive a sequence of equations by extracting terms in

successive orders of a. The O(a) equation retrieves the

dispersion relation (14). Making use of the dispersion

relation, the O(a2) equation describes the vertical ad-

vection of the wave packet at the group velocity cgz:

›T A0 1 cgz›ZA0 5 0. (23)

The next order introduces the leading-order nonlinear

term Uztt as well as the leading-order linear dispersion

term. Explicitly, in terms of the scaled functions, we get

›TA1 1 cgz›ZA1 5 ı
1

2
vmm›ZZA0 2 ıkV0A0. (24)

It is a useful check on the algebra that the linear disper-

sion term can be re-expressed into the expected form

involving two derivatives of the frequency with respect to

the vertical wavenumber. Also as expected, the nonlinear

term expresses the Doppler-shifting of the waves by the

wave-induced mean flow.

In what follows we show that the next-order equation

is necessary to explain the observed symmetry breaking

in the evolution of moderately large-amplitude waves.

This equation is

›TA2 1 cgz›ZA2 5 ı
1

2
vmm›ZZA1 1

1

6
vmmm›ZZZA0

2 ık(V0A1 1 V1A0)

1
k

2KH
(3mH 2 ı)(›ZV0)A0. (25)
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Finally, we combine these equations by adding (23) to

a times (24) to a2 times (25), using (22) to recast the result

into an equation for A and U and then re-expressing the

derivatives in terms of the fast variables z and t. Thus we

arrive at the weakly nonlinear equation for the evolution

of the mass streamfunction amplitude envelope A(z, t):

At 1 cgzAz 5 ı
1

2
vmmAzz 1

1

6
vmmmAzzz 2 ıkUA

1
v2

2N2kH
(3mH 2 ı)UzA. (26)

Here the nonlinear terms involve the wave-induced mean

flow, given in terms of A by

U 5
1

2

K3

N
jAj2ez/H . (27)

The coefficients of the linear dispersion terms on the

right-hand side of (26) are given in terms of k and K 5

(k2 1 m2 1 1/4H2)1/2 in Table 1. Table 2 lists explicit

values of these coefficients for three vertical wave-

numbers, which are examined in detail here.

From A, we may determine the evolution of more in-

tuitive quantities such as the vertical displacement field:

j 5 Re[A
j
eı(kx1mz2vt)ez/2H],

A
j
(z, t) 5 2

K

N
A(z, t). (28)

Neglecting the second and fourth terms on the right-

hand side of (26) and using (27), we see that the result is

the nonlinear Schrödinger equation, (2), cast in a sta-

tionary frame rather than in a frame moving with the

group velocity, as is usual. With the inclusion of only the

first three terms on the right-hand side of (26), in the limit

H / ‘ the equation becomes that for Boussinesq waves

(Sutherland 2006b). If furthermore we neglect the third-

order term, we are left with a special case of the formula

derived by Akylas and Tabaei (2005).

It is remarkable that (26) is similar to the corresponding

weakly nonlinear equation found by Dosser and Sutherland

(2011) for non-Boussinesq internal waves in a liquid. In the

fully nonlinear equations used as a starting point in that

study, r (not u) served as a thermodynamic variable, the

assumption of incompressibility changed the continuity

equation, and the pressure gradient term in the momen-

tum equations was different. Nonetheless, the only signif-

icant difference in the weakly nonlinear equation arises in

the fourth term: the coefficient (3mH 2 i) in (26) is re-

placed by (mH 1 i) in Dosser and Sutherland (2011).

Equation (26) describes both the linear dynamics as-

sociated with the translation and dispersion of a small-

amplitude wave packet [in which case the third and fourth

terms on the right-hand side of (26) have negligible in-

fluence] and the consequent weakly nonlinear dynamics,

which become evident when the wave packet has prop-

agated vertically above heights where U, given by (27), is

so large that the effect of Doppler-shifting by the wave-

induced mean flow is no longer negligible. We estimate

the amplitude at which weakly nonlinear effects become

nonnegligible by considering the ratio of the leading-

order nonlinear term with the linear term describing the

vertical advection of the wave packet at the vertical group

velocity. When the ratio of the magnitude of these terms

is D, the magnitude of the wave-induced mean flow is U 5

D�cgz, in which as above � 5 1/(ks) measures the vertical

extent of the wave packet. Below we show that nonlinear

effects become significant if U . D�cgz with D ’ 1. In

terms of the maximum vertical displacement amplitude,

this condition is met when

kjk;
1

K2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Djmj

s

r
. (29)

d. Solution of the NLS equation

As an illustration of the evolution of a weakly nonlinear

wave packet, Fig. 1 shows the evolution of a nonhydrostatic

wave packet at three different times. The initially hori-

zontally periodic, vertically Gaussian wave packet is pre-

scribed so that the vertical displacement field is

j(x, z, 0) 5 A
j0e2z2/2s2

cos(kx 1 mz)ez/2H , (30)

in which m 5 20.4k, kAj0 5 0.05, ks 5 10, and kH 5 10.

The relative vertical wavenumber and wave packet extent

have been chosen so that the results may be compared with

the weakly and fully nonlinear simulations of moderately

large-amplitude Boussinesq wave packets (Sutherland

2006b). Here the density scale height is finite so that wave

packets starting with small amplitude grow as they prop-

agate upward until nonlinear effects become significant.

In all simulations, the horizontal wavenumber k is

fixed and the buoyancy frequency N is constant. For

convenience we use these values as respective measures

of length and time scales. Thus, for example, we represent

the frequency and vertical group velocity of the wave

TABLE 2. The frequency v, vertical group velocity cgz 5 vm, and

higher m derivatives of v computed for three values of m/k and

with Hk 5 10.

m/k v/N c
gz

k

N
v

mm

k2

N
v

mmm

k3

N

20.4 0.93 0.32 20.470 21.91

20.7 0.82 0.38 20.008 21.05

21.4 0.58 0.27 0.193 0.09
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packet with m 5 20.4k and H 5 10k21 by v’ 0.81N and

cgz ’ 0.32N/k, respectively.

In practice, from the polarization relations, (30) is

used to define the mass streamfunction so that its initial

amplitude envelope is

A(z, 0) 5 2(N/K)A
j0e2z2/2s2

. (31)

This is used as the initial condition in the solution of

(26). The equation is solved by computing ›tA from the

spatial derivatives on the left- and right-hand sides of

(26). This time derivative is used to advance A by a small

increment in time, and the procedure then repeats. For

the results illustrated in Fig. 1, the wave packet was

embedded in a domain ranging over 2150 # kz # 150

with a resolution of Dz ’ 0.3k21 and the field was ad-

vanced in time by steps of 0.0001N21.

At time t 5 50N21, Aj is predominantly real-valued

with little change from its initial Gaussian shape. As ex-

pected for a small-amplitude wave packet, the envelope

FIG. 1. Evolution of a weakly nonlinear wave packet with m 5 20.4k at times (a) t 5 50N21,

(b) 100N21, and (c) 150N21. The Gaussian wave packet is centered initially about z 5 0 with

width s 5 10k21 and amplitude Aj0 5 0.05k21. It propagates upward through an anelastic gas

with density scale height H 5 10k21. (left) Snapshots of the vertical displacement field;

(middle) real (solid) and imaginary (dashed) parts of its amplitude envelope Aj(z, t); (right) the

corresponding wave-induced mean flow U.
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has translated upward at the group velocity, its center

being located at kz 5 16.0. Although the peak value of Aj

is 0.0494k21, moderately smaller than the initial ampli-

tude, the actual maximum vertical displacement is much

larger as a consequence of anelastic growth over 1.6

density scale heights. The peak value of j is 0.124k21,

occurring at kz 5 20.9, larger than the peak of Aj by the

exponential factor ez/2H. The wave-induced mean flow

likewise exhibits a peak about kz 5 20.9. The behavior up

until this time differs little from linear theory, consistent

with the fact that the peak wave-induced mean flow is

much smaller than �cgz ’ 0.032N/k.

The effects of weak nonlinearity become apparent at

time t 5 100N21, as shown in Fig. 1b. The maximum value

of the wave-induced mean flow at this time is comparable

to �cgz, sufficiently large that it nonnegligibly Doppler-

shifts the wave packet, more so above its center. The

Doppler shifting is apparent in the plot for Aj, which

shows a substantial change in the imaginary part. This

results in a phase shift of the waves near the center of the

wave packet. The corresponding color contours of j show

that the lines of constant phase tilt more toward the

vertical near the center of the wave packet than at the

leading and trailing edges.

The interaction between the waves and wave-induced

mean flow continues to distort the wave packet, dra-

matically changing its structure at later times. At t 5

150N21, the differential changes with height in the phase

of the wave packet have altered its structure so much that

it is questionably considered to be quasi-monochromatic.

The maximum vertical displacement is as large as kj 5

0.85, which gives some indication that the wave packet is

close to overturning.

The evolution of strongly and weakly nonhydrostatic

internal wave packets is shown in Fig. 2 by way of time

series of the wave-induced mean flow. The circumstance

discussed above in which m 5 20.4k is shown in Figs. 2a

and 2d. In Fig. 2a its initial exponential growth with

height is evident as it moves vertically at the group ve-

locity, cgz. In Fig. 2d the result of the same simulation is

shown but the wave-induced mean flow is multiplied by

e2z/H so as to remove the anelastic growth predicted by

linear theory. The resulting field is then plotted in

a frame of reference, Z 5 z 2 cgzt, moving with the

vertical group velocity. In the absence of weakly non-

linear effects, the resulting plot would appear as a hori-

zontal band across the panel, with moderate broadening

due to linear dispersion. Plotted as such, the onset of

weakly nonlinear dynamics becomes evident around

time t 5 100N21. Shortly thereafter the wave packet

narrows and peaks. This is followed by a deceleration of

the wave packet as successive peaks develop toward its

trailing edge.

The development of the first peak is a consequence of

modulational instability. Mathematically it results from

the leading-order nonlinear (Doppler-shifting) term of

the nonlinear Schrödinger equation. The next higher-

order linear and nonlinear terms are responsible for the

symmetry breaking leading to the deceleration of the

wave packet. Without these terms the wave packet would

undergo the so-called Fermi–Pasta–Ulam recurrence in

which the wave packet repeatedly narrows and broadens

but with no change in its group velocity.

From (26) and noting that kU is positive, the modu-

lational stability of the wave packet (Whitham 1974)

depends on the sign of vmm. Explicitly, wave packets are

modulationally unstable if

jm/kj , 221/2

"
1 1

1

(2kH)2

#1/2

(32)

and are modulationally stable otherwise. If the density

scale height is relatively large, the critical vertical

wavenumber is jmj5 221/2jkj ’ 0.71jkj, as is the case for

Boussinesq waves. For relatively large horizontal

wavelength waves (kH � 1), the critical vertical wave-

number is jmj5 821/2/H ’ 0.35/H. Thus, long waves are

modulationally unstable if their vertical wavelength is

longer than approximately 18H� 100 km, using typical

density scale heights of the atmosphere. All of this is to

say that the most energetic internal atmospheric waves

are modulationally stable.

An example of a modulationally stable wave packet is

shown in Figs. 2c and 2f. In this case the background and

the initial wave packet have the same structure as the case

described above except that now the vertical wavenumber

is m 5 21.4k. As expected for a modulationally stable

wave packet, when nonlinear effects become nonnegligible

the wave packet broadens and its peak (multiplied by

e2z/H) decreases much more quickly than would occur due

to linear dispersion alone. Looking at Fig. 2f these weakly

nonlinear effects begin to become important around time

t 5 75N21. At much later times (around t 5 75N21) the

leading edge of the wave packet begins to break up so that

the wave-induced mean flow becomes a series of jets.

The marginally unstable case is shown in Figs. 2b and 2e,

for which m 5 20.7k. Here the wave packet exhibits fea-

tures of modulational stability and instability. Near time t 5

75N21, the wave packet broadens as the peak (multiplied

by e2z/H) decreases. But starting around time t 5 120N21

the wave packet narrows and peaks near the leading edge

of the wave packet. Successive peaks then develop from the

leading to trailing edge of the wave packet.

The dynamics of modulationally stable and unstable

wave packets demonstrate that anelastic internal wave
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packets evolve in a qualitatively different manner than

predicted by linear theory. In particular, because modu-

lationally unstable wave packets narrow and their peak

value initially grows faster than exponentially, we expect

such waves should overturn and begin to break below the

height predicted by linear theory. Conversely, modula-

tionally stable wave packets should propagate above the

breaking level predicted by linear theory before they

grow to such an amplitude that they overturn.

In the next section we investigate these claims by per-

forming fully nonlinear simulations of anelastic internal

wave packets.

3. Fully nonlinear evolution

Here we describe the method used to solve the fully

nonlinear anelastic equations, we compare the results with

the solutions of the weakly nonlinear equation described in

the last section, and we go on to diagnose at what heights

anelastic internal wave packets become overturning.

a. Numerical simulation method

The fully nonlinear 2D anelastic code solves the coupled

equations for spanwise vorticity j and potential tempera-

ture u in a horizontally periodic domain with free-slip

upper and lower boundary conditions. Without explicitly

separating fluctuation and mean-flow contributions, as in

(17), and including dissipation, the vorticity equation is

Dz

Dt
5 2

1

H
wz 2

g

u

›u

›x
1 C

z
=2z. (33)

The dissipation term Cz=
2z has the effect of including

viscosity except that the coefficient Cz is taken to be

FIG. 2. Time series showing the evolution of the wave-induced mean flow U(z, t) associated with wave packets having vertical wave-

number m equal to (a),(d) 20.4k, (b),(e) 20.7k, and (c),(f) 21.4k. In each case, the Gaussian wave packets are centered initially about

z 5 0 with width s 5 10k21 and amplitude Aj0 5 0.05k21, and they propagate upward through an anelastic gas with density scale height

H 5 10k21. In (a)–(c), the indicated color scale shows values of U normalized by the vertical group velocity cgz. In the corresponding plots

in (d)–(f), the wave-induced mean flow is multiplied by the background density profile r/r0 5 exp(2z/H) and is further normalized by

the peak initial value of the wave-induced mean flow U0 5 NKjA
j0j

2/2. The result is shifted into a frame of reference moving with the

vertical group velocity z / Z 5 z / cgzt.
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larger than the kinematic viscosity of air. The term is

introduced to keep the code numerically stable through

the damping of small-scale noise. However, the co-

efficient is still taken to be sufficiently small that dissi-

pation negligibly affects the dynamics. Typically we take

Cz 5 1024N/k2. No significant quantitative changes in

the results were found by doubling Cz.

Also for the purposes of numerical stability, the in-

ternal energy equation [(10)] is modified by the addition

of a diffusion term:

Du

Dt
5 2w

du

dz
1 C

u
=2u, (34)

in which we set Cu 5 Cz.

For given z, (18) is inverted to find the mass stream-

function c and this is used to find the velocity fields

through (15). To perform the inversion and compute

derivatives it is convenient to work with the fields being

vertically discretized on an evenly spaced grid and being

Fourier decomposed in the horizontal. This methodol-

ogy is analogous to that used in the solution of the 2D

Boussinesq equations (Sutherland and Peltier 1994).

The vertical extent of the domain is set to be large

enough that the waves are of negligibly small amplitude at

the boundaries over the duration of each simulation. In

typical runs, the domain ranges between z 5 2150k21 and

150k21 with a resolution of Dz 5 0.3k21. In the horizontal,

wavenumbers between 0 and 8k are resolved. Doubling

the resolution was found to have no significant quantita-

tive effect on the wave dynamics.

The equations are advanced in time using the ‘‘leap-

frog’’ method, with an Euler backstep taken every 20 time

steps. The time step typically used in simulations was Dt 5

0.025N21.

In the simulations reported here we solve the initial

value problem in which a horizontally periodic, vertically

Gaussian quasi-monochromatic wave packet is prescribed

in the middle of the domain at t 5 0. Explicitly, the sim-

ulations are set up so that the initial vertical displacement

field is given by (30). Using the polarization relations, the

code approximates the initial mass streamfunction as

c(x, z, 0) 5 r0A
c0e2z2/2s2

cos(kx 1 mz)e2z/2H , (35)

in which mass is scaled so that r0 5 1 and Ac0 5

2(v/k)Aj0, with v set through the dispersion relation

(14). From this, the initial velocity and vorticity fields are

computed. Likewise the code uses the polarization re-

lations to initialize the fluctuation potential temperature

(see Table 1).

Another step in the initialization of the code is to use

(1) to define the initial wave-induced mean flow U(z, 0)

from the initial vorticity and vertical displacement fields.

Its z derivative Uz is then added to the horizontal

wavenumber-zero component of the vorticity field. The

step of including the initial wave-induced mean flow is

physically realistic but practically unnecessary in simu-

lations initialized with a small-amplitude wave packet. If

the simulation started with zero background flow (hence

zero background vorticity), a short time after the simu-

lation began an unchanging jet would emerge that flows

in the negative direction centered about z 5 0 (the po-

sition from which the wave packet originated). Concur-

rently a positive-flowing jet would develop at the level of

the wave packet, its peak moving upward concurrent with

the wave packet’s upward translation. The negative jet

near z 5 0 is given exactly by 2U(z, 0), this being the

deficit of flow arising because the wave-induced mean

flow was not included at the outset. Because momentum

is conserved in the domain and the initial mean momen-

tum is zero, the vertically integrated positive momentum

associated with the upward-translating jet is equal and

opposite to the integrated negative momentum associ-

ated with the jet near z 5 0. All of this is to say that the

wave-induced mean flow develops around the wave

packet whether or not it is explicitly prescribed initially.

b. Fully nonlinear simulation results

For the purposes of comparing the fully nonlinear

simulation results with the weakly nonlinear results of

the last section as well as with the Boussinesq simula-

tions of Sutherland (2006b), we first report on simula-

tions in which Aj0 5 0.05k21 is the maximum initial

vertical displacement, s 5 10k21 is the wave packet

width, and H 5 10k21 is the density scale height. We first

focus on the evolution of a wave packet with m 5 20.4k

and then examine cases with m 5 20.7k and 21.4k. In

the discussion on wave overturning that follows, a wider

range of parameters are explored.

If we take N 5 0.01s21 as a characteristic value of the

buoyancy frequency in the stratosphere, then it follows

from (13) that the corresponding density scale height for

the isothermal gas is H 5 kg/N2 ’ 28 km. Therefore,

corresponding to kH 5 10, the horizontal wavelength is

approximately 18 km (k 5 0.36 km21) and, correspond-

ing to kAj0 5 0.05, the initial maximum vertical dis-

placement amplitude is 140 m.

The evolution of the wave packet with m 5 20.4k is

shown in Fig. 3. The panels should be compared with the

vertical displacement fields predicted by weakly non-

linear theory, which are shown in the left column of Fig. 1.

The structure and amplitude of the wave packet at times

t 5 50N21 and 100N21 are nearly the same in both fully

and weakly nonlinear simulations. For example, the peak

vertical displacement at t 5 100N21 is 0.283k21 in the
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fully nonlinear simulation (Fig. 3b), whereas it is 0.292k21

in the weakly nonlinear case (Fig. 1b). The similarity

between simulations during the linear and early weakly

nonlinear times of the wave packet’s evolution demon-

strates that the diffusion terms introduced in (33) and (34)

indeed have negligible influence. Furthermore, the sim-

ilarity of the fully and weakly nonlinear simulations at

t 5 100N21 corroborates the weakly nonlinear theory

hypothesis that the nonlinear dynamics are governed by

interactions between waves and the transient mean flow

they induce. At least initially, parametric subharmonic

instability (Klostermeyer 1982; Lombard and Riley 1996)

and other mechanisms that involve the nonlinear transfer

of energy to superharmonics have insignificant impact on

the evolution of the wave packet.

Even at t 5 150N21 when the wave packet has un-

dergone significant distortion as a consequence of non-

linear dynamics, the fully nonlinear wave packet shown in

Fig. 3c has qualitatively similar structure to the weakly

nonlinear wave packet shown in Fig. 1c. The vertical

structure has narrowed significantly and the peak values

are comparable: in the weakly nonlinear simulation the

peak vertical displacement is 0.85k21 occurring at height

z ’ 46k21; in the fully nonlinear simulation the peak of

0.79k21 occurs at z 5 46k21. In both cases the wave packet

has grown to much larger amplitude than predicted by

linear theory on the basis of anelastic growth alone. At

time t 5 150N21 linear theory predicts the wave packet

should have translated upward to z ’ 48k21 where its

peak value should be Aj0 exp(z/2H)’ 0.55k21. Below we

show that the increased growth due to modulational in-

stability is so large that the waves are close to overturning

at this time although the wave packet is situated well be-

low the predicted overturning height of zb 5 78k21.

As shown in the study of weakly nonlinear wave packets,

the amplitude of a modulationally stable wave packet

grows less quickly with height than predicted by linear

theory. This is confirmed by the fully nonlinear simulation

results shown in Fig. 4. Here the amplitude, wave packet

width, and density scale height are respectively Aj0 5

0.05k21, s 5 10k21, and H 5 10k21, as before, but the

vertical wavenumber is m 5 21.4k. Because of anelastic

growth, the wave packet is predicted to grow to over-

turning amplitudes at zb 5 53k21, reaching this height at

time t ’ 196N21. However, the simulation shows that the

wave packet propagates well above this level. At time t 5

150N21, the weakly nonlinear effect of modulational sta-

bility has reduced the amplitude of the wave packet as it

has broadened in vertical extent. The maximum vertical

displacement at this time is 0.36k21 occurring at z’ 42k21.

Linear theory predicts the center of the wave packet should

have moved upward to z’ 41k21 where its peak amplitude

should be Aj0 exp(z/2H) ’ 0.38k21. At time t 5 200N21

FIG. 3. Solution of the fully nonlinear anelastic equations showing

the evolution of the (nondimensional) vertical displacement field

kj(x, z, t) at (nondimensional) times Nt 5 (a) 50, (b) 100, and (c) 150.

The initial wave packet with m 5 20.4k is a Gaussian centered

about z 5 0 with s 5 10k21 and amplitude kAj0 5 0.05. The density

scale height is 10k21. The horizontal black line near the top of each

plot indicates the breaking level predicted by linear theory.
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the maximum vertical displacement at the predicted

breaking level is only 0.44k21, 60% the value predicted by

linear theory. The maximum vertical displacement of

1.23k21 instead occurs at z ’ 75k21.

The life cycle of modulationally stable and unstable

wave packets is illustrated through time series of their

wave-induced mean flow, as shown in Fig. 5. These

present the results of fully nonlinear simulations in which

the initial conditions each set Aj0 5 0.05k21, s 5 10k21,

and H 5 10k21 but the relative vertical wavenumber is

m 5 20.4k, 20.7k, and 21.4k. The plots are multiplied

by exp(2z/H) and shifted into a frame of reference

translating with the vertical group velocity (Z 5 z 2 cgzt)

so that they can be compared directly with the scaled and

shifted time series of the corresponding weakly nonlinear

simulations shown in the bottom panels of Fig. 2.

As in the weakly nonlinear simulations, we find that the

early evolution of each wave packet obeys linear theory

and that weakly nonlinear dynamics develop between t ’

70N21 and 100N21. In comparison with Fig. 2d, Fig. 5a

shows that the wave packet narrows and peaks moder-

ately above the center of the wave packet and then suc-

cessive peaks form toward the trailing edges of the wave

packet. In the fully nonlinear simulation, the wave packet

first becomes overturning at t 5 158N21. This is measured

by determining the minimum value of the total squared

buoyancy frequency N2
T5 N2 1 DN2 in which

DN2 [
g

u

›u

›z
. (36)

The waves are overturning where N2
T is negative and the

resulting growth rate of convective instability is pro-

portional to jNTj (see the appendix). Just because the

waves are overturning does not mean that convection

begins. The oscillating motion associated with the waves

can restabilize the negatively buoyant fluid if the wave

period is sufficiently short compared to the time for

convective growth (Sutherland 2001). However, after

another 1.5 buoyancy periods DN2 is so much less than

N2 that convection causes energy to cascade efficiently

to small scale. At t 5 168N21 this process makes the

code numerically unstable. Although we could have run

the code at higher resolution so as to prevent its in-

stability, such an effort is pointless since the realistic

physics of convection cannot be captured by a code re-

stricted to two spatial dimensions. We restrict our study

here to waves that evolve to the point of overturning.

Simulations performed with higher resolution confirm

that the time and location at which overturning first oc-

curs are insensitive to resolution. This result is consistent

with that found by Sutherland (2001) for large-amplitude

Boussinesq waves.

FIG. 4. As in Fig. 3, but showing the evolution of a wave packet

with m 5 21.4k at times Nt 5 (a) 100, (b) 150, and (c) 200. The

breaking level predicted by linear theory is indicated by the hori-

zontal black line.
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The fully nonlinear simulation with m 5 20.7k (Fig. 5b)

likewise behaves similarly to the corresponding weakly

nonlinear model (Fig. 2e). The wave packet broadens

slightly before narrowing and increasing in relative ampli-

tude. Thus, it first demonstrates features of modulational

stability but then rapidly becomes unstable. The waves

become overturning at an earlier time in part because the

vertical group velocity is fastest for this relative vertical

wavenumber and so anelastic growth occurs more quickly.

Finally, in the simulations of the more hydrostatic wave

packet with m 5 21.4k (Fig. 5c) the decrease in amplitude

relative to anelastic growth is apparent just as it was in the

weakly nonlinear case (Fig. 2f). The finescale jets that

develop after t 5 150N21 at the leading edge of the weakly

nonlinear wave packet are not apparent in the fully non-

linear simulation. Nonetheless, the latter does show a

relative increase in the wave-induced mean flow shortly

before the time at which the waves become overturning.

The waves first become overturning at time t 5 196N21

near z ’ 72k21 but continue to evolve for another three

buoyancy periods until convection efficiently cascades

energy to small scales.

c. Breaking heights

Clearly nonlinear effects significantly change the time

and height at which a wave packet breaks. The case

studies above show that the modulationally unstable

wave packet overturns well below the level predicted by

linear theory and the modulationally stable wave packet

propagates well above this level.

Here we quantify this further by examining how the

relative breaking height changes with the density scale

height and with wave packet width and vertical wave-

number. The conditions used to diagnose wave over-

turning in the fully nonlinear simulations, as well as the

determination of the predicted overturning heights from

linear theory, are given in the appendix.

Figure 6 shows the overturning heights for a range of

simulations in which the vertical wavenumber and density

scale height relative to the horizontal wavenumber are

varied. In each plot the vertical axis is normalized by the

density scale height. In most simulations the vertical ex-

tent of the initial wave packet was taken to be s 5 10k21,

although breaking heights for wave packets with smaller

initial widths are considered in Fig. 6c. Here jm/kj5 1.4 is

sufficiently large that the wave packet can be considered

to be quasi-monochromatic even with s 5 2k21.

In all cases the initial maximum vertical displacement

amplitude is taken to be Aj0 5 0.05k21, sufficiently small

that weakly nonlinear effects are not significant at time

t 5 0. As an indication of the heights at which large-

amplitude effects become important, we use the condi-

tion given by (29) to plot the heights zD where

z
D

/H 5 2 ln
1

A
j0K2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Djmj

s

r !
. (37)

This is the height where the leading-order nonlinear term

of the nonlinear Schrödinger equation is comparable to

the leading-order linear (advective) term such that U/cgz 5

D/(ks). Values of zD are plotted as the long-dashed lines in

Fig. 6 for D 5 1. This indicates the height at which the wave

packet has grown to such amplitude that the weakly

nonlinear effects of modulational stability and instability

FIG. 5. Time series of the normalized wave-induced mean flow determined from fully nonlinear simulations with kAj0 5 0.05, ks 5

kH 5 10, and vertical wavenumber m equal to (a) 20.4k, (b) 20.7k, and (c) 21.4k. To focus on departures from anelastic growth predicted

by linear theory, the wave-induced mean flow is multiplied by the background density profile r/r
0

5 exp(2z/H) and is further normalized

by the peak initial value of the wave-induced mean flow U
0

5 NKjA
j0
j2/2. The vertical axis is given in terms of the translating coordinate

Z5 z 2 cgzt. In (a) and (b), the field is plotted only until t 5 168N21 and 153N21, respectively, when overturning renders the simulation

numerically unstable.
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begin to become significant. The distance between the

measured overturning levels and the values of zD provides

some indication for the distance over which a large-

amplitude wave packet propagates before breaking.

Also for comparison, Fig. 6 indicates where linear

theory predicts breaking should occur. Because Aj0k is

constant the predicted breaking height, given by (A2), is

constant for fixed relative vertical wavenumber m/k.

This is plotted as the solid lines in Fig. 6.

As expected for modulationally unstable wave packets,

strongly nonhydrostatic waves with m 5 20.4k overturn

well below the height predicted by linear theory (Fig. 6a).

For moderate values of k relative to the density scale

height H, the breaking level occurs above zD only

a quarter of the distance between zD and zb [the breaking

height predicted by (A2)]. This corresponds to a breaking

level tens of kilometers below the predicted breaking

level in a realistic atmosphere.

Conversely, but as expected for modulationally stable

wave packets, the more hydrostatic waves with m 5

21.4k overturn well above the height predicted by linear

theory (Fig. 6c). For moderate values of Hk, the actual

overturning height is about a third more than the distance

between zb and zD or on the order of 10 km. For a fixed

value of k 5 10H21, Fig. 6d shows that simulated over-

turning height occurs further above the predicted break-

ing height for wave packets with larger values of jmj.

4. Conclusions

We have derived the nonlinear Schrödinger equation

for horizontally periodic anelastic internal waves. Through

FIG. 6. Height where wave packets first overturn as determined from fully nonlinear simulations

with varying Hk and m 5 (a) 20.4k, (b) 20.7k and (c) 21.4k, and (d) with varying m and Hk 5 10.

In all cases the initial Gaussian wave packet is centered about z 5 0 with maximum vertical

displacement amplitude Aj0 5 0.05k21 and with width s 5 10k21 (open circles). In (c), overturning

levels with s 5 2k21 (crosses) are also shown. The breaking height predicted by linear theory is

shown by the thick horizontal line in each plot. Also shown is the height given by (37) where

weakly nonlinear effects begin to become important as measured by D 5 1 (long-dashed line).
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comparison of its results with those of fully nonlinear

numerical simulations, we have shown that it well captures

the weakly nonlinear dynamics of nonrotating waves in

uniform stratification with uniform (or zero) ambient wind.

The results apply to both hydrostatic and nonhydrostatic

internal waves as well as to waves with zero (stationary) or

nonzero ground-relative horizontal phase speed. Thus,

we have demonstrated that the Doppler shifting of the

waves by their wave-induced mean flow (their Stokes drift)

dominates the evolution of vertically localized wave

packets. Wave–wave interactions leading to parametric

subharmonic instability may dominate for plane periodic

waves (Klostermeyer 1982; Fritts et al. 1994; Lombard

and Riley 1996; Sutherland 2006a) but not wave packets.

Because of modulational instability, weakly and fully

nonlinear simulations have shown that wave packets

break below the level predicted by linear theory if their

frequency is sufficiently close to the buoyancy frequency.

In terms of the relative vertical wavenumber, the condi-

tion for instability is given by (32). Most relevant to the

parameterization of gravity wave drag in general circu-

lation models, we found that the lower-frequency, hence

energy-containing, internal waves are modulationally

stable. This means that their increase in amplitude due to

anelastic growth is retarded and so they break above the

level predicted by linear theory. For sufficiently short

horizontal wavelength waves (lx & 20H) the simulated

overturning height depends weakly on the wave packet’s

vertical extent but increases with relative vertical wave-

number jm/kj. Using characteristic atmospheric param-

eters, simulations show that the difference between the

predicted and actual overturning levels can be on the

order of tens of kilometers.

As an example, if the density scale height is 10 km then

simulations with m/k 5 23.0 correspond to a wave packet

having horizontal and vertical wavelength of approxi-

mately 6 and 2 km, respectively. The nondimensional

wave amplitude of Aj0k 5 0.05 corresponds to an initial

maximum vertical displacement of 50 m. Weakly non-

linear effects become important after propagating upward

10 km. Although linear theory predicts they become un-

stable after another propagating upward another 30 km,

the simulations (see Fig. 6d) show that they do not first

become overturning until propagating upward another

100 km. Of course, these simulations are idealized in that

the background is uniformly stratified, unsheared, and

steady. But these results serve as a reminder that pre-

dictions for wave breaking based on linear theory can be

qualitatively unreliable.

Although weakly nonlinear theory well captures the

early-time behavior or moderately large-amplitude in-

ternal wave packets, fully nonlinear simulations show

that overturning occurs as a result of processes not

captured by the nonlinear Schrödinger equation. Ul-

timately, wave overturning predictions should be de-

termined by empirical estimates based on a comprehensive

range of fully nonlinear simulations.

We restricted the fully nonlinear model to examine two-

dimensional internal waves, and so we did not analyze the

process of breaking and momentum deposition in detail

because this involves fully three-dimensional turbulence

and mixing. However, consistent with our two-dimensional

simulations, preliminary simulations using a fully three-

dimensional anelastic equation solver indicate that a

spanwise-uniform quasi-monochromatic wave packet

maintains its two-dimensional structure until breaking

(T. Lund, Colorado Research Associates, 2011, personal

communication). In future work this code will be used to

characterize momentum deposition due to wave saturation.

It is hoped that these results will eventually provide a more

objective and physically sound justification for gravity

wave drag parameterization schemes used presently.
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APPENDIX

Overturning Conditions

An anelastic gas is negatively buoyant where the po-

tential temperature decreases with height. Where this

occurs for anelastic internal waves, we say they are

overturning. In terms of the background and fluctuation

potential temperature, u and u, respectively, the over-

turning condition is

du

dz
1

›u

›z
, 0. (A1)

Multiplying through by g/u this condition can be rewritten

in terms of the background squared buoyancy frequency

(13) and the change DN2 that results from the stretching

and compression of isentropes by internal waves.

From the polarization relations (see Table 1), we can

recast the overturning condition in terms of the vertical

displacement of the waves. In an isothermal atmosphere

with density scale height H, the overturning level occurs

where

zb 5 2H ln(1/jmA
j0j), (A2)

in which Aj0 is the maximum initial vertical displace-

ment arbitrarily set to occur at z 5 0. It is acceptable to
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assess the breaking height of wave packets using the

overturning condition for plane waves if the width, s, of

the wave packets is large enough (jmsj � 1) that any

correction to the plane formula is negligible.

To determine where overturning first occurs in nu-

merical simulations, we explicitly compute the minimum

value of DN2 at each time step. From the Fourier co-

efficient of the vorticity field, the polarization relations

are used at each time to find the complex-valued ampli-

tude of the potential temperature field q(z, t) 5 qr 1 iqi.

The actual fluctuation potential temperature is

u 5
1

2
qeıkx 1 cc.

Extrema to ›zu occur where ›zzu 5 0. This occurs where

kx 5 tan21(q0r/q0i), in which primes denote z derivatives.

Putting this in the expression for ›xu gives the minimum

value of DN2:

minDN2 5 2
g

u

2
64 jq9rq0i 2 q9iq0rjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(q0r)
2

1 (q0i)
2

q
3
75. (A3)
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