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Abstract9

The density of the ocean generally increases continuously with depth as a consequence of vari-10

ations in salinity and temperature. In some regions, however, the density profile of the ocean11

adopts a (double diffusive) staircase structure in which successive layers of uniform density fluid12

are separated by rapid density jumps. Previous work has theoretically examined the transmission13

and reflection of periodic internal (gravity) waves incident upon a density staircase. This predicted14

the existence of transmission spikes (global modes) for certain combinations of frequency and hor-15

izontal wavenumber in which the incident waves transmit perfectly across a density staircase. It16

was hypothesized that the transmission spikes occur when the incident waves resonate with nat-17

ural modes of disturbances in the staircase. Here we derive theory to investigate the interactions18

between incident internal waves and modes. We demonstrate a close correspondence between the19

frequency for incident waves at a transmission spike and the real-part of the frequency of modes at20

the same horizontal wavenumber. However the frequency of the corresponding modes have negative21

imaginary part corresponding to exponential decay of the modes in time. We perform numerical22

simulations to examine the impact of this near-resonant coupling when a vertically localized, quasi-23

monochromatic internal wave packet interacts with a density staircase. In a range of simulations24

with fixed incident wave frequency and varying horizontal wavenumber, the measured transmission25

coefficient does not exhibit transmission spikes, but decreases monotonically with increasing hor-26

izontal wavenumber about the critical wavenumber separating strong and weak transmission. We27

show this occurs because the incident wave excites modes that then slowly transmit energy above28

and below the staircase at a rate consistent with the predicted decay rate of the modes. This rate29

is slower for staircases with more steps with the decay time increasing as the cube of the number30

of steps.31

Keywords: interfacial waves; density staircase; transmission; wave tunneling32

I. INTRODUCTION33

Internal (gravity) waves propagate in density-stratified fluids, transporting energy both34

horizontally and vertically. Particularly in the ocean they play an essential role in the vertical35
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transport of heat and salinity caused by the mixing that occurs when the waves break36

[1]. The frequency of propagating internal waves is limited by the background buoyancy37

frequency, which is a measure of rate at which the background density increases with depth.38

In particular, vertically propagating internal waves reflect from weak stratification where the39

buoyancy frequency is less than the incident wave frequency, though the waves give rise to an40

evanescent disturbance in the weakly stratified region (e.g. see Sutherland [2]). Of particular41

interest is the interaction between downward propagating internal waves incident upon a42

thermohaline density staircase. The vertical profile of density in a staircase is characterized43

by steps of uniform density separated by sharp density jumps, which have been observed44

in different regions of the ocean from the tropics to the Arctic Ocean, occurring as a result45

of double diffusive processes [3–8]. Within the steps of the staircase, an incident internal46

wave is evanescent. However, if the steps are sufficiently small compared to the scale of the47

incident wave, the wave can partially transmit across the staircase [9, 10]. This tunnelling48

phenomena has also been explored in the context of wave propagation across staircases49

occurring in giant planets [11].50

Of particular interest is the interaction between internal waves and the thermohaline stair-51

case in the Arctic Ocean. As Arctic sea ice cover decreases due to global warming, winds52

blowing over the exposed ocean surface or driving mobile ice floes can more frequently gener-53

ate internal waves that then propagate downward and interact with a thermohaline staircase54

[12]. Observations have revealed the robust presence of a staircase spanning horizontally over55

a thousand square kilometers in the Canadian Basin, being situated a few hundred meters56

below the surface and extending over 100m depth [13, 14]. The steps of the staircase have57

depths on the order of 1m with sharp density jumps having thickness on the order of 1 cm.58

If incident downward propagating internal waves partially transmit through the staircase,59

they can act as a source of mixing that may bring warm and salty Atlantic water at depth60

closer to the surface, which may then enhance sea ice melting.61

Theoretical predictions have been made for the transmission and reflection of monochro-62

matic (in frequency) horizontally periodic internal waves incident upon a single uniform-63

density slab of fluid [15] and two mixed layers [16]. This work was extended to examine64

the influence of shear across a single step [17, 18] and allowing for the incident wave to be65

manifest as a horizontally localized beam [19, 20]. More recently, an analytic prediction66

was developed for transmission of an incident plane wave across a density staircase with an67
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arbitrary number of equal-sized steps [9]. The work included consideration of background68

rotation and presented numerical solutions for transmission across unequal steps. In all cases69

the work predicted a sharp transition between weak and strong transmission at a critical70

incident wave frequency, which is proportional to the horizontal wavenumber for hydrostatic71

waves. Waves with moderately larger frequency than this critical value exhibited a sequence72

of transmission spikes for which the incident waves entirely transmitted without reflecting.73

The number of transmission spikes corresponded to the number of steps in the staircase.74

It was suggested that these transmission spikes occurred as a consequence of the incident75

waves resonating with natural oscillating modes of the staircase, a phenomena examined in76

theoretical detail here.77

In all the above theoretical studies the incident waves were assumed to have a single78

frequency, steadily impinging upon single or multiple density steps. In reality, internal waves79

are transiently generated and so are manifest as a wavepacket. The interaction between a80

wavepacket and density steps has not been well studied, except for a numerical examination81

of finite-amplitude effects associated with a wavepacket propagating across a density step82

with no density jump above and below the step [21]. In the theoretical-numerical work83

presented here, we examine the transmission resulting from the transient interaction between84

a incident vertically localized internal wave packet and a density staircase. We demonstrate85

that transmission spikes do not occur in this case because the incident wave packet puts86

energy into modes that then slowly re-radiate this energy both above and below the staircase.87

This effect is stronger for a staircase with more steps.88

In Section II, we review the theory of plane wave transmission across a density staircase [9]89

for the specific case of no background rotation. We also derive an expression that gives90

the dispersion relation of natural modes of the staircase, and we consider the near-resonant91

excitation of these modes forced transiently by an incident wave packet. Section III describes92

the numerical model and diagnostics applied to characterize the time evolution of energy93

above, below and within the staircase. The simulation results and their comparison with94

theory are presented in Section IV. Concluding remarks and application to the thermohaline95

staircase in the Arctic Ocean are considered in Section V.96
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II. THEORY97

In the following four subsections, we first describe the background density profile of the98

staircase, and then give general solutions for the vertical structure of disturbances in the99

staircase. We then specifically review the theory [9] of internal wave tunneling across a stair-100

case that predicts the transmission coefficient as it depends upon the horizontal wavenum-101

ber and frequency of the incident wave. From this prediction we derive the methodology102

to determine numerically the dispersion relation for “global modes” for which there is pure103

transmission at non-zero horizontal wavenumber. We then consider the natural modes of the104

density staircase, giving an expression from which the dispersion relation of vertical modes105

can be derived. Showing that the global modes and natural modes are near-resonant, we106

examine the excitation of the natural modes that are transiently forced by incident waves107

with wavenumber and frequency near that of the global modes.108

A. Problem setup109

In setting up the density profile for the staircase, we imagine the fluid in the absence of a110

staircase is uniformly stratified with constant buoyancy frequency N0. We now suppose that111

this profile is uniformly mixed across J steps, each of depth L, with the staircase extending112

between z = 0 and z = −JL. The corresponding background density profile is thus given113

by114

ρ̄(z) =


ρ0

(
1− ∆ρ

ρ0
z
L

)
, z > 0

ρ0

(
1 +

(
j − 1

2

)
∆ρ
ρ0

)
, −jL < z < −(j − 1)L, j = 1, 2, . . . , J

ρ0

(
1− ∆ρ

ρ0
z
L

)
, z < −J L

(1)

Here, ρ0 = ρ(0+) represents the characteristic density, located just above the top step. Above115

and below the staircase, the (constant) squared buoyancy frequency isN2
0 ≡ −(g/ρ0)dρ̄/dz =116

g′L, in which g′ = g∆ρ/ρ0 is the reduced gravity. This sets the size of the density jumps117

∆ρ within the staircase for given step depth, L. The density jump at the top and bottom118

step is ∆ρ/2.119

The fluid is assumed to be inviscid and Boussinesq, and the disturbances are assumed120

to be small-amplitude and two-dimensional with structure in the x-z plane. For simplicity,121

the influence of background rotation is ignored. Under these approximations, then general122
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evolution equation is given by123 [
∂2

∂t2
∇2 +N2 ∂

2

∂x2

]
ψ = 0, (2)

in which ψ(x, z, t) is the streamfunction, ∇2 = ∂2/∂x2+∂2/∂z2 is the Laplacian, and N2(z)124

is the buoyancy frequency. Because the coefficients of (2) are independent of x and t, we can125

seek solutions in which the spatio-temporal structure of disturbances outside and within the126

staircase are horizontally periodic with wavenumber k and which have (possibly complex)127

frequency ω. A general solution can be constructed from a superposition of these waves.128

The streamfunction can thus be written as ψ(x, z, t) = ψ̂(z) exp[ı(kx − ωt)], in which it129

is understood that the actual streamfunction is the real part of this expression. From (2),130

the vertical structure, ψ̂, satisfies131

d2 ψ̂

dz2
+ k2

(
N2

ω2
− 1

)
ψ̂ = 0. (3)

Because N = N0 is constant above and below the staircase and N = 0 within each step132

of the staircase, piecewise-analytic general solutions can be found for ψ̂(z) of the form133

ψ̂(z) =


A0 e

ımz +B0 e
−ımz, for z > 0

Aj e
k[z+L(j−1/2)] +Bj e

−k[z+L(j−1/2)], −jL < z < −(j − 1)L, j = 1 . . . J

AJ+1 e
ım[z+LJ ] +BJ+1 e

−ım[z+LJ ], for z < −J L.
(4)

Here, m ≡ k
√
N2

0/ω
2 − 1, represents the (positive) vertical wavenumber of waves above and134

below the staircase if ω is real and less than N0. We will see that for natural modes of the135

staircase, m is complex-valued. In this case, we define m so that its real part is positive.136

The constants Aj and Bj for j = 0, . . . J + 1 can be found by imposing continuity of137

vertical velocity and pressure. This amounts to requiring that ψ̂ and dψ/dz = g ρ̄
ρ0

k2

ω2 ψ̂ are138

continuous (e.g. see Sec 2.6.1 of Sutherland [2]). This gives a pair of interface conditions at139

z = jL, for j = 0, . . . , J , for a total of 2(J + 1) equations. These are given in Appendix A.140

Full solutions depend upon conditions imposed above and below the staircase. Because141

the sign of the vertical group velocity, cg, is opposite to the sign of (the real part of) m,142

the coefficients A0 and AJ+1 correspond to the amplitudes of downward propagating waves,143

whereas B0 and BJ+1 correspond to the amplitudes of upward propagating waves. For the144

tunneling problem with incident waves propagating downward from above, we takeBJ+1 = 0.145

For the problem of modes, we require waves to propagate away from the staircase so that146

A0 = BJ+1 = 0.147
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B. Tunneling of plane waves148

The theory for the transmission of incident plane waves across a density staircase was149

developed by Sutherland [9]. That study included the effects of rotation and allowed for150

steps having small random variations in the step size. Here we review the essential results151

of [9], focusing on the analytic solutions where the step size, L, is same for all steps, and we152

ignore background rotation.153

Setting BJ+1 = 0 in (4), and applying the interface conditions gives 2J + 2 equations in154

2J + 3 unknowns. These can be combined to get an explicit expression for A0 in terms of155

AJ+1:156

A0 =
i

4M

(
a+, a−

)
CJ−1

 a+

a−

 AJ+1, (5)

in which the left and right vectors have components157

a± ≡ ∆±1/2 [1∓ Γ± iM ], (6)

the matrix C is158

C =

 ∆(1− Γ) −Γ

Γ ∆−1(1 + Γ)

 , (7)

and we have defined the following nondimensional quantities:159

∆ ≡ exp(kL), M ≡ m/k =

√
N2

0

ω2 − 1, Γ ≡ g′k2

2k ω2 = 1
2
kL(M2 + 1). (8)

In the expressions for M and Γ we have used the dispersion relation where N2 = N2
0 is160

constant: ω2 = N2
0k

2/(k2 +m2).161

An analytic solution to (5) is found by diagonalizing C in terms of its eigenvalues, λ±.162

From this solution an expression for the transmission coefficient is found: T = |AJ+1/A0|2,163

which represents the fraction of the energy (or, equivalently, energy flux) associated with164

the incident waves that is transmitted below the staircase. Explicitly this is given by [9]165

T =
1

1 +X2
, with X ≡ δ+Γ+ + δ−Γ− + 2δ0Γ|Λ−|

4M |b0|
, (9)

in which166

δ± ≡ ∆± [(1∓ Γ)2 +M2] , δ0 ≡ Γ2 − 1 +M2, (10)
167

Γ± = b−|Λ−| ± |b0|Λ+, Λ± =
1

2

[
λJ−1
+ ± λJ−1

−
]
, (11)
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FIG. 1. Predicted transmission coefficient as it depends on the relative step size, kL, and the

number of steps, J , for incident plane waves with a) m = 10k (ω/N0 ≃ 0.0995) and b) m = 5k

(ω/N0 ≃ 0.1961). The different line styles in both plots represent the number of steps, as indicated

in a).

168

λ± = b+ ± b0, b± ≡ 1

2

[
∆(1− Γ)±∆−1 (1 + Γ)

]
, b0 ≡

√
b2+ − 1. (12)

Examination of T shows that the transition between strong and weak transmission occurs169

for [9]170

ωc/N0 = [(kL/2)tanh(kL/2)]1/2 ≃ kL/2, (13)

in which the last expression gives the approximation for kL≪ 1. Alternately, given a forcing171

frequency ω0 ≪ N0, the critical transition occurs for relative horizontal wavenumber172

kcL = 2ω0/N0. (14)

Mathematically, the transition corresponds to the condition, b0 = 0, delineating the bound-173

ary between real and complex values of λ±. For frequencies lower than ωc (λ± complex), a174

series of transmission spikes occurs where T = 1. If the staircase has J steps, there are J175

transmission spikes. This is shown, for example in Figure 1.176

In astrophysics, the transmission spikes are said to correspond to “global (g-)modes”177

[11, 22]. The dispersion relation of these modes can be found by setting X = 0 in (9), which178

is equivalent to setting B0 = 0 (and hence |AJ+1| = A0) in (4) and applying the interface179

conditions to get an eigenvalue problem. In the expression for X, it is readily shown that180
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|Λ−|/|b0| and Λ+ are polynomials in b20. Hence 4MX can be written as a polynomial in181

M2, whose roots can be found numerically for given kL (e.g. with MATLAB’s “vpasolve”182

function). The corresponding frequency is then found from ω/N0 = (1 +M2)−1/2.183

The resulting dispersion relations for the global modes are plotted in Figures 2a,c) for184

cases with J = 2 and 5 steps. The lowest mode has ω/N0 nearly constant with kL for small185

kL. This mode arises from the interfaces at z = 0 and −JL. For J > 1, higher modes exhibit186

a near-linear dependence upon kL for small kL, with the highest mode having frequency187

moderately larger than the critical frequency ωc, given by (13).188

C. Natural modes of a J-step staircase189

The dispersion relation corresponding to the natural modes of a density staircase is found190

by setting A0 = BJ+1 = 0 in (4) and applying the interface conditions to get an eigenvalue191

problem. The resulting eigenvalue problem can be written as a pair of equations for B0 and192

AJ+1:193

 a−

a+

 B0 = CJ−1

 a+

a−

AJ+1, (15)

in which a± is given by (6) and the matrix C is given by (7). Casting this as a matrix194

eigenvalue problem for the eigenvector (B0, AJ+1)
T , and setting the matrix determinant to195

zero gives196

[−2Γa+a− + b−(a
2
+ + a2−)] (Λ0/b0) + (a2+ − a2−) Λ+ = 0. (16)

with Γ, Λ±, b− and b0 defined by (8), (11) and (12).197

As with the problem of finding global modes, Λ+ and Λ−/b0 are expressions involving b20.198

Hence (16) reduces to the problem of finding the roots of a polynomial in M2. Unlike the199

global modes, the eigenvalues, m = Mk, are complex, as are the corresponding frequencies200

ω = N0/(1+M2)1/2. This result can be contrasted with the study of Belyaev et al [22] who201

found only real-valued frequencies in their dispersion relation for natural modes in a staircase.202

Although they assumed the fluid was a compressible gas, the main reason for having real203

frequencies is likely because they examined modes in an effectively infinite staircase with204

periodic upper and lower boundary conditions. These boundary conditions (A0 = AJ+1 and205
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FIG. 2. Log-log plots of the dispersion relation for a,c) global modes and b,d) natural modes of

a density staircase having a,b) J = 2 steps and c,d) J = 5 steps. In all four plots, the dotted

black line is the critical frequency ωc, given by (13). The solid black lines in a,c) represent different

global modes. In b,d) the solid and dashed lines correspond, respectively, to the real and (negative)

imaginary part of the frequency. The colours indicate the mode number, as shown in the legends,

with the highest vertical mode (lowest frequency at fixed kL) drawn as solid and dashed black

lines.

B0 = BJ+1) neglected the physics of energy propagation escaping a finite-depth staircase206

(which we will show leads to exponentially growing wave amplitudes).207

Taking eigenvalues with the real part ofM to be positive, we find the complex frequencies208

have positive real parts, ωr, and negative imaginary parts, ωi. Hence the modes decay ex-209

ponentially in time with an e-folding time 1/|ωi|, as is expected for modes that continuously210
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lose energy to upward and downward propagating internal waves, respectively above and211

below the staircase.212

The dispersion relations of modes in staircases with J = 2 and J = 5 are plotted in213

Fig. 2b,d). Like the global modes, the largest vertical mode (with lowest frequency at fixed214

kL) has frequency moderately larger than the critical frequency, ωc, and also has the lowest215

magnitude of the decay rate, |ωi|.216

The overlap between the dispersion relation of global modes and the real part of the217

dispersion relation of the natural modes with large vertical mode number was anticipated,218

but not explicitly derived by [9]: higher transmission is expected when incident plane waves219

are near-resonant with natural modes of the system. However, the resonance is never exact220

because the natural modes are not steady, but decay in time. Furthermore, the imaginary221

part of the eigenvalues of M = (mr + imi)/k for the modes is negative. Thus, while222

the vertical structure of the modes oscillate above and below the staircase with vertical223

wavenumber mr, they also grow exponentially with e-folding scale 1/|mi|. This is a result224

of the normal mode solutions representing an effectively infinitely large disturbance in the225

staircase as t→ −∞ that propagates vertically away from the staircase at the group velocity226

as the disturbance in the staircase decays exponentially in time.227

We are particularly interested in the dependence upon the number of steps, J , of the228

decay rate of the highest vertical mode. An approximate analytic expression can be found229

in the limit kL ≪ 1 and J ≫ 1. Because the highest vertical mode is near the critical230

transition, ωc/N0 ≃ kL/2, we require ω/N0 ≪ 1. Hence, using ω/N0 = (M2 + 1)−1/2,231

we must have |M | ≫ 1 and ω/N0 ≃ 1/M = k/m. Explicitly, we suppose the relative232

vertical wavenumber of the highest mode can be written as m̃ ≡ mL = 2− ϵ, in which ϵ is233

complex-valued and |ϵ| ≪ 1. The perturbation calculation, described in Appendix B, gives234

ϵ ≃ (3/2)J−2 − 3iJ−3. From this it follows that the approximate dispersion relation of the235

highest vertical mode is236

ω

N0

≃ kL

2

(
1 +

3

4
J−2 − 3

2
i J−3

)
. (17)

In particular, this shows that the decay rate of the mode decreases with the number of steps237

as J−3. The predicted e-folding time scale, τe, associated with the decay of energy is given238

by239

N0τe =
2

3

1

kL
J3 (18)
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D. Near-resonant mode excitation by an incident wavepacket240

We would like to develop a theory that predicts the transmission coefficient for a vertically241

localized wavepacket that is incident upon a staircase. Such a theory should determine242

what fraction of the energy associated with an incident wavepacket excites natural modes243

of the staircase, which would then retransmitted the absorbed energy above and below the244

staircase. As a naive starting point, one might assume the general equation for the excitation245

of modes by an incident wavepacket having streamfunction ψI can be written246

J∑
j=1

[∂tt∇2 +N2∂xx]ψj = −[∂tt∇2 +N2∂xx]ψI , (19)

in which (the real part of) ψj = aj(t)ψ̂j(z) exp[i(kx − ωjt)] describes the streamfunction247

of mode-j whose amplitude aj(t) denotes the evolution of its magnitude in response to248

the forcing. The problem with this approach is that the vertical structure of the modes is249

unbounded, a consequence of being normal mode solutions. In reality, the modes are excited250

transiently by the incident wavepacket, and so the vertical extent of the mode structure is251

limited by the time over which the mode is excited.252

Instead we develop an approximate theory, focusing upon wavepacket-mode interactions253

within the staircase, ignoring possible interactions above and below the staircase. We make254

the assumption that the vertical scale of the incident wavepacket, σ0 is large compared with255

the vertical extent of the staircase, JL. Thus we model the interaction of the wavepacket256

with the staircase as a forcing within the staircase whose amplitude grows and decays in257

time as a0(t), and whose vertical structure within the staircase corresponds to that for258

tunneling plane waves. The corresponding forcing streamfunction is (the real part of) ψI =259

a0(t)ψ̂0(z) exp[i(kx − ω0t)]. For the incident Gaussian wavepacket of our numerical study260

(see Sec. III), the forcing amplitude is given explicitly by261

a0(t) = A0 exp[−t2/(2τ 20 )], (20)

in which τ0 = σ0/cg, and cg is the magnitude of its vertical group velocity. As such, τ0 is the262

time scale for growth and decay of the forcing withing the staircase. Here we have defined263

time so that a0 is largest at t = 0.264

We assume the time-scales for the evolution of a0 and aj are long compared to the time-265

scales, 1/ω0 and 1/|ωj|, of the incident waves and modes, respectively, in which |ωj| is the266
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magnitude of the complex-valued frequency ωj. Hence, from (19), the leading-order time-267

evolution equation for aj and a0 is268

∑
j

ȧj (N
2/ωj)ψ̂j exp[i(kx− ωjt)] = −ȧ0 (N2/ω0)ψ̂0 exp[i(kx− ω0t)], (21)

in which the dots on aj and a0 denote time derivatives. In deriving (21) we have used the269

dispersion relation for the modes and the incident wave (assuming ω0 is constant) as well as270

the vertical structure equation (3).271

In previous studies examining forcing of mean flows by vertically bounded internal modes,272

equations for the evolution of each vertical mode could be found using orthogonality of the273

vertical modes with respect to the weightN2 [23]. This methodology cannot be applied to ex-274

tract explicit equations for aj from the sum in (21) because the modes, being unbounded, are275

not orthogonal. Nonetheless, we expect modes will be excited to non-negligible amplitudes276

only if the real part of ωj is comparable to ω0, thus resulting in near-resonant excitation.277

This leads us to estimate an approximate evolution for the amplitude of a near-resonant278

mode with mode-number j:279

ȧj ≃ −Cj
ωj

ω0

ȧ0 exp[−i(ωI − ωj)t]. (22)

Here we have defined the interaction coefficient, Cj, assuming that the vertical forcing of280

the mode is driven primarily by motion within the staircase:281

Cj =
[ ∫ 0+

−JL−
ℜ{ψ̂⋆

j ψ̂0}N2 dz
]
/
[ ∫ 0+

−JL−
|ψ̂j|2N2 dz

]
, (23)

in which ℜ denotes taking the real part. The bounds on the integrals are set to include282

the density jumps at the top and bottom of the staircase. In evaluating the integrals, N2
283

can be treated as proportional to a Dirac delta function, δ(z), with proportionality constant284

given by the density jump. Explicitly, N2(0) = (g′/2) δ(0) = (N2
0L/2) δ(0), N

2(−JL) =285

(N2
0L/2) δ(z + JL), and N2(−jL) = N2

0L δ(z + jL) for j = 1, . . . J − 1. Thus Cj can be286

expressed explicitly in terms of the known coefficients, Aj and Bj of the vertical structure287

functions of the mode and tunnelling waves (see Appendix A).288

To solve (22), we specify an initial condition on the amplitude of the mode at a finite,289

but large (negative) time: aj(−t0) = 0 for some t0 ≫ τ0. Using (20) in (22), and integrating290

both sides in time from −t0 to some time t gives291
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aj(t) = −Cj
ωj

ω0
A0

[
e−t2/(2τ20 )eΣt − e−t20/(2τ

2
0 )e−Σt0

−√
π
2
Στ0 e

(Στ0)2/2
(
erf

[
1√
2
( t
τ0
− Στ0)

]
− erf

[
1√
2
( t0
τ0
− Στ0)

]) ]
.

(24)

Here we have defined Σ = 1/τj − i∆ω, in which τj = −1/ωji is the (positive) e-folding decay292

time associated with the imaginary part of the frequency of mode-j, ωji, and ∆ω ≡ ω0−ωjr293

is the difference of the forcing frequency and the real part of the frequency of mode-j, ωjr.294

The error function in (24) has a complex argument, which can be written explicitly in295

terms of its real and imaginary parts using296

erf(a+ ib) = erf(a) + i
2√
π
e−a2

∫ b

0

e2iases
2

ds. (25)

In particular, the second term can be neglected if |a| ≫ |b|.297

We seek the amplitude of the mode when the forcing reaches its peak at t = 0. Assuming298

t0 ≫ τ0, we find299

aj(0) = −Cj
ωj

ω0
A0

[
1−√

π
2
Στ0 e

(Στ0)2/2erfc
(

τ0√
2τj

)
+i

√
2Στ0 e

−i∆ωτ20 /τje−(∆ωτ0)2/2
∫ ∆ωτ0/

√
2

0
ei

√
2τ0s/τj es

2
ds
]
.

(26)

Although this can be evaluated numerically, it is useful to consider two limits.300

If τj ≪ τ0, the asymptotic approximation to erfc and the integral in (26) give the leading301

order expression302

aj(0) ≃ A0Cj
ωj

ω0

[(τj
τ0

)2 − 2(1− i∆ω τj)
(
1− e−(∆ωτ0)2/2e−i∆ω τ20 /τj

)]
, τj ≪ τ0. (27)

Thus, even if the frequency of the incident wave is nearly resonant with the (real) frequency303

of the mode, the mode is not excited to large amplitude.304

If τj ≫ τ0, (26) is given approximately by305

aj(0) ≃ A0Cj
ωj

ω0

 −i√π
2
∆ωτ0e

−(∆ωτ0)2/2, |∆ω τ0/
√
2| ≫ 1,

1−√
π
2

(
τ0
τj
− i∆ωτ0

)
, |∆ω τ0/

√
2| ≪ 1.

(28)

Thus, even if the mode decays slowly, it is not excited to large amplitude if the incident wave306

is not resonant with the mode. Only if the incident wave is nearly resonant with a slowly307

decaying mode (|∆ω τ0/
√
2| ≪ 1) is it excited to significant amplitude. This would be the308

case if the incident wave frequency is close to the frequency of the highest mode (j = J)309

near a transmission spike: ω0 ≃ ωJr ≃ ωc. Thus, from (28), the streamfunction amplitude310

of the near-resonant mode is expected to evolve in time according to311
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aJ(t) ≃ A0CJe
−t/tauJ . (29)

Given aJ , we can estimate the vertially integrated energy per mass within the staircase312

of the excited mode. Generally, this is given by
∫
N2 ⟨ξ2⟩ dz, in which ξ = (−k/ω)ψ is the313

vertical displacement field and the angle brackets denote horizontally averaging over one314

wavelength [2]. The energy inside the staircase associated with the excited near-resonant315

mode is316

EJ =
1

2
|aJ |2

k2

|ωJ |2
∫ 0+

−JL−
|ψ̂J |2N2 dz. (30)

The energy associated with the incident Gaussian wavepacket before it reaches the staircase317

is318

E0 =

√
π

2
(cgτ0)A

2
0

k2

ω2
0

N2
0 . (31)

Taking the ratio of (30) and (31) gives an approximate prediction for the relative decay of319

energy within the staircase if the incident wavepacket is near-resonant with a mode of the320

staircase near the transmission peak where ω0 ≃ ωc:321

S⋆(t) ≃ EJ

E0

=

√
2

π

1

cgτ0

[
C2

J

∫ 0+

−JL−
|ψ̂J |2N2 dz,

]
e−t/τe (32)

in which τe = τJ/2 is the e-folding decay energy time-scale. This predicts that relatively less322

energy is initially absorbed by the staircase if the forcing duration, τ0, is greater.323

Assuming the absorbed energy is retransmitted equally above and below the staircase324

over time, the transmission and reflecton coefficients respectively are crudely estimated to325

be326

T ⋆ ≃ T0 − S⋆(0)/2, and R⋆ ≃ R0 + S⋆(0)/2, (33)

in which T0 and R0 are, respectively, the transmission and reflection coefficients predicted327

for incident plane waves.328

III. NUMERICAL SIMULATIONS329

We use a numerical code that solves the fully nonlinear two-dimensional, Boussinesq330

equations cast in terms of the spanwise vorticity, ζ ≡ ∂zu− ∂xw, and buoyancy, b:331

Dζ

Dt
= − ∂b

∂x
+ νDζ ,

Db

Dt
= −N2w + κDb, (34)
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in which D/Dt = ∂t + u⃗ · ∇ is the material derivative, u⃗ = (u,w) is the velocity with332

horizontal (x) and vertical (z) components u and w, respectively, and ∇ = (∂x, ∂z). The333

fields are discretized vertically on an evenly spaced grid and are represented horizontally in334

Fourier space. The effect of viscosity and diffusion is represented by the operator D. This is335

the Laplacian operator in horizontal Fourier space, −k2n + ∂zz, except that it operates only336

upon horizontal wavenumbers, kn, above a specified cut-off taken to be k⋆ = 32k. In this337

way diffusion acts to damp small-scale numerical noise, but does not act upon the waves338

associated with the wavepacket, having horizontal wavenumber k, and the modes it excites.339

The viscous and diffusion coefficients are taken to be ν = κ = 100000N0k
−2. At each time340

step, the streamfunction is found through inversion of the Laplacian equation ∇2ψ = −ζ.341

From this the velocity components are found by u = −∂zψ and w = ∂xψ.342

In the idealized staircase used by our theory, the density jumps discontinuously at each343

step. So that N2 is finite, but still representative of rapid density jumps, we define a344

background density profile, ¯ρ(z), similar to (1) but with continuously varying density that345

increases with depth across each step over a thickness scale, typically taken to be σN = 0.01L.346

For a staircase with J steps, the density profile is given explicitly by347

ρ̄(z) = ρ0 −
1

2
ρ0
N2

0

g
[z + σN ln cosh(z/σN)] +

1

2
∆ρ[1− tanh(z/σN)]

+
J−1∑
j=1

∆ρ[1− tanh((z + jL)/σN)]

+
1

2
ρ0
N2

0

g

[
− z + σN ln

(
cosh((z + JL)/σN)

cosh(JL/σN)

)]
+
1

2
∆ρ

[
1− tanh

(
z + JL

σN

)]
. (35)

Using g′ = g∆ρ/ρ0 = N2
0L, the corresponding N2 profile is given by348

N2(z)/N2
0 =

1

2

[
1 + tanh(z/σN) +

1

2

L

σN
sech2(z/σN)

]
+

J−1∑
j=1

1

2

L

σN
sech2

(
(z + jL)/σN

)
+
1

2

[
1− tanh

(
(z + JL)/σN

)
+

1

2

L

σN
sech2

(
(z + jL)/σN

)]
(36)

These profiles are plotted for the case J = 3 in Fig 3.349

Superimposed on the background stratification, the simulations were initialized with a350

horizontally periodic, vertically compact quasi-monochromatic wavepacket having a Gaus-351
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FIG. 3. Profiles used in numerical simulations of a) background density ρ̄(z) and b) background

stratification N2(z), for J = 3. The red dots in b) indicate the vertical resolution of the numerical

model.

sian amplitude envelope centered at z = z0. In terms of the streamfunction the wavepacket352

is defined by,353

ψ(x, z, t = 0) = A0 exp

[
−1

2

(
z − z0
σ0

)2
]
cos(kx+m0z) (37)

in which k and m0 respectively, are the horizontal and peak vertical wavenumbers, A0 is the354

maximum streamfunction amplitude, and σ0 is the vertical extent of the wavepacket. In most355

simulations we set σ0m0 = 10, but also explore cases with σ0m0 = 5 and 20. Because σ0m0 ≫356

1, the wavepacket is quasi-monochromatic with peak frequency ω0 = N0k/(k
2+m2

0)
1/2. The357

initial wavepacket is centered at z0 = 10k−1 ≫ σ0 so that the wavepacket has negligible358

amplitude within the staircase at the start of the simulation. From the polarization relations359

for monochromatic waves, the initial spanwise vorticity and buoyancy are specified in terms360

of the streamfunction by ζ|t=0 = (k2 +m2
0)ψ|t=0 and b|t=0 = N2

0 (k/ω0)ψ|t=0,361

In our simulations there was no mean background flow. Nevertheless, we computed the362

Eulerian-induced mean flow, uE, generated by the wavepacket and superimposed this on363

the background. Explicitly, the wave-induced mean flow is defined in terms of ζ and b by364

uE(z, t = 0) = ⟨ζ b⟩ /N2
0 (e.g. see Sutherland [2]). The presence of the induced flow is365

included by adding −duE/dz to the background vorticity field. Because the waves are small366
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amplitude, the induced mean flow has no influence upon the wave propagation. However, it367

is included to avoid what would emerge as a negative jet −uE(z, t = 0) at the initial location368

of the wavepacket and, consequently, would give rise to the unphysical presence of energy369

above the staircase.370

The simulations were performed in a horizontally periodic domain with one horizontal371

wavelength of the incident wavepacket spanning the horizontal extent. The vertical extent372

needed to be sufficiently tall for the disturbance in the staircase to reach negligibly small373

amplitude before the transmitted and reflected waves reached the top and bottom of the374

domain, respectively. Thus we set −H ≤ z ≤ H, with H = 60L. In order to resolve the375

spikes in N2, high vertical resolution was required with typical simulations having 216 points376

in the vertical, giving a vertical resolution of ∆z ≃ 0.0018L. This resolution is indicated377

by the red dots in Fig. 3b. The horizontal field was represented by a superposition of 64378

Fourier modes. Simulations were advanced in time using a leapfrog scheme for advective379

terms, with an Euler backstep taken every 20 steps. Each time step had a resolution of380

∆t = 0.05N−1
0 . Simulations performed with higher resolution and shorter time-steps show381

that the measurements of relative energy above, below and within the staircase are accurate382

to three-digits.383

In all simulations the time scale was set so that N0 = 1 and the length scale was set384

so that k = 1. Nonetheless, the results are presented with these scales being explicitly385

represented. We conducted a range of simulations with the number of steps in the staircase386

ranging from J = 1 to 10. The relative vertical wavenumber of the incident wavepacket,387

m0/k, was 5 or 10, corresponding to ω0/N0 ≃ 0.2 or 0.1, respectively. According to (13),388

the predicted transition between weak and strong transmission with kL ≪ 1 occurs for389

ωc ≃ kL/2. To explore this transition, in simulations with m0/k = 5, kL ranged from 0.2390

to 0.55; in simulations with m0/k = 10, kL ranged from 0.1 to 0.3.391

We also conducted a range of simulations varying the initial wavepacket amplitude. In392

terms of the initial vertical displacement amplitude, Aξ0 = −(k/ω)A0, our simulations had393

amplitudes with Aξ0k ranging from 0.001 to 0.01. In this range there was no significant394

quantitative difference between simulation results in terms of transmission and reflection395

diagnostics. Hence, we report here only upon simulations with Aξ0k = 0.001. The sensitivity396

of results to the interface thickness was examined by performing some simulations with half397

the interface thickness (σN = 0.005L) and double the vertical resolution. No significant398
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quantitative differences to our results were found.399

The analysis of our simulations focused upon the evolution of energy over time above,400

within, and below the staircase. At each time, we calculated the total horizontally averaged,401

vertically integrated energy, Etotal. This was partitioned into the energy above, within and402

below the staircase respectively by the integrals403

Er =

∫ H

z=3σN

(KE + PE) dz (38)

Es =

∫ 3σN

z=−JL−3σN

(KE + PE) dz, (39)

Et =

∫ −JL−3σN

z=−H

(KE + PE) dz (40)

in which KE(z, t) = (1/2) ⟨u2 + w2⟩ is the horizontally averaged kinetic energy per mass and404

PE(z, t) = (1/2) ⟨b2⟩ /N2 is the horizontally averaged available potential energy. Within the405

staircase ||b|| → 0 as N → 0 such that PE → 0. Hence, in calculating the integral of PE in406

(39), we do so only where N2 exceeds a threshold of 0.001.407

From the energy integrals, we compute the time-evolving transmission coefficient (T (t))408

and reflection coefficient (R(t)) as well as the relative energy in the staircase (S(t)):409

T (t) =
Et

Etotal
, R(t) =

Er

Etotal
, S(t) =

Es

Etotal
. (41)

The duration of the simulations varied primarily based on the vertical group velocity of410

the incident wavepacket and the number of steps, J , in the staircase. As we show, for larger411

J , energy remains trapped in the staircase for longer times, requiring longer simulations. In412

most simulations, the final time was set so that the relative energy within the staircase, S(t),413

fell below 0.001 after reaching its peak. In the simulation with J = 10, the waves reached414

the top and bottom of the domain before this threshold was reached. These simulations415

were terminated at time 6590N−1
0 when S(t) ≃ 0.0065.416

We will show that energy persists for longer times in a staircase with a larger number417

of steps due to the excitation of modes with long e-folding decay times. To quantify this,418

we constructed a log-plot of the energy within staircase, ln (S(t)) versus t, and found the419

slope of the best-fit line through over late times for which S ≤ 0.01. The slope determined420

the e-folding energy decay time, τe, within the staircase, which could be compared with the421

predicted decay time, 2/τj, of each mode.422
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IV. RESULTS423

We begin with a qualitative examination of wavepacket tunnelling in a simulation of an424

initial wavepacket having m0 = 10k being incident upon a staircase with J = 5 steps. The425

peak frequency of the incident wave is ω0 ≃ 0.0995. We examine the case with kL = 0.2,426

which corresponds to waves near the transition between weak and strong transmission,427

given by (14). This wavenumber is moderately larger than the predicted largest relative428

wavenumber of the transmission spikes, which occurs at kL ≃ 0.19 (see Fig. 1a). We note429

that, for kL = 0.2, the predicted transmission coefficient is ≃ 0.5 for J = 1, but is predicted430

to be small for J = 5.431

Snapshots of the wavepacket evolution at three times are shown in Fig. 4. The structure432

of the waves is represented here in terms of the horizontal velocity field normalized by the433

initial amplitude, Au0 = m0A0. Initially the wavepacket is centered at z0 = 10k−1. The434

width of the envelope, 10/m0 = k−1, is much smaller than z0 so that the signal of the initial435

wavepacket within that staircase is negligible.436

The vertical group velocity of the wavepacket is ≃ −N0k/m
2
0. And so the estimated time437

for the center of the wavepacket to reach the top of the staircase (at z = 0) is z0m
2
0/(kN0) =438

1000/N0. This is the time shown in Fig. 4b. At this time, the leading flank of the incident439

wavepacket has partially transmitted through the staircase, as evident from the pattern of440

downward propagating waves below z = −JL = −k−1. Above the top of the staircase441

the disturbance field is a superposition of the incident trailing flank of the wavepacket and442

partially reflected upward propagating waves.443

At N0t = 2000 (Fig. 4c), the transmitted waves below the staircase and the reflected444

waves above the staircase are broadly distributed in the vertical, but disturbances within445

the staircase are non-negligible. This simulation thus gives qualitative evidence for the446

excitation of natural modes of the staircase by the traversing incident wavepacket.447

To illustrate the impact of the incident wave upon disturbances within the staircase,448

Fig. 5a shows a close-up view of the staircase region at time N0t = 2000, corresponding449

to Fig. 4c. Near-monochromatic waves are evident above and below the staircase by phase450

lines having approximately constant slope. In contrast, disturbances within the staircase451

have a standing wave pattern, evident both in the horizontal velocity field and isopycnal452

displacements. The latter are found in terms of the buoyancy field at the center of each453
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FIG. 4. From a simulation with m0 = 10k, kL = 0.2 and J = 5, snapshots of horizontal velocity

at times a) t = 0, b) 1000N−1
0 and c) 2000N−1

0 . The colours in all three plots show the horizontal

velocity normalized by the initial horizontal velocity amplitude Au0, with values indicated by the

scale in a). The horizontal lines at z = 0 and z = −1 indicate the levels at the top and bottom of

the staircase, respectively.

interface by computing ξ = −b/N2. The isopycnal displacements exhibit an alternating454

varicose pattern associated with bulging and pinching contours. As our energy analysis below455

demonstrates, the disturbances within and near the staircase correspond to a trapped mode456

that emits internal waves above and below the staircase as the amplitude of disturbances457

with the staircase decay exponentially in time.458

By contrast, in Fig. 5b we show a snapshot of the horizontal velocity field and isopycnal459

displacements from a simulation with J = 5 and kL = 0.2 but with m0 = 5k. Because the460

vertical group velocity of the incident wavepacket is approximately 4 times larger than the461
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FIG. 5. Horizontal velocity field and isopycnal displacements at each density interface in simu-

lations with J = 5, kL = 0.2 and a) m0 = 10k at time t = 2000N−1
0 and b) m0 = 5k at time

t = 500N−1
0 . The plot in a) corresponds to the snapshot shown in in Fig. 4c, but focused on

the vertical region about the staircase situated between −1 ≤ kz ≤ 0. The dashed lines show

the vertical displacement of isopycnals at the center of each interface (at z = −jL = −0.2j k−1,

j = 0 . . . 5). For clarity, the displacements have been magnified by a factor of 100 in a) and by a

factor 20 in b).

wavepacket with m0 = 10k, we show the snapshot at time 500N−1
0 , which is one quarter462

of the time of the snapshot shown in Fig. 5a. For this simulation, tunnelling theory for463

plane waves predicts near-perfect transmission of the wavepacket across the staircase. This464

is evident in the simulation which shows downward-sloping phase lines above and below465

the staircase, corresponding to downward propagating waves. Although the phase lines are466

vertical within each step, the phase shift across each interface corresponds to the expected467

change for waves unimpeded by the staircase. In a simulation with m0 = 5k but kL = 0.4,468

which is close to the transition wavenumber, we once again observe the standing wave pattern469

of horizontal velocity and isopycnal displacements as in Fig. 5a (not shown).470

During each simulation, we computed the energy above, below and within the staircase,471

as given by (41). Here we show the results for three simulations, all with m0/k = 10 and472

kL = 0.2 but with different numbers of steps: J = 2, 5 and 10. The results are shown in Fig.473

6. In all three cases, initially R = 1 and T = S = 0, corresponding to all the energy lying474
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FIG. 6. Time series of the evolution of transmitted energy, T (red line), reflected energy, R (black

line), and energy within the staircase, S(t) (blue line) in simulations with a) J = 2, b) J = 5 and

c) J = 10 steps. The insets in b) and c) shows a log-linear plot of S for times t ≥ 1000/N0. In all

simulations m0 = 10k and Lk = 0.2.

well above the staircase. As the center of the wavepacket reaches the staircase (in all cases475

around time ≃ 1000N−1
0 ), the relative energy grows below and within the staircase while476

decreasing above. At late times the relative energy above and below the staircase plateau477

to near-constant values as the energy within the staircase decays to zero.478

The late-time values of the relative energy below the staircase give the simulated trans-479

mission coefficient, which may be compared with the predicted transmission of incident480

plane waves. This comparison is shown in Fig. 7 for a wide range of simulations, all hav-481

ing m0/k = 10 and with kL spanning a range about the critical transmission wavenumber482

at kcL ≃ 0.2. The results of simulations for staircases having J = 1 and 2 steps are483

shown in Fig. 7a. Particularly in the case with 1 step, the predicted transmission coefficient484

corresponds well with the values measured in simulations. In the case of 2 steps, theory485

moderately under-predicts the measured values for 0.18 ≲ kL ≲ 0.25. In simulations with486

more steps, the measured transmission versus kL is qualitatively different for the predicted487

values about kcL = 0.2 (Fig. 7b). The presence of more steps leads to a prediction of more488

transmission spikes with the highest wavenumber spike having kL close to, but below, kcL.489

However, the measurements from simulations show a near monotonic decrease in T with490

increasing kL. In particular, with J = 5 and kL = 0.19, theory predicts near-perfect trans-491
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FIG. 7. Measured and predicted transmission as a function of kL in simulations with m0 = 10k

and a) J = 1 and 2 steps and b) J = 3 and 5 steps, and c) with m0 = 5k and J = 3 and 5

steps. Dashed lines indicate the theoretical prediction for incident plane waves and symbols denote

measurements from simulations, as indicated in the legends.

mission, whereas the measured transmission coefficient was 0.59. For the same number of492

steps but with kL = 0.20, theory predicts near-zero transmission, whereas the simulation493

measured a coefficient of 0.40. Similar behaviour is found in simulations with m0 = 5k494

(Fig. 7c) about the critical transmission wavenumber at kcL ≃ 0.4.495

A qualitative explanation for the lack of transmission spikes occurring in simulations can496

be found through closer examination of the time-evolution of relative energy within the497

staircase, S(t), shown in Fig. 6. In the case with two steps (Fig. 6a), the growth and decay498

of energy within the staircase is almost symmetric about the peak, which occurs at time499

≃ 1040N−1
0 . However, in the cases with J = 5 and 10 (Figs. 6b,c), the decay of S occurs500

over a longer time than its initial growth. The insets in Figs. 6b,c) plot log10(S) versus501

time, revealing that the late time decay is nearly exponential and the decay is slower with502

larger J .503

By finding a best-fit line through the log plots over times when S falls below a threshold504

of 0.01, we measure the exponential decay rate and, from this, get the e-folding energy decay505

time-scale, τe. This is plotted in Fig. 8 for a range of simulations with J ranging from 1 to 10,506

keeping m0 = 10k and kL = 0.2 fixed. In simulations with J ≥ 4, τe increases rapidly with507

increasing J . These measured values are compared with the predicted e-folding energy decay508
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FIG. 8. Effect of the number of steps J on the e-folding decay time of energy, τe, within the

staircase at late times. Open pentagons represent measurements from simulations. The lines

denote theoretical predictions based on the decay time, 1/(2τj) of natural modes of the staircase

for the highest mode (j = J , solid black line), second-highest mode (j = J − 1, blue dashed line)

and the third-highest mode (j = J − 2, red dotted line). In all simulations A0 = 0.001 k−1 and

m0 = 10 k, with corresponding frequency ω0 = 0.0995N0.

time associated with natural modes of the staircase, given by τe = τj/2, in which τj = −1/ωji509

where ωji is the imaginary part of the frequency of mode-j determined from the solution510

of the eigenvalue problem given by (16). The highest vertical mode has the lowest real511

and (magnitude of) imaginary frequency and so has the largest predicted e-folding decay512

time (see Fig. 2b,d). The predicted energy decay times of the highest modes correspond513

excellently with the measured values, clearly indicating that the incident wavepacket with514

kL near the critical transition excited the highest vertical mode.515

Even after the incident wavepacket partially transmitted and reflected, energy remains516

in this mode which then continuously transmits waves above and below the staircase as its517

energy decays. Thus a transmission spike in a 5-step staircase does not occur near kL = 0.19518

because the incident wavepacket resonated near perfectly with the highest vertical mode of519

the staircase, which then retransmitted half the absorbed energy as upward propagating520

waves above the staircase. Likewise, though theory predicts weak transmission for kL =521

0.2, the measured transmission in simulations is large because half of the incident energy,522

absorbed in near-resonance with the highest vertical mode, is retransmitted as downward523
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FIG. 9. As in Fig. 6 showing transmitted energy, T (red line), and energy within the staircase, S(t)

(blue line), in simulations with J = 8, m0 = 10k, Lk = 0.19 and with different initial wavepacket

vertical extents, σ0m0, as indicated in the legend. The inset shows a log-linear plot of S for times

t ≥ 2000/N0. The black line indicates the exponential decay slope, −1/τe = −2/τJ , predicted by

theory.

propagating waves below the staircase.524

By plotting the results in Fig. 8 on log-log axes and finding a best-fit line to data with525

J ≥ 4, we find that the relative energy decay time-scale increases with the number of steps526

as527

N0τe = (2.09± 0.02)J3, (42)

in which the measured power law exponent, accurate to 0.1%, is consistent with the predic-528

tion (18).529

In all the simulation results above we fixed the incident wavepacket width so that m0σ0 =530

10. We also performed simulations examining the influence of different wave packet widths531

upon energy excitation within the staircase and energy transmission at late times. Figure 9532

shows the results of three simulations of an wave packet incident upon a staircase with J = 8533

steps. In all cases, m0 = 10k and we set kL = 0.19, for which the incident wave frequency534

is close to the critical frequency (ω0 ≃ ωc) and the (real part of) the frequency (ωJ) of the535

highest mode of the staircase with wavenumber kL = 0.19.536

As predicted by theory, the rate of energy decay within the staircase decreases expo-537

nentially as S⋆ ∝ exp(−t/τe), in which τe ≃ 1102N−1
0 is independent of σ0, and hence the538
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duration of forcing, τ0 = σ0/cg. Theory also predicts that the relative energy transmission539

at late times should be larger if the τ0 is greater, which is evident, at least qualitatively, in540

Fig. 9. However, the approximations leading to the prediction of T ⋆ based on the “initial”541

relative energy of excitation of near-resonant modes the staircase, given by (32) and (33),542

were found to be too crude to be quantitatively accurate.543

V. CONCLUSIONS544

We have performed simulations of a quasi-monochromatic wavepacket incident upon a545

density staircase having a different number of steps, J , and relative step size, kL. In simu-546

lations with 1 step, the transmission coefficient from the theory for incident monochromatic547

waves well-predicted the transmission measured in simulations. However, in simulations with548

a larger number of steps, the predicted occurrence of transmission spikes near the critical549

transition wavenumber, kc = 2ω0/(N0L), was not evident. Instead the simulations showed550

a near-monotonic decrease in transmission with increasing kL about kcL. The discrepancy551

between the theory for monochromatic incident waves and simulations is explained by the552

near-resonant excitation of the highest vertical mode of the staircase which partially ex-553

tracts energy from the incident wavepacket and retransmits this energy above and below the554

staircase as it exponentially decays in time. The measured e-folding decay time of energy555

corresponded well with the predicted energy decay time for the highest vertical mode.556

Due to computational cost, the simulations were necessarily restricted to the study of557

hydrostatic internal waves uninfluenced by rotation. For example, with m0 = 10k, ω0/N0 ≃558

0.1 which is much larger than f/N0, assuming a typical value of the Coriolis parameter559

f ≃ 0.01N0. In simulations with higherm0/k and lower ω0/N0, the vertical group velocity of560

the incident wavepacket would have been lower, requiring prohibitively long computational561

times to simulate the interaction of the wavepacket with the staircase. Nonetheless, the562

generic nature of our results suggests they can be extended to the inertia gravity wave563

regime.564

Our results indicate that transient effects associated with a wavepacket interacting with a565

density staircase should be considered if the incident wavenumber is near the critical transi-566

tion value, kc. Past theory has shown that kc well approximates the transition wavenumber567

even for finite Coriolis parameter f0 provided ω0 > f0 and kL ≪ 1 [9]. The same study568
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showed that the critical transition wavenumber is relatively insensitive to having steps that569

vary in size within the staircase about a mean value L̄. With these considerations, we tenta-570

tively use observations of a density staircase in the Arctic ocean [13] to estimate conditions571

under which incident waves are near the critical transition. In that study, 20 steps of a stair-572

case were observed between 240 and 290 meters depth, giving a mean step size of L̄ ≃ 2.5m.573

The mean buoyancy frequency was observed to be 0.007 s−1 and f ≃ 1.4 × 10−4 s−1 at the574

observed latitude around 78◦N. For near-inertial incident waves (ω0 ≳ f0), the critical tran-575

sition occurs for kc ≃ 0.016m−1, corresponding to a horizontal wavelength of ≃ 400m. It is576

unlikely that natural processes would create inertia gravity waves with such small horizontal577

scale. And so our study is more relevant to higher frequency waves that are not significantly578

influenced by rotation. In particular, for incident waves with relative frequency ω0/N0 = 0.1,579

the critical horizontal wavelength would be ≃ 80m. Hence the possible near-resonant excita-580

tion of modes in the staircase would occur for internal waves that are excited by a relatively581

horizontally localized disturbance near the surface, for example by the motion of wind-driven582

ice floes in the marginal ice zone. Although this may seem restrictive, because the decay583

time is longer for modes in staircases with more steps the impact of incident waves upon584

the staircase would persist. For example, in a staircase with J = 20 steps, (18) predicts an585

e-folding energy decay time of ∼ 44 days.586
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Appendix A: Application of interface conditions597

From the general formulae for the vertical structure of disturbances in a density staircase598

with J steps, given by (4), the condition for continuity of the streamfunction across each599

interface gives the J + 1 equations600

A0 +B0 = A1e
kL/2 +B1e

−kL/2,

Aje
−kL/2 +Bje

kL/2 = Aj+1e
kL/2 +Bj+1e

−kL/2, j = 1 . . . J − 1,

AJ+1 +BJ+1 = AJe
−kL/2 +BJe

kL/2.

(A1)

The condition for continuous pressure requires continuity of ψ̂′ − (gρ̄/ρ0)(k
2/ω2)ψ̂. Ap-601

plying this at each interface, and using (1) and (A1) gives the J + 1 equations602

im[A0 −B0] = k[A1e
kL/2 −B1e

−kL/2]− 1
2
g′ k

2

ω2 [A1e
kL/2 +B1e

−kL/2]

k[Aje
−kL/2 −Bje

kL/2] = k[Aj+1e
kL/2 −Bj+1e

−kL/2]

−g′ k2
ω2 [Aj+1e

kL/2 +Bj+1e
−kL/2], j = 1 . . . J − 1,

im[AJ+1 −BJ+1] = k[AJe
kL/2 −BJe

−kL/2]− 1
2
g′ k

2

ω2 [AJe
kL/2 +BJe

−kL/2]

(A2)

in which g′ = g∆ρ/ρ0 = N2
0L.603

These equations can be written in a simpler form by defining the nondimensional variables604

∆ ≡ ekL, M ≡ m/k and Γ = (1/2)g′k/ω2 = kL(M2 + 1)/2. Furthermore, the middle605

equations (with j = 1 . . . J−1) of (A1) and (A2) are simplified for each j first by eliminating606

Bj on the right-hand side to give an equation for Aj, and then by eliminating Aj on the607

right-hand side to give an equation for Bj:608

Aj = ∆(1− Γ)Aj+1 − ΓBj+1

Bj = ΓAj+1 −∆−1(1 + Γ)Bj+1,
(A3)

Appendix B: Approximate dispersion relation for highest mode609

Here we find an approximate analytic prediction for the frequency and decay rate of the610

highest mode in a density staircase, whose frequency is close to the critical transition given611

by (13), in which we assume kL≪ 1. Consequently |ω|/N0 ≪ 1 and |M | ≃ N0/|ω| ≫ 1. At612

the critical transition ωc/N0 = kL/2. And so we expect m̃ ≡ mL (= MkL) ≃ 2 − ϵ with613

|ϵ| ≪ 1. Thus Γ = kL(M2 + 1)/2 ≃Mm̃/2.614

The implicit relation for the dispersion relation for modes in a staircase is given generally615
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by (16). The value of b− in this equation is given by (12), which simplifies in the kL ≪ 1616

limit to b− ≃ −Γ. Hence (16) can be written as617

−Γ(a+ + a−)
2Λ−/b0 + (a2+ − a2−)Λ+ ≃ 0. (B1)

From the definition of a± in (6), we get the approximate expressions618

a+ + a− ≃ 2 + im̃− m̃2/2, a+ − a− ≃M(2i− m̃). (B2)

Also using m̃ = 2− ϵ, (B1) simplifies to619

(1− ϵ/2)(2i+ (2− i)ϵ− ϵ2/2)Λ−/b0 + (2− 2i− ϵ)Λ+ ≃ 0. (B3)

To find approximate expressions for Λ±, we use the definition of b+ in (12) with kL≪ 1620

to get621

b+ ≃ 1− m̃2/2 = −1 + 2ϵ+O(|ϵ|2). (B4)

Hence, we find622

b20 ≡ b2+ − 1 ≃ −4ϵ+O(|ϵ|2). (B5)

In the expressions for Λ±, we perform a binomial expansion to write (assuming J ≥ 4)623

λJ−1
± = bJ−1

+ ±

 J − 1

1

 bJ−2
+ b0 +

 J − 1

2

 bJ−3
+ b20 ±

 J − 1

3

 bJ−4
+ b30 + . . . (B6)

Thus we have624

Λ+ = bJ−1
+ + (J − 1)(J − 2)bJ−3

+ b20/2 + . . . ≃ (−1)J−1
[
1− 2(J − 1)2ϵ

]
+O(|ϵ|2), (B7)

and625

Λ−/b0 = (J − 1)bJ−2
+ + (J − 1)(J − 2)(J − 3)bJ−4

+ b20/6 + . . .

≃ (−1)J−1
[
− (J − 1) + (2/3)J(J − 1)(J − 2)ϵ

]
+O(|ϵ|2).

(B8)

Putting these expressions in (B3) and keeping terms up to O(|ϵ|) gives626

6(J + i)− [4J3 + 12iJ2 − (10 + 18i)J + (6 + 9i)] ϵ ≃ 0. (B9)

From this we can solve for ϵ, explicitly finding its real and imaginary parts in terms of the627

number of steps, J . For J ≫ 1 we find628

ϵ ≃ (3/2)J−2 [1− (7/2)J−2+O(J−3)]− 3iJ−3 [1− (9/4)J−1− (13/8)J−2+O(J−3)]. (B10)
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