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Abstract9

The density of the ocean generally increases continuously with depth as a consequence of vari-10

ations in salinity and temperature. In some regions, however, the density profile of the ocean11

adopts a (double diffusive) staircase structure in which successive layers of uniform density fluid12

are separated by rapid density jumps. Previous work has theoretically examined the transmission13

and reflection of periodic internal (gravity) waves incident upon a density staircase. This predicted14

the existence of transmission spikes (global modes) for certain combinations of frequency and hor-15

izontal wavenumber in which the incident waves transmit perfectly across a density staircase. It16

was hypothesized that the transmission spikes occur when the incident waves resonate with nat-17

ural modes of disturbances in the staircase. Here we derive theory to investigate the interactions18

between incident internal waves and modes. We demonstrate a close correspondence between the19

frequency for incident waves at a transmission spike and the real-part of the frequency of modes at20

the same horizontal wavenumber. However the frequency of the corresponding modes have negative21

imaginary part corresponding to exponential decay of the modes in time. We perform numerical22

simulations to examine the impact of this near-resonant coupling when a vertically localized, quasi-23

monochromatic internal wave packet interacts with a density staircase. In a range of simulations24

with fixed incident wave frequency and varying horizontal wavenumber, the measured transmission25

coefficient does not exhibit transmission spikes, but decreases monotonically with increasing hor-26

izontal wavenumber about the critical wavenumber separating strong and weak transmission. We27

show this occurs because the incident wave excites modes that then slowly transmit energy above28

and below the staircase at a rate consistent with the predicted decay rate of the modes. This rate29

is slower for staircases with more steps with the decay time increasing as the cube of the number30

of steps.31

Keywords: interfacial waves; density staircase; transmission; wave tunneling32

I. INTRODUCTION33

Internal (gravity) waves propagate in density-stratified fluids, transporting energy both34

horizontally and vertically. Particularly in the ocean they play an essential role in the vertical35
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transport of heat and salinity caused by the mixing that occurs when the waves break36

[1]. The frequency of propagating internal waves is limited by the background buoyancy37

frequency, which is a measure of rate at which the background density increases with depth.38

In particular, vertically propagating internal waves reflect from weak stratification where the39

buoyancy frequency is less than the incident wave frequency, though the waves give rise to an40

evanescent disturbance in the weakly stratified region (e.g. see Sutherland [2]). Of particular41

interest is the interaction between downward propagating internal waves incident upon a42

thermohaline density staircase. The vertical profile of density in a staircase is characterized43

by steps of uniform density separated by sharp density jumps, which have been observed44

in different regions of the ocean from the tropics to the Arctic Ocean, occurring as a result45

of double diffusive processes [3–8]. Within the steps of the staircase, an incident internal46

wave is evanescent. However, if the steps are sufficiently small compared to the scale of the47

incident wave, the wave can partially transmit across the staircase [9, 10]. This tunnelling48

phenomena has also been explored in the context of wave propagation across staircases49

occurring in giant planets [11].50

Of particular interest is the interaction between internal waves and the thermohaline stair-51

case in the Arctic Ocean. As Arctic sea ice cover decreases due to global warming, winds52

blowing over the exposed ocean surface or driving mobile ice floes can more frequently gener-53

ate internal waves that then propagate downward and interact with a thermohaline staircase54

[12]. Observations have revealed the robust presence of a staircase spanning horizontally over55

a thousand square kilometers in the Canadian Basin, being situated a few hundred meters56

below the surface and extending over 100m depth [13, 14]. The steps of the staircase have57

depths on the order of 1m with sharp density jumps having thickness on the order of 1 cm.58

Should incident downward propagating internal waves partially transmit through the stair-59

case they can act as a source of mixing that may bring warm and salty Atlantic water at60

depth closer to the surface, which may then enhance sea ice melting.61

Theoretical predictions have been made for the transmission and reflection of monochro-62

matic (in frequency) horizontally periodic internal waves incident upon a single uniform-63

density slab of fluid [15] and two mixed layers [16]. This work was extended to examine64

the influence of shear across a single step [17, 18] and allowing for the incident wave to be65

manifest as a horizontally localized beam [19, 20]. More recently, an analytic prediction66

was developed for transmission of an incident plane wave across a density staircase with an67
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arbitrary number of equal-sized steps [9]. The work included consideration of background68

rotation and presented numerical solutions for transmission across unequal steps. In all cases69

the work predicted a sharp transition between weak and strong transmission at a critical70

incident wave frequency, which is proportional to the horizontal wavenumber for hydrostatic71

waves. Waves with moderately larger frequency than this critical value exhibited a sequence72

of transmission spikes for which the incident waves entirely transmitted without reflecting.73

The number of transmission spikes corresponded to the number of steps in the staircase.74

It was suggested that these transmission spikes occurred as a consequence of the incident75

waves resonating with natural oscillating modes of the staircase, a phenomena examined in76

theoretical detail here.77

In all the above theoretical studies the incident waves were assumed to have a single78

frequency, steadily impinging upon single or multiple density steps. In reality, internal waves79

are transiently generated and so are manifest as a wavepacket. The interaction between a80

wavepacket and density steps has not been well studied, except for a numerical examination81

of finite-amplitude effects associated with a wavepacket propagating across a density step82

with no density jump above and below the step [21]. In the theoretical-numerical work83

presented here, we examine the transmission resulting from the transient interaction between84

a incident vertically localized internal wave packet and a density staircase. We demonstrate85

that transmission spikes do not occur in this case because the incident wave packet puts86

energy into modes that then slowly re-radiate this energy both above and below the staircase.87

This effect is stronger for a staircase with more steps.88

In Section II, we review the theory of plane wave transmission across a density staircase [9]89

for the specific case of no background rotation. We also derive an expression that gives90

the dispersion relation of natural modes of the staircase, and we consider the near-resonant91

excitation of these modes forced transiently by an incident wave packet. Section III describes92

the numerical model and diagnostics applied to characterize the time evolution of energy93

above, below and within the staircase. The simulation results and their comparison with94

theory are presented in Section IV. Concluding remarks and application to the thermohaline95

staircase in the Arctic Ocean are considered in Section V.96

4



II. THEORY97

Here we consider the vertical structure of horizontally periodic disturbances associated98

with a density case having J equal steps bounded above and below by uniformly stratified99

fluid. The fluid is assumed to be inviscid and Boussinesq, and the disturbances are assumed100

to be small-amplitude and two-dimensional with structure in the x-z plane, with x horizontal101

and z vertical. For simplicity, the influence of background rotation is ignored.102

First we describe the layout of the problem, describing the background density profile of103

the staircase, and giving general solutions for the vertical structure of disturbances in the104

staircase. We then specifically review the theory of internal wave tunneling across a staircase105

that predicts the transmission coefficient as it depends upon the horizontal wavenumber106

and frequency of the incident wave. From this prediction we derive the methodology to107

determine numerically the dispersion relation for “global modes” for which there is pure108

transmission at non-zero horizontal wavenumber. We then consider the natural modes of109

the density staircase, giving an expression from which the dispersion relation of vertical110

modes can be derived. Showing that the global modes and natural modes are near-resonant,111

we examine the excitation of the natural modes that are transiently forced by incident waves112

with wavenumber and frequency near that of the global modes.113

A. Problem setup114

In setting up the density profile for the staircase, we imagine the fluid in the absence of a115

staircase is uniformly stratified with constant buoyancy frequency N0. We now suppose that116

this profile is uniformly mixed across J steps, each of depth L, with the staircase extending117

between z = 0 and z = −JL. The corresponding background density profile is thus given118

by119

ρ̄(z) =


ρ0

(
1− ∆ρ

ρ0
z
L

)
, z > 0

ρ0

(
1 +

(
j − 1

2

)
∆ρ
ρ0

)
, −jL < z < −(j − 1)L, j = 1, 2, . . . , J

ρ0

(
1− ∆ρ

ρ0
z
L

)
, z < −J L

(1)

Here, ρ0 = ρ(0+) represents the characteristic density, located just above the top step. Above120

and below the staircase, the (constant) squared buoyancy frequency isN2
0 ≡ −(g/ρ0)dρ̄/dz =121

g′L, in which g′ = g∆ρ/ρ0 is the reduced gravity. This sets the size of the density jumps122
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∆ρ within the staircase for given step depth, L. The density jump at the top and bottom123

step is ∆ρ/2.124

The spatio-temporal structure of disturbances outside and within the staircase are as-125

sumed to be horizontally periodic with wavenumber k and (possibly complex) frequency ω.126

In terms of the streamfunction, the structure is given by ψ(x, z, t) = ψ̂(z) exp[ı(kx − ωt)],127

in which it is understood that the actual streamfunction is the real part of this expression.128

The vertical structure of the streamfunction, ψ̂, satisfies the following equation (e.g. see129

Sutherland [2]):130

d2 ψ̂

dz2
+ k2

(
N2

ω2
− 1

)
ψ̂ = 0. (2)

Because N = N0 is constant above and below the staircase and N = 0 within each step131

of the staircase, piecewise-analytic general solutions can be found for ψ̂(z) of the form132

ψ̂(z) =


A0 e

ımz +B0 e
−ımz, for z > 0

Aj e
k[z+L(j−1/2)] +Bj e

−k[z+L(j−1/2)], −jL < z < −(j − 1)L, j = 1 . . . J

AJ+1 e
ım[z+LJ ] +BJ+1 e

−ım[z+LJ ], for z < −J L.
(3)

Here, m ≡ k
√
N2

0/ω
2 − 1, represents the (positive) vertical wavenumber of waves above and133

below the staircase if ω is real and less than N0. We will see that for natural modes of the134

staircase, m is complex-valued. In this case, we define m so that its real part is positive.135

The constants Aj and Bj for j = 0, . . . J + 1 can be found by imposing continuity of136

vertical velocity and pressure. This amounts to requiring that ψ̂ and dψ/dz = g ρ̄
ρ0

k2

ω2 ψ̂ are137

continuous (e.g. see Sec 2.6.1 of Sutherland [2]). This gives a pair of interface conditions at138

z = jL, for j = 0, . . . , J , for a total of 2(J + 1) equations. These are given in Appendix A.139

Full solutions depend upon conditions imposed above and below the staircase. Because140

the sign of the vertical group velocity, cg, is opposite to the sign of (the real part of) m,141

the coefficients A0 and AJ+1 correspond to the amplitudes of downward propagating waves,142

whereas B0 and BJ+1 correspond to the amplitudes of upward propagating waves. For the143

tunneling problem with incident waves propagating downward from above, we takeBJ+1 = 0.144

For the problem of modes, we require waves to propagate away from the staircase so that145

A0 = BJ+1 = 0.146
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B. Tunneling of plane waves147

The theory for the transmission of incident plane waves across a density staircase was148

developed by Sutherland [9]. That study included the effects of rotation and allowed for149

steps having small random variations in the step size. Here we focus on the analytic solutions150

where the step size, L, is same for all steps, and we ignore background rotation.151

Setting BJ+1 = 0 in (3), and applying the interface conditions gives 2J + 2 equations in152

2J + 3 unknowns. These can be combined to get an explicit expression for A0 in terms of153

AJ+1:154

A0 =
i

4M

(
a+, a−

)
CJ−1

 a+

a−

 AJ+1, (4)

in which the left and right vectors have components155

a± ≡ ∆±1/2 [1∓ Γ± iM ], (5)

the matrix C is156

C =

 ∆(1− Γ) −Γ

Γ ∆−1(1 + Γ)

 , (6)

and we have defined the following nondimensional quantities:157

∆ ≡ exp(kL), M ≡ m/k =

√
N2

0

ω2 − 1, Γ ≡ g′k2

2k ω2 = 1
2
kL(M2 + 1). (7)

In the expressions for M and Γ we have used the dispersion relation where N2 = N2
0 is158

constant: ω2 = N2
0k

2/(k2 +m2).159

An analytic solution to (4) is found by diagonalizing C in terms of its eigenvalues, λ±.160

From this solution an expression for the transmission coefficient is found: T = |AJ+1/A0|2,161

which represents the fraction of the energy (or, equivalently, energy flux) associated with162

the incident waves that is transmitted below the staircase. Explicitly this is given by [9]163

T =
1

1 +X2
, with X ≡ δ+Γ+ + δ−Γ− + 2δ0Γ|Λ−|

4M |b0|
, (8)

in which164

δ± ≡ ∆± [(1∓ Γ)2 +M2] , δ0 ≡ Γ2 − 1 +M2, (9)
165

Γ± = b−|Λ−| ± |b0|Λ+, Λ± =
1

2

[
λJ−1
+ ± λJ−1

−
]
, (10)

166

7



0

0.2

0.4

0.6

0.8

1

T

0.1 0.15 0.2 0.25 0.3
kL

J = 1

J = 2

J = 3

J = 4

J = 5

a) m = 10k

0.2 0.3 0.4 0.5 0.6
kL

b) m = 5k

FIG. 1. Predicted transmission coefficient as it depends on the relative step size, kL, and the

number of steps, J , for incident plane waves with a) m = 10k (ω/N0 ≃ 0.0995) and b) m = 5k

(ω/N0 ≃ 0.1961). The different line styles in both plots represent the number of steps, as indicated

in a).

λ± = b+ ± b0, b± ≡ 1

2

[
∆(1− Γ)±∆−1 (1 + Γ)

]
, b0 ≡

√
b2+ − 1. (11)

Examination of T shows that the transition between strong and weak transmission occurs167

for [9]168

ωc/N0 = [(kL/2)tanh(kL/2)]1/2 ≃ kL/2, (12)

in which the last expression gives the approximation for kL≪ 1. Alternately, given a forcing169

frequency ω0 ≪ N0, the critical transition occurs for relative horizontal wavenumber170

kcL = 2ω0/N0. (13)

Mathematically, the transition corresponds to the condition, b0 = 0, delineating the bound-171

ary between real and complex values of λ±. For frequencies lower than ωc (λ± complex), a172

series of transmission spikes occurs where T = 1. If the staircase has J steps, there are J173

transmission spikes. This is shown, for example in Figure 1.174

In astrophysics, the transmission spikes are said to correspond to “global (g-)modes”175

[11, 22]. The dispersion relation of these modes can be found by setting X = 0 in (8), which176

is equivalent to setting B0 = 0 (and hence |AJ+1| = A0) in (3) and applying the interface177

conditions to get an eigenvalue problem. In the expression for X, it is readily shown that178
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|Λ−|/|b0| and Λ+ are polynomials in b20. Hence 4MX can be written as a polynomial in179

M2, whose roots can be found numerically for given kL (e.g. with MATLAB’s “vpasolve”180

function). The corresponding frequency is then found from ω/N0 = (1 +M2)−1/2.181

The resulting dispersion relations for the global modes are plotted in Figures 2a,c) for182

cases with J = 2 and 5 steps. The lowest mode has ω/N0 nearly constant with kL for small183

kL. This mode arises from the interfaces at z = 0 and −JL. For J > 1, higher modes exhibit184

a near-linear dependence upon kL for small kL, with the highest mode having frequency185

moderately larger than the critical frequency ωc, given by (12).186

C. Interfacial waves resonant modes trapped in a J-steps staircase187

Next we find the dispersion relation corresponding to the natural modes of a density188

staircase. This is found by setting A0 = BJ+1 = 0 in (3) and applying the interface conditions189

to get an eigenvalue problem. The resulting eigenvalue problem can be written as a pair of190

equations for B0 and AJ+1:191

 a−

a+

 B0 = CJ−1

 a+

a−

AJ+1, (14)

in which a± is given by (5) and the matrix C is given by (6). Casting this as a matrix192

eigenvalue problem for the eigenvector (B0, AJ+1)
T , and setting the matrix determinant to193

zero gives194

[−2Γa+a− + b−(a
2
+ + a2−)] (Λ0/b0) + (a2+ − a2−) Λ+ = 0. (15)

with Γ, Λ±, b− and b0 defined by (7), (10) and (11).195

As with the problem of finding global modes, Λ+ and Λ−/b0 are expressions involving b20.196

Hence (15) reduces to the problem of finding the roots of a polynomial in M2. Unlike the197

global modes, the eigenvalues, m = Mk, are complex, as are the corresponding frequencies198

ω = N0/(1+M2)1/2. This result can be contrasted with the study of Belyaev et al [22] who199

found only real-valued frequencies in their dispersion relation for modes in an effectively infi-200

nite staircase (with periodic upper and lower boundary conditions). Taking eigenvalues with201

the real part of M to be positive, we find the complex frequencies have positive real parts,202

ωr, and negative imaginary parts, ωi. Hence the modes decay exponentially in time with an203
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FIG. 2. Log-log plots of the dispersion relation for a,c) global modes and b,d) natural modes of

a density staircase having a,b) J = 2 steps and c,d) J = 5 steps. In all four plots, the dotted

black line is the critical frequency ωc, given by (12). In b,d) the solid and dashed lines correspond,

respectively, to the real and (negative) imaginary part of the frequency. The colours indicate the

mode number with the highest vertical mode (lowest frequency at fixed kL) drawn as solid and

dashed black lines.

e-folding time 1/|ωi|, as is expected for modes that continuously lose energy to upward and204

downward propagating internal waves, respectively above and below the staircase.205

The dispersion relations of modes in staircases with J = 2 and J = 5 are plotted in206

Fig. 2b,d). Like the global modes, the largest vertical mode (with lowest frequency at fixed207

kL) has frequency moderately larger than the critical frequency, ωc, and also has the lowest208

magnitude of the decay rate, |ωi|.209
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The overlap between the dispersion relation of global modes and the real part of the210

dispersion relation of the natural modes with large vertical mode number was anticipated,211

with higher transmission expected when incident plane waves are near-resonant with natural212

modes of the system. However, the resonance is never exact because the natural modes213

are not steady, but decay in time. Furthermore, the imaginary part of the eigenvalues of214

M = (mr + imi)/k for the modes are negative. Thus, while the vertical structure of the215

modes oscillate above and below the staircase with vertical wavenumber mr, they also grow216

exponentially with e-folding scale 1/|mi|. This is a result of the normal mode solutions217

representing an effectively infinitely large disturbance in the staircase as t → −∞ that218

propagates vertically away from the staircase at the group velocity as the disturbance in the219

staircase decays exponentially in time.220

We are particularly interested in the dependence upon the number of steps, J , of the221

decay rate of the highest vertical mode. An approximate analytic expression can be found222

in the limit kL ≪ 1 and J ≫ 1. Because the highest vertical mode is near the critical223

transition, ωc/N0 ≃ kL/2, we require ω/N0 ≪ 1. Hence, using ω/N0 = (M2 + 1)−1/2,224

we must have |M | ≫ 1 and ω/N0 ≃ 1/M = k/m. Explicitly, we suppose the relative225

vertical wavenumber of the highest mode can be written as m̃ ≡ mL = 2− ϵ, in which ϵ is226

complex-valued and |ϵ| ≪ 1. The perturbation calculation, described in Appendix B, gives227

ϵ ≃ (3/2)J−2 − 3iJ−3. From this it follows that the approximate dispersion relation of the228

highest vertical mode is229

ω

N0

≃ kL

2

(
1 +

3

4
J−2 − 3

2
i J−3

)
. (16)

In particular, this shows that the decay rate of the mode decreases with the number of steps230

as J−3. The predicted e-folding time scale, τe, associated with the decay of energy is given231

by232

N0τe =
2

3

1

kL
J3 (17)

D. Resonant mode excitation233

The unbounded spatial growth of modes above and below the wavepacket is an artifact of234

seeking normal mode solutions. In reality, the modes are excited transiently by the incident235

wavepacket, and so the vertical extent of the mode structure is limited by the time over236

which the mode is excited. This provides a theoretical challenge in predicting the maximum237
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amplitude to which modes are excited by the incident wavepacket. Specifically, even though238

the partial differential equation which gives the dispersion relation and vertical structure239

of the modes is of Sturm-Liouville form, this is not a Sturm-Liouville problem in that the240

domain is vertically unbounded and the modes themselves are unbounded as |z| → ∞.241

Hence there is no orthogonality relationship between different modes.242

Here we proceed to develop an approximate theory for the excitation of modes by an243

incident wavepacket with the intent to demonstrate that significant excitation occurs only244

if the incident wave frequency is near-resonant with the (real) frequency of the mode and245

if mode decays slowly in time compared with the transient time over which the mode is246

forced by the incident waves. These two conditions are met only if the incident wave is247

near-resonant with the highest frequency mode near the critical transition between high and248

low transmission.249

For small amplitude incident waves and modes, the equation for the excitation of modes250

can be written in terms of the streamfunction:251

∑
j

[∂tt∇2 +N2∂xx]ψj = −[∂tt∇2 +N2∂xx]ψI , (18)

in which (the real part of) ψj = aj(t)ψ̂j(z) exp[i(kx − ωjt)] describes the streamfunction252

of mode-j whose amplitude aj(t) denotes the evolution of its magnitude in response to the253

forcing. We model the interaction of the wavepacket with the staircase as a forcing within254

the staircase whose amplitude grows and decays in time as a0(t), so that the corresponding255

streamfunction is (the real part of) ψI = a0(t)ψ̂I(z) exp[i(kx − ω0t)]. For the incident256

Gaussian wavepacket of our numerical study (see Sec. III), the forcing amplitude is given257

explicitly by258

a0(t) = A0 exp[−t2/(2τ 20 )]. (19)

Here, τ0 = σ0/cg, in which σ0 is the spatial extent of the incident wavepacket and cg is the259

magnitude of its vertical group velocity. As such, τ0 is the time scale for growth and decay260

of the forcing. Here we have defined time so that a0 is largest at t = 0.261

We assume the time-scales for the evolution of a0 and aj are long compared to the time-262

scales, 1/ω0 and 1/|ωj|, of the incident waves and modes, respectively, in which |ωj| is the263

magnitude of the complex-valued frequency ωj. Hence, from (18), the leading-order time-264

evolution equation for aj and a0 is265
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∑
j

ȧj (N
2/ωj)ψ̂j exp[i(kx− ωjt)] = −ȧ0 (N2/ω0)ψ̂0 exp[i(kx− ω0t)], (20)

in which the dots on aj and a0 denote time derivatives. In deriving (20) we have we have266

used the dispersion relation for the modes and the incident wave (assuming ω0 is constant)267

as well as the vertical structure equation (2).268

In previous studies examining forcing of mean flows by vertically bounded internal modes,269

equations for the evolution of each vertical mode could be found using orthogonality of the270

vertical modes with respect to the weight N2 [23]. This methodology cannot be applied to271

extract explicit equations for aj from the sum in (20) because the modes are not orthogonal.272

We expect modes will be excited to non-negligible amplitudes only if the real part of ωj is273

comparable to ω0, thus resulting in near-resonant excitation. This leads us to estimate an274

approximate evolution for the amplitude of a near-resonant mode with mode-number j:275

ȧj ≃ −Cj
ωj
ω0

ȧ0 exp[−i(ωI − ωj)t]. (21)

Here we have defined the interaction coefficient, Cj, assuming that the vertical forcing of276

the mode is driven primarily by motion within the staircase:277

Cj =
[ ∫ 0+

−JL−
ℜ{ψ̂⋆j ψ̂0}N2 dz

]
/
[ ∫ 0+

−JL−
|ψ̂j|2N2 dz

]
, (22)

in which ℜ denotes taking the real part. The bounds on the integrals are set to include278

the density jumps at the top and bottom of the staircase. In evaluating the integrals, N2
279

can be treated as proportional to a Dirac delta function, δ(z), with proportionality constant280

given by the density jump. Explicitly, N2(0) = (g′/2) δ(0) = (N2
0L/2) δ(0), N

2(−JL) =281

(N2
0L/2) δ(z + JL), and N2(−jL) = N2

0L δ(z + jL) for j = 1, . . . J − 1. Thus Cj can be282

expressed explicitly in terms of the known coefficients, Aj and Bj of the vertical structure283

functions of the mode and tunnelling waves (see Appendix A).284

To solve (21), we specify an initial condition on the amplitude of the mode at a finite,285

but large (negative) time: aj(−t0) = 0 for some t0 ≫ τ0. Using (19) in (21), and integrating286

both sides in time from −t0 to some time t gives287

aj(t) = −Cj ωj

ω0
a0

[
e−t

2/(2τ20 )eΣt − e−t
2
0/(2τ

2
0 )e−Σt0

−√
π
2
Στ0 e

(Στ0)2/2
(
erf

[
1√
2
( t
τ0
− Στ0)

]
− erf

[
1√
2
( t0
τ0
− Στ0)

]) ]
.

(23)

Here we have defined Σ = 1/τj− i∆ω, in which τj = −1/ωji is the (positive) e-folding decay288

time associated with the imaginary part of the frequency of mode-j, ωji, and ∆ω ≡ ω0−ωjr289

is the difference of the forcing frequency and the real part of the frequency of mode-j, ωjr.290
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The error function in (23) has a complex argument, which can be written explicitly in291

terms of its real and imaginary parts using292

erf(a+ ib) = erf(a) + i
2√
π
e−a

2

∫ b

0

e2iases
2

ds. (24)

In particular, the second term can be neglected if |a| ≫ |b|.293

We seek the amplitude of the mode when the forcing reaches its peak at t = 0. Assuming294

t0 ≫ τ0, we find295

aj(0) = −Cj ωj

ω0
a0

[
1−√

π
2
Στ0 e

(Στ0)2/2erfc
(

τ0√
2τj

)
+i

√
2Στ0 e

−i∆ωτ20 /τje−(∆ωτ0)2/2
∫ ∆ωτ0/

√
2

0
ei

√
2τ0s/τj es

2
ds
]
.

(25)

Although this can be evaluated numerically, it is useful to consider two limits.296

If τj ≪ τ0, the asymptotic approximation to erfc and the integral in (25) give the leading297

order expression298

aj(0) ≃ a0Cj
ωj
ω0

[(τj
τ0

)2 − 2(1− i∆ω τj)
(
1− e−(∆ωτ0)2/2e−i∆ω τ

2
0 /τj

)]
, τj ≪ τ0. (26)

Thus, even if the frequency of the incident wave is nearly resonant with the (real) frequency299

of the mode, the mode is not excited to large amplitude.300

If τj ≫ τ0, (25) is given approximately by301

aj(0) ≃ a0Cj
ωj
ω0

 −i√π
2
∆ωτ0e

−(∆ωτ0)2/2, |∆ω τ0/
√
2| ≫ 1,

1−√
π
2

(
τ0
τj
− i∆ωτ0

)
, |∆ω τ0/

√
2| ≪ 1.

(27)

Thus, even if the mode decays slowly, it is not excited to large amplitude if the incident302

wave is not resonant with the mode. Only if the incident wave is nearly resonant with a303

slowly decaying mode is it excited to significant amplitude. This would be the case if the304

incident wave frequency is close to the highest frequency mode near a transmission spike.305

Given the amplitudes, aj(0), we go on to estimate the “initial” energy of the excited306

mode:307

Ej(0) =
1

2
|aj(0)|2

k2

|ωj|2
∫ 0+

−JL−
N2|ψ̂j|2dz. (28)

As the forcing from the incident wave decreases for t ≫ τ0, the energy of the mode is308

expected to decay as Ej(t) ∼ Ej(0) exp(−2t/τj).309
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III. NUMERICAL SIMULATIONS310

We use a numerical code that solves the fully nonlinear two-dimensional, Boussinesq311

equations cast in terms of the spanwise vorticity, ζ ≡ ∂zu− ∂xw, and buoyancy, b:312

Dζ

Dt
= − ∂b

∂x
+ νDζ ,

Db

Dt
= −N2w + κDb, (29)

in which D/Dt = ∂t + u⃗ · ∇ is the material derivative, u⃗ = (u,w) is the velocity with313

horizontal (x) and vertical (z) components u and w, respectively, and ∇ = (∂x, ∂z). The314

fields are discretized vertically on an evenly spaced grid and are represented horizontally in315

Fourier space. The effect of viscosity and diffusion is represented by the operator D. This is316

the Laplacian operator in horizontal Fourier space, −k2n + ∂zz, except that it operates only317

upon horizontal wavenumbers, kn, above a specified cut-off taken to be k⋆ = 32k. In this318

way diffusion acts to damp small-scale numerical noise, but does not act upon the waves319

associated with the wavepacket, having horizontal wavenumber k, and the modes it excites.320

The viscous and diffusion coefficients are taken to be ν = κ = 100000N0k
−2. At each time321

step, the streamfunction is found through inversion of the Laplacian equation ∇2ψ = −ζ.322

From this the velocity components are found by u = −∂zψ and w = ∂xψ.323

In the idealized staircase used by our theory, the density jumps discontinuously at each324

step. So that N2 is finite, but still representative of rapid density jumps, we define a325

background density profile, ¯ρ(z), similar to (1) but with continuously varying density that326

increases with depth across each step over a thickness scale, typically taken to be σN = 0.01L.327

For a staircase with J steps, the density profile is given explicitly by328

ρ̄(z) = ρ0 −
1

2
ρ0
N2

0

g
[z + σN ln cosh(z/σN)] +

1

2
∆ρ[1− tanh(z/σN)]

+
J−1∑
j=1

∆ρ[1− tanh((z + jL)/σN)]

+
1

2
ρ0
N2

0

g

[
− z + σN ln

(
cosh((z + JL)/σN)

cosh(JL/σN)

)]
+
1

2
∆ρ

[
1− tanh

(
z + JL

σN

)]
. (30)
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FIG. 3. Profiles used in numerical simulations of a) background density ρ̄(z) and b) background

stratification N2(z), for J = 3. The red dots in b) indicate the vertical resolution of the numerical

model.

Using g′ = g∆ρ/ρ0 = N2
0L, the corresponding N2 profile is given by329

N2(z)/N2
0 =

1

2

[
1 + tanh(z/σN) +

1

2

L

σN
sech2(z/σN)

]
+

J−1∑
j=1

1

2

L

σN
sech2

(
(z + jL)/σN

)
+
1

2

[
1− tanh

(
(z + JL)/σN

)
+

1

2

L

σN
sech2

(
(z + jL)/σN

)]
(31)

These profiles are plotted for the case J = 3 in Fig 3.330

Superimposed on the background stratification, the simulations were initialized with a331

horizontally periodic, vertically compact quasi-monochromatic wavepacket having a Gaus-332

sian amplitude envelope centered at z = z0. In terms of the streamfunction the wavepacket333

is defined by,334

ψ(x, z, t = 0) = Aψ0 exp

[
−1

2

(
z − z0
σ0

)2
]
cos(kx+m0z) (32)

in which k and m0 respectively, are the horizontal and peak vertical wavenumbers, Aψ0 is335

the maximum streamfunction amplitude, and σ0 is the vertical extent of the wavepacket. In336

all simulations we set σ0m0 = 10, so that the wavepacket is quasi-monochromatic with peak337
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frequency ω0 = N0k/(k
2 +m2

0)
1/2. The initial wavepacket is centered at z0 = 10k−1 ≫ σ0338

so that the wavepacket has negligible amplitude within the staircase at the start of the339

simulation. From the polarization relations for monochromatic waves, the initial spanwise340

vorticity and buoyancy are specified in terms of the streamfunction by ζ|t=0 = (k2+m2
0)ψ|t=0341

and b|t=0 = N2
0 (k/ω0)ψ|t=0,342

In our simulations there was no mean background flow. Nevertheless, we computed the343

Eulerian-induced mean flow, uE, generated by the wavepacket and superimposed this on344

the background. Explicitly, the wave-induced mean flow is defined in terms of ζ and b by345

uE(z, t = 0) = ⟨ζ b⟩ /N2
0 (e.g. see Sutherland [2]). The presence of the induced flow is346

included by adding −duE/dz to the background vorticity field.347

The simulations were performed in a horizontally periodic domain with one horizontal348

wavelength of the incident wavepacket spanning the horizontal extent. The vertical extent349

needed to be sufficiently tall for the disturbance in the staircase to reach negligibly small350

amplitude before the transmitted and reflected waves reached the top and bottom of the351

domain, respectively. Thus we set −H ≤ z ≤ H, with H = 60L. In order to resolve the352

spikes in N2, high vertical resolution was required with typical simulations having 216 points353

in the vertical, giving a vertical resolution of ∆z ≃ 0.0018L. This resolution is indicated by354

the red dots in Fig. 3b. The horizontal field was represented by a superposition of 64 Fourier355

modes. Simulations were advanced in time using a leapfrog scheme for advective terms, with356

an Euler backstep taken every 20 steps. Each time step had a resolution of ∆t = 0.05N−1
0 .357

In all simulations the time scale was set so that N0 = 1 and the length scale was set358

so that k = 1. Nonetheless, the results are presented with these scales being explicitly359

represented. We conducted a range of simulations with the number of steps in the staircase360

ranging from J = 1 to 10. The relative vertical wavenumber of the incident wavepacket,361

m0/k, was 5 or 10, corresponding to ω0/N0 ≃ 0.2 or 0.1, respectively. According to (12),362

the predicted transition between weak and strong transmission with kL ≪ 1 occurs for363

ωc ≃ kL/2. To explore this transition, in simulations with m0/k = 5, kL ranged from 0.2364

to 0.55; in simulations with m0/k = 10, kL ranged from 0.1 to 0.3.365

We also conducted a range of simulations varying the initial wavepacket amplitude. In366

terms of the initial vertical displacement amplitude, A0 = (k/ω)Aψ0, our simulations had367

amplitudes with A0k ranging from 0.001 to 0.01. In this range there was no significant368

quantitative difference between simulation results in terms of transmission and reflection369
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diagnostics. Hence, we report here only upon simulations with A0k = 0.001. The sensitivity370

of results to the interface thickness was examined by performing some simulations with half371

the interface thickness (σN = 0.005L) and double the vertical resolution. No significant372

quantitative differences to our results were found.373

The analysis of our simulations focused upon the evolution of energy over time above,374

within, and below the staircase. At each time, we calculated the total horizontally averaged,375

vertically integrated energy, Etotal. This was partitioned into the energy above, within and376

below the staircase respectively by the integrals377

Er =

∫ H

z=3σN

(KE + PE) dz (33)

Es =

∫ 3σN

z=−JL−3σN

(KE + PE) dz, (34)

Et =

∫ −JL−3σN

z=−H
(KE + PE) dz (35)

in which KE(z, t) = (1/2) ⟨u2 + w2⟩ is the horizontally averaged kinetic energy per mass and378

PE(z, t) = (1/2) ⟨b2⟩ /N2 is the horizontally averaged available potential energy. Within the379

staircase ||b|| → 0 as N → 0 such that PE → 0. Hence, in calculating the integral of PE in380

(34), we do so only where N2 exceeds a threshold of 0.001.381

From the energy integrals, we compute the time-evolving transmission coefficient (T (t))382

and reflection coefficient (R(t)) as well as the relative energy in the staircase (S(t)):383

T (t) =
Et

Etotal
, R(t) =

Er
Etotal

, S(t) =
Es

Etotal
. (36)

The duration of the simulations varied primarily based on the vertical group velocity of384

the incident wavepacket and the number of steps, J , in the staircase. As we show, for larger385

J , energy remains trapped in the staircase for longer times, requiring longer simulations. In386

most simulations, the final time was set so that the relative energy within the staircase, S(t),387

fell below 0.001 after reaching its peak. In the simulation with J = 10, the waves reached388

the top and bottom of the domain before this threshold was reached. These simulations389

were terminated at time 6590N−1
0 when S(t) ≃ 0.0065.390

We will show that energy persists for longer times in a staircase with a larger number391

of steps due to the excitation of modes with long e-folding decay times. To quantify this,392

we constructed a log-plot of the energy within staircase, ln (S(t)) versus t, and found the393
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slope of the best-fit line through over late times for which S ≤ 0.01. The slope determined394

the e-folding energy decay time, τe, within the staircase, which could be compared with the395

predicted decay time, 2/τj, of each mode.396

IV. RESULTS397

We begin with a qualitative examination of wavepacket tunnelling in a simulation of an398

initial wavepacket having m0 = 10k being incident upon a staircase with J = 5 steps. The399

peak frequency of the incident wave is ω0 ≃ 0.0995. We examine the case with kL = 0.2,400

which corresponds to waves near the transition between weak and strong transmission,401

given by (13). This wavenumber is moderately larger than the predicted largest relative402

wavenumber of the transmission spikes, which occurs at kL ≃ 0.19 (see Fig. 1a). We note403

that, for kL = 0.2, the predicted transmission coefficient is ≃ 0.5 for J = 1, but is predicted404

to be small for J = 5.405

Snapshots of the wavepacket evolution at three times are shown in Fig. 4. The structure406

of the waves is represented here in terms of the horizontal velocity field normalized by the407

initial amplitude, Au0 = m0Aψ0. Initially the wavepacket is centered at z0 = 10k−1. The408

width of the envelope, 10/m0 = k−1, is much smaller than z0 so that the signal of the initial409

wavepacket within that staircase is negligible.410

The vertical group velocity of the wavepacket is ≃ −N0k/m
2
0. And so the estimated time411

for the center of the wavepacket to reach the top of the staircase (at z = 0) is z0m
2
0/(kN0) =412

1000/N0. This is the time shown in Fig. 4b. At this time, the leading flank of the incident413

wavepacket has partially transmitted through the staircase, as evident from the pattern of414

downward propagating waves below z = −JL = −k−1. Above the top of the staircase415

the disturbance field is a superposition of the incident trailing flank of the wavepacket and416

partially reflected upward propagating waves.417

At N0t = 2000 (Fig. 4c), the transmitted waves below the staircase and the reflected418

waves above the staircase are broadly distributed in the vertical, but disturbances within419

the staircase are non-negligible. This simulation thus gives qualitative evidence for the420

excitation of natural modes of the staircase by the traversing incident wavepacket.421

To illustrate the impact of the incident wave upon disturbances within the staircase,422

Fig. 5a shows a close-up view of the staircase region at time N0t = 2000, corresponding423
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FIG. 4. From a simulation with m0 = 10k, kL = 0.2 and J = 5, snapshots of horizontal velocity

at times a) t = 0, b) 1000N−1
0 and c) 2000N−1

0 . The colours in all three plots show the horizontal

velocity normalized by the initial horizontal velocity amplitude Au0, with values indicated by the

scale in a). The horizontal lines at z = 0 and z = −1 indicate the levels at the top and bottom of

the staircase, respectively.

to Fig. 4c. Near-monochromatic waves are evident above and below the staircase by phase424

lines having approximately constant slope. In contrast, disturbances within the staircase425

have a standing wave pattern, evident both in the horizontal velocity field and isopycnal426

displacements. The latter are found in terms of the buoyancy field at the center of each427

interface by computing ξ = −b/N2. The isopycnal displacements exhibit an alternating428

varicose pattern associated with bulging and pinching contours. As our energy analysis below429

demonstrates, the disturbances within and near the staircase correspond to a trapped mode430

that emits internal waves above and below the staircase as the amplitude of disturbances431
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FIG. 5. Horizontal velocity field and isopycnal displacements at each density interface in simu-

lations with J = 5, kL = 0.2 and a) m0 = 10k at time t = 2000N−1
0 and b) m0 = 5k at time

t = 500N−1
0 . The plot in a) corresponds to the snapshot shown in in Fig. 4c, but focused on

the vertical region about the staircase.situated between −1 ≤ kz ≤ 0. The dashed lines show

the vertical displacement of isopycnals at the center of each interface (at z = −jL = −0.2j k−1,

j = 0 . . . 5). For clarity, the displacements have been magnified by a factor of 100 in a) and by a

factor 20 in b).

with the staircase decay exponentially in time.432

By contrast, in Fig. 5b we show a snapshot of the horizontal velocity field and isopycnal433

displacements from a simulation with J = 5 and kL = 0.2 but with m0 = 5k. Because the434

vertical group velocity of the incident wavepacket is approximately 4 times larger than the435

wavepacket with m0 = 10k, we show the snapshot at time 500N−1
0 , which is one quarter436

of the time of the snapshot shown in Fig. 5a. For this simulation, tunnelling theory for437

plane waves predicts near-perfect transmission of the wavepacket across the staircase. This438

is evident in the simulation which shows downward-sloping phase lines above and below439

the staircase, corresponding to downward propagating waves. Although the phase lines are440

vertical within each step, the phase shift across each interface corresponds to the expected441

change for waves unimpeded by the staircase. In a simulation with m0 = 5k but kL = 0.4,442

which is close to the transition wavenumber, we once again observe the standing wave pattern443

of horizontal velocity and isopycnal displacements as in Fig. 5a (not shown).444
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FIG. 6. Time series of the evolution of transmitted energy, T (red line), reflected energy, R (black

line), and energy within the staircase, S(t) (blue line) in simulations with a) J = 2, b) J = 5 and

c) J = 10 steps. The insets in b) and c) shows a log-linear plot of S for times t ≥ 1000/N0. In all

simulations m0 = 10k0 and Lk0 = 0.2.

During each simulation, we computed the energy above, below and within the staircase,445

as given by (36). Here we show the results for three simulations, all with m0/k = 10 and446

kL = 0.2 but with different numbers of steps: J = 2, 5 and 10. The results are shown in Fig.447

6. In all three cases, initially R = 1 and T = S = 0, corresponding to all the energy lying448

well above the staircase. As the center of the wavepacket reaches the staircase (in all cases449

around time ≃ 1000N−1
0 ), the relative energy grows below and within the staircase while450

decreasing above. At late times the relative energy above and below the staircase plateau451

to near-constant values as the energy within the staircase decays to zero.452

The late-time values of the relative energy below the staircase give the simulated trans-453

mission coefficient, which may be compared with the predicted transmission of incident454

plane waves. This comparison is shown in Fig. 7 for a wide range of simulations, all hav-455

ing m0/k = 10 and with kL spanning a range about the critical transmission wavenumber456

at kcL ≃ 0.2. The results of simulations for staircases having J = 1 and 2 steps are457

shown in Fig. 7a. Particularly in the case with 1 step, the predicted transmission coefficient458

corresponds well with the values measured in simulations. In the case of 2 steps, theory459

moderately under-predicts the measured values for 0.18 ≲ kL ≲ 0.25. In simulations with460

more steps, the measured transmission versus kL is qualitatively different for the predicted461
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FIG. 7. Measured and predicted transmission as a function of kL in simulations with m0 = 10k

and a) J = 1 and 2 steps and b) J = 3 and 5 steps, and c) with m0 = 5k and J = 3 and 5

steps. Dashed lines indicate the theoretical prediction for incident plane waves and symbols denote

measurements from simulations, as indicated in the legends.

values about kcL = 0.2 (Fig. 7b). The presence of more steps leads to a prediction of more462

transmission spikes with the highest wavenumber spike having kL close to, but below, kcL.463

However, the measurements from simulations show a near monotonic decrease in T with464

increasing kL. In particular, with J = 5 and kL = 0.19, theory predicts near-perfect trans-465

mission, whereas the measured transmission coefficient was 0.59. For the same number of466

steps but with kL = 0.20, theory predicts near-zero transmission, whereas the simulation467

measured a coefficient of 0.40. Similar behaviour is found in simulations with m0 = 5k468

(Fig. 7c) about the critical transmission wavenumber at kcL ≃ 0.4.469

A qualitative explanation for the lack of transmission spikes occurring in simulations can470

be found through closer examination of the time-evolution of relative energy within the471

staircase, S(t), shown in Fig. 6. In the case with two steps (Fig. 6a), the growth and decay472

of energy within the staircase is almost symmetric about the peak, which occurs at time473

≃ 1040N−1
0 . However, in the cases with J = 5 and 10 (Figs. 6b,c), the decay of S occurs474

over a longer time than its initial growth. The insets in Figs. 6b,c) plot log10(S) versus475

time, revealing that the late time decay is nearly exponential and the decay is slower with476

larger J .477

By finding a best-fit line through the log plots over times when S falls below a threshold478
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FIG. 8. Effect of the number of steps J on e-folding decay time of energy within the staircase at

late times. Open pentagons represent measurements from simulations. The lines denote theoretical

predictions based on the energy decay rate of natural modes of the staircase for the highest mode

(solid black line), second-highest mode (blue dashed line) and the third-highest mode (red dotted

line). In all simulations A0 = 0.001 k−1
0 and m0 = 10 k0, with corresponding frequency ω0 =

0.0995N0.

of 0.01, we measure the exponential decay rate and, from this, get the e-folding energy decay479

time-scale, τe. This is plotted in Fig. 8 for a range of simulations with J ranging from 1 to 10,480

keeping m0 = 10k and kL = 0.2 fixed. In simulations with J ≥ 4, τe increases rapidly with481

increasing J . These measured values are compared with the predicted e-folding energy decay482

time associated with natural modes of the staircase, given by τj/2, in which τj = −1/ωj483

where ωj is the imaginary part of the frequency of mode-j determined from the solution484

of the eigenvalue problem given by (15). The highest vertical mode has the lowest real485

and (magnitude of) imaginary frequency and so has the largest predicted e-folding decay486

time (see Fig. 2b,d). The predicted energy decay times of the highest modes correspond487

excellently with the measured values, clearly indicating that the incident wavepacket with488

kL near the critical transition excited the highest vertical mode.489

Even after the incident wavepacket partially transmitted and reflected, energy remains490

in this mode which then continuously transmits waves above and below the staircase as its491

energy decays. Thus a transmission spike in a 5-step staircase does not occur near kL = 0.19492

because the incident wavepacket resonated near perfectly with the highest vertical mode of493
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the staircase, which then retransmitted half the absorbed energy as upward propagating494

waves above the staircase. Likewise, though theory predicts weak transmission for kL =495

0.2, the measured transmission in simulations is large because half of the incident energy,496

absorbed in near-resonance with the highest vertical mode, is retransmitted as downward497

propagating waves below the staircase.498

By plotting the results in Fig. 8 on log-log axes and finding a best-fit line to data with499

J ≥ 4, we find that the relative energy decay time-scale increases with the number of steps500

as501

N0τe = (2.09± 0.02)J3, (37)

in which the measured power law exponent, accurate to 0.1%, is consistent with the predic-502

tion (17).503

V. CONCLUSIONS504

We have performed simulations of a quasi-monochromatic wavepacket incident upon a505

density staircase having a different number of steps, J , and relative step size, kL. In simu-506

lations with 1 step, the transmission coefficient from the theory for incident monochromatic507

waves well-predicted the transmission measured in simulations. However, in simulations with508

a larger number of steps, the predicted occurrence of transmission spikes near the critical509

transition wavenumber, kc = 2ω0/(N0L), was not evident. Instead the simulations showed510

a near-monotonic decrease in transmission with increasing kL about kcL. The discrepancy511

between the theory for monochromatic incident waves and simulations is explained by the512

near-resonant excitation of the highest vertical mode of the staircase which partially ex-513

tracts energy from the incident wavepacket and retransmits this energy above and below the514

staircase as it exponentially decays in time. The measured e-folding decay time of energy515

corresponded well with the predicted energy decay time for the highest vertical mode.516

Due to computational cost, the simulations were necessarily restricted to the study of517

hydrostatic internal waves uninfluenced by rotation. For example, with m0 = 10k, ω0/N0 ≃518

0.1 which is much larger than f/N0, assuming a typical value of the Coriolis parameter519

f ≃ 0.01N0. In simulations with higherm0/k and lower ω0/N0, the vertical group velocity of520

the incident wavepacket would have been lower, requiring prohibitively long computational521

times to simulate the interaction of the wavepacket with the staircase. Nonetheless, the522
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generic nature of our results suggests they can be extended to the inertia gravity wave523

regime.524

Our results indicate that transient effects associated with a wavepacket interacting with a525

density staircase should be considered if the incident wavenumber is near the critical transi-526

tion value, kc. Past theory has shown that kc well approximates the transition wavenumber527

even for finite Coriolis parameter f0 provided ω0 > f0 and kL ≪ 1 [9]. The same study528

showed that the critical transition wavenumber is relatively insensitive to having steps that529

vary in size within the staircase about a mean value L̄. With these considerations, we tenta-530

tively use observations of a density staircase in the Arctic ocean [13] to estimate conditions531

under which incident waves are near the critical transition. In that study, 20 steps of a stair-532

case were observed between 240 and 290 meters depth, giving a mean step size of L̄ ≃ 2.5m.533

The mean buoyancy frequency was observed to be 0.007 s−1 and f ≃ 1.4 × 104 s−1 at the534

observed latitude around 78◦N. For near-inertial incident waves (ω0 ≳ f0), the critical tran-535

sition occurs for kc ≃ 0.016m−1, corresponding to a horizontal wavelength of ≃ 400m. It is536

unlikely that natural processes would create inertia gravity waves with such small horizontal537

scale. And so our study is more relevant to higher frequency waves that are not significantly538

influenced by rotation. In particular, for incident waves with relative frequency ω0/N0 = 0.1,539

the critical horizontal wavelength would be ≃ 80m. Hence the possible near-resonant excita-540

tion of modes in the staircase would occur for internal waves that are excited by a relatively541

horizontally localized disturbance near the surface, for example by the motion of wind-driven542

ice floes in the marginal ice zone. Although this may seem restrictive, because the decay543

time is longer for modes in staircases with more steps the impact of incident waves upon544

the staircase would persist. For example, in a staircase with J = 20 steps, (17) predicts an545

e-folding energy decay time of ∼ 44 days.546
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Appendix A: Application of interface conditions557

From the general formulae for the vertical structure of disturbances in a density staircase558

with J steps, given by (3), the condition for continuity of the streamfunction across each559

interface gives the J + 1 equations560

A0 +B0 = A1e
kL/2 +B1e

−kL/2,

Aje
−kL/2 +Bje

kL/2 = Aj+1e
kL/2 +Bj+1e

−kL/2, j = 1 . . . J − 1,

AJ+1 +BJ+1 = AJe
−kL/2 +BJe

kL/2.

(A1)

The condition for continuous pressure requires continuity of ψ̂′ − (gρ̄/ρ0)(k
2/ω2)ψ̂. Ap-561

plying this at each interface, and using (1) and (A1) gives the J + 1 equations562

im[A0 −B0] = k[A1e
kL/2 −B1e

−kL/2]− 1
2
g′ k

2

ω2 [A1e
kL/2 +B1e

−kL/2]

k[Aje
−kL/2 −Bje

kL/2] = k[Aj+1e
kL/2 −Bj+1e

−kL/2]

−g′ k2
ω2 [Aj+1e

kL/2 +Bj+1e
−kL/2], j = 1 . . . J − 1,

im[AJ+1 −BJ+1] = k[AJe
kL/2 −BJe

−kL/2]− 1
2
g′ k

2

ω2 [AJe
kL/2 +BJe

−kL/2]

(A2)

in which g′ = g∆ρ/ρ0 = N2
0L.563

These equations can be written in a simpler form by defining the nondimensional variables564

∆ ≡ ekL, M ≡ m/k and Γ = (1/2)g′k/ω2 = kL(M2 + 1)/2. Furthermore, the middle565

equations (with j = 1 . . . J−1) of (A1) and (A2) are simplified for each j first by eliminating566

Bj on the right-hand side to give an equation for Aj, and then by eliminating Aj on the567

right-hand side to give an equation for Bj:568

Aj = ∆(1− Γ)Aj+1 − ΓBj+1

Bj = ΓAj+1 −∆−1(1 + Γ)Bj+1,
(A3)

Appendix B: Approximate dispersion relation for highest mode569

Here we find an approximate analytic prediction for the frequency and decay rate of the570

highest mode in a density staircase, whose frequency is close to the critical transition given571
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by (12), in which we assume kL≪ 1. Consequently |ω|/N0 ≪ 1 and |M | ≃ N0/|ω| ≫ 1. At572

the critical transition ωc/N0 = kL/2. And so we expect m̃ ≡ mL (= MkL) ≃ 2 − ϵ with573

|ϵ| ≪ 1. Thus Γ = kL(M2 + 1)/2 ≃Mm̃/2.574

The implicit relation for the dispersion relation for modes in a staircase is given generally575

by (15). The value of b− in this equation is given by (11), which simplifies in the kL ≪ 1576

limit to b− ≃ −Γ. Hence (15) can be written as577

−Γ(a+ + a−)
2Λ−/b0 + (a2+ − a2−)Λ+ ≃ 0. (B1)

From the definition of a± in (5), we get the approximate expressions578

a+ + a− ≃ 2 + im̃− m̃2/2, a+ − a− ≃M(2i− m̃). (B2)

Also using m̃ = 2− ϵ, (B1) simplifies to579

(1− ϵ/2)(2i+ (2− i)ϵ− ϵ2/2)Λ−/b0 + (2− 2i− ϵ)Λ+ ≃ 0. (B3)

To find approximate expressions for Λ±, we use the definition of b+ in (11) with kL≪ 1580

to get581

b+ ≃ 1− m̃2/2 = −1 + 2ϵ+O(|ϵ|2). (B4)

Hence, we find582

b20 ≡ b2+ − 1 ≃ −4ϵ+O(|ϵ|2). (B5)

In the expressions for Λ±, we perform a binomial expansion to write (assuming J ≥ 4)583

λJ−1
± = bJ−1

+ ±

 J − 1

1

 bJ−2
+ b0 +

 J − 1

2

 bJ−3
+ b20 ±

 J − 1

3

 bJ−4
+ b30 + . . . (B6)

Thus we have584

Λ+ = bJ−1
+ + (J − 1)(J − 2)bJ−3

+ b20/2 + . . . ≃ (−1)J−1
[
1− 2(J − 1)2ϵ

]
+O(|ϵ|2), (B7)

and585

Λ−/b0 = (J − 1)bJ−2
+ + (J − 1)(J − 2)(J − 3)bJ−4

+ b20/6 + . . .

≃ (−1)J−1
[
− (J − 1) + (2/3)J(J − 1)(J − 2)ϵ

]
+O(|ϵ|2).

(B8)

Putting these expressions in (B3) and keeping terms up to O(|ϵ|) gives586

6(J + i)− [4J3 + 12iJ2 − (10 + 18i)J + (6 + 9i)] ϵ ≃ 0. (B9)
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From this we can solve for ϵ, explicitly finding its real and imaginary parts in terms of the587

number of steps, J . For J ≫ 1 we find588

ϵ ≃ (3/2)J−2 [1− (7/2)J−2+O(J−3)]− 3iJ−3 [1− (9/4)J−1− (13/8)J−2+O(J−3)]. (B10)
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