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The properties of waves generated by a vertically oscillating sphere in a uniformly
stratified fluid are examined both theoretically and experimentally. Existing
predictions for the wave amplitude and phase structure are modified to account
for the effects of viscous attenuation. As with waves generated by an oscillating
cylinder, the main effect of attenuation is to broaden the two peaks of the amplitude
envelope on either flank of the wave beam so that far from the sphere the wave
beam exhibits a single peak with a maximum along the centreline. The transition
distance from bimodal to unimodal wave beam structure is shown to occur closer
to the source than the corresponding distance calculated for the oscillating circular
cylinder. For laboratory experiments, a recently developed ‘synthetic schlieren’ method
is adapted so that quantitative measurements may be made of an axisymmetric
wave field. This non-intrusive technique allows us to evaluate the amplitude of the
waves everywhere in space and time. Experiments are performed to examine the
amplitude of waves generated by small and large spheres oscillating with a range
of amplitudes and frequencies. The wave amplitude is found to scale linearly with
the oscillation amplitude A for A/a as large as 0.27, where a is the radius of the
sphere. Generally good agreement between theory and experiment is found for the
small sphere experiments. However, the theory overpredicts both the amplitude and
the bimodal-to-unimodal transition distance for waves generated by the large sphere.

1. Introduction
Just as water waves may be generated by an object bobbing vertically at the

surface, so may internal waves be generated by an oscillating body within a density
stratified fluid. However, the dynamics of the latter are quite different. For example,
whereas surface waves radiate as concentric rings from a localized periodic source,
internal waves are well known to propagate along wave beams with fixed angle to the
vertical (Mowbray & Rarity 1967a; Lighthill 1978). A periodically oscillating cylinder
which is oriented with its axis horizontal generates four wave beams that form a ‘St
Andrew’s Cross’ pattern with the cylinder at the centre of the cross. Similarly, an
oscillating sphere creates waves in the form of two cones lying above and below the
sphere. The angle, Θ , of the wave beams to the vertical is determined entirely by
the ratio of the frequency of oscillation of the source to the background buoyancy
frequency.

Earlier experimental and theoretical investigations into internal waves generated
by moving bodies examined the phase structure, but not the amplitude of the waves
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(Mowbray & Rarity 1967a, b; Stevenson 1969). The theoretical basis for examining
the detailed structure of inviscid small-amplitude internal waves has been established
using both Fourier transforms (Lighthill 1960, 1967) and Green’s functions (Voisin
1991). Conformal mapping and analytic continuation methods have been employed
to examine wave beams generated by the simple two-dimensional geometry of an
oscillating cylinder with circular and elliptical cross-sections (Appleby & Crighton
1986; Hurley 1997). These studies predict that the along-beam amplitude is constant
if viscous effects are ignored. However, the theories predict infinite velocities along
the two lines tangential to the cylinder which form an angle Θ with the vertical.

This unphysical result is remedied by including the effects of viscous attenuation.
Assuming viscous effects remain relatively small, we can adopt the boundary-layer
approximation of Thomas & Stevenson (1972) to derive a linear partial differential
equation from which analytic solutions can be derived. Applied to the case of an
oscillating circular cylinder, Hurley & Keady (1997) showed that the two peaks
in the amplitude envelope eventually merge to form a single peaked wave beam
(Makarov, Neklyudov & Chashechkin 1990). In general, their predictions agree well
with experimental measurements (Sutherland et al. 1999). Small discrepancies between
the measured and predicted beam width are due to the presence of viscous boundary
layers that surround the cylinder; these dynamics are neglected by theory. For
sufficiently large-amplitude and low-frequency oscillations, a nonlinear phenomenon
is also observed: the waves interact with the viscous boundary layer in a way that
generates secondary wave beams with double the frequency of oscillation of the
source (Sutherland & Linden 2002).

Less is known about the amplitude of internal waves generated from an oscillating
sphere. In inviscid theory, the waves radiate along cones, which have a cross-sectional
area that increases linearly with distance from the source. Hence, even in the absence of
viscous attenuation, conservation of energy flux requires that the amplitude decreases
as r−1/2, where r is the radial distance from the centre of the sphere. This behaviour is
indeed predicted by inviscid linear theories (Appleby & Crighton 1987; Voisin 1991).
As with inviscid theories for internal waves generated by oscillating cylinders, waves
generated by oscillating spheres are predicted to have unphysically large velocities
where the wave beams are tangent to the sphere. In part of the work presented here,
we follow the boundary-layer approximation of Thomas & Stevenson (1972) and
use the method outlined by Lighthill (1978, § 4.10), to include the effects of viscous
attenuation.

Until recently, experiments measuring internal wave amplitudes have for the
most part been limited to studies of large-amplitude waves generated by flow over
topography. In part, this is because dye and particle tracking techniques are limited to
visualizing motions larger than the size of the dye lines and particles themselves. With
the notable exception of Thomas & Stevenson (1972), in laboratory studies of internal
waves generated by oscillating cylinders and spheres, typically the displacements are
so small that they are visualized using schlieren techniques, which are non-intrusive
and sensitive to small disturbances in stratified fluids (e.g. Mowbray 1967; Stevenson
1969). There are a variety of experimental set-ups, but all schlieren techniques are
linked by exploiting the fact that light is bent to a greater or lesser degree as density
gradients in the fluid strengthen or weaken, respectively.

Classical schlieren techniques are useful as a qualitative tool, enabling us to visualize
wave crests and troughs but providing no amplitude information. Quantitative
schlieren methods have been developed in the past decade with the aid of digital
enhancement (Irvin & Ross 1991; Greenberg, Klimek & Buchele 1995; Dalziel,
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Hughes & Sutherland 2000). ‘Synthetic schlieren’ has proved to be particularly useful
for measuring the amplitude of waves generated by an oscillating circular and ellip-
tical cylinder (Sutherland et al. 1999, 2000; Sutherland & Linden 2002). In these
experiments, a camera is focused through a stratified salt-water solution upon an
image of horizontal black lines. Internal waves are generated from an oscillating
cylinder spanning the tank and with its axis along the line of sight of the camera.
The waves stretch and compress isopycnal (constant density) surfaces, thus bending
the light reaching the camera and distorting the image. Under the assumption that
the wave beams are uniform along the line of sight of the camera, the amplitude of the
waves is easily calculated from the measured displacement of lines in the distorted
image.

The quantitative use of synthetic schlieren has so far been used for two-dimensional
geometries. This paper demonstrates how synthetic schlieren may be extended to
measure three-dimensional but axisymmetric internal wave fields. We perform a series
of laboratory experiments in which internal waves are generated by a vertically
oscillating sphere in uniformly stratified fluid. The waves are again visualized by
focusing a camera through the tank upon an image of horizontal black lines
and the displacement of lines due to the waves is measured. Assuming the waves
are axisymmetric about the vertical axis, the amplitude of the wave field can be
reconstructed from the displacements through matrix inversion methods, a simple
adaption of inverse tomography.

In § 2, we adapt the inviscid theory of Voisin (1991) to include the effects of viscous
attenuation for wave beams generated by an oscillating sphere. The experimental
set-up and the qualitative and quantitative use of synthetic schlieren is described in
§ 3. The techniques are applied to the experimental data in § 4 and we compare the
results to the theoretical predictions given in § 2. We summarize our results in § 5.

2. Theory
It is assumed that the fluid surrounding the sphere is Boussinesq, meaning that

density variations are negligible except for their effect upon buoyancy forces. This
assumption is justifiable for the experiments discussed in § 3.1 because the total density
change over the height of the tank is approximately 5%. For such salt-stratified
solutions, the squared buoyancy frequency is defined by N2 = −(g/ρ0) dρ̄/dz, where
g is the acceleration due to gravity (� 980 cm s−2), ρ0 is a characteristic value of
density (� 1.0 g cm−3 for water), and ρ̄(z) is the fluid’s initial unperturbed density as
a function of height, z.

We consider the case in which the sphere oscillates at a constant frequency, ω,
which is strictly less than N . Thus, the sphere generates propagating internal waves
that transport energy away from the source. The angle formed between the lines
of constant phase and the vertical, Θ ≡ cos−1(ω/N), lies between 0◦ and 90◦. We
further assume that the waves generated by the oscillating sphere are axisymmetric,
emanating as a pair of cones above and below the sphere, as illustrated in figure 1(a).

2.1. Inviscid theory

The structure of internal wave beams generated by a pulsating and a vertically
oscillating sphere in inviscid uniformly stratified fluid, was first derived by Appleby &
Crighton (1987). Assuming free-slip boundary conditions on the surface of the sphere,
they derived their formulae by solving an elliptic partial differential equation in the
case of evanescent wave excitation (with oscillation frequency ω greater than the
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Figure 1. (a) Geometry of the wave cones generated by an oscillating sphere in a uniformly
stratified medium. (b) Coordinate system used to model the upward-propagating cone.

buoyancy frequency N). Their result was extended to the case ω <N through analytic
continuation. Though simple in expression, their formulae involved variables expressed
in a non-intuitive coordinate system.

Using a Green’s function approach, Voisin (1991) determined the structure of
internal wave beams generated by a pulsating sphere. His result was identical to that
of Appleby & Crighton (1987), but expressed in the more intuitive across-beam (σ )
and radial (�) coordinate system.

Likewise, a formula for inviscid internal wave beams generated by a vertically
oscillating sphere can be written in (σ, �)-coordinates. Using cylindrical coordinates,
we define the axisymmetric streamfunction amplitude ψ(R, z) so that the radial, uR ,
and vertical, uz, components of the velocity field are given by

uR = −∂ψ

∂z
(2.1)

and

uz =
1

R

∂(Rψ)

∂R
. (2.2)

Here, R is the horizontal radial coordinate and z is the vertical coordinate.
We combine the formulae of Appleby & Crighton (1987) and Voisin (1991), and

use the result in Appendix A to convert from the velocity potential (used by Voisin
1991) to streamfunction, ψ . Thus, for the upward-propagating wave cone, we find

ψ(�, σ )|ν=0 ∼
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(
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(
1 − cos2 ϑ

cos2 Θ
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a

�

)2

|σ | > a.

(2.3)

Here, a and A represent the sphere’s radius and amplitude of oscillation, respectively.
The variable ϑ denotes the azimuthal angle between the vertical and a point on
the wave cone of the small-amplitude monochromatic internal waves. The notation
ν =0 is included to emphasize that the kinematic viscosity, ν, is neglected in inviscid
theories.
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For simplicity, we have focused our attention on the cross-section through the
upper wave beam, as shown in figure 1(b). The system’s symmetry may ultimately
be exploited to extend the results to the lower conical beam. Consistent with the
schematic in figure 1(b), in (2.3) we have adopted the convention that the σ -axis is
directed upward with σ = 0 corresponding to the centre of the wave beam.

In the far-field limit (� � a), it is convenient to introduce an orthogonal, σ − r ,
coordinate system where r represents the along-beam distance, as illustrated in
figure 1(b). Thus, we have � =

√
r2 + σ 2 and ϑ = Θ − tan−1(σ/r). Equivalently, the

along- and across-beam coordinates can be written in terms of cylindrical coordinates
by

σ = −R cos Θ + z sin Θ, r = R sinΘ + z cosΘ. (2.4)

We note that far from the sphere, the inviscid theory predicts that the amplitude of
the wave beam is negligibly small for |σ | > a. Within the conical wavefronts we have

ψ(r � a, |σ | < a)|ν=0 ∼ iAaN

(
cos3 Θ

sinΘ

)1/2(a

r

)1/2

[
σ

a
− i

√
1 −

(σ

a

)2

]3/2

, (2.5)

where, after taking the appropriate branch cut, we have used the identity
exp[i cos−1(x)] = x − i(1 − x2)1/2.

Equation (2.5) demonstrates that in the far field, the wave amplitude decreases
approximately as r−1/2, as expected for the radial energy flux to remain constant
across any horizontal cross-section through the conical beam. Except for this radially
dependent factor representing the expansion of the wave cone with height, the struc-
ture of the waves is determined entirely in terms of the across-beam coordinate σ .

2.2. Viscous theory

In adapting the result given by (2.5) to a viscous theory that accounts for the effects
of attenuation of the wave beams, it is convenient to re-express the equation in terms
of an integral formula. Using the formulae given by Gradshteyn & Ryzhik (1980,
§ 6.671), we write

ψ(r � a, |σ |<a)|ν=0 ∼ iAaN

(
cos3 Θ

sin Θ

)1/2(a

r

)1/2
[

3
2
e−i3π/4

∫ ∞

0

1

k
J3/2(ka)eikσdk

]
. (2.6)

We exploit this σ -dependent integral in developing a theory for viscously attenuated
wave beams. Following an approach similar to Hurley & Keady (1997), we assume the
effects of viscosity are relatively small so that after multiplying by r1/2 the dominant
variations of the streamfunction occur in the across-beam direction.

Assuming the amplitude of the internal waves is small, by linearizing the Navier–
Stokes and continuity equations in cylindrical coordinates, it can be shown that
ψ(R, z) satisfies

N2D2
Rψ − ω2∇̃2ψ + iων[∇̃2∇̃2ψ] = 0, (2.7)

in which

D2
Rψ ≡ ∂

∂R

(
1

R

∂(Rψ)

∂R

)
and

∇̃2 ≡ D2
R +

∂2

∂z2
.
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In (2.7), ν is the kinematic viscosity. For salt water at room temperature and densi-
ties characteristic of laboratory experiments (ρ � 1.05 g cm−3), ν holds the approxi-
mately constant value of 0.01 cm2 s−1.

Analysis of (2.7) is facilitated by using (2.4) to transform from cylindrical coordi-
nates to along- and across-beam coordinates.

We then define

β(r, σ ) =

√
r

a
ψ(r, σ ).

This is substituted into (2.7) after applying the coordinate transformation (2.4).
Using the boundary-layer approximation of Stevenson (1973), we assume along-beam
changes are negligibly small compared with across-beam changes. For r � σ and
r � a, the leading-order terms of the resulting equation give

∂2β

∂r∂σ
− iν

2N sinΘ

∂4β

∂σ 4
= 0. (2.8)

This equation for β is similar to that derived by Hurley & Keady (1997) for the
streamfunction in their study of waves generated by an oscillating elliptical cylinder.

The solution of (2.8) is found by applying a Fourier transform in σ over non-
negative wavenumber space. Explicitly, we find

β(r, σ ) ∼
∫ ∞

0

F (K) exp

(
−λK3 r

a
+ iK

σ

a

)
dK, (2.9)

where

λ =
ν

2a2N sinΘ
(2.10)

is a non-dimensional parameter which must be small for the boundary-layer approxi-
mation to be valid. Note that we have retained only those Fourier components with
non-dimensional wavenumbers K � 0 because only these correspond to upward wave
propagation (Lighthill 1978).

By analogy with the case of waves generated by an oscillating cylinder, we evaluate
the result (2.9) in the limit ν → 0+ and require a no-normal-flow boundary condition
to determine F (K). These steps are described explicitly in Appendix B. Thus we find,
for r � a, the streamfunction is given by

ψ(r, σ ) ∼ 1
2
iAaN cos Θ exp(−iΘ)

√
a

r

∫ ∞

0

1

K
J3/2(K) exp

(
−dK3 + iK

σ

a

)
dK. (2.11)

Here, using (2.10), we have defined the non-dimensional along-beam distance d by

d ≡ λr/a =
νr

2a3N sinΘ
. (2.12)

This parameter is significant in that it can be used to establish the distance over
which viscous effects become important.

The formula given by (2.11) in the inviscid limit is different in magnitude from (2.5)
by a factor (tan Θ)1/2. The discrepancy is due to the boundary-layer approximation,
which is used to enforce no-normal-flow boundary conditions and which neglects
the dependence of r upon � near the sphere (see Appendix B). For example, in
experiments with Θ � 60◦, (2.11) predicts 32% larger wave amplitudes than (2.5). As
shown in § 4.3, (2.11) better represents the observed collapse of data.

The result given by (2.11) is remarkably similar to that of Hurley & Keady (1997)
for the oscillating circular cylinder. Employing the corresponding coordinate system
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to that used here for the oscillating sphere (e.g. see Sutherland et al. 1999) the stream-
function in the first quadrant is given by

ψcyl(r, σ ) ∼ 1
2
iAaN cos Θ exp(−iΘ)

∫ ∞

0

1

K
J1(K) exp

(
−dK3 + iK

σ

a

)
dK, (2.13)

where d is again given by (2.12).
Other than the conical expansion factor (a/r)1/2, the only difference between the

far-field formulae for waves generated by a sphere and cylinder is the order of the
Bessel function in the integrand.

2.3. Theoretical results

For internal waves visualized in experiments by schlieren techniques, the images result
due to changes in the density gradients, which result from waves that compress and
stretch the distance between isopycnal surfaces. Thus, for direct comparison with
experimental results, we calculate the theoretical amplitude of both the change in the
perturbation squared buoyancy frequency, �N2, and its time derivative, N2

t . These
fields, which are proportional to the perturbation density gradient, are used because
they can be compared easily with the background buoyancy frequency and thus
provide an intuitive measure of the relative amplitude of the waves.

Explicitly, using linear theory,

�N2 ≡ −g

ρ0

∂ρ

∂z
∼ iN sinΘ

∂2ψ

∂σ 2
. (2.14)

Using (2.11), we find

�N2 ∼ AN2 exp(−iΘ)

√
a

r

∫ ∞

0

KJ3/2(K) exp

(
−dK3 + iK

σ

a

)
dK, (2.15)

where

AN2 =
1

2

A

a
N2 sinΘ cos Θ. (2.16)

Similarly,

N2
t ≡ −iω

(
−g

ρ0

∂ρ

∂z

)
∼ N2 sinΘ cos Θ

∂2ψ

∂σ 2
. (2.17)

Hence,

N2
t ∼ −iN cosΘAN2 exp(−iΘ)

√
a

r

∫ ∞

0

KJ3/2(K) exp

(
−dK3 + iK

σ

a

)
dK. (2.18)

We use a fast Fourier transform algorithm (Press et al. 1993) to evaluate these
integrals numerically. Care is taken to ensure that the domain size is sufficiently
large and resolution sufficiently high that convergence is attained to less than 0.1%
accuracy.

Figure 2 shows across-beam plots at two different positions along the beam of
the normalized �N2 field, �N2/AN2 . The curves are calculated using parameters
similar to some of the experiments with the small sphere. Explicitly, we set a = 1.9 cm,
ω =0.5 s−1, N =1.0 s−1 and ν = 0.01 cm2 s−1. Thus, Θ � 60◦. Both plots show the
amplitude envelope as well as the instantaneous amplitude profile at four different
phases of its motion. Note that the wave crests move to decreasing σ with increasing
phase. This is consistent with the downward motion of phase lines expected for
upward propagating waves.
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Figure 2. Across-beam plots of �N2/AN2 at (a) r/a = 5 (d = 0.008) and (b) r/a = 15
(d = 0.024). In each case, the thick solid lines denote the envelope of the waves. The specific
structure of the waves is also shown at the following phases: φ = 0 (dotted line), π/4
(short-dashed line), π/2 (long-dashed line), 3π/4 (dash-dotted line).

A striking difference between the two plots is the structure of the amplitude
envelope which exhibits two peaks near σ = ±a for r/a =5 (figure 2a), but only one
peak at σ = 0 for r/a = 15 (figure 2b). These plots therefore illustrate the transition of
the wave-beam structure from bimodal to unimodal. The transition occurs because
of the broadening of the beams under the effects of viscous attenuation.

The transition from bimodal to unimodal structure is better illustrated in figure 3
which shows along-beam cross-sections of the normalized streamfunction and �N2

fields. The curves are computed using the same parameters as those used to
compute the curves in figure 2. Cross-sections are shown along the beam centreline,
where σ = 0, and along σ = a. The latter is chosen since inviscid theory predicts
large along-beam velocities along this cross-section, which is tangential to the
sphere.

Along both the σ = 0 and σ = a cross-sections shown in figure 3(a), the
streamfunction amplitude decreases monotonically primarily owing to the wave-cone
expansion factor r−1/2, but also in part owing to viscous attenuation. For all r , the
streamfunction amplitude, which is normalized by Aψ =ANa cosΘ/2, is largest along
the centreline of the wave beam, where σ =0.

In contrast, figure 3(b) shows that for r/a � 6.8 (d � 0.011) the amplitude of the
�N2 field is larger at σ = a than at σ = 0. This is consistent with the structure of
bimodal wave-beams. Thus, the �N2 field (and hence schlieren visualization methods)
more clearly illustrates the bimodal to unimodal transition.

This is not to say that the streamfunction field is unimodal. As illustrated below, if
we define bimodal waves as those with positive curvature to the amplitude envelope
at σ =0 and unimodal waves as those with negative curvature at σ = 0, then both the
streamfunction and �N2 field show a bimodal to unimodal transition. For sufficiently
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Figure 3. Along-beam plots of (a) the normalized streamfunction envelope, 〈ψ〉/Aψ ,
(b) 〈�N2〉/AN2 near the source plotted as a function of r/a and (c) the far-field values
of 〈�N2〉/AN2 as a function of d = λr/a and shown as a log–log plot. In (a) and (b) solid and
dotted lines show cross-sections along σ = 0 and a, respectively. In (c) only the cross-section
along σ = 0 is shown. The thin solid line in (c) shows the predicted slope of the curve in the
asymptotic regime.

small r where the streamfunction is bimodal, the peak amplitude occurs between
σ = 0 and σ = a.

2.4. Bimodal to unimodal beam transition

The explicit integral formula for the wave beams permits us to determine at what
position along the beams their structure changes from bimodal to unimodal. The
location itself is ambiguous depending upon the basic state field being analysed and
upon the mathematical definition of the transition.

The distinguishing characteristic between bimodal and unimodal wave beams is
that the curvature of the amplitude envelope of the former is positive along the
centreline (where σ =0) whereas it is negative for the latter.

The non-dimensional distance d = dc at which this occurs for the streamfunction,
for example, is therefore given implicitly by([

∂2

∂σ 2
〈ψ〉

]∣∣∣∣
σ=0

)∣∣∣∣
d=dc

= 0. (2.19)

Here, 〈ψ〉 represents the amplitude envelope of the streamfunction.
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Field Cylinder (µ = 1) Sphere (µ = 3/2)

d = 0.00812 d = (none)
Streamfunction dc = 0.00605 dc = 0.00507

pν = 1/3 pν = 1

Velocity, d = 0.01463 d = 0.00861
displacement dc = 0.01650 dc = 0.01086

pν = 2/3 pν = 4/3

d = 0.02071 d = 0.01254
�N2, N2

t dc = 0.02552 dc = 0.01644
pν = 1 pν = 5/3

Table 1. Theoretically predicted values of the non-dimensional along-beam distance at which
the centreline of the envelope is a maximum (d) and where the across-beam curvature is zero
along the centreline (dc). Also listed are power law decay rates (∝ r−pν ) of centreline beam
amplitudes as d → ∞.

Defining

I (d; p, µ) =

∫ ∞

0

Kp−1Jµ(K) exp(−K3d) dK, (2.20)

it is a simple matter to show that (2.19) together with (2.11) leads to the condition
that dc must satisfy I 2(dc; 1, 3/2) = I (dc; 0, 3/2)I (dc; 2, 3/2).

Likewise, because along-beam derivatives are negligibly small compared with
across-beam derivatives, the transition distance for the velocity field and vertical
displacement fields are determined by the condition that the curvature of 〈∂ψ/∂σ 〉 is
zero along the centreline of the beam at some critical distance dc. This amounts to
finding the value of dc that satisfies I 2(dc; 2, 3/2) = I (dc; 1, 3/2)I (dc; 3, 3/2).

For comparison with schlieren experiments, it is useful to evaluate the zero-
curvature condition for 〈�N2〉 ∝ 〈∂2ψ/∂σ 2〉, because this field is proportional to
the density gradient field, which is directly measured. For this field, dc satisfies
I 2(dc; 3, 3/2) = I (dc; 2, 3/2)I (dc; 4, 3/2).

Values of dc are evaluated numerically and are given in table 1. For convenience,
the table also gives corresponding values of dc predicted for an oscillating circular
cylinder. These values are found by evaluating the corresponding integral conditions,
but for Bessel functions of order µ = 1 instead of 3/2 in the integrand.

The transition distance for all three fields is smaller for the sphere than for the
cylinder. For both the sphere and the cylinder, the transition distance is largest for
the �N2 field.

Although dc provides a useful mathematical definition in terms of the curvature,
other measures of the transition distance are also practical for the purpose of
comparison with observations. One possibility is to define the transition as occurring
where the amplitude of the beam along the centreline exceeds the amplitude at
σ = a. For example, figure 3(b) shows that this occurs for the �N2 field at r/a = 6.8,
corresponding to d � 0.011. This value is approximately two-thirds of the transition
distance dc.

The peaks on either flank of the centreline of the bimodal wave-beam broaden
owing to viscous attenuation and this acts both to decrease the amplitude of the peaks
and to increase the amplitude of the beam along the centreline. Thus, near the sphere
the amplitude of the waves should decrease less quickly than r−1/2. After the beams
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have merged, the centreline amplitude should decrease faster than r−1/2 owing to the
combined effects of the expanding wave cone and viscosity.

This leads us to define the transition distance d where, after multiplying by (r/a)1/2,
the amplitude along the centreline of the beam is predicted to be greatest. Correspond-
ing to the streamfunction of the wave cone emanating from an oscillating sphere, this
is given by ([

∂

∂r
〈β〉

]∣∣∣∣
σ=0

)∣∣∣∣
d=d

= 0. (2.21)

This implicit condition on d simplifies to I (d; 3, 3/2) = 0.
Corresponding transition distances for the velocity and �N2 fields generated by

an oscillating sphere can be found. Likewise, these are determined for an oscillating
circular cylinder, although in this case it is not necessary to correct for the wave-cone
expansion factor by multiplying by (r/a)1/2.

Values of d, given in table 1, are typically smaller than dc with the exception of its
value for the streamfunction. In this case, for the cylinder, it is greater than dc and
for the sphere, no maximum of β occurs within the wave field.

2.5. Asymptotics

In an analysis similar to that of Sutherland & Linden (2002) for the oscillating
cylinder, we can compute for the oscillating sphere asymptotic formulae for the
decreasing amplitude of the wave beam in the far field. Thus, we can evaluate
the relative importance of the decrease in amplitude of the wave beam due to the
expansion of the wave cone as well as viscous attenuation.

From (2.11), the streamfunction along the centreline of the upward-propagating
wave cone is

ψ |σ=0 ∝
√

a

r

∫ ∞

0

J3/2(K)

K
exp(−K3d) dK. (2.22)

Through differentiation of (2.11) with respect to σ , the asymptotic behaviour of
dynamical fields of interest can be deduced. For convenience, we define

f (d; p) =

∫ ∞

0

J3/2(K)Kp−1 exp(−K3d) dK. (2.23)

Then, for large d , the along-beam velocity is proportional to f (d, 1) and N2
t |σ=0 ∝

f (d, 2).
Standard asymptotic analyses (i.e. Watson’s Lemma, see Bender & Orszag 1999) give

f (d; p) ∼ 1

3 × 23/2
d−(p+3/2)/3

∞∑
n=0

(−1)nΓ

(
p + 2n + 3/2

3

)
22n n! Γ (n + 5/2)

d−2n/3 (2.24)

Therefore, to leading order, the far-field streamfunction is predicted to decrease
as r−1/2d−1/2 ∝ r−1. That is, the effects of viscous attenuation are as important
as the expansion of the wave cone in determining the resulting decrease of the
amplitude. Viscous attenuation effects are more significant for the velocity, �N2 and
N2

t fields. Explicitly, the velocity, which is proportional to ∂ψ/∂σ , is predicted to
decrease as r−1/2d−5/6 ∝ r−4/3. The �N2 and N2

t fields are predicted to decrease as
r−1/2d−7/6 ∝ r−5/3.
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For both the oscillating cylinder and sphere, the amplitude of the wave beam in the
far field decreases according to the power law r−pν . Values of the power law exponent,
pν , are given in table 1.

Figure 3(c) shows a log–log plot of �N2 vs. d and, for d > 1, compares its slope
to that predicted by asymptotic analysis. The plot demonstrates that the asymptotic
approximation is indeed accurate even for small values of d . The slope of the curve
lies within 10% of its asymptotic value for d � 0.25.

In most experimental investigations of oscillating cylinders and spheres (Mowbray
& Rarity 1967b; Stevenson 1969; Sutherland et al. 1999) including those presented
here, even this small value of d is too large to be accessible. For example, with
a =1.9 cm, N = 1.0 s−1 and Θ = 60◦, d = 0.25 corresponds to r = 297 cm. To investigate
the evolution of waves over this distance would require a prohibitively large tank.

We therefore confine ourselves to examining the behaviour of the waves near
the oscillating sphere and to studying, in particular, the transition from bimodal to
unimodal waves.

3. Experimental methods
3.1. Experimental set-up

The experiments performed in this study are similar in scope and design to those
described by Sutherland et al. (1999). They are performed in a Perspex tank having
a height H = 48.6 cm, length L0 = 47.6 cm and width, Lt = 47.7 cm. The tank is filled
to a depth of 44.3 cm with a uniformly stratified salt solution using a ‘double bucket’
system (Oster 1965). A traversing conductivity probe is used to measure density as
a function of depth. In the experiments reported upon here, the measured buoyancy
frequency, determined from the slope of the best fit line through the density profile,
ranges between N = 0.94 and 1.00 s−1 with a measurement error of 0.02 s−1.

Two hollow plastic spheres of radii a = 1.9 and 3.2 cm are employed in this study.
Both spheres are filled with a salt water solution so that they are almost neutrally
buoyant when suspended underwater.

As shown in figure 4, each sphere is attached to a thin metal rod. Its diameter is
2.5mm for the large sphere and 1.7 mm for the small sphere. The other end of the
rod is connected through a hinge to a sinusoidally oscillating arm. In each case, the
rod is passed through a narrow guide placed across the top of the tank thus ensuring
that the sphere’s motion is vertical. A ‘reflection-barrier’ is positioned above and to
the left of the sphere in the tank. This acts to prevent interference from reflected
waves on the left-hand side of the upward propagating wave cone.

The frequency of oscillation is controlled by adjusting the rate of rotation of the
motor. In the experiments reported upon here, the oscillation frequency ranges from
ω = 0.287 to 0.819 s−1. Thus, as predicted by linear theory, wave cones are generated
forming angles to the vertical of Θ = cos−1(ω/N) ranging between 30.9◦ and 72.4◦.
Values of ω closer to either 0 or N were not examined in order to minimize the
interference between the upper and lower wave cones and between the right- and
left-hand sides of the wave cones. Thus, we are able to compare the experimental
results directly with theory for a single wave cone.

In order to investigate the range of validity of linear theory, we examine wave
generation by spheres oscillating at different amplitudes. The amplitude of oscillation
is controlled by altering LA, the distance between the arm’s pivot point and the
position of the hinge, as shown in figure 4(a). Here, we examine waves generated by
the large sphere oscillating with relative amplitudes of A/a = 0.10, 0.18 and 0.27, and
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Figure 4. (a) Front view of the tank showing the oscillating sphere mechanism. (b) Side view
of the tank showing the relative position of the tank to the CCD camera. (Figure not to scale.)

by the small sphere oscillating with relative amplitudes of A/a = 0.15, 0.19 and 0.26.
Even for runs with the largest amplitude of oscillation, the flow around the sphere is
observed to be laminar.

3.2. Qualitative schlieren visualization

The internal wave field is visualized by employing a ‘synthetic schlieren’ system. The
implementation of the system and the measurement of line displacements are described
in detail by Sutherland et al. (1999). Only the relevant features are summarized here.

As with all schlieren systems, synthetic schlieren visualiszes internal waves by
enhancing the way light is deflected through a stratified fluid. Because the index
of refraction is proportional to salinity (Weast 1981), light rays are deflected to a
greater extent if they pass through larger density gradients. Thus, the light rays
are deflected upwards and downwards as internal waves compress and stretch,
respectively, isopycnal surfaces. Synthetic schlieren visualizes these deflections by
digitally recording distortions of an image placed behind the tank.
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The set-up of synthetic schlieren is shown in figure 4(b). In the set-up, a translucent
screen of evenly spaced 0.25 cm thick horizontal black lines is placed a distance
Ls =16.9 cm behind the tank. The screen is illuminated from behind by a rack of
fluorescent bulbs. The experiment is recorded on digital tape by a CCD camera
positioned approximately Lc = 339 cm in front of the tank. In order to capture as
much of one quadrant of the wave cone as possible, the sphere is positioned toward
the tank’s lower left-hand corner.

The camera is itself connected to a computer running DigImage (Dalziel 1992),
which is used to enhance and analyse images from the camera. Typically, the area of
one pixel in an image is 0.05 × 0.05 cm2.

An illustration of the visualization technique is shown in figures 5. Figure 5(a)
shows a snapshot taken by the camera after the large sphere has undergone two
large-amplitude (A/a = 0.27) oscillations. Part of the sphere (in black) is shown in
the bottom left-hand corner of the image. The rest of the frame is dominated by
horizontal lines, which is the image of the screen behind the tank. Though it cannot
be seen by eye, the image of the lines is distorted owing to the presence of waves in
the tank. By subtracting this image from one taken before the experiment began, the
distortion can be enhanced. This is illustrated in figure 5(b), which clearly shows a
wave-beam emanating upward and to the right of the sphere.

Through interpolation of the changing intensities of adjacent pixels in the image,
the apparent vertical displacement, �z, of the lines in the image can be measured with
an accuracy as small as 0.002 cm. Performing this calculation for pixels corresponding
to the edges of the dark lines on the screen, and using a Gaussian weighted average
of the results to determine the displacements of the remaining pixels, we obtain, after
filtering, a matrix of data �z(y, z). This is represented, for example, in figure 5(c),
which shows the apparent displacement of lines computed from the image in
figure 5(a). Note that the lines in this experiment are displaced by no more than
0.02 cm, explaining why such displacements are hard to detect by eye.

Figure 5(c) also illustrates a useful advantage of schlieren, as opposed to in situ
probe measurements, for measuring wave amplitudes. Theory predicts that the
amplitude of the waves should decrease approximately as r−1/2. However, the image
shows that the value of �z remains large far from the sphere. This occurs because
the wave cone disturbs the stratified fluid over a wider distance far from the cone.
Even though the amplitude is less, the light ray passes through a longer disturbance,
and cumulatively this acts to maintain a strong signal even far from the source.

Another important advantage of synthetic schlieren over other schlieren systems
is that it can be used to measure two-dimensional (planar) and axisymmetric wave
amplitudes from a single field of view. In the former case (used, for example, to
measure internal waves generated by an oscillating cylinder (Sutherland et al. 1999;
Sutherland & Linden 2002)), it is a straightforward matter to relate the apparent
image displacement �z to the �N2 field, which in turn is proportional to the change
in the density gradient due to waves.

The computation is more complicated for the axisymmetric waves generated by
an oscillating sphere. It requires the use of tomographic inversion techniques to
determine �N2(R, z) from �z(y, z), a procedure discussed in detail by Onu, Flynn &
Sutherland (2003) and described briefly below.

3.3. Axisymmetric schlieren measurements

In order to relate �N2 to �z, we first determine how a light ray is bent owing to
variations in the index of refraction, n(x, z). Because we use an image of horizontal
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Figure 5. (a) Snapshot of the experiment taken at the beginning of the third oscillation,
(b) synthetic schlieren image determined from that shown in (a), and (c) the apparent vertical
displacement, �z, of lines in the image computed from the image shown in (a).

lines, we ignore variations of n in the y-direction as deflections in the along-tank
direction are not measured.

Using Snell’s Law under the approximation that the light rays pass almost
horizontally through the tank, the vertical rise z(x) as the light ray passes through
the tank in the x-direction is given by the differential equation

z′′
(

z′ 1

∂n/∂x
+

1

∂n/∂z

)
=

1

n
, (3.1)

in which primes denote derivatives with respect to x.
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Because the light ray traverses only a small vertical distance (typically less than
1 cm) as it passes through the tank, we further assume that n depends only linearly
on z. Explicitly,

n(x, z) = α0(x) + α1(x)z. (3.2)

Substituting this into (3.1) and estimating characteristic scales of α0 and α1, we can
use perturbation theory to find an approximate solution to the differential equation:

z(x) = zi + x cot φi − γ

∫ x

0

∫ x̂

0

N2(X) dX dx̂. (3.3)

Here, zi is the initial height and φi the initial angle of the ray as it enters the stratified
fluid. For salt water, the physical constant γ is given by

γ =
1

g

ρ0

n0

�n

�ρ
� 1.878 × 10−4 s2 cm−1.

By repeatedly applying Snell’s law as the ray travels from the camera to the grid
of lines, the height at the image of a light ray that meets the camera at height z0 and
with (small) angle φ0 to the horizontal can be found. Finally, the displacement of the
light ray, �z, can be determined as a function of the change in the squared buoyancy
frequency. Explicitly, we have

�z = −γ nw

{
Ls

nw

na

∫ Lt

0

�N2(x) dx +

∫ Lt

0

∫ x

0

�N2(x̂) dx̂ dx

}
. (3.4)

In the special case in which N is independent of x, this equation corresponds to
that derived by Sutherland et al. (1999) in their study of waves generated by an
oscillating cylinder. Their result is straightforward to invert. That is, we can write an
explicit algebraic formula for the field �N 2(y, z) in terms of �z(y, z).

For axisymmetric waves, �N2 is a function of z and the radial distance, R, from the
z-axis. Hence, it is necessary to discretize the formula given by (3.4) and numerically
invert the resulting matrix equation.

In practice, at each vertical level, zs , we represent �N2(R; zs) by an N = 512-
component vector, (�N2(R1; zs), . . . , �N2(RN ; zs)) where Ri represents the mean
radius of the ith ring. The vector size is determined by the number of horizontal pixels
in the original digitized image of the experiment. The matrix inversion is performed
numerically using the LU decomposition routines described in § 2.3 of Press et al.
(1993). The inversion routine is repeated for each row of data at 480 different vertical
levels zs . Thus, the �N2(R, z) field is reconstructed from the �z(x, z) data. The
calculation is performed on a single processor of an SGI Origin 2000 with 195 MHz
R10K CPUs. The processing of a single 512 × 480 array takes less than 10 min.

4. Results
4.1. Wave structure

Figure 6 shows the structure and amplitude of upward propagating internal waves
generated by the small sphere. Figure 6(a), which plots contours of the �N2 field,
clearly shows a wave beam emanating from the sphere at an angle Θ � 61◦ to the
vertical, the angle predicted by linear theory. Analyses of the N2

t field, not shown
here, give similar results.

Though the signal noise of the corresponding �z field is relatively small, we find
that tomographic inversion acts to magnify these errors. In figure 6(a), the noise is
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Figure 6. (a) The �N2 field computed from an experiment with the small sphere oscillating
with relative frequency ω/N = 0.49 and relative amplitude A/a = 0.26. The field is evaluated
at the phase φ = 0, as the sphere moves downward through its equilibrium position. The
diagonal dashed line is the line passing through the centre of the sphere at an angle
Θ = cos−1(ω/N ) � 61◦ to the vertical. (b) Shows the amplitude envelope, 〈�N2〉, of the �N2

field.

pronounced near the right and left margins of the image. Fortunately, the signal from
the wave beam is stronger than the errors, particularly over the middle of the domain.
Along the beam, the noise results in variations of the order of 0.01 s−2, or 1% of the
background density gradient. Near the sphere, the signal from the waves is typically
an order of magnitude larger than the noise.

To reduce further the effect of signal noise and also to examine the bimodal to
unimodal transition, we calculate the amplitude envelope of the �N2 field: 〈�N2〉.
This is done by computing the �N2 field at sixteen different times during one period
of oscillation. Explicitly, the field is computed at phases φ = 0, π/8, . . . , 15π/8, with
φ = 0 corresponding to the sphere moving downward through its equilibrium position.
We then compute the root-mean-square average of the sixteen fields and multiply the
result by 21/2.

In order to ensure that waves reflecting off the tank boundaries interfere negligibly,
we compute this average from images taken between the second and third oscillations
of the sphere. Linear theory predicts that at Θ = 60◦, energy is transported at the
group velocity between only 3.5a and 5.2a from the sphere during this time interval.
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Figure 7. As in figure 6, but determined from an experiment with the large sphere
oscillating with relative amplitude A/a = 0.27.

Our analysis reveals, however, that a quasi-steady state is established to within
experimental noise over the field of view extending to 8a and 14a for the large and
small sphere experiments, respectively. This is confirmed by subtracting the �z fields
taken at φ =0 for the second and third oscillation periods and dividing the result
by the root-mean-square average. Thus, we conclude that the initial transient waves
and the waves reflected from the tank boundaries have negligibly small influence
upon the waves measured in the field of view of the experiment.

Figure 6(b) shows the amplitude envelope computed in this way between the second
and third oscillations of the sphere. The image clearly shows that the amplitude of
the waves near the sphere is largest on either flank of the centreline, but far from the
sphere the amplitude is largest along the centreline. The image also shows the rapid
decrease in amplitude of the wave beam with distance from the sphere.

These results are compared with those measured in an experiment employing the
large sphere in figure 7. The �N2 field shown in figure 7(a) is computed from the �z

field shown in figure 5. Because the amplitude of oscillation is larger, the signal from
the wave beam is stronger and can be visualized over noise farther from the sphere.

In experiments with both the small and large sphere, we observe the transition
from bimodal to unimodal waves with distance from the source. As expected, the
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Figure 8. Across beam plots at (a) r/a =5 (d = 0.00801) and (b) r/a =8 (d = 0.01282) of
the normalized 〈�N2〉 field determined from experiments with the small sphere oscillating at
three amplitudes (dotted, small-dashed and long-dashed curves, as indicated). The results are
compared with theory (solid line).

amplitude envelope generated in large-sphere experiments exhibits bimodal behaviour
farther from the sphere because the distance between the two tangents at σ = ±a is
greater.

4.2. Amplitude dependence

We compare theoretical predictions derived from the streamfunction given by (2.11)
to experimental results by taking across-beam and along-beam cross-sections through
the amplitude envelope data and we plot the re-scaled results against suitable non-
dimensional parameters.

Figures 8 and 9 compare the results of three experiments in which the small sphere
oscillates at different amplitudes, but at fixed relative frequency ω/N � 0.49. Figure 8
shows across-beam cross-sections normalized by AN2 (a/r)1/2 where AN2 , given by
(2.16), is proportional to the amplitude of oscillation, A. Consistent with linear
theory, the normalized curves from the three experiments approximately overlap. The
relative amplitude of the wave beam in experiments with A/a = 0.26 is generally
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Figure 9. Comparison between the theoretical and experimental profiles of the 〈�N2〉/AN2

field along the slice (a) σ = 0 and (b) σ = a for small-sphere experiments.

smaller than the relative amplitude of the waves in the two experiments with smaller
A/a. However, it is difficult to argue that this is a real effect because of the high
background noise level.

At r/a = 5, all three experimental curves exhibit a pronounced peak near σ = a.
This is consistent with theory which predicts that the wave beam is bimodal for
d � 0.008 < dc � 0.016.

All three experiments reveal an asymmetric structure at r/a = 5: there is no
pronounced peak near σ = −a. As shown below, the large-sphere experiments do not
exhibit such asymmetry. In light of these results, there are three reasons why the
small-sphere wave beams could exhibit this asymmetric structure, though only one
explanation turns out to be reasonable. We might expect the asymmetry results from
destructive interference with the upward and downward propagating wave cones.
Because the bottom flank of the wave beam on the upper cone interacts more strongly
with the lower cone than its top flank, a relative reduction in amplitude should
result. However, at r/a = 5, the distance between the point σ = −a and the
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mid-point between the two wave cones is approximately 1.6a. This is sufficiently
far away that destructive interference should be negligibly small. For example, in
theory, the amplitude envelope at σ/a = 3 is less than 1% of the peak value of 〈�N2〉
at r/a = 5.

A second possible reason for the asymmetry is that the approximation � � r is
inaccurate near the sphere. However, even at r/a = 5, this turns out to be a good
approximation: the factor (a/�)1/2 differs from (a/r)1/2 by less than 1% at σ/a = ±1.
We might argue that a more accurately derived theory, which accounts for the varia-
tion in � with r near the sphere, would predict asymmetric structure far from the
sphere. However, this explanation would not account for the symmetric structure
observed at comparable distances in the large-sphere experiments.

The most likely explanation for the asymmetry is that dynamics close to the sphere
act to weaken the amplitude of waves emanating along the bottom flank of the upper
wave cone. Wave–wave interactions, as well as the dynamics of waves interacting
with viscous boundary layers surrounding the sphere, are not described by the linear
theory prediction derived in § 2. Where the bottom flank of the upper wave cone
meets the sphere, it interferes destructively with the lower wave cone while also
interacting with the viscous boundary layer. This combination of interactions could
act to decrease the amplitude of the bottom flank relative to the top flank. Though a
theoretical investigation of this hypothesis is beyond the scope of this paper, we show
below how the experimental results qualitatively distinguish the relative importance
of wave–wave interactions and viscous effects.

At r/a = 8 (figure 8b), the three experimentally measured wave beams exhibit
unimodal behaviour. Though theory predicts the beams should still be bimodal at
this distance (where d � 0.013), the slope of the amplitude envelope is small over
a range of σ < |a|. Thus, even if the peaks occur in experiments, they may not be
evident over the signal noise.

A consistent result in all three experiments is that theory, given by (2.15), moderately
overpredicts the amplitude of the waves. This is illustrated more clearly in figure 9
which shows along-beam cross-sections at σ = 0 and σ = a and compares these with
theory. Both graphs show the 〈�N2〉 field normalized by AN2 and plotted against the
non-dimensional distance d .

The decreasing amplitude along both cross-sections is captured well by theory.
Along σ = 0, theory generally overpredicts the amplitude by 10 to 20%. The agreement
between theory and experiment is particularly good along σ = a. By finding the best-
fit line between d = 0.01 and 0.02 to the corresponding log–log plots of the theoretical
curve, we find the amplitude decreases as d−p (∝ r−p) where p = 0.998 (±0.001).
Averaging together the three normalized experimental curves we find the best-fit
power law exponent gives p = 1.01 (±0.14). Both theory and experiments show that
the amplitude along σ = a drops off faster than r−1/2 as a result of viscous attenuation
of the wave beam. By examining the intercept of the best-fit lines, we find that theory
overpredicts the amplitude of the waves by 35%.

We compare the results of the experiments with the small sphere to those with
the large sphere by examining the corresponding across-beam cross-sections at
r/a = 5 and r/a =8. The normalized experimental data is compared with theory in
figure 10.

Near the sphere, the wave beam clearly exhibits a bimodal structure and, unlike
the small-sphere case, the structure here is symmetric. This is consistent with the
discussion above in which we argue that dynamics near the sphere are responsible for
the asymmetry in the small-sphere case. The large-sphere experiment demonstrates
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Figure 10. As in figure 8 but for the large sphere oscillating at three different amplitudes.
Cross-sections are taken at (a) r/a = 5 (d = 0.00287) and (b) r/a =8 (d = 0.00459).

that wave–wave interactions alone are not the likely cause, since asymmetry would be
even more evident in this case. Instead, it is reasonable to deduce that the asymmetry
results from wave interactions with the viscous boundary layer near the sphere. These
dynamics are more pronounced for the small-sphere experiments since the Reynolds
number Re ≡ Aaω/ν (which ranges from 18 to 49) is less than half the corresponding
value for the large-sphere experiments. Furthermore, the relative viscous boundary-
layer thickness for the small-sphere experiments is almost double that for the
large-sphere experiments. From scaling theory, the boundary-layer thickness is given
approximately by δν ∼ (ν/ω)1/2. In the small-sphere experiments, δν/a � 0.07. Although
a small fraction, it is significant compared to the width of the two bimodal beams
near the sphere.

Another distinguishing feature of the experimental results shown in figure 10(a) is
that theory overpredicts the peak amplitude at r/a = 5 approximately by a factor 2.
This is also true at r/a = 8, as shown in figure 10(b). Because the data correspond to
a radial distance near the edge of the camera’s field of view, the experimental data
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are given only over the restricted range −1.5 � σ/a � 1.5. Nonetheless, the results
show that this far from the sphere, the experimental data no longer exhibit bimodal
behaviour, although theory predicts the profile should remain sharply peaked. These
results demonstrate that theory does not accurately capture the dynamics of viscous
attenuation near the sphere.

Consistent with these results, figure 11(a) shows that the along-beam amplitude
at σ = 0 exhibits a distinct minimum near d = 0.002, whereas theory predicts the
amplitude should decrease monotonically. The amplitude increases along σ =0 for
d � 0.002 because viscous attenuation brings the peaks of the bimodal wave beams
together over such a short distance that the amplitude increase in response to the
merger occurs with a power-law dependence greater than r−1/2. From figure 11(b), we
determine the slope of the best-fit line between d =0.002 and 0.005 to the log–log plot
of the theoretical curve and find, as in the case of the small sphere, that the amplitude
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Figure 12. (a) Comparison between the theoretical and experimental profiles of the
〈�N2〉/AN2 field along the slice σ = −a for small-sphere experiments with different oscillation
frequencies, as indicated by the values of Θ shown. (b) Comparison of same data but with
amplitudes normalized by (tan Θ)1/2.

decreases as d−p with p = 1.01 (±8 × 10−5). However, the averaged experimental data
give a larger power law over this range. We find p = 1.49 (±0.15).

4.3. Frequency dependence

Figure 12 compares the results of experiments in which the small sphere oscillates at
fixed relative amplitude A/a = 0.26, but with a range of frequencies. The normalized
〈�N2〉 field is shown along the slice σ = −a, on the lower flank of the upper wave
cone. This cross-section is selected because it lies on the outside edge of the upper
wave cone, a region with a strong signal that is least affected by surface reflections
and wave interference within the wave cone. As in figure 9, figure 12(a) shows the data
in which 〈�N2〉 is normalized by AN2 and the along-beam distance r is normalized
by a/λ. As a result of scaling by these Θ-dependent factors, the experimental data
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Figure 13. As in figure 12, but for experiments with large sphere.

collapse remarkably well onto a single curve. The agreement is particularly good for
d > 0.01.

In comparison, figure 12(b) shows that the same data collapse less well when
〈�N2〉 is normalized by AN2/(tan Θ)1/2, which is the scaling factor that arises from
the inviscid theory that predicts that the streamfunction is given by (2.3).

The same conclusions hold for experiments with the large sphere. As in figure 12,
figure 13 shows the corresponding results from experiments with a = 3.2 cm and
A/a = 0.26. When scaled by AN2 , the data collapse better onto a single curve, parti-
cularly for d > 0.003.

Thus, despite invoking the boundary-layer approximation and despite heuristically
matching boundary conditions by extrapolating the far-field results to the sphere
surface, the theoretical prediction given by (2.15) correctly predicts the far-field
amplitude of the wave beam to within a constant empirical factor moderately larger
than unity.
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5. Conclusions
We have derived and analysed a formula for the structure of small-amplitude

Boussinesq internal wave cones generated by a vertically oscillating sphere. Unlike
the corresponding formula for an oscillating circular cylinder, this theory predicts
that the centreline amplitude of the beam, as measured by the �N2 field, decreases
monotonically over its extent. The theory neglects the dynamics of viscous boundary
layers surrounding the sphere and it assumes along-beam variations are negligibly
small.

We test the range of applicability of theory in experiments with spheres of two
different sizes. By adapting synthetic schlieren to measure axisymmetric disturbances,
we are able to measure non-intrusively wave amplitudes everywhere in space and
time. Here, we have analysed the amplitude envelope since this reduces signal noise
by constructing the root-mean-square average of many images.

Good agreement is found between theory and experiment for the small sphere.
For relative oscillation amplitudes as large as 0.27, we find the theory moderately
overpredicts the wave amplitude. The agreement is not as good as that in experiments
with the large sphere. Theory overpredicts the amplitude of the wave cone by a
factor of 2, and the wave beam changes from bimodal to unimodal structure over
a shorter distance than that predicted by theory. For both small- and large-sphere
experiments conducted with a range of frequencies, the data on the lower flank of
the upper wave cone collapse best in the far field when scaled by a factor AN2 ,
which is determined from the theory that employs the boundary-layer approximation.
This theory consistently overpredicts the amplitude, presumably because it does
not realistically match the boundary condition on the surface of the sphere and, in
particular, because it does not account for the energy lost in the viscous boundary layer
surrounding the sphere. Consistent with this assertion, we observe that the difference
between theory and experiments is larger on the lower flank for experiments with the
smaller sphere, which has a relatively larger viscous boundary layer.

The success of synthetic schlieren in non-intrusively measuring axisymmetric
internal waves is encouraging. The results presented here inspire further study into
the bimodal-to-unimodal transition as a function of sphere size, and the amplitude
and frequency of the sphere’s oscillation. In future work, the schlieren technique
will be extended to examine fully three-dimensional disturbances by using inverse
tomographic techniques applied to multiple perspectives through disturbances in a
stratified fluid.

We are grateful to B. Voisin for useful discussions concerning the theoretical
development of this work and, in particular, for directing us to the integral
representation of the formula for the inviscid wave beam. This work was funded by
the Natural Sciences and Engineering Research Council of Canada in part through
the Undergraduate Student Research Awards program.

Appendix A. Velocity potential and streamfunction
Here, we show how to relate the velocity potential for internal wave cones to the

streamfunction. This allows us to adapt the oscillating sphere results of Voisin (1991)
so that they may be compared directly with the oscillating cylinder results of Hurley
& Keady (1997) and Sutherland et al. (1999). Though Voisin (1991) used ψ to denote
the velocity potential, here we denote it by ξ to distinguish it from the streamfunction,
which is more typically denoted by ψ .
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Figure 14. Orientation of upper and lower wave cone coordinate systems used to locate
point at (�, θ ). The origin for each system is at the centre of the sphere.

For periodic waves, the velocity potential (which has units of length-squared
multiplied by time) is related to pressure, p by (Voisin 1991)

p = iωρ0(N
2 − ω2)ξ. (A 1)

We relate this to ψ using the radial component of Euler’s equation for small-
amplitude Boussinesq flow:

∂uR

∂t
= − 1

ρ0

∂p

∂R
. (A 2)

Using (2.1) and the coordinate transformation (2.4), we find

∂ψ

∂σ
= N2 sinΘ cosΘ

∂ξ

∂σ
. (A 3)

Integrating with respect to σ and requiring that ξ and ψ → 0 as σ → ∞ gives

ψ = 1
2
N2 sin 2Θξ. (A 4)

Applying this formula to (8.20) and (8.24) of Voisin (1991) yields (2.3).

Appendix B. Boundary conditions
Here, we show that the streamfunction given by (2.11) approximately satisfies the

free-slip/no-normal-flow boundary conditions on the sphere.
We first evaluate the component of velocity of the upper wave cone normal to the

sphere’s surface at some arbitrary angle θ taken with respect to the z-axis, as shown
in figure 14. This velocity is

un+ = −∂ψ+

∂σ+

∣∣∣∣
�=a

cos(Θ − θ). (B 1)

From figure 1(b), Θ ≡ cos−1(ω/N). The point (�, θ) is represented in along-beam,
across-beam coordinates on the surface of the sphere by (r+, σ+) = (a cos(Θ −
θ), a sin(Θ −θ)). In these formulae we have introduced the subscript ‘+’, to distinguish
the functions and parameters from those of the lower wave cone.
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We use the following formula in the inviscid limit for the streamfunction of the
upper (ψ+) and lower (ψ−) wave cone:

ψ±(r, σ ) ∼ ± 1
2
iAaN cos Θ exp(−iΘ)

×
√

a

� exp[i(Θ ∓ θ)]

∫ ∞

0

1

K
J3/2(K) exp

(
±iK

σ±

a

)
dK. (B 2)

Note that along the upper wave cone in the limit r+ � a, � → r+ and θ → Θ .
Therefore, the formula for ψ+ in (B 2) reduces to (2.11).

Taking σ+-derivatives only within the integrand of (B 2) and using the explicit
formula for the following definite integral∫ ∞

0

J3/2(K) eiKx dK =
1√

1 − x2
(
√

1 − x2 + ix)
3/2

,

(B 1) gives

un+ = 1
2
AN cos Θ e−iθ . (B 3)

Note, if we take the σ+-derivative to include the σ+-dependence of the factor
(� exp[i(Θ − θ)])−1/2, this results in a correction term of magnitude cos(Θ − θ)/3
times the magnitude of (B 3). This is negligibly small near Θ − θ = ±π/2 where the
wave beam amplitude is largest (i.e. along the tangents to the sphere that form an
angle Θ to the vertical).

Similarly, we evaluate the normal velocity un− due to the lower wave cone at the
same position on the surface of the sphere: (� = a, θ) ≡ (a sin(π − Θ − θ), −a cos(π −
Θ − θ)). We find

un− = 1
2
AN cos Θeiθ . (B 4)

Combining (B 3) and (B 4), we find the normal velocity due to the superposition of
the two wave cones is un = AN cos Θ cos θ = Aω cos θ , which is exactly the normal
component of the velocity of the sphere oscillating vertically with amplitude A and
frequency ω.

Thus, within the accuracy of the boundary-layer approximation, the formula (2.11)
is consistent with free-slip/no-normal-flow boundary conditions.

Though a more accurate formula could possibly be used, we have chosen to
compare experimental data with (2.15), which is derived directly from (2.11), because
of its similarity with the corresponding formula for the oscillating circular cylinder.
Detailed analyses are performed sufficiently far from the sphere that the boundary-
layer approximation is valid.
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