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a b s t r a c t

Internal gravity wavepackets induce a horizontal mean flow that interacts nonlinearly with the waves
if they are of moderately large amplitude. In this work, a new theoretical derivation for the wave-
induced mean flow of internal gravity waves is presented. Using this we examine the weakly nonlinear
evolution of internal wavepackets in two dimensions. By restricting the two-dimensional waves to be
horizontally periodic and vertically localized, we derive the nonlinear Schrödinger equation describing
the vertical and temporal evolution of the amplitude envelope of non-Boussinesq waves. The results are
compared with fully nonlinear numerical simulations restricted to two dimensions. The initially small-
amplitudewavepacket grows to becomeweakly nonlinear as it propagates upwarddue to non-Boussinesq
effects. In comparisonwith the results of fully nonlinear numerical simulations, the nonlinear Schrödinger
equation is found to capture the dominant initial behaviour of the waves, indicating that the interaction
of the waves with the induced horizontal mean flow is the dominant mechanism for weakly nonlinear
evolution. In particular, due to modulational stability, hydrostatic waves propagate well above the level
at which linear theory predicts they should overturn, whereas strongly non-hydrostatic waves, which are
modulationally unstable, break below the overturning level predicted by linear theory.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Internal gravity waves exist in stably stratified fluids, in
which the effective density decreases continuously with height.
Examples of such fluids include a liquid such as the ocean,
where salinity and temperature vary, or a gas such as the
atmosphere, where the effective density is determined by the
temperature and thermodynamics of the fluid. For a fluid in
which the density does not change significantly relative to the
total depth, it is typical to apply the Boussinesq approximation.
In this approximation, the background density is taken to be
constant in the governing equations for internal waves, with the
exception of the buoyancy term in the momentum conservation
equation [1]. Together with the requirement of incompressibility,
this has the effect of filtering soundwaves from the fluid. Typically,
the Boussinesq approximation is used for the ocean, since the
change in background density over its total depth is small. For
the atmosphere, waves propagating upwards over a significant
height experience a large background density decrease, so their
evolution is governed by non-Boussinesq processes. In particular,
due to momentum conservation, small amplitude waves launched
near the ground, which initially obey linear theory, grow as they
propagate upwards [2] and eventually reach such large amplitudes
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that linear theory no longer adequately models their evolution.
These moderately large amplitude waves require the use of a
weakly nonlinear theory to accurately capture their evolution.

Despite the importance of nonlinear effects upon the evolution
and ultimately the breaking of internal gravity waves, developing
a weakly nonlinear theory for moderately large amplitude waves
has been challenging because plane wave solutions of the linear
equations are also exact solutions of the fully nonlinear equations
of fluid motion. Recently however, a new approach that examines
wavepackets was successfully employed to predict the evolution
of weakly nonlinear Boussinesq waves [3]. One purpose of this
paper is to extend these results to non-Boussinesq waves and,
together with fully nonlinear numerical simulations, test the range
of validity of linear theory.

Previous studies which considered the amplitude growth of
vertically propagating internal gravity waves often focused on
wave interactions with an existing background mean flow. It
was found that transient internal waves could modify this mean
flow, changing the breaking height of any subsequent waves, as
demonstrated by Dunkerton through quasi-linear numerical sim-
ulations [4]. Fully nonlinear simulations by Grimshaw displayed
differences in the evolution of small and large amplitude Boussi-
nesq internal waves due to interactions with a wind shear and
Doppler-shifting of the waves by the mean flow [5]. In the ab-
sence of any initial background shear, numerical investigations
by Jones & Houghton showed that, although linear theory could
correctly predict the breaking height of the initial wave, energy
transfer to the mean flow during wave overturning modified the
breaking heights of any further waves [6].
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Even in the absence of any background shear or mean flow
created by wave breaking events, there will still be interactions
between thewaves and the transient horizontalmean flow created
by thewaves themselves.Within a wavepacket that is horizontally
periodic and vertically localized, the wave components interact
with each other in such a way that a mean flow is induced
during propagation. This mean flow is the horizontally averaged
horizontal flow, whose vertical profile translates upwards with
the wavepacket as it propagates. This ‘wave-inducedmean flow’ is
present as soon as thewaves are generated, and is analogous to the
Stokes’ drift for surface waves. The Stokes’ drift is a second order
amplitude effect, which causes the mean velocity of a fluid parcel
to be non-zero [1].

Using Hamiltonian fluid mechanics, a form for the wave-
induced mean flow of internal waves in a Boussinesq fluid was
determined by identifying the wave-induced mean flow as the
pseudomomentum per unit mass [7]. The pseudomomentum is
a conserved quantity, provided that the fluid through which the
waves propagate is invariant with respect to translations [8]. In
this sense, it replaces the momentum of the waves, which is
not conserved for waves propagating through a medium. This
connection with the pseudomomentum resulted in an explicit
formula for the wave-induced mean flow of a two-dimensional
wavepacket, given at leading order by

U(z, t) ≡ −⟨ξζ ⟩, (1)

in which ξ is the vertical displacement of the fluid caused by the
waves, ζ is the vorticity, defined as the spanwise component of
the curl of the wave velocity, and the average is taken over one
horizontal wavelength. This form for the wave-inducedmean flow
is accurate for small amplitude waves in a Boussinesq fluid, and
has previously been shown to be a reasonably good approximation
even for waves of moderately large amplitude [9].

Although the Stokes’ drift does not significantly impact the
evolution of surface waves, interactions between internal waves
and their wave-induced mean flow have been shown to dominate
the evolution of Boussinesq internal gravity wavepackets for
amplitudes below breaking [10,11]. The nature of the interaction
has been referred to as ‘self-acceleration’ [12]. The wave-induced
mean flow acts to Doppler-shift the frequency of the waves
significantly from linear theory values, if the waves are of
moderately large amplitude. This can increase the transmission
of a sufficiently large-amplitude Boussinesq wavepacket across a
reflecting level [13] and can modify the level at which the waves
overturn and break [14]. Wave breaking due to self-acceleration
has been seen to occur if the wave-induced mean flow is greater
than the horizontal component of the group velocity of the waves.
All of these results focused upon Boussinesq waves with large
initial amplitude. In this work, wewill be focusing on the evolution
of a wavepacket with small initial amplitude, which grows to large
amplitude during its propagation due to non-Boussinesq effects.

The physics that dictate how weak nonlinearity affects non-
Boussinesq internal gravity waves as they grow from small to large
amplitude is given by the nonlinear Schrödinger equation. This
partial differential equation describes the spatial and temporal
evolution of the amplitude envelope ofmoderately large amplitude
waves. A linear Schrödinger equation for a horizontally periodic
and vertically localized wavepacket that includes the effect of
translation at the group velocity has the form:

∂tA + cgz∂zA = ı
1
2
ωmm∂zzA, (2)

in which A(z, t) specifies the shape of the wavepacket envelope,
cgz ≡ ωm and ωmm are constant coefficients determined from
taking m derivatives of the dispersion relation ω = ω(m, k),
in which m and k are the vertical and horizontal wavenumbers
respectively. The quantity cgz is the vertical (component of the)
group velocitywhich denotes the speed atwhich a small amplitude
quasi-monochromatic wavepacket translates vertically. Because
the wavepacket is horizontally periodic its horizontal translation
is ignored. Thus the linear equation captures only the vertical
translation of the wavepacket at the group velocity and the
effects of leading order linear dispersion upon small amplitude
waves. Nonlinearity is introduced by including the effects of self-
acceleration and higher order nonlinear dispersion. The form for
the wave-induced mean flow given by Eq. (1) was recently used
in the derivation of a weakly nonlinear Schrödinger equation
describing the evolution of an internal gravity wavepacket in a
Boussinesq fluid [3]. However, Eq. (1) is not valid for internal
gravity waves in a non-Boussinesq fluid. In order to derive the
Schrödinger equation for a non-Boussinesq fluid, it is necessary to
determine the appropriate form for the wave-induced mean flow.

The wave-induced mean flow for two-dimensional Boussinesq
wavepackets has been derived previously using energy conserva-
tion relations. Bretherton [15] used the polarization relations to re-
late the vertical flux of horizontal mean momentum per unit mass
to the wave energy density E via:

⟨uw⟩ =


⟨E⟩

ω − kŪ


kcgz (3)

in which u, w are the horizontal and vertical components of
the fluctuation velocity, cgz is the vertical group velocity of the
wave, k is the horizontal wavenumber, and Ū(z) is the prescribed
horizontal background velocity. The term in parentheses in Eq. (3)
is A, the wave-action density [16].

Separately, Acheson [17] derived an equation relating the wave
energy density to the wave-induced mean flow:

U =
⟨E⟩

ω − kŪ
k = Ak. (4)

The derivation of this equation takes advantage of the conservation
of wave action, and a heuristic comparison of terms resulting from
the polarization relations. In combination, Eqs. (3) and (4) result in
a succinct relation for the wave-induced mean flow U(z, t):

⟨uw⟩ = cgzU(z, t). (5)

In part, this paper will develop a more intuitive method to
derive a formula for the wave-induced mean flow based upon
momentum rather than energy or wave action conservation
laws. Such an approach to the derivation of the wave-induced
mean flow equations is consistent with the general formulation
of Andrews & McIntyre [18] who derived the Lagrangian-mean
equations for energy and momentum conservation laws, though
not specifically for internal waves. From our equation for the
wave-induced mean flow, we derive the corresponding nonlinear
Schrödinger equation describing the evolution of non-Boussinesq
internal gravity wavepackets. This equation allows us to assess the
modulational stability of the waves [19,20].

Modulational stability and instability are weakly nonlinear
effects occurring for dispersive wavepackets. The amplitude
envelope of modulationally unstable waves initially narrows
and its peak value grows whereas modulationally stable waves
spread faster than the rate resulting from linear dispersion
alone [19]. The manifestation of weakly nonlinear modulational
effects upon non-Boussinesq internal waves has non-trivial and
potentially atmospherically relevant consequences. Linear theory
predicts non-Boussinesq waves grow in amplitude with height,
eventually breaking when they reach overturning amplitudes.
We anticipate that the peak amplitude of upward propagating
modulationally unstable wavepackets will grow faster than
predicted by linear theory and so cause the waves to break at
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lower levels than the overturning level predicted by linear theory.
Likewise modulationally stable waves are expected to propagate
without breaking to higher levels than the overturning level
predicted by linear theory. However, even in weakly nonlinear
theory, this anticipated result is not obvious. It is possible for a
modulationally unstable wavepacket to avoid breaking through
the Fermi–Pasta–Ulam recurrence phenomenon [21], in which a
periodic transfer of energy among the wavenumber components
is followed by a return to the initial state. This phenomenon has
been observed numerically using a nonlinear Schrödinger equation
for a deep water wave train experiencing the Benjamin–Feir
instability [22,23]. Through the inclusion of higher order terms
in our weakly nonlinear Schrödinger equation, we will show that
higher order linear and nonlinear dispersion breaks the symmetry
associated with Fermi–Pasta–Ulam recurrence. The inclusion of
higher order terms has previously been shown to improve the
modelling of the nonlinear evolution of a deep water wave
train [24], particularly in capturing the Doppler-shifting of the
wave by the induced mean flow.

Though not captured by the nonlinear Schrödinger equation,
internal waves may also transfer energy to waves of shorter
wavelength and higher wavenumber through parametric subhar-
monic instability [25,26]. This instability results from an interac-
tion between three waves, in which energy is transferred from
the primary wave to two other secondary waves of fractional fre-
quency [16]. It can lead to wave steepening and overturning as en-
ergy cascades to smaller scales [27]. However, in our weakly and
fully nonlinear equations, the secondary waves are not present at
the outset and must grow out of noise. Thus it takes substantial
time for the secondary waves to grow to such amplitude that they
substantially affect the primary wave through parametric sub-
harmonic instability. On the other hand, the wave-induced mean
flow is manifest in tandem with an internal wavepacket at the
outset and so can immediate influence the wavepacket evolution
through weakly nonlinear modulations [10]. It is therefore antic-
ipated that modulational instability will emerge as the primary
mechanismdetermining the evolution of awavepacketmovingup-
wards through a non-Boussinesq fluid.

In Section 2, a simple form for the wave-induced mean
flow is derived through a wavepacket approach. Using a similar
procedure, the corresponding nonlinear Schrödinger equation
for internal gravity wavepackets in a non-Boussinesq liquid is
derived. The numerical methods used to integrate this equation
are described in Section 3 as are the details of the fully nonlinear
numerical simulations. Weakly and fully nonlinear results are
compared in Section 4. The breaking levels predicted by linear
theory are then comparedwith the results from the fully nonlinear
numerical simulations in Section 5. Conclusions regarding the
influence of the wave-induced mean flow on internal gravity
wavepacket growth, development, and breaking height are drawn
in Section 6.

2. Theory

The fully nonlinear non-Boussinesq equations for inviscid, two-
dimensional internal gravity waves in a stationary non-rotating
liquid are given by

ρ̄
Du⃗T

Dt
= −∇p − gρ ẑ (6)

∇ · u⃗T = 0 (7)
DρT
Dt

= 0. (8)

Here u⃗T = (uT , wT ) denotes the total horizontal and vertical
velocities, respectively, and the total density ρT (x, z, t) is the
sum of the background density, ρ̄(z) and the fluctuation density
associatedwith thewaves,ρ(x, z, t). Eq. (6) representsmomentum
conservation for an inviscid fluid, (7) is the mass conservation
equation for an incompressible liquid, and (8) is the equation for
conservation of internal energy in which the effects of diffusion
are neglected. Background hydrostatic balance, ∂ p̄/∂z = −ρ̄g ,
in which the gravitational term in the momentum conservation
equation (6) is balanced by the background pressure gradient
term [28], has been assumed so that only the fluctuation pressure,
p, appears. The material derivative is D/Dt = ∂t + uT∂x + wT∂z .
Eq. (7) has the effect of filtering soundwaves in a liquid, and results
from the need for self-consistency between the internal energy
equation and the incompressibility condition for a liquid, both of
which have the form:

DρT
Dt

= 0. (9)

It follows from the continuity equation in its general form

DρT
Dt

= −ρT∇ · u⃗T (10)

that (7) is satisfied. The equations for a non-Boussinesq liquid differ
from the Boussinesq equations only in the appearance of ρ̄, rather
than a characteristic density ρ0, multiplying the acceleration terms
in (6).

In order to determine the dispersion relation for internal gravity
waves in a non-Boussinesq liquid, we first linearize the equations
of motion as follows:

ρ̄
∂ u⃗T

∂t
= −∇p − gρ ẑ (11)

∇ · u⃗T = 0 (12)
∂ρ

∂t
= −w

dρ̄
dz
. (13)

The components of the total horizontal and vertical velocity fields
are given in terms of a scalar function, the total streamfunctionψT ,
by uT = −∂zψT and wT = ∂xψT , respectively. The total vorticity
field corresponding to the streamfunction is ζT ≡ ∂zuT − ∂xwT =

−∇
2ψT . Thus, the linearized momentum conservation equations

can be recast as one equation for the total streamfunction and
fluctuation density

∂

∂t
∇

2ψT = −
g
ρ̄

∂ρ

∂x
−

1
ρ̄

dρ̄
dz
∂2ψT

∂t∂z
. (14)

Using (13) to eliminate ρ leads to the equation

∂2

∂t2
∇

2ψ = −
g
H
∂2ψ

∂x2
+

1
H
∂3ψ

∂t2∂z
, (15)

where H is the density scale height in the fluid, defined by

H ≡ −


1
ρ̄

dρ̄
dz

−1

. (16)

In (15) we require that there be no background motion indepen-
dent of the waves, so that the fluctuation streamfunction is equal
to the total streamfunction, ψ = ψT .

We assume the fluid is uniformly stratified so that ρ̄ = ρ0
exp(−z/H). The squaredbuoyancy frequency, givenbyN2

≡ −(g/
ρ̄)dρ̄/dz = g/H , is therefore constant. Following a standard
procedure (for example see Gill [16]) the frequency of small
amplitude non-Boussinesq internal waves, given by the dispersion
relation, is found to be:

ω = N
k

k2 + m2 +
1

4H2

1/2 , (17)
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Table 1
Polarization relations for small amplitude internal gravity waves in a non-
Boussinesq liquid.

Defining formula Relationship to ψ

ψ Aψ
u = −∂zψ Au = −


ım +

1
2H


Aψ

w = ∂xψ Aw = −ıkAψ
ζ = −∇

2ψ Aζ =


k2 + m2

−
1

4H2 − ımH

Aψ

w =
∂ξ

∂t Aξ = −
k
ω
Aψ

ξ ≈ H ρ

ρ̄
Aρ ≈ −ρ̄ k

Hω Aψ

in which k and m are the horizontal and vertical wavenumbers
respectively. This form for the dispersion relation is identical to
that for small amplitude internal waves in an anelastic gas. The
streamfunction of a plane wave has the form

ψ = Aψ exp [ı(kx + mz − ωt)+ z/2H] + c.c. (18)

in which Aψ is one-quarter of the peak-to-peak streamfunction
amplitude of thewave and c.c. denotes the complex conjugate. The
polarization relations of other fields are listed in Table 1.

If we consider the advective terms in the governing equations
and evaluate the fluctuation quantities using the polarization
relations, we see that

u⃗ · ∇ → u(ık)+ w


ım +

1
2H


= ıku + ımw +

w

2H
. (19)

However, Eq. (7) gives ıku + ımw + w/2H = 0. Therefore, the
advective terms in the fully nonlinear equations evaluate to zero,
meaning that the plane wave solutions to the linear equations
are also exact solutions of the fully nonlinear equations. Thus,
the plane wave solutions for the linear problem are identical in
form to the solutions for the nonlinear problem. As a consequence,
the standard procedure first developed by Stokes to examine
moderately large amplitude surface waves cannot be applied to
internal waves [19].

Instead we develop a weakly nonlinear theory based upon the
evolution of wavepackets. Assuming the waves are horizontally
periodic but have localized structure in the vertical, we write our
wavepacket in the form:

f = Af (z, t) exp[ı(kx + mz − ωt)+ z/2H] + c.c., (20)

where f can represent any of the basic state fields and Af (z, t)
specifies the shape of the wavepacket envelope. Following the
typical approach, detailed for example by Bretherton [29], we
require that our wavepacket experience slow enough amplitude
modulation so that the packet is quasi-monochromatic and can be
treated as having a single vertical wavenumber, m, and horizontal
wavenumber, k.Wewill consider a singlewavepacket, propagating
vertically at the vertical group velocity, cgz = ∂ω/∂m. We restrict
ourselves to a wavepacket propagating upwards, with m/k < 0,
in order to ensure the development of weakly nonlinear effects.
A small amplitude wavepacket, which obeys linear theory, will
grow in amplitude and transition into the nonlinear regime as it
propagates upwards, due to the decreasing background density
field.

The total velocity field u⃗T (x, z, t) ≡ (U + u, w) is separated
into the mean horizontal flow induced by the waves, U(z, t), and
the fluctuation velocities (u, w), which have the form (20). We
substitute this into the horizontal momentum equation, Eq. (7):

∂tuT = −

[
∂x(uTuT )+ ∂z(uTwT )+

1
ρ̄
∂xp

]
, (21)

and note that the x-independent part of the product fg , (Af (Ag)
⋆
+

(Af )
⋆Ag) exp(z/H) in which the star denotes the complex conju-

gate, is equivalent to the horizontal average ⟨fg⟩. This leads to

∂tU = −∂z⟨uw⟩. (22)
The width σ of the wavepacket is assumed to be so broad that
ϵ ≡ 1/(kσ) ≪ 1. Thus we define a slow spatial variable Z that
translates at the vertical group velocity predicted by linear theory:
Z ≡ ϵ(z − cgz t). In order to balance the time evolution with the
dispersion terms in Eq. (2), the corresponding slow time variable
is T ≡ ϵ2t . Putting these in (22) and extracting terms at order ϵ
gives

cgz∂ZU = ∂Z ⟨uw⟩. (23)

Finally, integration of (23) with respect to Z leads to an explicit
expression for the wave-induced mean flow

U =
1
cgz

⟨uw⟩ . (24)

The result is identical to (5) except that here we have derived it on
the basis of momentum of a wavepacket rather than wave action
conservation for plane waves.

The derivation of Eq. (24) shows that the wave-induced mean
flow of awavepacket is essentially the result of horizontalmomen-
tum being transported upward at the vertical group velocity. Put
another way, the vertical flux of horizontal momentum is equal to
the vertical transport of themomentum associated with the wave-
inducedmean flow at the vertical group velocity. This is analogous
to the flux of energy, which is well known to equal the transport of
energy at the vertical group velocity.

Eq. (24) represents the wave-induced mean flow for a
wavepacket in a Boussinesq fluid or in a non-Boussinesq liquid. In
the former case, the polarization relations can be used to show that
(24) is equivalent to (1), the form for the wave-induced mean flow
previously derived for Boussinesq waves [3].

The wave-induced mean flow can be related to the vertical
displacement amplitude of the wavepacket, Aξ , at leading order
through the use of the polarization relations for non-Boussinesq
internal gravity waves, given in Table 1. Then (24) becomes

U =
1
2
N2 k
ω

|Aξ |2 exp(z/H). (25)

This is given in terms of the stationary coordinate z. The time
evolution of U is given by shifting to the translating coordinate Z .

We now turn our attention to the derivation of the correspond-
ing weakly nonlinear Schrödinger equation for internal waves in a
non-Boussinesq liquid. Our approach is a continuation of the pro-
cedure used to find the wave-induced mean flow. Returning to the
governing equations, we take the curl of the momentum conser-
vation equations given by (6) and, using (7), get two coupled non-
linear equations for the total streamfunction and the fluctuation
density:

D
Dt

∇
2ψT = −

g
ρ̄

∂ρ

∂x
−

1
ρ̄

dρ̄
dz

D
Dt
∂zψT (26)

Dρ
Dt

= −
dρ̄
dz
∂ψT

∂x
. (27)

In the case of uniform stratification, for which we have an
exponentially decreasing background density profile, the vertical
displacement of the waves, ξ , is related to the fluctuation density
by

ξ = −H ln
[
1 −

ρ

ρ̄

]
≈ H

ρ

ρ̄
, (28)

the approximation being valid if |ρ/ρ̄| ≪ 1. The vertical
displacement is related to the vertical component of the fluctuation
velocity byw = ∂tξ . Using the polarization relations in Table 1, we
can also relate ξ to the streamfunction through Aξ = −(k/ω)Aψ .

Our goal is to derive an approximate equation for the weakly
nonlinear evolution of the wavepacket in terms of the vertical
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displacement amplitude envelope Aξ (z, t). We will assume that
initial weakly nonlinear effects result only from interactions
between the waves and the wave-induced mean flow. Thus
we write ψT = ψ̄ + ψ with U = −∂zψ̄ . Following the
approach of [3], (26) and (20) are combined and the coefficients
of the exp[ı(kx + mz − ωt) + z/2H] terms are extracted to
give a differential equation for the streamfunction and vertical
displacement amplitude envelopes, Aξ and Aψ :
[∂t − ı(ω − kU)]

[
∂zz + 2ım∂z − κ2

−
1

4H2

]
− ık

[
∂zzU −

1
H
∂zU

]
Aψ = −ıkN2Aξ . (29)

Independently, (28) and (27) are combined with Eq. (20) to give a
second equation for Aξ and Aψ :

[∂t − ı(ω − kU)]Aξ = ıkAψ , (30)

in which we have once again extracted only the coefficients of the
wave-like terms occurring in combination with exp[ı(kx + mz −

ωt)+ z/2H].
Eq. (30) is used to eliminate Aψ from (29), resulting in a single

differential equation for the evolution of Aξ :
[∂t − ı(ω − kU)]

[
∂zz + 2ım∂z − κ2

−
1

4H2

]
− ık

[
∂zzU −

1
H
∂zU

]
[∂t − ı(ω − kU)]Aξ = k2N2Aξ , (31)

in which U is defined by (24). We transform into a frame of
reference with vertical coordinate Z ≡ ϵ(z − cgz t) and time
coordinate T ≡ ϵ2t .

In order to apply perturbation theory we require that the
vertical width of thewavepacket be sufficiently large such that ϵ ≡

1/(kσ) ≪ 1. For leading order dispersion to balance nonlinearity
we require that the maximum vertical displacement Aξ0 be large
enough such that α ≡ kAξ0 is of order ϵ. Keeping terms up to third
order in ϵ and recasting the result in terms of z and t gives the
weakly nonlinear Schrödinger equation for Aξ :

∂tAξ + cgz∂zAξ = ı
1
2
ωmm∂zzAξ +

1
6
ωmmm∂zzzAξ − ıkUAξ

+
1
2
ω2

N2k


m +

ı
H


(∂zU) Aξ . (32)

Here the left-hand side explicitly includes the advective derivative
describing the translation of the wavepacket at the group velocity.
The coefficients of the linear terms on the right-hand side are given
by

ωmm =
ω

κ2 +
1

4H2


3m2

κ2 +
1

4H2

− 1


,

ωmmm =
−3mω
κ2 +

1
4H2

2


5m2

κ2 +
1

4H2

− 3


, (33)

in which κ2
≡ k2 + m2.

Comparing Eq. (32) to Eq. (2), we see it includes terms
describing the translation of the wavepacket at the vertical group
velocity (second term on the LHS), as well as leading order linear
dispersion (first term on the RHS). The nonlinear third term on
the right hand side of (32) represents the Doppler-shifting of the
waves by the wave-induced mean flow. This is a type of nonlinear
dispersion in which the extrinsic frequency of the waves, Ω =

ω − kU , is modified by their interactions with the induced mean
flow. The second term on the right hand side of (32), which is
third order in ϵ, is necessary to capture the linear dispersion of
wavesmoving close to the fastest vertical group velocity, for which
ωmm ≈ 0.

The last term on the right hand side of (32) is also a third
order term accounting for nonlinear dispersion resulting from the
shear associatedwith thewave-inducedmean flow. The imaginary
component of this term captures effects unique to waves in a non-
Boussinesq fluid. We will show that including the third order in ϵ
linear and nonlinear dispersion terms is necessary to capture the
symmetry breaking observed for modulationally unstable waves.

The coefficients of the first, second and fourth terms depend
upon the density scale height H , which is not the case for
Boussinesq waves. With the inclusion of only the first three terms
on the right-hand side of (32), in the limit H → ∞, the equation
becomes that for Boussinesq waves [3]. If we also neglect the third
order term, we are left with a special case of the formula derived
by Akylas & Tabaei [11].

3. Numerical methods

In order to determine howaccurately the nonlinear Schrödinger
Eq. (32) captures the evolution of a two-dimensional, vertically lo-
calized, horizontally periodic wavepacket, numerically integrated
solutions of (32) will be compared with the results of fully nonlin-
ear numerical simulations.

In both the weakly and the fully nonlinear numerical simula-
tions, the relative space and time scales are effectively determined
by setting N = 1 and k = 1. For convenience, however, we will
often replace these parameters with a length scale L = k−1 and a
time scale T = N−1. Thus, the results given here will be normal-
ized by these parameters or, where conceptually convenient, by
the horizontal wavelength λx = 2π/k. Our dimensional variables
will therefore be replaced by their non-dimensional counterparts
through the following substitutions:

x⃗ → L x⃗, t → T t, u⃗ →
L
T

u⃗, ρ̄ → ρ0 ρ̄,

ρ → ρ0
L
H
ρ

where ρ0 is a constant characteristic density.
The fully nonlinear numerical simulation solves the following

non-dimensional coupled equations for the fluctuation density,
ρ(x, z, t), and the ‘mass-weighted’ vorticity, η(x, z, t) ≡ ∇×(ρ̄u⃗):

Dη
Dt

= J
∂ρ

∂x
+ wζ

dρ̄
dz

L
H

+ wu
d2ρ̄

dz2


L
H

2

+
∇

2ζ

Re
, (34)

and

Dρ
Dt

= −w
dρ̄
dz

+
∇

2ρ

RePr
(35)

where ζ = ∇ × u⃗ = −∇
2ψ is the vorticity field of the waves.

Eq. (34) is derived by taking the curl of Eq. (6), and casting the
result in terms of η for numerical convenience. It is equivalent to
Eq. (26), and its dimensional form can be converted to that
equation by relating η to the streamfunction:

η = −ρ̄∇
2ψ −

dρ̄
dz
∂ψ

∂z
. (36)

In this circumstance, the bulk Richardson number, describing
the ratio of the buoyancy to the inertia forces in the fluid [1], is
J ≡

g
H T

2
=

g
HN

−2
= 1.

Eqs. (34) and (35) include diffusion terms that act to damp
small-scale noise in order to maintain numerical stability during
wave breaking. The Prandtl number is set to be Pr = 1. The
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Table 2
Relevant parameters and coefficients of (32) for the simulations presented herein.

m/k Θ (°) ω/N cgz k
N ωmm

k2
N ωmmm

k3
N U0

k
N UMax

k
N

−0.4 −21.8 0.93 0.32 −0.470 −1.91 0.0026 0.19
−0.7 −35.0 0.82 0.38 −0.008 −1.05 0.0029 0.22
−1.4 −54.5 0.58 0.27 0.193 0.09 0.0041 0.06

Reynolds number is set to be Re ≡
νk2
N = 10 000. Both Re and RePr

are chosen to be sufficiently large such that diffusion negligibly
affects the wave evolution. No significant changes in the wave
evolution were found by decreasing the Reynolds number to 5000.

The simulation is spectral in the horizontal and uses a second
order finite-difference scheme to perform vertical derivatives. It
progresses in time using the ‘leap-frog’ method, with an Euler
backstep taken every 20 timesteps. In the vertical the domain
resolution is 1024 grid points. In the horizontal the wavenumbers
are resolved down to 8k. The wavepacket is initialized at the origin
of the vertical domain, which extends from z = −150k−1 to
150k−1. The upper and lower boundary conditions are free slip.
However, the vertical domain is chosen to be large enough that
the waves are of negligibly small amplitude at the boundaries
over the duration of each simulation. The horizontal extent of the
domain is λx = 2π/k. The simulations were allowed to run from
t = 0, with a timestep of 0.025N−1, until wave breaking occurred,
generally about 40–60 buoyancy periods. The period of interest for
the development of weakly nonlinear effects generally occurred
between t = 100N−1 and t = 250N−1. Doubling the resolution
was found to have no significant qualitative or quantitative effect
on the wave dynamics.

The initial parameters for the simulations considered here are
provided in Table 2. We simulate wavepackets with a range of
verticalwavenumbers, encompassinghydrostaticwaves, forwhich
∂p/∂z ≈ −ρg , as well as non-hydrostatic waves. Ourwavepackets
take the form of (20), with the Gaussian wavepacket envelope
given by Af (z, 0) =

1
2Af0 exp


−z2/2σ 2


. In all cases the waves

start with relatively small amplitude and are allowed to propagate
vertically upwards. An initial exponential increase in amplitude as
predicted by linear theory followed by the development of weakly
nonlinear effects is anticipated. The initial vertical displacement
amplitude of the wavepackets is α ≡ Aξ0k = 0.07. The extension
of our results towaves of other sufficiently small initial amplitudes
is given in Appendix A.

The initial wave-induced mean flow is calculated from (24).
Calculation of the vertical displacement field is done using (28),
with the condition |ρ/ρ̄| ≪ 1 being verified numerically at each
timestep for each value of the fluctuation density. The vertical
extent of the wavepacket is σ = 10k−1 for the simulations
presented herein, corresponding to ϵ = 0.1. Doubling the
vertical extent did not have a significant qualitative effect on
the dominant characteristics of the weakly nonlinear evolution
of the wavepacket although, as expected from the Schrödinger
equation, it did increase the time scale for the development of
linear dispersion and nonlinear effects.

4. Results

The modulational stability regimes of the wavepacket cor-
respond to what is observed for large amplitude Boussinesq
wavepackets [3]. A wave is modulationally unstable [19] if
ωmmω2 < 0, where ωmm denotes the second derivative of fre-
quency with respect to the vertical wavenumber, and ω2 is the co-
efficient of the −ı|A|

2A term in (32):

ω2 =
1
2
N2 k2

ω0
. (37)
Because ω2 > 0 for internal gravity waves, modulational stability
is determined by the sign of ωmm. This term is negative if |m| <
2−1/2(k2 +

1
4H2 )

1/2, which results in modulational instability, and
is positive otherwise. The critical point between modulational
stability and instability occurs for waveswith fixed kmoving at the
fastest initial vertical group velocity. For the range of density scale
heights considered in thiswork, which fall betweenH = 0.5λx and
H = 10.0λx, this corresponds to |m/k| ≃ 2−1/2

≈ 0.71.
First the results from the fully nonlinear numerical simulations

will be considered. Fig. 1 shows the evolution of the vertical
displacement field of the waves at early, late, and very late times
for a non-hydrostatic wavepacket with vertical wavenumber m =

−0.4k. For each time, the left-hand panel contains a contour plot
of the normalized vertical displacement, ξk, and the right-hand
panel shows the corresponding shape of the normalized vertical
displacement amplitude envelope, |Aξ |k. The packet is initially of
small amplitude with α ≡ kAξ0 = 0.07. The density scale height is
H = 3.2λx.

Fig. 1(a) shows the wavepacket at t = 100N−1, before the
onset of weakly nonlinear effects. The amplitude has increased
as predicted by linear theory, growing exponentially with height
to ‖Aξ‖ = 0.15k−1. In Fig. 1(b), we see the wavepacket during
the onset of weakly nonlinear effects at t = 175N−1. The
wavepacket envelope has narrowed, become more peaked, and
is no longer symmetrical. This is consistent with the wavepacket
being modulationally unstable. The amplitude has increased to
‖Aξ‖ = 0.35k−1, substantially larger than the value predicted by
linear theory, 0.28k−1.

Fig. 1(c) shows the evolution of the wavepacket at very late
times, t = 300N−1, when the wave is beginning to overturn.
Since the wavepacket is modulationally unstable, the amplitude
envelope has narrowed sharply and has experienced a rapid
increase in amplitude. Its maximum is now ‖Aξ‖ = 0.85k−1, about
10% larger than the value of ‖Aξ‖ = 0.77k−1 predicted by linear
theory. Due to these weakly nonlinear effects, the wavepacket
begins to overturn at a lower height than predicted by linear
theory, indicated in the figure by the thick black line at z = 22.7λx.
Wave breaking actually occurs about 50% lower, at z = 11.4λx.

Fig. 2 is identical to Fig. 1, except that it shows the
vertical displacement field of a wavepacket on the cusp between
modulational stability and instability, with vertical wavenumber
m = −0.7k. In Fig. 2(a), the amplitude of the envelope at t =

100N−1 has increased as predicted by linear theory. In Fig. 2(b),
weakly nonlinear effects have developed at t = 175N−1: the
amplitude envelope has narrowed and lost its vertical symmetry.
However, the maximum amplitude shows an increase consistent
with linear theory.

Fig. 2(c) shows the wavepacket development at t = 250N−1,
which is during wave breaking. Since this wavepacket propagates
with the largest initial vertical group velocity, it reaches its
breaking level most rapidly. The amplitude envelope has divided
into several distinct peaks, with a maximum of ‖Aξ‖ = 0.78k−1.
This is close to the value given by linear theory, ‖Aξ‖ = 0.75k−1.
The wavepacket first breaks at z = 12.8λx, much lower than the
predicted height of z = 19.2λx indicated by the black line. This is
a decrease in breaking height of slightly more than 30%.

Fig. 3 contains a more hydrostatic wavepacket with vertical
wavenumber m = −1.4k, which is expected to be modulationally
stable. The wavepacket is shown at early times in Fig. 3(a), with
t = 100N−1. Due to modulational stability, the amplitude of the
wavepacket envelope is slightly lower than that predicted by linear
theory, with a value of ‖Aξ‖ = 0.13k−1 as compared to ‖Aξ‖ =

0.14k−1. Fig. 3(b) shows the modulationally stable wavepacket at
a later time during its development, t = 175N−1, at which point
it has broadened significantly, and become slightly asymmetrical.



352 H.V. Dosser, B.R. Sutherland / Physica D 240 (2011) 346–356
(a) t = 100/N−1 . (b) t = 175/N−1 . (c) t = 300/N−1 .

Fig. 1. Left-hand panels show contour plots of the normalized vertical displacement field, ξ(x, z, t) k, and right-hand panels show the corresponding normalizedwavepacket
amplitude envelope, |Aξ |k, from fully nonlinear simulations with H = 3.2λx , α ≡ kAξ0 = 0.07 and m = −0.4k. The wavepacket evolution is shown for (a) t = 100N−1 , (b)
t = 175N−1 , and (c) t = 300N−1 . The horizontal black line indicates the breaking level predicted by linear theory.
(a) t = 100/N−1 . (b) t = 175/N−1 . (c) t = 250/N−1 .

Fig. 2. As in Fig. 1, but form = −0.7k. Times shown are (a) t = 100N−1 , (b) t = 175N−1 , and (c) t = 250N−1 . The black line indicates the breaking level predicted by linear
theory.
(a) t = 100/N−1 . (b) t = 175/N−1 . (c) t = 325/N−1 .

Fig. 3. As in Figs. 1 and 2, but form = −1.4k. Times shown are (a) t = 100N−1 , (b) t = 175N−1 , and (c) t = 325N−1 . The horizontal black line indicates the breaking level
predicted by linear theory.
The amplitude has increased to ‖Aξ‖ = 0.18k−1, which is much
smaller than the value of 0.23 k−1 predicted by linear theory.

Fig. 3(c) shows the wavepacket at time t = 325N−1. The
wavepacket is not overturning. Themaximumamplitude is ‖Aξ‖ =

0.46k−1, much smaller than the predicted value of 0.63k−1. In
a fully nonlinear simulation with a larger vertical domain, wave
breakingwas seen to occur at a height of z = 19.5λx. This is almost
25% higher than the breaking level given by linear theory, z =

14.8λx, indicated by the black line. This increase in the height of
the initial overturning event is a consequence of the modulational
stability of the wavepacket. The amplitude envelope has lost its
vertical symmetry with a large peak at the leading edge followed
by several smaller peaks. Symmetry breaking is thus apparent at
late times for all three vertical wavenumbers.

We now consider the wave-induced mean flow field from the
fully nonlinear numerical simulations. Fig. 4 shows time series
of the normalized wave-induced mean flow for a wavepacket
initialized at small amplitude α ≡ kAξ0 = 0.07 and allowed
to propagate upwards in a non-Boussinesq background with
H = 3.2λx. The wave-induced mean flow is calculated from
(24) at successive times. The three plots correspond to vertical
wavenumbers of m = −0.4k, −0.7k and −1.4k. For all
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(a)m = −0.4k. (b) m = −0.7k. (c)m = −1.4k.

Fig. 4. Time series of the normalized wave-induced mean flow field, U(z, t)/0.5UMax , from fully nonlinear simulations with α ≡ kAξ0 = 0.07 and (a) m = −0.4k, (b)
m = −0.7k, (c) m = −1.4k. UMax is the maximum value of the wave-induced mean flow between t = 0 and 250N−1 .
three, the exponential increase in wave amplitude with height is
immediately visible and dominates the wave evolution.

In order to visualize more clearly the details of the wave
evolution, Fig. 5 shows time series of the normalized wave-
induced mean flow multiplied by the background density profile,
ρ̄(Z)U(Z, t)/ρ0U0. This is shown translated into a frame moving
at the initial vertical group velocity of the wavepacket predicted
by linear theory. Here U0 is the maximum value of the wave-
induced mean flow field at time t = 0. Multiplication by
ρ̄ essentially removes the initial exponential growth associated
with a non-Boussinesq wavepacket and serves to emphasize that
the momentum associated with the wave-induced mean flow is
conserved.

Fig. 5 therefore captures the details of the nonlinear evolution
of the wavepacket with time, showing changes in the width and
relative amplitude of thewave asweakly nonlinear effects develop.
There are some small superimposed oscillations visible at early
times that occur due to the approximations used to initialize the
wavepacket, as discussed in Section 2. They have no effect on the
evolution of the wavepacket at later times.

For each of the three wavenumbers presented, the evolution of
the wavepacket at late times is qualitatively different. During the
first part of each wavepacket’s upward propagation, it moves at
a near constant speed equal to the initial vertical group velocity
and remains of small enough amplitude that it can be treated
as being in the linear regime, as discussed for Fig. 1(a), 2a and
3a. However, between times t = 100N−1 and 150N−1 the
influence of weakly nonlinear effects becomes apparent. For a
non-hydrostatic wavepacket with a vertical wavenumber of m =

−0.4k, OR (Fig. 5(a)), the envelope of the wave-inducedmean flow
field associated with the wavepacket narrows while the relative
amplitude increases significantly as a result of modulational
instability. At late times, the wave is seen to propagate vertically at
a velocity of roughly 0.26Nk−1, lower than the initial vertical group
velocity of cgz = 0.32Nk−1, and symmetry breaking is observed.

For a vertical wavenumber of m = −1.4k, OR (Fig. 5(c)),
the wave-induced mean flow envelope broadens while the peak
amplitude decreases due to dispersion. These weakly nonlinear
effects were also seen to occur in Fig. 3(b) and (c), as a result
of the modulational stability of the wavepacket. At late times,
there is some slight symmetry breaking, althoughvery little change
in the group velocity is observed. For a vertical wavenumber
of m = −0.7k, Fig. 5(b) shows the near-marginal case
between modulational stability and instability. The wavepacket
broadens slightly before narrowing and increasing in amplitude.
At late times, the wavepacket translates vertically more slowly
than its initial vertical group velocity. Thus this wavepacket
demonstrates characteristics of both modulationally stable and
unstable wavepackets.
The results from integrating the solution of the weakly
nonlinear Schrödinger equation are shown in Fig. 6. This equation
clearly capturesmany of the dominant qualitative and quantitative
features of the weakly nonlinear wavepacket evolution, for
all three vertical wavenumbers. As with the fully nonlinear
simulations, the non-hydrostatic wave (Fig. 6(a)) narrows and
increases in amplitude due to modulational instability. The more
hydrostatic wave (Fig. 6(c)) broadens and decreases in amplitude
indicating that it is modulationally stable. The symmetry breaking
and decrease in vertical acceleration is also captured, due to the
inclusion of third order in ϵ linear and nonlinear terms in the
weakly nonlinear equation. As the wavepacket narrows, the third
order z-derivative terms become comparable in magnitude to the
second order z-derivative term. Furthermore, due to the relatively
small value of the density scale height, H = 3.2λx, the fourth term
in theweakly nonlinear equation, which captures effects unique to
waves in a non-Boussinesq fluid, contributes non-negligibly to the
symmetry breaking and nonlinear evolution of the wavepacket.

Fig. 6 also demonstrates the importance of the wave-induced
mean flow to wavepacket evolution. This figure clearly indicates
that interactions between the waves and the wave-induced mean
flow are the principal mechanism for the development of the
weakly nonlinear effects that determine the dynamics of the
wavepacket at late times, including its modulational stability or
instability. In fact, the weakly nonlinear equation is a reasonable
approximation to the fully nonlinear simulation even at very late
times, capturing many of the qualitative, if not the quantitative,
dynamics of the waves.

At very late times, discrepancies arise due to the appearance of
parametric subharmonic instability in the fully nonlinear results.
Such dynamics are not captured by theweakly nonlinear equation.
It is also clear that at very late times the wave-induced mean flow
field is over predicted by the weakly nonlinear equation. These
quantitative differences are visible for all three wavenumbers
examined herein. They are particularly clear in Fig. 6(b), which
shows up to a 30% increase in amplitude over that of Fig. 5(b).

While the evolution of non-Boussinesq wavepackets is qualita-
tively similar to that of large amplitude Boussinesqwaves, it differs
in some important and related respects. As a wavepacket propa-
gates upwards through a non-Boussinesq fluid it grows in ampli-
tude due to the decreasing background density, as demonstrated
in Fig. 4. This is not the case for waves initialized at small ampli-
tude in a Boussinesq fluid, which decrease slightly in amplitude
due to linear dispersion but remain otherwise unchanged. Thus, in
order to observe the development of weakly nonlinear effects in
a Boussinesq fluid, a wavepacket must be initially of large ampli-
tude. On the contrary, a wavepacket in a non-Boussinesq fluidmay
be initialized at small amplitude and allowed to grow in ampli-
tude to such a point that weakly nonlinear dynamics are observed.
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(a)m = −0.4k. (b)m = −0.7k. (c) m = −1.4k.

Fig. 5. Time series from fully nonlinear numerical simulations of the normalized wave-induced mean flow field multiplied by the background density profile,
ρ̄(Z)U(Z, t)/ρ0U0 , with α ≡ kAξ0 = 0.07 and (a) m = −0.4k, (b) m = −0.7k, (c) m = −1.4k. Here Z = z − cgz t is the coordinate translating at the vertical group
velocity, and Nt is the normalized time coordinate.
x

(a)m = −0.4k. (b)m = −0.7k. (c)m = −1.4k.

Fig. 6. As in Fig. 5, but for ρ̄U/ρ0U0 from solutions of the weakly nonlinear Schrödinger equation. Wavenumbers shown are (a) m = −0.4k, (b) m = −0.7k, and (c)
m = −1.4k.
The Schrödinger equation for non-Boussinesq waves is thus able
to capture both the weakly nonlinear evolution of the wavepacket
and the transition of the waves from the linear to the nonlinear
regimes.

5. Breaking levels

In order to gain further insight into the influence of nonlinear
effects on wave evolution at late times, fully nonlinear numerical
simulations were performed in which the wavepackets were
allowed to propagate vertically towards the breaking level
predicted by linear theory. The condition for wave overturning is
given by

∂ρ

∂z
+

dρ̄
dz

> 0. (38)

The left-hand side of this expressionwas calculated at each vertical
level in the domain at each timestep. The lowest vertical level at
which overturning occurredwas denoted as the breaking height zB.
This height can be comparedwith the breaking height zB0 predicted
by linear theory.

For an internal gravity plane wave in an exponentially de-
creasing non-Boussinesq background stratification this condition
is given in terms of the vertical displacement amplitude of the
wave by:

− Aξ0 exp[z/2H]max[m sin(kx + mz − ωt)

+
1
2H

cos(kx + mz − ωt)] > 1. (39)
The predicted breaking height from linear theory, zB0, can be
calculated from this expression for a given density scale height,
H , and vertical wavenumber, m. It is acceptable to use the
breaking condition for a plane wave, rather than for a wavepacket,
since the width of the wavepackets considered was large enough
that any correction to this formula would be negligible. Test
cases (not shown), in which the width of the wavepackets was
doubled, demonstrated slightly increased breaking heights to
those presented herein. However, the overall trends in relation to
linear theory were not significantly affected.

Fig. 7 compares the predicted breaking heights zB0 with the
breaking heights zB determined from the fully nonlinear numerical
simulations for a range of λx/H . For waves of wavenumber m =

−0.4k, breaking occurs consistently below the levels predicted by
linear theory. This is as expected because modulational instability
causes the amplitude of the waves to grow at a rate faster than
expected from linear theory. Conversely, modulationally stable
waves of wavenumberm = −1.4k break well above the predicted
levels. Waves with vertical wavenumber m = −0.7k are on
the cusp between modulational stability and instability. They
demonstrate breaking both above and below the heights predicted
by linear theory, depending upon the value of λx/H .

If we consider λx to be fixed, and allow H to vary, we see
that for the range of density scale heights considered, agreement
with linear theory improves for waves in increasingly non-
Boussinesq fluids. There is some indication in Fig. 7(b) that this
trend may reverse as H becomes increasingly small. We were
unable to confirm this using the numerical model, however, as
the wavepackets became unstable and began to overturn almost
immediately upon initialization. It is also clear from Fig. 7 that
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(a)m = −0.4k. (b) m = −0.7k. (c) m = −1.4k.

Fig. 7. Results from fully nonlinear numerical simulations for the normalized breaking height zB/λx of a wavepacket with α ≡ kAξ0 = 0.07, plotted against the horizontal
wavelength normalized by the density scale height λx/H . The vertical wavenumbers shown are m = −0.4k, m = −0.7k, and m = −1.4k. The solid lines are theoretical
predictions from linear theory.
waves in more Boussinesq fluids are able to propagate further
before breaking, which is consistent with our expectations of
decreased amplitude growth for larger density scale heights.

6. Conclusions

As a step to understanding the evolution of anelastically grow-
ing, upward propagating internal waves in the atmosphere, we
have performed a theoretical and numerical study of internal
wavepackets in a non-Boussinesq liquid. This system of equations
has been chosen as a starting point in part because it constitutes a
straightforward extension of the Boussinesq equations, with den-
sity representing the thermodynamics, and because it provides a
testing ground for eventual comparison with laboratory experi-
ments using high-density solutions of salts such as sodium io-
dide [30].

It has been shown that the dominant characteristics of the
early evolution of a horizontally periodic, vertically localized
wavepacket are well captured in both the linear and nonlinear
regimes by a weakly nonlinear Schrödinger equation describing
only the interactions of the waves with the wave-induced mean
flow. In fact, the Schrödinger equation is a reasonably good
approximation even at late times. If Hk ≫ 1, waves of frequency
ω & 2−1/2N aremodulationally unstable, experiencing growth and
narrowing of the amplitude envelope and a decrease in vertical
group velocity. Modulationally stable waves with ω < 2−1/2N
experience rapid broadening and decreasing relative amplitude.
In order to capture the symmetry breaking and decreased
propagation speed associatedwithmodulationally unstablewaves,
it was necessary to include third order terms in the weakly
nonlinear Schrödinger equation. This symmetry breaking is also
seen for waves of frequency ω ≈ 2−1/2N , which propagate at
the fastest vertical group velocity and represent the critical point
betweenmodulational stability and instability. At very late times, it
was seen that the weakly nonlinear equation, while still capturing
many of the qualitative features of the wavepacket evolution, was
unable to predict correctly some of the quantitative features of
the waves. In particular, the maximum amplitude of the wave-
induced mean flow field was too large when compared to the
results of the fully nonlinear numerical simulations. Overall, it was
found that the weakly nonlinear dynamics of internal waves in a
non-Boussinesq fluid are entirely determined by the interaction
of the waves with the wave-induced mean flow at early times,
with parametric subharmonic instability occurring only at very late
times.

These results have important implications for internal gravity
wave breaking in non-Boussinesq fluids: non-hydrostatic waves
(ω & 2−1/2N) consistently break at lower levels than predicted
by linear theory; hydrostatic waves break at heights greater than
those predicted by linear theory. Hence, for a given scale height
H , linear theory does not correctly predict the breaking height
for most circumstances. As an illustration, consider hydrostatic
internal waves having horizontal wavelength on the order of
10 km. Fig. 7 indicates that suchwaveswill break on the order of 1 1

2
times higher than predicted by linear theory. This result indicates
that general circulation models of the atmosphere that use linear
theory to parameterize hydrostatic wave breaking likely deposit
momentum too low down in the atmosphere.

Ongoing research will extend this analysis to an anelastic gas
and will include the effects of non-uniform background flows and
stratifications. This will provide a more realistic representation
of internal gravity wave propagation, weakly nonlinear wave
evolution and fully nonlinearwavebreaking in anelastic fluids such
as the atmosphere.
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Appendix A

The results presented in Fig. 7 are for one particularwavepacket
amplitude, α = 0.07. It is possible to extend these results to any
wavepacket of small initial amplitude, which in practice means
α . 0.2. Assuming that at early times the wavepacket has
relatively small amplitude and evolves linearly, growing only as a
result of the exponential decrease in background density, a new
breaking height zB⋆ can be predicted from the known data for zB.
For awavepacket of amplitudeα⋆, the newbreaking height is given
approximately by

zB⋆ = zB − 2H ln

α⋆

α


, (A.1)

in which zB is the breaking height determined from a simulation
of a wavepacket with initial amplitude α. For example, for a
wavepacket with α⋆ = 0.10, m = −1.4k and λx/H = 0.3,
Eq. (A.1) predicts that zB⋆ = 17.2λx. A fully nonlinear numerical
simulation gives a value of zB = 16.9λx while linear theory predicts
zB0 = 12.5λx. Thus, even approximating the breaking height from
available nonlinear data represents a significant improvement over
the use of linear theory.
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