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The stability and overturning of fully three-dimensional internal gravity wave packets
is examined for a rotating, uniformly stratified Boussinesq fluid that is stationary in the
absence of waves. We derive through perturbation theory an integral expression for the
mean flow induced by upward-propagating fully localized wave packets subject to Coriolis
forces. This induced Bretherton flow manifests as a dipolelike recirculation about the wave
packet in the horizontal plane. We perform numerical simulations of fully localized wave
packets with the predicted Bretherton flow superimposed, for a range of initial amplitudes,
wave-packet aspect ratios, and relative vertical wave numbers spanning the hydrostatic
and nonhydrostatic regimes. Results are compared with predictions based on linear theory
of wave breaking due to overturning, convection, self-acceleration, and shear instability.
We find that nonhydrostatic wave packets tend to destabilize due to self-acceleration,
eventually overturning although the initial amplitude is well below the overturning am-
plitude predicted by linear theory. Strongly hydrostatic waves, propagating almost entirely
in the horizontal, are found not to attain amplitudes sufficient to become shear unstable,
overturning instead due to localized steepening of isopycnals. Results are discussed in the
broader context of previous studies of one- and two-dimensional wave packets overturning
and recent observations of oceanic internal waves.
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I. INTRODUCTION

Internal gravity waves propagate within stably stratified fluids, transporting energy and ir-
reversibly depositing momentum where they break. Even without breaking, moderately large
amplitude wave packets induce a mean flow that can act nonlinearly to feedback on the waves
themselves, which in turn can alter the height at which waves begin to overturn [1,2]. Wave
packets induce qualitatively distinct mean flows depending on whether the wave packet is
(1) streamwise-periodic, vertically localized, and spanwise-infinite, (2) streamwise- and vertically
localized and spanwise-infinite, or (3) localized in all three spatial dimensions. Wave packets
are thereby characterized as being one-, two-, or three-dimensional, respectively. The mean flow
induced by one-dimensional wave packets is streamwise-uniform, unidirectional, and concentrated
in the vertical region occupied by the vertically propagating wave packet. This mean flow results
from the vertical divergence of momentum flux. An explicit expression for this mean flow in
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a Boussinesq fluid was derived using conservation of momentum for quasimonochromatic wave
packets [2], being equivalent to the pseudomomentum of internal waves [3,4]. Two-dimensional
wave packets without rotation similarly induce a mean flow resulting from a divergent momentum
flux. Unlike in the one-dimensional case, the induced mean flow is itself divergent and so, for the
fluid to remain incompressible, an order amplitude-squared pressure gradient is established. It has
been shown [5–7] that the induced mean flow manifests as long, hydrostatic waves that propagate far
streamwise and vertically below an upward-propagating wave packet. Conversely, two-dimensional
wave packets induce an evanescent long wave response [8] if the Coriolis parameter is of greater
magnitude than the forcing frequency (set by the ratio of the wave packet’s vertical group speed to
its vertical scale of modulation). Three-dimensional wave packets again induce qualitatively distinct
mean flows [5–7]. In particular, the induced mean flow—referred to as the Bretherton flow—results
from forcing by the nonlinear terms in the momentum equations acting upon the vertical component
of vorticity, and manifests as a horizontal recirculation about the wave packet, being positive through
the middle of the wave packet, and negative on its spanwise flanks [5,9].

Interactions between gravity waves and their induced mean flow can lead to nonlinear amplitude
growth or decay, overturning, and eventually turbulent breaking. In essence, the wave-induced mean
flow, acting through the weakly nonlinear dispersion relation, Doppler-shifts the wave frequency,
resulting in a local change to the group velocity. Local increase (decrease) of the group velocity
leads to wave spreading (accumulation), a characteristic manifestation of modulational stability
(instability). As a result, the onset of overturning of one-dimensional waves is delayed (hastened), so
waves overturn above (below) the height predicted by linear theory [10,11] (see also Whitham [12]).
For one-dimensional waves not influenced by rotation, the transition between the modulationally
stable and unstable regimes occurs at a relative vertical wave number (the ratio of the magnitudes
of the vertical to horizontal wave numbers of a monochromatic wave with amplitude modulated by
a height-dependent envelope) of 2−1/2 ≈ 0.7, corresponding to wave packets propagating with the
fastest vertical group speed.

Two-dimensional wave packets, unlike their one-dimensional counterparts, are always modu-
lationally unstable, as the induced mean flow (long waves) is positive above and negative below
the center of the wave packet [13]. Sutherland [14] heuristically formulated a prediction for the
amplitude at which Boussinesq wave packets ultimately overturn due to self-acceleration, according
to the wave-induced mean flow exceeding the streamwise group velocity. The agreement was found
to be good in simulations of one-dimensional but not two-dimensional wave packets.

A study of three-dimensional wave packets subject to Coriolis effects was conducted by Tabaei
and Akylas [6], who focused primarily on wave packets that were either round (for which the
wave packet extents were comparable in all three dimensions) and strongly nonhydrostatic, two-
dimensional (having infinite spanwise extent, but comparable streamwise and vertical extents), or
flat (for which the horizontal wave packet extents were both much larger than the vertical extent).
In the work by van den Bremer and Sutherland [9] (henceforth vdBS18), a similar study was
conducted, though neglecting Coriolis effects. Their study focused, in part, on understanding the
transition between qualitatively different induced mean flows as a wave packet’s spanwise extent
broadened, transitioning from three- to effectively two-dimensional. The purpose of this paper
is to build on the work of Sutherland [14] and of vdBS18 to compare with linear theory the
overturning times of fully three-dimensional finite-amplitude wave packets in a uniformly stratified,
rotating Boussinesq fluid with no background flow. Our study differs in scope from both Tabaei
and Akylas [6] and vdBS18 in that we derive an explicit integral formula for the Bretherton flow
subject to rotation, and examine through fully nonlinear numerical simulations a broader range
of nonhydrostatic and more strongly hydrostatic waves. One aspect of our investigation is to
characterize the overturning time in terms of various hydrodynamic instability mechanisms affecting
internal gravity wave evolution.

The paper is laid out as follows. The equations for the mean flows induced by three-dimensional
wave packets are derived in Sec. II, followed by the introduction of critical amplitudes correspond-
ing to the onset of various wave instabilities. Details of the numerical model used to simulate the
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evolution of the wave packets are presented in Sec. III. The results of simulations for a variety
of wave packet parameters are shown in Sec. IV. Section V discusses the results and offers some
concluding remarks.

II. THEORY

Here we derive an integral expression for the Bretherton flow induced by a three-dimensional
wave packet in a uniformly stratified Boussinesq fluid, subject to the Coriolis force but ignoring
diffusion and viscous effects. We adapt the procedure of vdBS18, who derived the corresponding
expression for the Bretherton flow without rotation, and in so doing we also identify and reconcile
an error by the latter in which a small number of terms were omitted during their derivation. We then
derive, using linear theory, predictions of critical wave amplitudes for the onset of static instability
(overturning), instability for which convection can develop within a wave period, self-acceleration,
and shear.

A. Wave-induced mean flow

The governing equations are the Boussinesq Euler equations, the internal energy equation
(expressed in terms of vertical displacement), and the equation of mass conservation for an in-
compressible fluid, given, respectively, by

Du
Dt

− f0vêx + f0uêy = − 1

ρ0
∇p − N2

0 ξ êz, (1a)

Dξ

Dt
= w, (1b)

∇ · u = 0. (1c)

The equations are given in Cartesian coordinates x = (x, y, z) with corresponding unit vectors
êx, êy, êz, in which z is vertical. Here D/Dt = ∂t + u · ∇ is the material derivative, in which u =
(u, v,w) is the velocity vector, f0 is the Coriolis parameter, p is the dynamic pressure, g is the
acceleration of gravity, ρ0 is a constant reference density, ρ̄(z) is the background density, and ξ is
the vertical displacement. The fluid is assumed to be uniformly stratified so the squared buoyancy
frequency N2

0 = −(g/ρ0)d ρ̄/dz is constant. The fluctuation density can thus be expressed in terms
of ξ by ρ = −ξd ρ̄/dz.

An explicit formula for the Bretherton flow, uBF, is found assuming quasimonochromatic wave
packets. Without loss of generality, the waves are assumed to propagate in the xz plane, with wave
number vector k = (k, 0, m). For convenience, we assume wave packets propagate forward in x and
upward in z, so k > 0 and m < 0. The corresponding frequency, given by the dispersion relation, is
ω = (N2

0 k2 + f 2
0 m2)1/2/‖k‖, in which ‖k‖ = (k2 + m2)1/2.

We define a slow timescale T and slow spatial variables, X̃ ≡ (X̃ , Ỹ , Z̃ ), in a frame translating
at the group velocity of the wave packet, cg = (cgx, 0, cgz ) = km[N2

0 − f 2
0 ](m, 0,−k)/(ω‖k‖4).

Explicitly, X̃ = εx(x − cgxt ), Ỹ = εyy, Z̃ = εz(z − cgzt ), and T = ε2t , where εx = 1/(kσx ), εy =
1/(kσy), and εz = 1/(kσz ) are inversely related to the wave packet extent, σx, σy, and σz, in their re-
spective directions. For quasimonochromatic wave packets, it is assumed that ε = max{εx, εy, εz} �
1. The slow variable T describes the timescale for dispersion of the wave packet, which acts at order
ε2. Consequently, dispersive effects are effectively ignored. For notational convenience, we define
(X,Y, Z ) ≡ (x − cgxt, y, z − cgzt ), and it is understood that X , Y , and Z derivatives are of order εx,
εy, and εz, respectively.

With this notation, the leading-order representation of a field, η, associated with a quasi-
monochromatic wave packet is given by

η
(1)
0 (x, t ) ≡ 1

2 Aη(X, T )ei(k·x−ωt ) + c.c., (2)

where the subscript and superscript on η denote, respectively, the field’s order in ε and in amplitude,
and c.c. denotes the complex conjugate. At leading order, the various wave fields are related by
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TABLE I. Expressions for the amplitude envelopes of various fields as they relate to the amplitude
envelope, A, of the vertical displacement field. The center column contains the leading-order (wave-scale)
relationships and the right column contains their respective first-order (envelope-scale) corrections (with
respect to ε). Subscripts on A denote partial derivatives, βx is a constant given by Eq. (9a), and we have
defined B ≡ 1 + kβx and K ≡ 1 + k2/m2 for convenience. By convention, the actual fields are taken to be the
real parts of ei(k·x−ωt ) times the tabulated expressions.

Field O(α1ε0 ) O(α1ε1)

Vertical displacement ξ
(1)
0 = A ξ

(1)
1 = iβx{AX − k

m AZ}
Streamwise velocity u(1)

0 = iω m
k A u(1)

1 = m
k {(cgx − ω

k − ωβx )AX + i f0
k AY

+(cgz + ω

m − ω k
m βx )AZ}

Spanwise velocity v
(1)
0 = f0

m
k A v

(1)
1 = i m

k2 { f0BAX − iωAY − f0
k
m BAZ}

Vertical velocity w
(1)
0 = −iωA w

(1)
1 = −{(cgx − ωβx )AX + (cgz + k

m ωβx )AZ}
Streamwise vorticity ζ

(1)
x0 = −i f0

m2

k A ζ
(1)
x1 = m2

k2 { f0BAX − iωKAY − f0
k
m (1 + B)AZ}

Spanwise vorticity ζ
(1)
y0 = −ω ‖k‖2

k A ζ
(1)
y1 = i m2

k {[K (cgx − ωβx ) − ω

k ]AX + i f0
k AY

+[K (cgz + k
m ωβx ) + ω

m (2 + k
m )]AZ}

Vertical vorticity ζ
(1)
z0 = i f0mA ζ

(1)
z1 = − f0{mβxAX − BAZ}

the polarization relations for plane waves, given in the center column of Table I. In the table,
the nondimensional amplitude is represented by α ≡ kA0, in which A0 = ‖A‖ is the maximum
vertical displacement of the waves in the wave packet and we have defined A ≡ Aξ for convenience.
Alternatively, we could represent nondimensional amplitude as α0 = |mA0|, which would be a more
direct measure of the amplitude relative to that of overturning waves (for which |mA0| = 1). For the
derivation presented here, the particular choice of definition is unimportant. To obtain polarization
relations at the next order in ε (accounting for the finite wave packet extent), it is necessary to impose
the structure of one field. Without loss of generality, we choose to impose the structure of the vertical
displacement field at both leading and first orders, as this is a physically intuitive quantity. Hence we
write ξ = ξ

(1)
0 + ξ

(1)
1 , in which ξ

(1)
0 = 1

2 Aeiϕ + c.c. and ξ
(1)
1 = i 1

2 (βxAX + βyAY + βzAZ )eiϕ + c.c.,
where ϕ = kx + mz − ωt . The values of βx, βy, and βz are to be determined. The resulting O(α1ε1)
polarization relations are given in the right column of Table I.

For three-dimensional wave packets that are not too wide, the Eulerian induced mean flow, uBF,
is primarily horizontal, being governed by the evolution equation for vertical vorticity and requiring
the horizontal motion is divergence free [5,9]. From the vertical component of the curl of Eq. (1a),
we have

∂tt (∂xvBF − ∂yuBF) = ∂t {ζ · ∇w − ∇ · (ζzu)}︸ ︷︷ ︸
≡Fz

, (3)

subject to ∂xuBF + ∂yvBF = 0. The right-hand side represents forcing by self-interaction of the waves
within the packet on the scale of the wave packet. The overline denotes averaging over the fast wave
scales, leaving only the slowly varying mean flow terms. The response to the forcing gives rise to an
order amplitude-squared induced mean flow, uBF. Neglected on the left-hand side of Eq. (3) is the
term − f0∂tzwBF, which is effectively ignored as |wBF| � |uBF|, |vBF| for three-dimensional wave
packets [5,6,9,15–18].

Following vdBS18, the Bretherton flow is decomposed into the sum of physically distinct
contributions,

uBF = uDF + uRF. (4)
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Here, uDF is the divergent-flux induced flow and uRF is the response flow. The divergent-flux induced
flow arises from the slow variations in the nonlinear advection terms in the momentum Eq. (1a), and
is given implicitly by

∂uDF

∂t
= −∇ · (u(1) ⊗ u(1) ), (5)

where ⊗ is the tensor product. An expression for the time evolution of uDF is found by substituting
the leading-order polarization relations into the right-hand side of Eq. (5), and computing the mean
of each term. This operation amounts to ignoring the superharmonic terms, proportional to e±2iϕ , in
each product on the right-hand side of Eq. (5), leaving only the slowly varying mean contributions.
As a result, we find that

∂uDF

∂t
= −1

2

m2

k2

(
ω2

(
∂X − k

m ∂Z
)|A|2, f 2

0 ∂Y |A|2,−ω2 k
m

(
∂X − k

m ∂Z
)|A|2), (6)

where | · | denotes the modulus. Unlike vdBS18, we do not immediately proceed to solve this for
the components of uDF, as it is convenient to defer this until we solve for the components of uBF

itself.
An explicit expression for the forcing given by Fz in Eq. (3) is found by substituting the polar-

ization relations into Fz and extracting the terms for which the product of the complex exponentials
cancels. As a result, we find that the leading-order nonzero forcing arises at O(α2ε3):

(Fz )(2)
3 = 1

2

∂

∂t

{
ω2 m2

k2

[
∂XY − k

m
∂Y Z

]
|A|2 − f 2

0
m2

k2
∂XY |A|2

}

− 1

2

∂

∂t

{[
m2

k2

(
ω2 + f 2

0

) + ω2 ‖k‖2

k
βx

]
A ∂XY A + ω2 ‖k‖2

k
βyA ∂YY A

−
[

m

k

(
ω2 + f 2

0

) − ω2 ‖k‖2

k
βz

]
A ∂Y ZA

}
. (7)

Using Eq. (6), it can be shown that the first expression on the right-hand side of Eq. (7) is equal to
∂tt (∇ × uDF) · êz. The remaining expressions in Eq. (7) were erroneously omitted by vdBS18 (who
also had f0 = 0), although it will be shown that certain values of βx, βy, and βz lead this omission
to be of no consequence to their results.

We then substitute Eq. (7) into the right-hand side of Eq. (3) and use Eq. (4) on the right-hand
side of Eq. (3), canceling the ∂tt (∇ × uDF) term on both sides to yield

∂tt (∇ × uRF) · êz = −1

2

∂

∂t

{[
m2

k2

(
ω2 + f 2

0

) + ω2 ‖k‖2

k
βx

]
A ∂XY A

+ ω2 ‖k‖2

k
βyA ∂YY A −

[
m

k

(
ω2 + f 2

0

) − ω2 ‖k‖2

k
βz

]
A ∂Y Z A

}
. (8)

The horizontally irrotational nature [5] of the response flow uRF imposes the values of βx, βy, and
βz so the right-hand side of Eq. (8) is zero. Explicitly,

βx = − m2

k‖k‖2

(
1 + f 2

0

ω2

)
, (9a)

βy = 0, (9b)

βz = − k

m
βx. (9c)

In the absence of rotation, βx and βz reduce to −cgx/ω and −cgz/ω, respectively. Hence, the
horizontal irrotationality of uRF implies that the previously mentioned omitted terms in vdBS18
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vanish identically so there is no change to their results. With these considerations, Eq. (3) becomes

−cg · ∇(∂X vBF − ∂Y uBF) = ∂X (∂tvDF) − ∂Y (∂t uDF), (10)

in which we have used ∂t ≈ −cg · ∇ on the left-hand side, and ∂t uDF and ∂tvDF are given in terms
of spatial derivatives of |A|2 in Eq. (6).

Equation (10) is coupled with the incompressibility condition for the Bretherton flow, ∂X uBF +
∂Y vBF = 0. The resulting system is solved using 3D Fourier transforms with respect to X =
(X,Y, Z ) to convert the system of partial differential equations to one of algebraic equations. The
Fourier transform is defined here by η̂(κ) ≡ (2π )−3

∫
R3 η(X)e−i(κ·X)dXdY dZ , where κ = (κ, λ, μ)

is the vector of transform variables. Solving the resulting system of equations and inverse Fourier
transforming, we obtain[

uBF

vBF

]
= 1

2

m2

k2

∫
R3

λ

‖κ⊥‖2

(
ω2

cgx
− f 2

0
κ

cg · κ

)[
λ

−κ

]
|̂A|2ei(κ·X)dκ dλ dμ, (11)

in which ‖κ⊥‖2 = κ2 + λ2. This represents the solution to a special case of a Poisson equation for
the streamfunction of the Bretherton flow, Eq. (9.29) in Bühler and McIntyre [15] in the limit of
no background flow or beta effects, the latter derived by applying generalized Lagrangian-mean
theory in a potential vorticity framework. Equation (11) likewise represents the solution to Eq. (22)
in Tabaei and Akylas [6]. In the absence of rotation, this solution reduces to that found by vdBS18,
given by their Eq. (3.15). Rotation gives rise to a key dynamical difference between the induced
mean flow represented by Eq. (11) compared to its nonrotating analog, namely, that the rotating
Bretherton flow is not restricted to the isopycnals intersected by the wave packet. This is implied
by dependence of the solution on μ that is intractable from κ and λ dependence of |̂A|2 on the
right-hand side of Eq. (11), unlike in the case with f0 = 0. The influence of rotation is also made
more explicit in Eq. (9.29) of Ref. [15], in which the response to the nonlinear forcing includes
explicitly the vertical gradient of a vertical displacement term when f0 �= 0.

In the simulations that follow, solutions of Eq. (11) are considered for a Gaussian wave packet
with amplitude envelope given by

A = A0 exp

[
− 1

2

(
X 2

σ 2
x

+ Y 2

σ 2
y

+ Z2

σ 2
z

)]
. (12)

The Fourier transform of the square of Eq. (12) is

|̂A|2 = 1

8π3/2
σxσyσzA

2
0 exp

[ − (
σ 2

x κ2 + σ 2
y λ2 + σ 2

z μ2
)
/4

]
. (13)

This result is substituted into Eq. (11), which is then solved numerically.
Slices at z = 0 of the streamwise component of the Bretherton flow are shown in color in

Fig. 1 for round, long, and wide wave packets. In each case, the flow was induced by a wave
packet initialized with a peak vertical displacement amplitude of A0 = 0.08k−1 and a relative
vertical wave number of m/k = −11.4, corresponding to hydrostatic waves propagating at an
angle of � = tan−1(|m/k|) = 85◦ to the vertical. The Coriolis parameter was taken to be 0.05N0

so ω/ f0 = 2.01. Superimposed in black in each panel are 20 streamlines, ψ̃BF = ψBF/(N0/k2),
defined implicitly by uBF ≡ −∂yψBF and vBF ≡ ∂xψBF and separated by fixed contour intervals.
As found with no rotation [5,9], the dipolelike horizontal structure of the Bretherton flow manifests
clearly in the streamlines about each wave packet. The weakest initial peak value of the Bretherton
flow is associated with wide wave packets: As the spanwise aspect ratio Ry = σy/σx increases, the
magnitude of the Bretherton flow decreases, as anticipated from the results of vdBS18, who showed
without rotation that the peak decreases as 1/Ry (see also Bühler [1]). The effect of rotation in Fig. 1
is to broaden the area over which the magnitude of the Bretherton flow is non-negligible, although
this change is not clearly detected graphically from plots with f0 = 0 (not shown) analogous to
those in Fig. 1. Rotation-enhanced breaking of streamline symmetry is only subtly evident for
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FIG. 1. Slices of the initial nondimensionalized Bretherton flow, ũBF = uBF(x, y, z0, 0)/(N0/k) through
z0 = 0, given by Eq. (11), for round (a), long (b), and wide (c) Gaussian wave packets with rotation set
by f0 = 0.05N0. In each case, σz = 10k−1. The wave packets shown were initialized with a peak vertical
displacement amplitude of A0 = 0.08k−1 and a relative vertical wave number of m/k = −11.4. The black
contours are isolines of nondimensionalized streamfunction, ψ̃BF = ψBF(x, y, z0, 0)/(N0/k2 ). The heavy and
light white ellipses show the first and second standard deviations, respectively, of the Gaussian wave packet.

wide wave packets [Fig. 1(c)], indicated by the elevated concentration of closed contours near
ky = 50 compared to ky = −50. Increasing f0 acts also to increase the magnitude of the positive
and negative regions of the Bretherton flow. Notably, as f0 increases from 0.01N0 to 0.05N0, the
largest contribution of rotation is an increase to uBF(0) of 16% (round wave packets) and 19% (long
and wide wave packets).

Comparing the magnitudes of the induced mean flows with and without rotation we find generally
that the nonrotating contribution, obtained by including only the first term in the parentheses in the
integrand in Eq. (11), represents the dominant contribution to the Bretherton flow. It follows that
for a fixed Coriolis parameter and amplitude, |uBF(0)/A2

0| ∝∼ (m/k)2ω2/cgx increases with |m/k|. As
a result, the peak Bretherton flow (relative to A2

0) induced by a hydrostatic wave packet is greater
than that induced by a nonhydrostatic wave packet of the same amplitude. Hence we anticipate
that interactions between waves and their induced Bretherton flow play a role in the overturning of
moderately large amplitude nonhydrostatic wave packets and relatively small-amplitude hydrostatic
wave packets alike.

B. Wave instability and critical wave amplitudes

Following Sutherland [14], we consider several mechanisms for the breaking of internal waves,
neglecting parametric subharmonic instability, as this is a relatively slow process. All critical
amplitudes are normalized using the streamwise wavelength, λx = 2π/k, so Ã ≡ A/λx is a nondi-
mensional measure of vertical displacement amplitude [except for those in Fig. 2(b)].

1. Static, convection, and self-acceleration instability

An internal gravity wave is overturning if waves are of sufficient amplitude that dense fluid
is advected over less dense fluid, hence the vertical gradient of the total density field is positive
somewhere in the flow field: ρ̄ ′(z) + ∂ρ(x, t )/∂z > 0. Equivalently, this is the condition that the
squared total buoyancy frequency, N2

T , is negative somewhere, in which N2
T ≡ N2

0 + �N2, and
�N2 = −N2

0 ∂ξ/∂z is the local change in the squared buoyancy frequency due to waves. The static
instability criterion thus becomes min{�N2} < −N2

0 . The corresponding critical amplitude at which
a plane wave is predicted to overturn is given nondimensionally by

ÃOT = 1

2π

∣∣∣∣ k

m

∣∣∣∣ = 1

2π
cot �, (14)
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FIG. 2. Curves of marginal stability emphasizing waves in the (a) nonhydrostatic and (b) hydrostatic wave-
number ranges. The respective � axes correspond to waves spanning the frequency ranges N0 � ω � f0 and
8.77 � ω/ f0 � 1. The dotted and solid black curves in (a) and (b) indicate the amplitudes above which a plane
internal gravity wave is predicted to be, respectively, statically and convectively unstable, given by Eqs. (14)
and (15), respectively. The blue curves in (a) and (b) indicate the amplitudes above which a wave packet is
predicted to be unstable owing to self-acceleration, and are given by Eq. (18) for Ry = σy/σx = 1 (solid),
Ry = 1/4 (dashed) and Ry = 4 (dotted). The solid and dashed red curves in (b) indicate the amplitudes above
which a wave is predicted to be shear unstable using respectively our definition of the gradient Richardson
number Eq. (19) and that of Fritts and Rastogi [19] and Achatz [20].

where � = tan−1(|m/k|) is the angle between lines of constant phase and the vertical. Rotation
has no direct influence on ÃOT, as Eq. (14) is derived using only the leading-order vertical
displacement field, which depends only implicitly on rotation through dependence of the wave’s
phase on ω(k; f0). The condition given by Eq. (14) is equivalently stated in terms of steepness of a
one-dimensional plane wave, s ≡ u/cp = 1, where cp ≡ ω/k is the phase speed of a monochromatic
internal wave in one dimension. The curve of marginal stability corresponding to Eq. (14) is shown
in Fig. 2 as the black dotted curve.

Although a statically unstable wave is prone to develop convective instabilities, whether such
instabilities materialize depends on the timescale for the growth of convective instability relative to
the period of the waves.

The condition that convective instability has sufficient time to overwhelm the restorative oscil-
latory motion of the waves is given by σmax > ω, where σmax = N0

√|m|A − 1 is the maximum
instability growth rate [14]. Rearranging these two expressions and using the definition of ω yields
the critical amplitude at which a plane wave is predicted to become convectively unstable, given
nondimensionally by

ÃCV = 1

2π
cot �

(
1 + cos2 � + f 2

0

N2
0

sin2 �

)
. (15)

This reduces to the expression given by Sutherland [14] in the case f0 = 0. The curve of marginal
stability corresponding to Eq. (15) is shown for f0 = 0.01N0 in Figs. 2(a) and 2(b) as the solid black
lines. Note that ÃCV > ÃOT, even as ω → f0 (|�| → 90◦).

Somewhat heuristically, Sutherland [14] proposed that a wave packet is prone to instability due
to self-acceleration if the waves have sufficient amplitude that their maximum induced mean flow is
at least as large as the wave packet’s streamwise group speed. This heuristic condition was found to
be in good agreement with the results of simulations of one-dimensional but not two-dimensional
wave packets [14]. For a one-dimensional wave packet without rotation, the induced mean flow
is given simply by UDF = N0k|A|2/2. From this, an explicit formula for the critical amplitude of
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self-acceleration is ÃSA = sin(2�)/(π
√

8) [14]. In the case of a three-dimensional wave packet
whose induced mean flow is governed by the Bretherton flow with maximum at X = 0, it is
necessary to compare cgx to uBF(0), so generally

ÃSA = A0k

2π

√
cgx

uBF(0)
. (16)

For a Gaussian wave packet, using Eqs. (11) and (13), we find

uBF(0) = 1

16π3/2

m2

k2

ω2

cgx
σxσyσzA

2
0

∫
R3

λ2

‖κ⊥‖2
e−(σ 2

x κ2+σ 2
y λ2+σ 2

z μ2 )/4dκ

− f 2
0

1

16π3/2

m2

k2
σxσyσzA

2
0

∫
R3

λ2

‖κ⊥‖2

κ

cg · κ
e−(σ 2

x κ2+σ 2
y λ2+σ 2

z μ2 )/4dκ. (17)

The first line of Eq. (17) can be evaluated explicitly [1,9], and is equal to max{uDF}/(Ry + 1),
where max{uDF} = m2ω2A2

0/(2k2cgx ). The integral in the second line of Eq. (17) must be evaluated
numerically. Recasting in terms of nondimensional variables, κ̃ = σxκ , λ̃ = σyλ, and μ̃ = σzμ, it is
written as

∫
R3 Id κ̃/cgx, where

I (κ̃; Ry, Rz, k/m) = λ̃2e−(κ̃2+λ̃2+μ̃2 )/4

(R2
y κ̃

2 + λ̃2)[1 − R−1
z (μ̃/κ̃ )(k/m)]

.

Here R−1
z = σx/σz is the inverse wave-packet aspect ratio in the vertical. Together with Eq. (17), the

self-acceleration condition becomes

ÃSA = k2

√
2π |m|cgx

[
ω2

Ry + 1
− f 2

0

8π3/2

∫
R3

I (κ̃; Ry, Rz, k/m)d κ̃

]−1/2

. (18)

Profiles of ÃSA are shown in Fig. 2(a) as the solid, dashed, and dotted blue curves corresponding to
wave packets with σz = 10k−1 and with spanwise aspect ratios Ry = 1, 1/4, and 4, respectively.

2. Shear instability

The motion of strongly hydrostatic internal gravity waves is almost entirely horizontal. As such,
the waves may be subject to shear instability. The shear stability of a parallel flow is characterized
by the gradient Richardson number, Rig, defined as the ratio of the total squared buoyancy frequency
to the square of the vertical shear of the streamwise velocity of the waves, ∂u/∂z. If the flow
is influenced by background rotation, it is necessary to incorporate into the definition of Rig the
shear associated with u and v. Fritts and Rastogi [19] (see also Achatz [20]) defined Rig using the
squared magnitude of the vertical shear vector, ‖(∂zu, ∂zv)‖2 = (∂u/∂z)2 + (∂v/∂z)2. Their results
suggested hydrostatic waves favour the development of shear instability as opposed to convective
instability.

We model the local velocity shear by considering the vertical gradient of the magnitude of the
horizontal velocity vector ‖u⊥‖ = √

u2 + v2 rather than the magnitude of the shear vector. Using
the leading-order polarization relations in the center column of Table I, the gradient Richardson
number is then given by

Rig ≡ N2
0 + �N2

(∂‖u⊥‖/∂z)2
=

[
N0k

m
(
ω2 − f 2

0

)]2 1

α2
0

(1 − α0 sin ϕ)
[(

ω2 − f 2
0

)
sin2 ϕ + f 2

0

]
sin2 ϕ cos2 ϕ

, (19)

in which α0 ≡ |mA| and ϕ denotes the phase of the waves. The minimum value of Rig is found
by determining the critical values of the phase, ϕc, for which dRig/dϕ = 0. This gives an implicit
relation between ϕc and α0 for a given k/m. Setting Rig = 1/4 in Eq. (19) as a threshold for instabil-
ity [21,22] gives a second relation between ϕc and α0, which can be substituted into dRig/dϕ = 0,
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hence giving a closed (fifth-order) polynomial for sin ϕc. The roots are found numerically and from
these the critical amplitude ÃSHR is found.

The results are plotted as the solid red curve in Fig. 2(b). For comparison, this minimization
procedure was also performed analytically using the definition of Rig of Refs. [19,20], plotted as
the dashed red curve in Fig. 2(b). Because the solid red curve lies above the amplitude predicted
for overturning and convection, it is predicted that hydrostatic internal gravity waves are always
overturning before attaining sufficiently large vertical displacement amplitudes for shear instability
to occur. This counterintuitive prediction follows alternatively from evaluating Eq. (19) for a wave
on the cusp of overturning, for which α0 = 1 according to Eq. (14): Defining f̃ 2 ≡ f 2

0 /(ω2 − f 2
0 ) >

0 and k̃2 ≡ k2/m2 for convenience, Eq. (19) is

Rig = N2
0 (1 + k̃2)

N2
0 − f 2

0

1

α2
0

(1 − α0 sin ϕ)(sin2 ϕ + f̃ 2)

sin2 ϕ cos2 ϕ
, (20)

having used ω2 − f 2
0 = k̃2(N2

0 − f 2
0 )/(1 + k̃2) in the leading coefficient. It follows that

Rig

∣∣∣∣
α0=1

= N2
0

N2
0 − f 2

0

(1 + k̃2)(sin2 ϕ + f̃ 2)

sin2 ϕ(1 + sin ϕ)
>

1 + k̃2

1 + sin ϕ
� 1

2
(1 + k̃2) � 1

2
, (21)

in which we used sin2 ϕ/ sin2 ϕ = 1, which remains finite even as the denominator sin2 ϕ → 0,
corresponding to the fact that shear tends locally to zero at the point in the phase where the wave
approaches overturning. The analytical bound in Eq. (21) has been determined previously using an
alternative definition of Rig [23]. These independent analyses suggest a strongly hydrostatic wave
will remain shear stable until attaining its critical amplitude for overturning. Further amplitude
growth to α0 > 1 causes Rig to fall discontinuously below zero. This apparent disparity between
our predictions and those of Fritts and Rastogi [19] suggests that the shear of a strongly hydrostatic
internal gravity wave influenced by rotation cannot alone induce a shear instability of sufficient
strength to cause the wave to overturn [23,24]. This prediction is investigated using the results of
fully nonlinear numerical simulations, described below.

III. NUMERICS

The three-dimensional fully nonlinear code solved the incompressible Boussinesq Navier-Stokes
equations. The prognostic equations for horizontal momentum and internal energy (in which vertical
displacement is used as a proxy for perturbation density) are given dimensionally by

∂u

∂t
= − 1

ρ0

∂ p

∂x
+ f0v − ∇ · (uu) + νDu, (22)

∂v

∂t
= − 1

ρ0

∂ p

∂y
− f0u − ∇ · (vu) + νDv, (23)

∂ξ

∂t
= w − ∇ · (ξu) + κDξ . (24)

The velocity vector u, vertical displacement ξ , Coriolis parameter f0, and fluctuation pressure p are
as in Eqs. (1a)–(1c). The system given by Eqs. (22)–(24) is closed by the inclusion of the diagnostic
equations

1

ρ0
∇2 p = −

[
∂2(u2)

∂x2
+ ∂2(v2)

∂y2
+ ∂2(w2)

∂z2

]
− 2

[
∂2(uv)

∂x∂y
+ ∂2(uw)

∂x∂z
+ ∂2(vw)

∂y∂z

]

+ f0

(
∂v

∂x
− ∂u

∂y

)
− N2

0
∂ξ

∂z
, (25)

∂w

∂z
= −∂u

∂x
− ∂v

∂y
, (26)
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the latter of these being equivalent to the incompressibility condition ∇ · u = 0. The parameters
ν and κ are, respectively, the kinematic viscosity and thermal diffusivity. The operator D acts
in Fourier space as a Laplacian-like diffusion operator that applies to all spanwise and vertical
wave numbers but only to streamwise wave numbers greater than a viscous damping wave number,
kd . These diffusive terms were included on the right-hand sides of Eqs. (22)–(24) to assist with
numerical stability by damping numerical noise while not acting to attenuate the waves. For all
simulations, the diffusive terms were recast using the Reynolds and Prandtl numbers, respectively,
Re ≡ N0/(k2ν) = 1000 and Pr ≡ ν/κ = 1, with kd = 257.

All simulations were initialized with a trivariate Gaussian wave packet whose initial vertical
displacement field was prescribed at leading and first orders to be

ξ (x, y, z, 0) = A0

{
cos(kx + mz) + βx

(
x

σ 2
x

− k

m

z

σ 2
z

)
sin(kx + mz)

}

× exp

[
− 1

2

(
x2

σ 2
x

+ y2

σ 2
y

+ z2

σ 2
z

)]
, (27)

where A0 was the initial maximum vertical displacement, σx, σy, and σz, respectively, were the
streamwise, spanwise, and vertical extents of the wave packet, and the coefficient βx is defined in
Eq. (9a). The vertical displacement was chosen as the initialization field because it is a physically
intuitive quantity, and its Gaussian structure was chosen for convenience. The horizontal velocity
field u⊥

0 = (u0, v0) was initialized using the linear theory polarization relations for u(1)
0 and v

(1)
0

given in the center column of Table I. Superimposed onto these fields were their respective O(α1ε1)
corrections, given in the right column of Table I.

The initial Bretherton flow was superimposed onto the horizontal flow field using Eq. (11). It
is necessary to perform this step for wave packets whose initial amplitude is sufficiently large that
the waves are initially subject to the weakly nonlinear effect of interaction with the wave-induced
mean flow. Neglecting to superimpose the initial predicted induced mean flow results in an “error
flow” [9], an unphysical “deficit” [25], or residual flow that remains at the initial location of the
wave packet, and is of equal magnitude but opposite sign of the predicted induced mean flow (see
also Refs. [7,8]). Although small-amplitude wave packets initially induce a mean flow of negligible
magnitude, for consistency across simulations such wave packets were nonetheless initialized to
include their Bretherton flow.

The scales for time and domain size were set by fixing N0 = 1 and k = 1 (with units of inverse
time and inverse length, respectively). The domain is spectral in all three spatial directions and is
triply periodic. The real-space domain, Lx × Ly × Lz, was set to be large enough that neither the
waves nor their induced mean flow self-interacted across the periodic boundaries for the duration
of the simulation (100/N0). The streamwise and vertical dimensions were set by specifying the
number of wavelengths nw,x and nw,z that span Lx and Lz, respectively, so Lx = 2πnw,x/k and
Lz = 2πnw,z/|m|. Typically, nw,x = 64 and nw,z = 8 for nonhydrostatic waves to nw,z = 128 for
the most strongly hydrostatic waves. These dimensions were discretized such that either 16 or 32
grid points spanned one wavelength. Our coordinate system was oriented such that there was no
wave propagation in the spanwise direction, hence Ly was specified directly, typically Ly = 200/k.
At least ny = 256 grid points spanned Ly for each simulation. The Fourier-space domain was
discretized by nx/2 Fourier modes in the x direction and by ny and nz Fourier modes in the y and z
directions, respectively. Here nx and nz are set by the product of the number of wavelengths times
the number of grid points per wavelength in the respective directions.

A limited series of test simulations of nonhydrostatic wave packets were run using a domain of
size 2Lx × 2Ly × 2Lz but with no change in resolution, and using a domain of size Lx × Ly × Lz but
with double the x, y, and z resolution described above. Domain size was found to have no significant
qualitative or quantitative effects on the results; doubling the resolution led to wave overturning at
most one buoyancy period earlier than in the standard resolution simulation. The resolution of the
hydrostatic simulations reported on below represents the practical maximum resolution available.
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TABLE II. Initial conditions, domain size and resolution, and output diagnostics from the subset of the fully
nonlinear numerical simulations discused or explicitly mentioned in text. Columns are simulation ID, vertical
displacement amplitude nondimensionalized by k, and as a fraction of the predicted amplitudes for static and
self-acceleration instability [given by Eqs. (14) and (18), respectively, where Ã0 = A0/λx], absolute relative
vertical wave number |m/k| and corresponding � = tan−1 |m/k| (deg), spanwise aspect ratio Ry = σy/σx ,
domain size Lxk × Lyk × Lzk and resolution nx × ny × nz, approximate simulation runtime in core-hours,
and diagnosed overturning time N0tOT. IDs with a superscript − or + sign, respectively, denote simulations
performed with f0 = −0.05N0 and +0.05N0. Simulations were run in parallel using 16, 32, 44, or 48 cores.

ID A0k Ã0
ÃOT

Ã0
ÃSA

|m/k| � Ry Lxk × Lyk × Lzk nx × ny × nz Runtime N0tOT

NH1 0.5 0.10 1.24 0.2 11◦ 1 402.1 × 200.0 × 251.3 1024 × 256 × 256 196 49
NH2 0.35 0.07 0.86 0.2 11◦ 1 402.1 × 200.0 × 251.3 1024 × 256 × 256 332 111
NH3 0.2 0.04 0.49 0.2 11◦ 1 402.1 × 200.0 × 251.3 1024 × 256 × 256 631 —
NH4 0.4 0.28 0.52 0.7 35◦ 1/4 402.1 × 400.0 × 143.6 1024 × 512 × 512 778 32
NH5 0.5 0.35 0.65 0.7 35◦ 1/4 402.1 × 400.0 × 143.6 1024 × 512 × 512 586 25
NH6 0.4 0.28 0.26 0.7 35◦ 4 402.1 × 400.0 × 143.6 1024 × 512 × 512 734 29
NH7 0.4 0.28 0.40 0.7 35◦ 1 402.1 × 200.0 × 143.6 1024 × 256 × 512 264 32
NH8 0.6 0.42 0.60 0.7 35◦ 1 402.1 × 200.0 × 143.6 1024 × 256 × 512 224 21
NH9− 0.2 0.40 0.24 2.0 63◦ 1 402.1 × 200.0 × 100.5 1024 × 256 × 1024 909 39
H1 0.08 0.91 0.43 11.4 85◦ 1 402.1 × 200.0 × 70.5 1024 × 256 × 4096 4896 45
H1+ 0.08 0.91 0.43 11.4 85◦ 1 402.1 × 200.0 × 70.5 1024 × 256 × 4096 4108 40
H2 0.15 0.81 0.39 5.4 80◦ 1 402.1 × 200.0 × 74.5 1024 × 256 × 2048 1562 32
H3 0.15 0.81 0.48 5.4 80◦ 1/4 402.1 × 400.0 × 74.5 1024 × 512 × 2048 3200 32
H4 0.15 0.81 0.25 5.4 80◦ 4 402.1 × 400.0 × 74.5 1024 × 512 × 2048 3144 32

No significant qualitative or quantitative effects were observed upon halving the time step in the
standard resolution simulation.

At a given time step, the code computed the p and w fields using data from one step prior
according the diagnostic Eqs. (25) and (26), the results of which were used to resolve the ∂u/∂t ,
∂v/∂t , and ∂ξ/∂t fields using the prognostic Eqs. (22)–(24). The horizontal momentum and vertical
displacement fields were advanced in time using a third-order accurate, low-storage Williamson-
Runge-Kutta scheme [26,27]. The time step was taken to be �t = 0.05N−1

0 for all simulations.

IV. RESULTS

Our intent is to examine for which initial vertical displacement amplitudes localized wave packets
eventually overturn, and to characterize the physical mechanisms responsible. A series of numerical
simulations was performed using a range of relative vertical wave numbers, initial amplitudes, and
wave-packet aspect ratios. These simulations also allowed us to diagnose the overturning time.
Simulations evolved wave packets with initial amplitudes between A0 = 0.03k−1 ≈ 0.005λx and
A0 = 1.2k−1 ≈ 0.19λx using relative vertical wave numbers between m = −0.2k and m = −11.4k
(with the spanwise wave number � = 0 fixed), thus spanning a range of strongly nonhydrostatic and
hydrostatic upward-propagating waves. The respective relative vertical wave numbers corresponded
to waves whose lines of constant phase made angles � = tan−1(|m/k|) = 11◦ and � = 85◦ to the
vertical. The Coriolis parameter for all simulations was fixed at f0 = 0.01N0 (unless otherwise
noted) as a typical value at midlatitudes. For all simulations, the vertical extent of the wave
packet was fixed at σz = 10k−1. Most of the simulations reported on below are of round wave
packets, for which σx = σy = σz, as this is the primary focus of the present paper. For comparison,
select wave-number-amplitude combinations were simulated for long wave packets, for which
σx = 4σy = 4σz, and wide wave packets, for which σx = 1

4σy = σz. The Bretherton flow induced
by round, long, and wide wave packets is shown, for example, in Fig. 1. A subset of the full suite of
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FIG. 3. Cross sections of the streamwise velocity field, ũ = u/(N0/k), through the horizontal plane z =
cgzt (top row) and of the vertical displacement field, ξ̃ = kξ , through the vertical plane y = 0 (bottom row)
of a round, moderately large amplitude nonhydrostatic internal gravity wave packet (NH1), initialized with
A0 = 0.5k−1 and m = −0.2k. Images have been cropped to focus on the region of the domain containing the
wave packet. The black curves in the bottom row represent isopycnal surfaces. The isopycnals overturned at
t = 49/N0.

simulations is discussed below; for each one, the initial conditions, domain size and resolution, and
select output diagnostics are included in Table II.

A. Evolution of a nonhydrostatic wave packet

Snapshots of the evolution of a round moderately large amplitude nonhydrostatic wave packet
(NH1 in Table II) with A0 = 0.5k−1 and m = −0.2k are shown in Fig. 3. The top row shows
cross sections of the streamwise velocity field ũ = u/(N0/k) through the horizontal plane z = cgzt
and the bottom row shows cross sections of the vertical displacement field ξ̃ = kξ through the
vertical plane y = 0. The times shown in each panel are representative of the wave packet at
early, midlife, and near-overturning stages of its evolution. The wave packet was initially of such
large amplitude as to be unstable to self-acceleration, predicted using Eq. (18). This instability
is evident in Figs. 3(b) and 3(c) as crests near the center of the wave packet begin to merge
with—and eventually overtake—troughs, owing to the magnitude of the induced mean flow there:
max{uBF|t=25/N0} ≈ 0.09N0/k > cgx ≈ 0.04N0/k. The dipolelike structure of the Bretherton flow
in the horizontal causes the symmetric deformation of the wave crests about the kx axis [e.g.,
Fig. 3(b)]. The assumed Gaussian vertical structure of the Bretherton flow is similarly responsible
for the asymmetric phase shift seen in the corresponding vertical cross section of ξ̃ [Fig. 3(e)]:
As an individual crest propagates downward toward the vertical center of the wave packet,
hence toward the region of strongest positive induced mean flow, the part of the phase nearest
max{uBF} is differentially advected, resulting in an apparent steepening of phase lines just above
the center of the wave packet, and a flattening of the phase lines below. Sutherland [14] observed
qualitatively similar behavior in his study of one- and two-dimensional wave packets, and identified
this behavior as resulting from self-acceleration. Shortly before overturning [Fig. 3(f)], the wave
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FIG. 4. As in Fig. 3 but for a round strongly hydrostatic internal gravity wave packet (H1), initialized with
A0 = 0.08k−1 and m = −11.4k.

evolution is dominated by nonlinear effects: The peak vertical displacement has nearly doubled
to max{ξ̃ |t=45/N0} = 0.99 from its initial value of 0.5, while streamwise and vertical asymmetry of
isopycnal surfaces (represented by black curves) develops owing to interactions between the waves
and the induced mean flow. Isopycnals near the center of the wave packet show the steepening
of wave fronts as a result of nonlinear amplitude growth. The wave packet continued to evolve
nonlinearly until overturning at t = 49/N0 and ultimately breaking at t = 56/N0.

The phase steepening and flattening behavior characterized above as resulting from self-
acceleration was likewise observed for nonhydrostatic wave packets (not shown) with initial
amplitudes well below that predicted for the onset of self-acceleration. The phase changes result
from a local Doppler shift in wave frequency, increasing (decreasing) above (below) the center of
the wave packet. Hence nonhydrostatic waves generally evolved under the effects of modulational
instability (stability), and so we find that the critical amplitude for self-acceleration poorly predicted
the initial amplitude for which most nonhydrostatic waves eventually overturned. Sutherland [14]
similarly found that horizontal modulations of two-dimensional wave packets resulted generally
in poorer agreement between the predicted amplitude for self-acceleration and simulation results
(compared to the relatively good agreement found for one-dimensional wave packets).

B. Evolution of strongly hydrostatic wave packets

Snapshots of the evolution of a round strongly hydrostatic wave packet (H1) with m = −11.4k
and A0 = 0.08k−1 are shown in Fig. 4. The top and bottom rows are as in Fig. 3. The times
shown in each panel are representative of the wave packet at early, pre-, and postoverturning times.
From initialization through the majority of their evolution, the waves exhibit behavior qualitatively
similar to the evolution at early times of nonhydrostatic waves. In particular, the induced mean flow
differentially advects the waves near the center of the wave packet [Fig. 4(b)]. The associated phase
changes observed in the nonhydrostatic case are less pronounced in the vertical cross section for
the hydrostatic wave packet [Fig. 4(e)]. Isopycnal surfaces (represented by black curves) are found
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FIG. 5. Time series of min{Ñ2
T } (black curves), and min{Rig} − 1/4 (red curves), in which Ñ2

T and Rig

are given respectively by Eqs. (28) and (19), for (a) strongly nonhydrostatic wave packets with m = −0.2k
(� = 11◦) with initial amplitudes A0 = 0.5k−1 (NH1; solid curve), A0 = 0.35k−1 (NH2; dashed curve), and
A0 = 0.2k−1 (NH3; heavy dotted curve), and (b) strongly hydrostatic wave packets with m = −11.4k (� =
85◦) and A0 = 0.08k−1 with f0 = 0.01N0 (H1; solid curves) and f0 = 0.05N0 (H1+; heavy dotted curves).
The dashed red curve is a time series of min{Rig} − 1/4 from H1 but using Rig = N2

T /‖(∂zu, ∂zv)‖2 as in
Refs. [19,20].

to steepen sharply at the inflection point of the streamwise velocity where the vertical shear of the
waves is largest. However, the streamwise-localized nature of the steepening is more characteristic
of nonlinear steepening than shear instability. Unlike nonhydrostatic wave packets (e.g., NH1), the
vertical displacement amplitude decreased in time due to linear dispersion. The waves overturned
nonetheless at t = 45/N0. The waves continued to evolve nonlinearly until t = 62/N0, at which
point the growth of sub-grid-scale convective instabilities was too small to be reliably resolved by
our code.

For comparison, a simulation identical to H1 but with f0 = 0.05N0 was performed (H1+). The
initial Bretherton flow induced by this wave packet was shown in Fig. 1(a). The evolution of this
wave packet was qualitatively similar to that of H1 from initialization through wave overturning.
Despite the peak vertical displacement amplitude decreasing in time due to linear dispersion, the
waves overturned at t = 40/N0 (nearly one buoyancy period earlier than those in H1) due to
the increased magnitude of the Bretherton flow with f0 = 0.05N0 compared to that with 0.01N0.
Isopycnal surfaces (not shown) exhibited nonlinear steepening similar to that found with H1,
suggesting shear instability likewise did not drive the waves with f0 = 0.05N0 to overturning.

C. Overturning of localized wave packets

The overturning of wave packets is diagnosed by the criterion N2
T < 0. For convenience, we

define the nondimensional squared total buoyancy frequency by

Ñ2
T ≡ N2

T

N2
0

. (28)

Time series of min{Ñ2
T } (taken over the entire spatial domain) are shown in Fig. 5(a) for sim-

ulations with m = −0.2k and initial amplitudes A0 = 0.5k−1 (NH1; solid curve), A0 = 0.35k−1

(NH2; dashed curve), and A0 = 0.2k−1 (NH3; heavy dotted curve). The approach to overturning is
diagnosed by decreasing values of min{Ñ2

T } in time. The decrease occurs more rapidly if the initial
amplitude is larger but still well below the overturning amplitude predicted by linear theory.

Figure 5(b) shows time series of min{Ñ2
T } (solid black curve) and min{Rig} − 1/4 (solid and

dashed red curves) for a strongly hydrostatic round wave packet (H1) with m = −11.4k and
A0 = 0.08k−1. The evolution of min{Ñ2

T } shows little change until N0t ≈ 30 when nonlinear effects
rapidly drive the wave packet to overturning. In comparison, the evolution of min{Rig} − 1/4 (solid
red curve) shows little change until just before overturning. The dashed red curve, showing a time
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FIG. 6. Comparison of stability regimes with the results of simulations of round wave packets using initial
vertical displacement amplitudes A0/λx and � = tan−1(|m/k|) with rotation set by f0 = 0.01N0. Each cross
corresponds to the initial amplitude and wave number of a single simulation. Greyscale values represent
overturning times, tOT, interpolated using cubic polynomials [28]. White curves are isolines of constant
overturning time corresponding to N0tOT = 20, 40, 60, and 80.

series of min{Rig} − 1/4 using the definition of Rig in Refs. [19,20], evolves in a nearly identical
manner. By either measure, the shear instability condition Rig < 1/4 was attained for the first time
simultaneously as min{Ñ2

T } < 0. Likewise, these instability conditions were simultanously satisfied
in time series of min{Ñ2

T } and min{Rig} − 1/4 from H1+ (heavy dotted black and red curves,
respectively). This suggests that shear instability alone cannot grow sufficiently quickly to overturn
strongly hydrostatic waves, in agreement with previous predictions [23,24] and those in Sec. II B 2.

From a total of 79 simulations of round wave packets, the time to overturn was measured
and compared with stability criteria as shown in Fig. 6. In all but the smallest amplitude cases,
overturning occurred even though the initial wave amplitude was well below that predicted for
overturning according to linear theory.

Waves with relative vertical wave number m = −0.2k propagate at a shallow angle of � = 11◦
to the vertical. For this reason the waves spanning the range of small to moderately large initial
amplitudes (A0/λx = 0.096 = 1.48ÃSA) were able to evolve without overturning until beyond
32/N0. In simulations with larger �, the maximum initial amplitude of waves that do not overturn
until after 32/N0 becomes smaller (relative to λx), but increases relative to ÃOT. In particular, a
hydrostatic wave packet (H2) with m = −5.4k (� ≈ 80◦) and A0/λx = 0.024 = 0.81ÃOT over-
turned at t = 32/N0, whereas one with m = −11.4k (� = 85◦) and A0/λx = 0.013 = 0.91ÃOT (H1)
overturned at t = 45/N0.

Simulations of long and wide wave packets required significantly larger computational resources
and so only a limited series of simulations were performed with m = −0.7k, initialized with
A0 = 0.4k−1 and A0 = 0.5k−1, and with m = −5.4k and initial amplitude A0 = 0.15k−1. These
combinations were chosen as representative cases of nonhydrostatic waves in the transitional region
between overturning before and after 32/N0 (the cases with m = −0.7k), and of hydrostatic waves
near the marginal stability value of ÃOT. The nonhydrostatic simulations of long wave packets
(NH4–5), for which we set σx = 40k−1 and σy = 10k−1 (Ry = 1/4), overturned within one N0t
unit of the corresponding simulations of round wave packets. Wide wave packets in general are
anticipated to interact with the Bretherton flow and induced long waves [9]. However, the wide wave
packets reported on here were of such spanwise extent that induced long waves were predicted to be
of negligible magnitude relative to the Bretherton flow. Simulations of wide wave packets, for which
we set σx = 10k−1 and σy = 40k−1 (Ry = 4), were generally less stable than corresponding round
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and long wave-packet simulations. For example, the case with A0 = 0.4k−1 (NH6) overturned at
t = 29/N0, compared with the round (NH4) and long (NH7) wave packets, which both overturned
at t = 32/N0. This result contradicts the predicted increased stability of wide, compared to round,
wave packets, shown in Fig. 2. The wave-packet aspect ratio appears to have had no effect on the
results of the hydrostatic long and wide simulations. Wave packets initialized with A0 = 0.15k−1

(A0/λx = 0.024 = 0.81ÃOT) were no more or less stable than their round counterparts. In particular,
min{Ñ2

T } increased due to linear dispersion until t ≈ 13/N0 (round and long wave packets; H2–3)
and t ≈ 17/N0 (wide wave packets; H4); before decreasing approximately monotonically until
overturning at t = 32/N0. These results, although spanning only a small region within the stability
regimes shown in Fig. 2, are somewhat inconsistent with the prediction that long and wide wave
packets are, respectively, less and more stable than their round counterparts. The open question
regarding the stability and overturning of long and wide wave packets merits further study.

V. DISCUSSION AND CONCLUSIONS

Internal gravity waves are prone to instabilities resulting from overturning, convection whose
onset is enhanced by self-acceleration. Strongly hydrostatic waves were found to not be prone to
instability due to shear between adjacent, nearly horizontally aligned, velocity crests and troughs.
To understand the instability processes that lead ultimately to wave breaking, we first derived an
integral expression for the Bretherton flow induced by three-dimensional wave packets subject to
Coriolis forces and performed fully nonlinear numerical simulations of localized wave packets
with their Bretherton flow superimposed. We compared the initial amplitudes for which waves
eventually overturned with the predictions of linear theory and characterized the results in terms
of the instability mechanisms governing wave evolution.

We performed simulations of three-dimensional wave packets having wave numbers ranging
from nonhydrostatic to near-inertial and amplitudes from small to overturning. Due to interactions
with the mean flow induced by the waves, the waves were found to overturn even though their initial
amplitude was well below the overturning amplitude, ÃOT, predicted by linear theory. Likewise, in
all but the most strongly nonhydrostatic simulations, the self-acceleration condition overpredicted
the amplitude for which wave packets eventually overturned. Strongly hydrostatic waves, prop-
agating at angles � � 80◦, were found to overturn due to localized isopycnal steepening. Shear
instability was not evident in time series of the minimum gradient Richardson number for strongly
hydrostatic waves, in agreement with predictions.

Our results for round wave packets revealed that fully localized wave packets were unstable at
lower amplitudes than their one- and two-dimensional analogs without rotation [14]. For example,
a nonhydrostatic wave packet (NH8) with m = −0.7k and A0 = 0.6k−1 overturned between 32/N0

and 100/N0 in the one-dimensional case, after 100/N0 in the two-dimensional case, but at t = 21/N0

in the three-dimensional case. The most strongly hydrostatic waves examined by Sutherland [14]
(� = 80◦) overturned after 100/N0 even with initial amplitudes as large as ÃOT in both the
one- and two-dimensional cases. Conversely, the equivalent three-dimensional wave packet with
A0 = 0.15k−1 (A0/λx = 0.024 = 0.81ÃOT) overturned at t = 32/N0. We have shown that standard
linear theory predictions for wave packet stability significantly over predict the amplitude at which
overturning eventually occurs. This demonstrates that it is necessary to include the weakly nonlinear
influence of the induced mean flow acting upon waves themselves. That said, at this time a
theoretical prediction for the empirical results of fully nonlinear numerical simulations of fully
three-dimensional wave packets remains elusive. Our results suggest the need for further theoretical
and numerical investigations of wave-packet evolution.

As an application of our results, we contextualize our findings in terms of recent observations
of internal gravity wave packets in the ocean. Therein, the internal wave frequency spectrum
is dominated by strongly hydrostatic waves near the inertial frequency, f0, forced by tidal flow
over bathymetry and surface wind stress (e.g., Alford et al. [29]). However, turbulent breaking
of nonhydrostatic waves has recently become of increasing interest for its potential role in larger
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scale oceanic processes, such as the global overturning circulation [30–33]. The Drake Passage
has been identified as a source of lee waves, generated as the Antarctic Circumpolar Current flows
over seamount chains. In particular, using two EM-APEX floats, Cusack et al. [30] measured a lee
wave in the northernmost region of the Shackelton Fracture Zone (near 60◦ S, with corresponding
f0 ≈ −1.26 × 10−4 s−1) with A0 = 100–140 m and |m/k| ≈ 0.6–2.5 (� ≈ 32◦–68◦, hence 15.0 �
ω/| f0| � 6.5). Assuming the wave to be monochromatic and evolving linearly, Cusack et al. [30]
estimated λx = 4000 m. No measurements were taken of the wave’s spanwise structure. However,
the strongest velocity perturbations were measured within 20 km of a prominent ridge feature of
finite spanwise extent, suggesting the observed wave existed as a localized wave packet. On this
basis, the observed wave corresponded to a wave packet with A0/λx ≈ 0.10–0.14ÃOT (for |m/k| ≈
0.6) and A0/λx ≈ 0.39–0.55ÃOT (for |m/k| ≈ 2.5) propagating in a fluid with f0/N0 ≈ −0.06
(using the reported local-mean buoyancy frequency, N0 ≈ 2.2 × 10−3 rad s−1). For comparison,
we consider a corresponding simulation (NH9−) with |m/k| = 2 and A0 = 0.2k−1 (� ≈ 63◦ and
A0/λx = 0.03 = 0.4ÃOT) and f0/N0 = −0.05 (with corresponding ω/| f0| ≈ 9.0). Setting z0 = 0
and t0 = 0 as the ridge top and time of observation, respectively, overturning was diagnosed at
(x, z) = (13.0, 2.1)k−1 and t = 39/N0 ≈ 4.9 h. Simulations with f0/N0 = 0.01 and 0.05 that were
otherwise identical to NH9− resolved the same overturning time and location. The observed wave
propagated against the Antarctic Circumpolar Current (with mean zonal velocity 33 cm s−1), hence
the corresponding overturning site would be x ≈ 2.4 km upstream of and z ≈ 1.3 km above the ridge
(or approximately 200 m below the ocean surface). Although the observed wave was not measured
through its evolution, static and shear instability were proposed as playing a role in driving the wave
eventually to overturning [30], despite remarking (as we have) that the initial amplitude was below
both instability thresholds. Our results suggest the waves overturned due to nonlinear interactions
with their induced mean flow. Time series of min{Ñ2

T } and min{Rig} − 1/4 (not shown) indicate the
simulated wave packet did not become shear unstable before overturning. This result was consistent
across our simulated wave packets for all initial amplitudes and relative vertical wave numbers.
Similarly, although beyond the scope of our numerical simulations, near-inertial wave packets with
ω � f0 induced by tidal flow over ridges [34] and by hurricanes [35] alike have been found to
remain shear stable through their observed evolution, in agreement with predictions.

Although our simulations diagnosed overturning for a range of wave-packet parameters, the
turbulent dynamics leading to wave breaking were not resolved, as this process evolves on small
spatial and temporal scales that were prohibitively fine to be resolved by our numerical code.
Furthermore, our results are highly idealized, having assumed an infinite, rotating but otherwise
stationary medium under the Boussinesq approximation. Ongoing and future work is examining the
evolution of fully localized moderately large amplitude wave packets in Boussinesq and anelastic
fluids in which both background flow and buoyancy are nonuniform with height.
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