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We examine Lagrangian transport by a nonlinearly evolving vertical mode-1 internal
tide in non-uniform stratification. In a companion paper (Sutherland & Dhaliwal,
J. Fluid Mech., 2022, in press) it was shown that a parent internal tide can excite
successive superharmonics that superimpose to form a solitary wave train. Despite
this transformation, here we show that the collective forcing by the parent wave and
superharmonics is effectively steady in time. Thus we derive relatively simple formulae for
the Stokes drift and induced Eulerian flow associated with the waves under the assumption
that the parent waves and superharmonics are long compared with the fluid depth. In
all cases, the Stokes drift exhibits a mixed mode-1 and mode-2 vertical structure with
the flow being in the waveward direction at the surface. If the background rotation is
non-negligible, the vertical structure of the induced Eulerian flow is equal and opposite
to that of the Stokes drift. This flow periodically increases and decreases at the inertial
frequency with maximum magnitude twice that of the Stokes drift. When superimposed
with the Stokes drift, the Lagrangian flow at the surface periodically changes from positive
to negative over one inertial period. If the background rotation is zero, the induced Eulerian
flow evolves non-negligibly in time and space for horizontally modulated waves: the depth
below the surface of the positive Lagrangian flow becomes shallower ahead of the peak of
the amplitude envelope and becomes deeper in the lee of the peak. These predictions are
well-captured by fully nonlinear numerical simulations.
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1. Introduction

Internal waves move within the ocean under the influence of buoyancy forces, transporting
both energy and momentum. The waves are dominantly generated at large horizontal scales
and low frequency either through forcing by winds at the surface or through the conversion
of the barotropic tide to baroclinic internal tides (Wunsch & Ferrari 2004; Alford et al.
2016). Oceanographers are primarily interested in internal waves as a source of energy that
ultimately results in mixing and vertical heat transport, thus having a global impact on the
Earth’s climate system (MacKinnon et al. 2017). Here our interest lies in the horizontal
mass transport by low vertical-mode internal tides. In the work presented here, we derive
time evolution equations for the Stokes drift and induced Eulerian flow resulting from the
internal tide in order to assess its importance to transient transport with respect to other
mechanisms that have been more thoroughly investigated.

Early studies of mass transport by low vertical mode internal waves assumed that
the background stratification was uniform and neglected the influence of background
rotation (Wunsch 1971; McIntyre 1973). For internal waves with vertical mode-n structure,
both the Stokes drift and induced Eulerian flow were found to have a mode-2n vertical
structure (Thorpe (1968, Appendix 6); McIntyre (1973)). In particular, for vertical mode-1
rightward-propagating internal waves, the Stokes drift was found to be positive (rightward)
at the surface and bottom, and negative at mid-depth (Thorpe 1968). The steady response
(in a frame moving with the horizontal group velocity) of the Eulerian flow induced by
a vertical mode-1 internal wave in uniform stratification was found to have the same sign
and structure as the Stokes drift provided the ratio of the horizontal wavenumber, k, to
vertical wavenumber, m, was sufficiently small (McIntyre 1973; van den Bremer, Yassin &
Sutherland 2019). With respect to the Stokes drift, the magnitude of the (steady) induced
Eulerian flow is smaller by a factor (k/m)2, suggesting that the mean transport by low
mode internal tides in uniform stratification and in the absence of rotation is dominated by
the Stokes drift.

The steady-state prediction for the induced Eulerian flow with no background rotation
was generalized to account for non-uniform stratification by Grimshaw (1977), who used
this result to predict the weakly nonlinear evolution of internal modes as they interacted
with the induced flow. This interaction was most pronounced for non-hydrostatic internal
waves for which their group velocity was comparable with the phase speed associated
with horizontally long waves having the vertical structure of the induced Eulerian flow.
(In the case of uniform stratification, this occurs when k/m � 0.766.) In a recent study,
the vertical structure of the steady induced Eulerian flow with no background rotation was
found to depend sensitively upon the vertical structure of the background stratification (van
den Bremer et al. 2019). In particular, for mode-1 internal waves in top-hat stratification
(having uniform stratification over a finite-depth within the domain, being unstratified
above and below), their induced flow had a mode-2 structure if the stratification was
vertically symmetric about mid-depth, but had a dominant mode-1 structure if the mean
location of the stratified layer was displaced even moderately from mid-depth. In this
case, the Eulerian induced flow was opposite signed to the Stokes drift at the surface
and dominated the Lagrangian transport.

The influence of background rotation upon Lagrangian transport by vertically confined
internal waves in uniform stratification was considered first by Grimshaw (1975), who
applied perturbation theory to horizontally modulated waves, and later by Bühler &
McIntyre (1998), who used generalized Lagrangian-mean theory. Both showed that the
induced Eulerian flow acted as a source of potential vorticity. Notably, Bühler & McIntyre
(1998) showed that the mean Eulerian flow induced by steady waves is negligible on the
f -plane and in the absence of a background flow (see also Wunsch 1971).
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The nonlinear evolution of internal tides: Lagrangian transport

Dong, Bühler & Smith (2020) was one of the few to examine the transient evolution
of the Lagrangian flow resulting from an impulsively started three-dimensional wave
packet that was localized in both horizontal directions. That study assumed the background
stratification was uniform and focused upon the lowest two vertical mode internal waves.
As a result of allowing spanwise as well as streamwise modulations of the amplitude
envelope, a barotropic flow also played a role in the Lagrangian transport and indeed
dominated the net transport for strongly hydrostatic internal waves.

In non-uniform stratification, there is an additional time-transient effect associated with
the excitation of waves that are superharmonic with respect to the ‘parent’ internal wave,
having horizontal wavenumbers that are integer multiples of the parent wave horizontal
wavenumber (Wunsch 2015; Sutherland 2016; Baker & Sutherland 2020; Sutherland &
Dhaliwal 2022). For a relatively small amplitude parent wave, superharmonics were found
to grow and decay periodically in amplitude (Baker & Sutherland 2020). However, for a
relatively large amplitude parent wave, successively higher superharmonics were excited,
leading to the transformation of the internal tide into an internal solitary wave train
(Sutherland & Dhaliwal 2022), consistent with the predictions of shallow water theory
(Ostrovsky & Stepanyants 1989; Helfrich & Grimshaw 2008; Grimshaw & Helfrich 2012).
In the companion paper (Sutherland & Dhaliwal 2022) the excitation of the induced
Eulerian flow by the parent wave and superharmonics was not considered. One goal of
the work presented here is to develop the theory for the Eulerian induced flow, which
is transiently excited by a two-dimensional (spanwise invariant) vertical mode-1 internal
tide and the superharmonics it excites. We will show that the generation of the induced
Eulerian flow changes qualitatively depending upon whether the Coriolis parameter, f , is
zero or finite, in the former case being negligible unless the parent wave is horizontally
modulated. Combining these results with predictions for the Stokes drift allows us to assess
the Lagrangian transport by waves as it depends upon latitude.

In § 2 we describe the stratification and initial structure used to represent the internal
tide. We then go on to derive explicit formulae for the Stokes drift and induced Eulerian
flow under the assumption that the parent wave and the dominant superharmonics can all
be treated as horizontally long waves. The theoretical predictions are compared with the
results of fully nonlinear numerical simulations in § 3. Discussion and conclusions are
presented in § 4.

2. Theory

Here we present the theory for the Stokes drift and Eulerian flow induced by vertical
mode-1 internal waves. We first describe the initial conditions for this study, motivated
by ocean observations. We then introduce the equations of motion and derive equations
for the vertical structure function of modes in general and for horizontally long waves.
After giving the formula for the Stokes drift corresponding to the parent wave and
superharmonics, we show that the sum of these contributions is time-invariant. The
formulae for the induced Eulerian flow is separately derived in the case f = 0 and |f | > 0.
In the former case it is necessary to consider horizontal modulations of the parent wave,
while in the latter case we will show that it is sufficient for theory to consider horizontally
periodic waves. As in the case of the Stokes drift, the collective forcing of the induced
flow by the parent wave and superharmonics is time-invariant. However, the induced flow
is found to evolve in time either simply through inertial oscillations in the case |f | > 0 or
through an initial linear increase in the flow acting differently on the dominant vertical
modes comprising the flow.
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2.1. Initial and background conditions
The parameter regime explored in this study is motivated by observations at the ‘Farfield’
site of the vertical mode-1 internal tide, which propagated south-west of the Hawaiian
Islands (Rainville & Pinkel 2006). The background stratification is taken to be exponential,
of the form

N2(z) � N2
0 e(z−z0)/d, −H � z � 0, (2.1)

in which N0 � 0.017 s−1 is the observed buoyancy frequency at z0 = −100 m depth,
and the e-folding depth is d � 218 m. Using the observed ocean depth H = 5200 m as
a characteristic length scale, we have d/H � 0.04.

As in Sutherland & Dhaliwal (2022), we focus our study upon waves with relative
horizontal wavenumber kH = 0.2 (corresponding to a wavelength of �163 km) and
maximum vertical displacement relative to the stratification e-folding depth of α ≡
A0/d = 0.075 (corresponding to an amplitude A0 � 16 m). Unlike that study, in some
cases here we additionally consider horizontal modulations of the internal tide such that
the amplitude envelope describing the maximum vertical displacement relative to d is
given by

η(x, t)/d = α
[
1 + αmod cos[σk(x − cgt)]

]
, (2.2)

in which αmod ≡ Amod/A0 � 0.67. Here Amod is half the difference of the observed
amplitude between the neap and spring tides (�25 m and 5 m, respectively). For
stratification with parameters above, and with kH = 0.2, the group velocity is numerically
computed to be cg � 3.3 m s−1. Given that the period of modulations to the M2
tide is Tmod � 15 days, the corresponding wavelength of the amplitude envelope is
λmod = cgTmod � 4.3 × 103 km. While one should not expect to see such a long periodic
disturbance in reality, what is important is the rate of change of the amplitude envelope in
the horizontal, whose scale is set by the bandwidth parameter, σ . From the value of λmod,
we estimate σ � 0.038.

Finally, at the Farfield site near Hawaii, the latitude corresponded to the
Coriolis parameter f � 0.000046 s−1. Because the observed internal tide propagated
south-westward, the background Coriolis force decreases in time following the motion
of the waves. This motivates our interest to examine the evolution of waves over a range of
relative Coriolis parameters between f /N0 � 0.003 and f = 0.

2.2. Equations of motion
We consider the motion of inviscid, non-diffusive, incompressible Boussinesq fluid on the
f -plane in a horizontally periodic channel bounded above and below by free-slip boundary
conditions. The waves in this domain are taken to be two-dimensional, having structure in
the along-wave (x) direction and in the vertical (z) direction. Although there can be motion
in the spanwise (y) direction, the fields of interest are independent of y.
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The nonlinear evolution of internal tides: Lagrangian transport

The fully nonlinear prognostic equations are

Du
Dt

− fv = − 1
ρ0

∂p
∂x
, (2.3)

Dv
Dt

+ fu = 0, (2.4)

Dw
Dt

= − 1
ρ0

∂p
∂z

+ b, (2.5)

Db
Dt

= −N2w. (2.6)

In these equations, u, v and w are the components of velocity in the x, y and z
directions, respectively; b = −gρ/ρ0 is the buoyancy; and p and ρ are the fluctuation
pressure and density, respectively. The constants are the characteristic density (ρ0),
gravity (g) and the Coriolis parameter (f ). The fluid is not uniformly stratified, so that
N2(z) = −(g/ρ0) dρ̄/dz is a function of depth.

The condition for incompressibility gives ux + wz = 0, in which subscripts denote
partial derivatives. Therefore, the x- and z-velocity components can be written in terms
of the stream function, ψ , as follows:

u = −∂ψ
∂z
, w = ∂ψ

∂x
. (2.7a,b)

Another useful diagnostic is the spanwise component of the vorticity ζ ≡ ∂zu − ∂xw.
These nonlinear equations, (2.3)–(2.6), can be manipulated to be written as a linear

operator acting on the stream function, ψ , being forced by nonlinear terms (Sutherland
2016; Baker & Sutherland 2020):

Lψ = ∇ · F (2.8)

in which
L ≡ ∂tt∇2 + N2∂xx + f 2∂zz (2.9)

and
F ≡ ∂t(uζ )− ∂x(ub)+ f ∂z(uv). (2.10)

Here ∇2 = ∂xx + ∂zz is the Laplacian and u = (u,w).

2.3. Small amplitude waves
In what follows, we will consider the Lagrangian flows induced not just by the parent
wave, of wavenumber k, but also by the superharmonics it excites, having wavenumber
nk for n = 2, 3, . . ., as in Sutherland & Dhaliwal (2022). The structure of the parent wave,
with frequency ω = ω(k), and each superharmonic is given in terms of the stream function
by

ψ(n) = 1
2
α
ωd
k
ψn exp(in(kx − ωt))+ c.c., (2.11)

in which
ψn = an(X, T) ψ̂n(z), n = 1, 2, 3, . . . . (2.12)

Here T = εt represents the slow time evolution of the amplitude and X = σ(x − cgt)
represents the slow spatial modulations of the amplitude envelope taken in a frame
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moving with the horizontal group speed of the parent wave. Note that the frequency of
the nk-superharmonic is taken to be nω. This is because nonlinear interactions between
the parent wave and its superharmonics directly force disturbances with integer multiples
of the wavenumber and frequency (Sutherland & Dhaliwal 2022). However, the natural
frequency of a mode-1 internal wave with wavenumber nk is ωn ≡ ω(nk), as given by
the dispersion relation for the waves. Particularly for long waves, this is close, but not
equal, to nω. Hence the forcing of superharmonics and the parent wave due to wave–wave
interactions is off-resonant. It is this off-resonant forcing, particularly of the parent
self-interacting to force the 2k-superharmonic, that defines ε for the slow time scale (Baker
& Sutherland 2020; Sutherland & Dhaliwal 2022):

ε ≡ 4ω2 − ω2
2

4ω2 . (2.13)

The natural frequency of oscillation of a mode-1 internal wave appears in the equation
for the vertical structure for a wave with wavenumber nk. Neglecting the nonlinear terms
on the right-hand side of (2.8), and using (2.9), gives the following eigenvalue problem:

ψ̂n
′′ + (nk)2

N2 − ω2
n

ω2
n − f 2 ψ̂n = 0, ψ̂n(−H) = ψ̂n(0) = 0, n = 1, 2, 3, . . . , (2.14)

in which the eigenvalue, ωn, is the natural frequency of a vertical mode-1 wave having
wavenumber nk. In particular, for the parent wave, ω = ω1.

Assuming the stream function is given exactly at O(ασ 0) and taking ε � σ , the
polarization relations give expressions for the other fields of interest. These are listed in
table 1. Here, the second column gives the usual polarization relations for horizontally
periodic disturbances. The last column gives the corrections to these expressions at O(σ ),
which are non-zero for a wave packet whose amplitude envelope, an, varies spatially
(van den Bremer et al. 2019). As shown below, including these terms is necessary in the
consideration of the induced Eulerian flow with f = 0. However, we will see they can be
neglected at leading order in the consideration of the induced Eulerian flow away from the
equator.

The expressions for un and wn in table 1 follow directly from (2.7a,b). The expressions
for vn and bn are found from the linearized forms of (2.4) and (2.6), The expression for ζn
follows from the linearized vorticity evolution equation, ζt = −bx + fvz, and using (2.14)
to rewrite ψ̂ ′′

n in terms of ψ̂n. Expressions are also given for the horizontal and vertical
displacement fields, ξ and η, respectively.

2.4. Long wave approximation
In what follows, we will see that the Stokes drift and induced Eulerian flows are a
superposition of vertical modes associated with horizontally long disturbances. For this
reason, we present the eigenvalue problem for the vertical structure of long waves and the
corresponding dispersion relation for different vertical modes. This is presented separately
for cases with f = 0 and |f | > 0.

In the case f = 0, the equation governing the vertical structure, ψ̄j, of horizontally long,
vertical mode-j disturbances is given by the solution of the eigenvalue problem

ψ̄ ′′
j = − 1

c2
j

N2ψ̄j, (2.15)

in which the long wave speed for each mode, cj, is the eigenvalue. The eigenfunctions,
which give the vertical structure of each vertical mode, are orthogonal with respect to the
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The nonlinear evolution of internal tides: Lagrangian transport

Field O(ασ 0) O(ασ 1)

ψn an ψ̂n —

un −an ψ̂
′
n —

vn i
f

nω
an ψ̂

′
n − f

n2ωk
χ anX ψ̂

′
n

wn ink an ψ̂n anX ψ̂n

bn N2 k
ω

an ψ̂n −iN2 1
nω
(1 − χ) anX ψ̂n

ζn k2ω
2
n

ω2
N2 − f 2

ω2
n − f 2 an ψ̂n −2ık

ω2
n

nω2

(
N2

ω2
n

− χ
N2 − f 2

ω2
n − f 2

)
anX ψ̂n

ξn −i
1

nω
an ψ̂

′
n

1
n2ωk

χ anX ψ̂
′
n

ηn − k
ω

an ψ̂n i
1

nω
(1 − χ) anX ψ̂n

Table 1. Expressions for the polarization relations for fields with horizontal wavenumber nk, n = 1, 2, . . .,
showing the stream function (ψn), velocity components (un, vn, wn), buoyancy (bn), spanwise vorticity (ζn),
x-displacement (ξn) and z-displacement (ηn). The second column shows fields at order σ 0 (corresponding to
unmodulated waves) and the third column shows fields at order σ 1. The actual fields are found by adding
the O(σ 0) and O(σ 1) terms, multiplying by α(ωd/k) exp[in(kx − ωt)]/2 and adding the complex conjugate.
In these expressions, primes on ψ̂ denote z-derivatives, anX ≡ ∂an/∂X, and χ ≡ cg/cp is the ratio of the
horizontal group and phase speed of the parent wave.

−0.3

−0.2

−0.1

0

−0.3

−0.2

−0.1

0

z/
H

ψ̄j

j = 1
j = 2
j = 3
j = 4

−0.5 0 0.5 1.0 −0.03 0 0.01

ψ̂n − ψ̄1

n = 1
n = 2
n = 3
n = 4

0.01

0.02

0.03

0.04

ω
/N

0

0 0.2 0.4 0.6 0.8

kH

(b)(a) (c)

Figure 1. (a) Vertical structure of the lowest four vertical modes of long waves, (b) difference in the vertical
structure of the parent wave and first three superharmonics with the mode-1 long wave and (c) dispersion
relation for long waves with f = 0 (solid black) and f = 0.003N0 (dashed black), and values of ωn(kn) for
f = 0 (open circles) and f = 0.003N0 (crosses). In (a,b) there is no distinguishable differences between plots
with f = 0 and f = 0.003N0.

weight N2. The lowest four modes are plotted in figure 1(a). The corresponding dispersion
relation for each vertical mode is

ω2 = c2
j k2. (2.16)
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Away from the equator, the eigenvalue problem for the vertical structure of long
disturbances is

ψ̄ ′′
j = −κ2

j

(
N2

f 2 − 1
)
ψ̄j, (2.17)

in which κj is the eigenvalue. The dispersion relation for each mode is

ω2 = f 2

(
1 + k2

κ2
j

)
. (2.18)

The eigenfunctions, ψ̄j, are orthogonal with respect to the weight N2 − f 2.
If |f | � N0 = ‖N‖ in (2.17), the coefficient of ψ̄j on the right-hand side simplifies to

−κ2
j N2/f 2. Thus, in comparison with (2.15), for both eigenvalue problems we expect

the vertical structure of mode-j disturbances, ψ̄j, to be nearly identical, and we expect
the eigenvalues to be related by κj/f � 1/cj for sufficiently small f . In particular, for
d = 0.04H we find κ1/f = 1/c1 = 25.0/(N0H), κ2/f = 1/c2 = 55.8/(N0H) and κ3/f =
1/c3 = 86.8/(N0H) for 0 � kH � 0.2 and 0 � f � 0.003N0.

Although the expressions above have been introduced for the purposes of examining
the Stokes drift and Eulerian induced flow, the equations with j = 1 can also be applied
to the mode-1 parent internal tide and its superharmonics, provided the dominant
superharmonics are hydrostatic (f � ωn � N0). As shown in figure 1(b), the difference
between the vertical structure, given by (2.14), and the vertical structure of mode-1 long
waves, is less than a few per cent for the parent wave and the first three superharmonics.
Likewise, figure 1(c) shows that the dispersion relation for mode-1 long waves well
represents the frequency of the parent and superharmonics determined by solving
(2.14). Thus we can approximate ψ̂n � ψ̄1 for all n, taking ω2

n � c2
1(nk)2 if f = 0, and

ω2
n � f 2 [1 + (nk)2/κ2

1 ] if |f | > 0.

2.5. Stokes drift
The Stokes drift results from the usual O(α2) expansion of the mean horizontal velocity
arising from horizontally and vertically displaced fluid parcels in varying background flow:
〈u〉S = 〈ξux〉 + 〈ηuz〉, in which angle brackets denote averaging over one wave period.

The leading-order solution does not depend upon the spatial modulation of the
amplitude envelope. Using the polarization relations for plane periodic, O(ασ 0), internal
wave modes, an explicit expression for the Stokes drift due to each of the parent wave
(n = 1) and its superharmonics (n > 1) is given in terms of their respective vertical
structure functions:

〈un〉S = 1
4

cp d2α2|an|2 d2ψ̂2
n

dz2 . (2.19)

The form of this expression is the same as that found earlier in studies neglecting rotation
(Thorpe 1968; van den Bremer et al. 2019).

If we assume the parent wave and dominant superharmonics are all hydrostatic, then
for all n we can approximate ψ̂n � ψ̄1, in which ψ̄1 is given by the solution of the
eigenvalue problem (2.15), if f = 0, and by the solution of (2.17), if |f | > 0. Furthermore,
although the parent wave amplitude and its superharmonics vary in time, the sum of the
squared amplitudes remains close to unity for all time (Sutherland & Dhaliwal 2022).
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The nonlinear evolution of internal tides: Lagrangian transport

Consequently, the total Stokes drift, uS = ∑
n 〈un〉S is approximately time-independent,

given by

uS = 1
4

cp d2α2 d2ψ̄1
2

dz2 = 1
4

cpA2
0

d2ψ̄1
2

dz2 . (2.20)

Unlike the induced superharmonics, uS has a mixed mode-1 and mode-2 structure. To
demonstrate this, and for comparison with the induced Eulerian flow, which follows, we
write the Stokes drift as

uS = −cp dα2 dΨ
dz

with Ψ ≡ −d
4

dψ̄2
1

dz
, (2.21)

where Ψ represents the equivalent of the vertical structure of the stream function
associated with the Stokes drift. The modal decomposition of Ψ is given by Ψ = ∑

j Sjψ̄j,
in which the coefficients, Sj, can be found using the orthogonality of ψ̄j with respect to the
weight N2 − f 2:

Sj =
[∫

(N2 − f 2)Ψ ψ̄j dz
] [∫

(N2 − f 2)ψ̄2
j dz

]−1

� −d
2

[∫
N2ψ̄1ψ̄

′
1ψ̄j dz

] [∫
N2ψ̄2

j dz
]−1

, (2.22)

where the integrals are over the domain depth, −H � z � 0. The final expression used the
definition of Ψ in (2.21) and made the approximation f � ‖N‖ = N0. Combining these
results, we can write the Stokes drift as a superposition of vertical modes according to

uS = −cp dα2
∑

j

Sjψ̄
′
j . (2.23)

Values of the first three coefficients, Sj, are listed in table 2 for various values of kH,
d/H and f0/N0. These show that the values are insensitive to values of the parent wave
horizontal wavenumber and Coriolis parameter, provided they are both small. In particular,
we see that vertical mode-1 and mode-2 disturbances contribute almost equally to the
vertical structure of the Stokes drift with |S1| � |S2| 
 |S3|.

Vertical profiles of the Stokes drift in three circumstances are shown in figure 2. In all
cases, the Stokes drift at the surface is oriented in the same direction as the propagation of
the parent wave and its superharmonics.

2.6. Induced Eulerian flow
Here we consider the self-interaction of waves resulting in the acceleration of an Eulerian
mean flow. The contribution to the forcing of the mean flow by waves of wavenumber
nk is given by substituting into (2.10) the expressions for velocity, buoyancy and vorticity
using the polarization relations listed in table 1. Extracting the cross-terms in the products
of fields with their complex conjugates gives expressions not involving the complex
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kH d/H f /N0 χ ε S1 S2 S3 E1,0|f E2,0|f E3,0|f

0.1 0.04 0.01 0.14 0.65 0.131 −0.150 0.005 −0.131 0.150 −0.005
0.1 0.04 0.003 0.64 0.27 0.130 −0.150 0.006 −0.130 0.150 −0.006
0.1 0.04 0.001 0.94 0.045 0.130 −0.150 0.006 −0.130 0.150 −0.006
0.1 0.04 0 0.9997 0.0009 0.130 −0.150 0.006 0.195 0.015 −0.002
0.2 0.04 0.01 0.39 0.46 0.131 −0.150 0.006 −0.131 0.150 −0.006
0.2 0.04 0.003 0.88 0.096 0.130 −0.150 0.006 −0.130 0.150 −0.006
0.2 0.04 0.001 0.9834 0.015 0.130 −0.150 0.006 −0.130 0.150 −0.006
0.2 0.04 0 0.9988 0.0035 0.130 −0.150 0.006 0.195 0.015 −0.002
0.2 0.08 0.01 0.64 0.27 0.135 −0.175 0.009 −0.135 0.175 −0.009
0.2 0.08 0.003 0.95 0.041 0.135 −0.175 0.009 −0.135 0.175 −0.009
0.2 0.08 0.001 0.9925 0.010 0.135 −0.175 0.009 −0.135 0.175 −0.009
0.2 0.08 0 0.9980 0.006 0.135 −0.175 0.009 0.202 0.014 −0.003

Table 2. Values of χ ≡ cg/cp, ε, eigenvalues for the first three vertical modes, given as N0H/cj for f = 0 and
N0H κj/f for |f | > 0, and nonlinear coupling coefficients (Ej,0 for f = 0 and Ej,f for |f | > 0).

−0.3

−0.2

−0.1

0

z/H

−2 0 2 4 6 8

uS /A2
0

d = 0.04H,  f = 0.003N0
d = 0.04H,  f = 0
d = 0.08H,  f = 0.003N0

Figure 2. Vertical profiles of the Stokes drift normalized by the squared maximum vertical displacement
computed as they are generated by a vertical mode-1 internal tide in exponential stratification with d = 0.04H
and 0.08H, and with f = 0 and 0.003N0, as indicated.

exponentials. Thus we find

〈∇ · F n〉 = 1
2
ω

k
d2α2

ω2
n − f 2

{
σ 2
[
(1 + 2χ)

(
(1 − χ)N2ω2

n − f 2(N2 − χ2ω2
n)
)
ψ̂nψ̂

′
n

−χ
2

(
2χω2

n + f 2
) dN2

dz
ψ̂2

n

]
∂XX|an|2

− εσ
k
ω

[
2
(
(1 − χ)N2ω2

n − f 2(N2 − χω2
n)
)
ψ̂nψ̂

′
n

+1
2

(
(2χ − 1)ω2

n + 2f 2
) dN2

dz
ψ̂2

n

]
∂TX|an|2

−f 2
[

4
(

N2 − ω2
n

)
ψ̂nψ̂

′
n + dN2

dz
ψ̂2

n

] (
(nk)2|an|2 − χ |∂Xan|2

)}
. (2.24)
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The nonlinear evolution of internal tides: Lagrangian transport

In considering the response to this nonlinear forcing, we seek the stream function, ψ(0),
satisfying Lψ(0) = ∑

n 〈∇·F n〉, in which L is given by (2.9). In the case of superharmonic
excitation, the near-resonance of the parent with superharmonics results in the dominant
excitation of a vertical mode-1 disturbance. This is not necessarily the case for the forcing
of the induced Eulerian flow. Consequently, the stream function for this induced flow is
written as a superposition of vertical modes:

ψ(0) = ωd
k
α2
∑

j

Aj(X, T)ψ̄j(z), (2.25)

in which j = 1, 2, . . . is the vertical mode number.
Using (2.9) and (2.25), we find

Lψ(0) = α2ωd
k

∑
j

[
σ 2
(
ε2∂XXTTAj − 2εσcg∂XXXTAj + σ 2c2

g∂XXXXAj

)
ψ̄j

+
(
ε2∂TTAj − 2εσcg∂XTAj + σ 2c2

g∂XXAj

)
ψ̄ ′′

j

+σ 2N2 (∂XXAj
)
ψ̄j + f 2 Aj ψ̄

′′
j

]
. (2.26)

The form of the forcing (2.24) and the linear response (2.26) simplify considerably if we
make use of the long wave approximation for ψ̄j given by (2.15), if f = 0, and by (2.17),
if |f | > 0. This suggests the need to consider these two cases separately, as done in the
following two subsections.

2.6.1. Case with f = 0
Previous work (van den Bremer et al. 2019) considered steady-state solutions for the
Eulerian flow induced by the parent wave alone in a background with no rotation. By
examining the special case of piecewise-constant N2 profiles, they found that the dominant
structure of the induced flow was a vertical mode-1 disturbance, provided that N2 was not
symmetric about the mid-depth. At the surface this flow was opposite to and dominated
over the Stokes drift. By using the vertical mode decomposition of ψ(0) given by (2.25),
the symmetry breaking of the vertical structure is derived for arbitrary N2 profiles in
Appendix A. In contrast to studies of steady-state induced flows, here we show that
the transiently induced Eulerian flow is not dominated by a mode-1 structure, nor is it
dominant over the Stokes drift. Indeed, for periodic waves the induced Eulerian flow is
negligibly small compared with the Stokes drift. However, for horizontally modulated
waves the Eulerian flow can grow non-uniformly in time and space to become comparable
to the Stokes drift.

The expressions for the nonlinear forcing (2.24) and the linear response (2.26), can
be simplified using the long wave approximations for f = 0, given by the eigenvalue
problem (2.15) and (2.16). In particular, we take ω2

n � c2
1(nk)2 and ψ̂n � ψ̄1. Owing to

the long wave linear dispersion relation in (2.15), the group and phase velocities are equal.
Likewise, for the parent internal tide, we have cg � cp � c1. Hence χ ≡ cg/cp � 1. At
the equator, ε is very small owing to the near-linearity of the dispersion relation. Thus we
may take ε � σ , and the nonlinear forcing by the parent wave and each superharmonic
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simplifies to

〈∇ · F n〉 � −1
2
ω

k
d2α2σ 2 dN2

dz
ψ̄2

1∂XX|an|2. (2.27)

In the linear response operator we set f = 0 and retain only the terms at O(σ 2) and
O(σε), the latter being kept so that we have a time evolution equation for Aj. Using (2.15)
to replace terms involving ψ̄ ′′

j in Lψ(0) with terms involving ψ̄j, we find

Lψ(0) � α2ωd
k

N2
∑

j

ψ̄j

[
2

c1

c2
j
σε∂XTAj +

(
1 − c2

1

c2
j

)
σ 2∂XXAj

]
. (2.28)

We equate (2.28) to the sum over n of the forcing given by (2.27) and integrate both
sides by X. Making use of the orthogonality of ψ̄j with respect to weight N2, we multiply
both sides by ψ̄j and integrate in z to give the resulting time-evolution equation for Aj:

∂TAj + 1
2
σ

ε

(
c2

j

c2
1

− 1

)
c1∂XAj � −c1

σ

ε
Ej,0 ∂X

[∑
n

|an|2
]
. (2.29)

Here we used cg � cp � c1, and we defined the interaction coefficient Ej,0 by

Ej,0 ≡ 1
4

d
c2

j

c2
1

[∫
dN2

dz
ψ̄2

1 ψ̄j dz
] [∫

N2ψ̄2
j dz

]−1

. (2.30)

Values of the lowest three interaction coefficients are given in table 2.
Explicit solutions for (2.29) can be found by noting that the sum of the squared

amplitudes of the parent wave and superharmonics remains approximately constant
in time (Sutherland & Dhaliwal 2022, Appendix B). Hence the sum in (2.29) is
approximately equal to the initial parent wave squared amplitude |a1(X, 0)|2. Defining the
change of variables T̃ = T ≡ εt and X̃ = X − (σ/ε)c1(γj − 1)T = σ(x − c1γjt), in which
γj ≡ (1 + c2

j /c
2
1)/2, (2.29) becomes ∂T̃Aj = −(σ/ε)c1Ej,0∂X̃|a1(X̃, 0)|2. The solution cast

in terms of fast time and space variables is

Aj(x, t) = −c1Ej,0 t ∂x|a1(σ (x − c1γj t ), 0)|2. (2.31)

The explicit formula for the induced Eulerian flow is

uE(x, z, t) = α2c2
1 dt

∑
j

Ej,0∂x|a1(σ (x − c1γj t ), 0)|2ψ̄ ′
j . (2.32)

This shows that the horizontally averaged induced flow, is zero for a modulated disturbance
that is compact or periodic in x. Nonetheless, at any horizontal location, the vertical profile
of the Eulerian induced flow can exhibit a complex time-evolving structure due to the
varying propagation speeds set by γj, which depends upon the horizontal phase speeds,
cj, of each vertical mode. For the lowest vertical mode, γ1 = 1, and γj → 1/2 for j 
 1.
Although (2.31) predicts a linear growth in time of each vertical mode, the fully nonlinear
simulations, which follow, demonstrate that the growth eventually becomes retarded. This
we attribute to Doppler shifting of the waves by the Eulerian induced flow.

Because the Stokes drift is O(σ 0), the Lagrangian transport for waves near the equator
is initially dominated by the Stokes drift. Assuming |E1,0| ∼ |S1|, the magnitude of the
induced Eulerian flow associated with mode-1 disturbances becomes comparable to the
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The nonlinear evolution of internal tides: Lagrangian transport

−200 −100 0 100 200
k(x − c1t)

0

1000

2000

3000

0

1000

2000

3000

N0t

−0.0002 0 0.0002
u/(N0H)

−200 −100 0 100 200
k(x − c1t)

(b)(a)

Figure 3. Horizontal time series at z = 0 in a frame moving with the group velocity of the parent wave,
cg = c1, of (a) the Stokes drift and (b) the Eulerian induced flow for a periodically modulated internal tide
with αmod = 2/3 and σ = 1/16 in exponential background stratification with d = 0.04H and z0 = −0.019H,
and with no background rotation (f = 0). The velocity scale for both plots is shown in (b).

Stokes drift after a time of the order ω−1/(αmodσ), in which αmod denotes the relative
amplitude of the modulation and σ represents the horizontal scale of the waves to the
horizontal scale of the modulations.

As an example, we consider a modulated parent internal tide with initial maximum
vertical displacement given by (2.2). In this case

a1(x, 0) = 1 + αmod cos(Kx), (2.33)

with αmod ≡ Amod/A0 and K = σk. Using parameters based on the Farfield observations
south-west of Hawaii, we take kH = 0.2, A0 � 0.003H, Amod = 0.002H and σ = 1/16.
The background stratification is given by (2.1) with d = 0.04H and z0 = −0.019H. For
these parameters, c1 � 0.04N0H and ω1 � 0.008N0. Hence, the induced Eulerian flow
associated with mode-1 disturbances is expected to become comparable to the Stokes drift
at times N0t � 3000, corresponding to approximately two days given N0 � 0.017 s−1.

The Stokes drift associated with this modulated wave is given by (2.20) after multiplying
by |a1(x − c1t, 0)|2. The evolution of the surface expression of the Stokes drift is plotted
in figure 3(a). In a frame moving with the group velocity, uS does not vary in time.

The surface expression of uE, calculated using (2.32) and (2.33), is plotted in figure 3(b).
This shows the slow growth in time of uE, being opposite signed about the maximum of
the amplitude envelope at early times but drifting rightwards relative to the group velocity
as the disturbances grow in time.

The rightward drift can be explained by considering the superposition of the Eulerian
induced flow associated with each vertical mode. Horizontal time series of the surface
expression of the induced flow for the lowest two vertical modes is shown in figure 4(a,b).
Because E1,0 is the largest of the interaction coefficients, this mode grows most quickly.
However, because γ1 = 0, there is no lateral drift associated with the vertical mode-1 flow.
In contrast, although the higher vertical modes grow more slowly, their surface signal
drifts leftward because γj > 0 for j > 1. The sign of the induced Eulerian flow for vertical
mode j = 2 at the surface is oppositely signed to the mode-1 Eulerian flow. Consequently,
the superposition of the vertical modes results in an increasing negative surface flow at
x − c1t = 0.

The decomposition of the vertical structure of the flow into its constituent vertical modes
is shown in figure 4(c,d). These time series are extracted from vertical profiles of the flow
at x − c1t � 90H, corresponding approximately to the location of the peak magnitude
of the forcing of the Eulerian induced flow. As noted above, the surface expression of
the induced Eulerian flow is weaker than that at depth because the flow associated with
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uE, j = 1(z = 0)

−5 × 10−5 0 5 × 10−5
uE/(N0H)

uE, j = 2(z = 0)
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N0t N0t

−0.3

−0.2

−0.1

0

0

1000
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3000

−0.3

−0.2

−0.1

0

z/H

uE, j = 1(x − c1t = 90H)

0 1000 2000 3000

uE, j = 2(x − c1t = 90H)

(b)(a)

(c) (d )

Figure 4. For the modulated tide considered in figure 3, time series of the breakdown of the Eulerian flow
into the lowest two vertical modes (a,c) j = 1, (b,d) j = 2 showing (a,b) the horizontal time series at z = 0 and
(c,d) the vertical time series at x − c1t = 90H. The velocity scale in all plots is shown in (b).

the vertical mode-1 disturbance destructively interferes with the flow associated with the
mode-2 disturbance at z = 0. The modes interfere constructively at depths around z �
−0.05H leading to a net rightward flow to the right of the peak of the modulated amplitude
envelope of the primary wave.

The evolution of the vertical profiles of the Stokes drift, induced Eulerian flow and the
Lagrangian flow at x − c1t = ±90H are shown in figure 5. At both locations, the Stokes
drift dominates over the induced Eulerian flow at the surface over the times shown. In the
lee of the peak in the modulated amplitude envelope, the Eulerian induced flow is negative
above z � −0.15H and grows in magnitude over time. This results in a narrowing depth of
the rightward Lagrangian transport near the surface with a time-increasing leftward flow
at a depth around z � −0.05H. At greater depth, z � −0.2H, the Lagrangian transport is
rightward once more, being dominated by the induced Eulerian flow. Leading the peak
of the modulated amplitude envelope, the Stokes drift and induced Eulerian flow are
both rightward leading to a deepening of the vertical extent of the rightward Lagrangian
transport with weak leftward motion below.

2.6.2. Case with |f | > 0
With f non-zero, the leading-order forcing terms in (2.24) are O(ε0σ 0). Hence we can
assume to leading order that the parent wave is horizontally periodic so that a1(x, 0) = 1
and Aj = Aj(T) with Aj(0) = 0 for j = 1, 2, . . . . These terms may be further simplified
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The nonlinear evolution of internal tides: Lagrangian transport
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Figure 5. Vertical time series of (a,d) the Stokes drift, (b,e) the Eulerian induced flow and (c, f ) the Lagrangian
flow taken at (a–c) x − c1t = −90H and (d– f ) x − c1t = 90H. The internal tide parameters are same as those
in figure 3.

making use of (2.18) and assuming that ωn � N0. Thus we find

〈∇ · F n〉 � −1
2
ω

k
d2κ2

1α
2
[

4N2ψ̄1ψ̄
′
1 + dN2

dz
ψ̄2

1

]
|an|2. (2.34)

As for the linear response given generally by (2.26), because σ � ε away from the
equator, we only keep the O( f /N0) and O(ε2) terms, and we make use of (2.17):

Lψ(0) � −α2ωd
k

N2 − f 2

f 2

∑
j

κ2
j

(
ε2∂TTAj + f 2Aj

)
ψ̄j. (2.35)

Equating this to the sum of the forcing terms in (2.34), then multiplying both sides by ψ̄j
and integrating with respect to z gives

∂TTAj + ( f /ε)2Aj � ( f /ε)2Ej,f
∑

n

|an|2, (2.36)

in which

Ej,f � 1
2

d
κ2

1

κ2
j

[∫
4N2ψ̄1ψ̄

′
1ψ̄j + dN2

dz
ψ̄2

1 ψ̄j dz
] [∫

N2ψ̄2
j dz

]−1

, (2.37)

where we have assumed |f | � ‖N‖ = N0 in the integrand of the last expression. The
expressions for Ej,f in (2.37) and Sj in (2.22) look quite different. However, as shown
in Appendix B, for long waves their values are equal and opposite. This is also clear by
comparing the tabulated values of Ej,f and Sj for |f | > 0 in table 2. Hence, with |f | > 0,
the vertical structure of the induced Eulerian flow is equal and opposite to the vertical
structure of the Stokes drift.
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Because
∑

n |an|2 � 1 for all time (Sutherland & Dhaliwal 2022), we can immediately
find the solution of (2.37) for each vertical mode using T = εt to express the result in the
fast-time variable, t:

Aj(t) � Ej,f (1 − cos( ft)) . (2.38)

The induced Eulerian flow is thus given approximately by

uE = −cp dα2

⎡
⎣∑

j

Ej,f ψ̄
′
j

⎤
⎦ (1 − cos( ft)) . (2.39)

In particular, for long waves on the f -plane, we can use (2.23) with Sj � −Ej,f , in which
case we have

uE � −uS (1 − cos( ft)) . (2.40)

Unlike the case with f = 0, the induced Eulerian flow oscillates at the inertial period and
all vertical modes vary equally in time. The occurrence of inertial oscillations in response
to the Stokes drift of surface waves influenced by Coriolis forces was originally predicted
by Hasselmann (1970) (see also Onink et al. 2019; Higgins, Vanneste & van den Bremer
2020). Here this result for the internal tide was derived through an alternate approach,
relying on the long wave approximation on the f -plane giving Sj � −Ej,f (Appendix B).
This relationship does not hold for more non-hydrostatic waves on the f -plane, in which
case the general expression for uE given by (2.39) should be used with Ej,f given by (2.37).

Figure 6 shows the prediction for the Stokes drift and the induced Eulerian and
Lagrangian flows in the case of a parent wave with kH = 0.2, A0 = 0.003H and f =
0.003N0. The corresponding inertial period is 2π/f � 2094N−1

0 . Stratification is given
by (2.1) with d = 0.04H and z0 = −0.019H. The evolution of the squared amplitude of
the parent wave and its superharmonics is shown in figure 6(a). Although the amplitude
of the parent wave decreases in time at the expense of the growth of superharmonics, the
sum of the squared amplitudes remains constant, consistent with the assumption of the
theory. Vertical profiles of the Stokes drift and the induced Eulerian flow at N0t = 1000
(corresponding approximately to half an inertial period) are shown in figure 6(b), together
with the breakdown of the induced Eulerian flow into the first three vertical modes. The
Eulerian flow is negative at the surface, whose magnitude at half an inertial period is nearly
double the magnitude of the Stokes drift. Thus, when superimposed with the steady Stokes
drift, the resulting Lagrangian flow oscillates between positive and negative values over
one inertial period (figure 6d). As a consequence of the relationship between the induced
Eulerian flow and Stokes drift given by (2.39), the average Lagrangian transport over one
inertial period is zero.

3. Numerical solutions

3.1. Fully nonlinear simulations
The fully nonlinear equations are solved using the same code described in the companion
paper (Sutherland & Dhaliwal 2022). The two-dimensional rotating Boussinesq equations
are solved in a rectangular domain with horizontally periodic boundary conditions and
free-slip conditions at the top and bottom of the domain. Explicitly, the evolution
equations are solved for the spanwise vorticity, ζ , spanwise velocity, v, and buoyancy,
b. The (spanwise) stream function, ψ , is solved by inverting the Laplacian equation
∇2ψ = −ζ and, from this, we find the x- and z-components of the velocity field. The
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Figure 6. For f = 0.003N0 and A0 = 0.003, (a) the predicted time evolution of the squared amplitudes of the
parent wave (n = 1), its first three superharmonics (n = 2, 3, 4), and the sum of the squared amplitudes (thick
solid line), (b) vertical structure of the Stokes drift (uS) and, at N0t = 1000, the induced Eulerian flow (uE) with
its decomposition into the first three vertical modes (uE1, uE2, uE3), (c) vertical time series of the predicted
induced Eulerian flow and (d) vertical time series of the predicted Lagrangian flow, uL = uE + uS. For these
results, the background stratification is assumed to be exponential with d = 0.04H and z0 = −0.019H, the
Coriolis parameter is f = 0.003N0, and the parent mode-1 internal tide has kH = 0.2 and A0 = 0.003H.

equations are solved by representing the x-components of the fields in Fourier space,
and finite-differences are used to take derivatives in the vertical direction. In the vertical,
fields are discretized by 257 evenly spaced points. In the horizontal, the spectral fields
are resolved by 128 wavenumbers for each wavenumber of the parent internal tide. In
simulations of the modulated internal tide, the horizontal extent of the domain is resolved
by 2048 horizontal wavenumbers. Momentum and substance diffusion are included for
numerical stability using Laplacian diffusion acting only upon horizontal wavenumbers
larger than 32k.

In all simulations presented here, the background stratification is taken to be
exponential, given by (2.1) with d = 0.04H and z0 = −0.019H. For prescribed horizontal
wavenumber, taken to be k = 0.2H−1, the vertical structure and frequency of the mode-1
wave is computed numerically. These are used to determine the initial fluctuation fields
associated with the waves. The waves are prescribed to be either horizontally periodic
or horizontally modulated. Explicitly, the stream function for the waves is given by
ψ(x, z, t = 0) = A0(ω/k)a(X) ψ̂1(z) cos(kx), in which A0 = 0.003H. For periodic waves
we set a(X) = 1, and for modulated waves we set a(X) = 1 + αmod cos(Kx), in which
αmod = 0.67 and K = k/16.

In order to assess Lagrangian transport, an additional equation is solved to determine
the horizontal, ξ , and vertical, η, parcel displacements resulting from advection,

∂t(ξ, η) = −u∂x(ξ, η)− w∂z(ξ, η), (3.1)
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Figure 7. Simulation results at times (a,d,g) N0t = 1000, (b,e,h) N0t = 2000 and (c, f,i) N0t = 3000 showing
the (a–c) the instantaneous horizontal velocity, (d– f ) the low-pass filtered horizontal velocity and (g–i) the
low-pass filtered Lagrangian flow. In all cases f = 0, the background stratification is given by (2.1) with d =
0.04H and z0 = −0.019H, and the initial parent internal tide has wavenumber kH = 0.2, modulated according
to (2.2) with A0 = 0.003H, Amod = 0.002H and K = k/16. The horizontal velocity scales in (a,d, f ) correspond
to the plots in successive columns of the figure.

for which, initially, ξ(x, z, t = 0) = α(d/k)a1(X, 0)ψ̂ ′
1 sin(kx − ωt) and η(x, z, t = 0) =

−α da1(X, 0)ψ̂1 cos(kx − ωt) (see table 1). In (3.1), (u,w) is evaluated in real space at the
location of the displaced parcel at (x + ξ, z + η) using bilinear interpolation.

For horizontally periodic parent internal waves, the horizontal induced Eulerian flow is
given by uE = 〈u〉 and the horizontal Lagrangian transport is given by 〈ξt〉, in which the
angle brackets denote averaging over the horizontal domain. For horizontally modulated
parent waves, the Eulerian flow is found by applying a low-pass Fourier filter, keeping only
those modes with horizontal wavenumbers less than 4K.

We start by considering the results of a simulation of a periodically modulated wave with
f = 0. The horizontal velocity field computed from this simulation is shown at three times
in figure 7(a–c). As in Sutherland & Dhaliwal (2022), this reveals the formation of solitary
internal wave packets, being most pronounced where the amplitude of the modulated wave
is large. Despite this horizontal transformation of the wave structure over a wavelength of
the primary wave, the squared amplitude envelope of the disturbance remains unchanged
except for its rightward translation at the group velocity, cg � c1. It is the evolution of the
squared amplitude envelope, and not the waves within, that dominate the evolution of the
Stokes drift, induced Eulerian flow and the Lagrangian flow.

The mean Eulerian flow (figure 7d– f ) exhibits the time-evolving structure predicted by
theory. Its magnitude increases in time, with increasing leftward flow at the surface to
the right of the translating peak of the amplitude envelope, and increasing rightward flow
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Figure 8. For the simulation shown in figure 7, (a) horizontal time series of the induced Eulerian flow at
z = 0 shown in a frame of reference moving at the horizontal group velocity and (b) the evolution of this flow
at x − c1t = 90H (black line) compared with the prediction of theory (red line).

at a depth around 0.04H. The Lagrangian flow is dominated by the Stokes drift at early
times, being near-constant in time and positive at the surface. Consistent with theory, the
induced Eulerian flow grows linearly at early times with higher vertical modes advancing
at progressively smaller speeds. Its superposition with the Stokes drift leads to a complex
time-evolving structure of the Lagrangian flow. At late times, this flow reverses direction
near the surface in the lee of the peak of the modulated wave packet while the subsurface
rightward flow intensifies below the peak (figure 7g–i).

The time evolution of the surface flow is examined in figure 8. This flow is shown in a
frame of reference moving with the predicted horizontal group velocity of the parent wave
cg = c1. Here it is apparent that there are fluctuations in this flow occurring on a time
scale of order 500/N0 which are superimposed on an initially steady growth of the induced
flow up to time N0t � 5000 (figure 8a). This is followed by a moderate reduction in the
induced flow before it increases again. Focusing on the time-evolution of the flow at x −
c1t = 90H, we see that the growth up to N0t = 4000 is approximately linear with growth
rate moderately larger than that predicted by the theory (figure 8b). Whereas the theory
predicts continuing linear growth beyond this time, according to (2.32), the simulations
show a temporary reduction in the amplitude before growing again. The deviation from
the theory, both in terms of the fluctuations and the decrease in the induced Eulerian
flow after N0t � 5000 is attributed to the action of the induced Eulerian flow upon the
waves, which Doppler shifts the waves differentially with depth, so changing their vertical
structure. While interesting in theory, examination of these dynamics lies beyond the scope
of this work.

Simulations examining the evolution of the parent wave on the f -plane is compared
with theory in figure 9. Here the parent wave is taken to be horizontally periodic with
amplitude A0 = 0.003H. As shown by Sutherland & Dhaliwal (2022), the superharmonic
cascade results in the generation of internal solitary waves. Despite the modification
of the wave structure, the sum of the amplitude-squared forcing by the parent and
superharmonic waves remains constant. Consequently, the theoretical prediction for the
Stokes drift and the induced Eulerian flow is well represented by theory given by (2.20)
and (2.39), respectively. Specifically, the Stokes drift remains steady in time, while the
induced Eulerian flow oscillates at the inertial period, alternately changing the sign of the
Lagrangian flow between rightward and leftward with respect to the direction of parent
wave propagation.
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Figure 9. Simulation results for an initially horizontally periodic internal tide in rotating fluid with f =
0.003N0 at times (a) N0t = 1000, (c) N0t = 2000 and (e) N0t = 3000 showing (a,c,e) the horizontal velocity
field and (b,d, f ) the horizontally averaged horizontal velocity (dashed blue), Stokes drift (dashed red) and
Lagrangian velocity (dashed black). The horizontally averaged simulated flows are compared in (b,d, f ) with
the theoretically predicted induced Eulerian flow (solid blue), Stokes drift (solid red) and Lagrangian flow
(solid black). In all cases the background stratification is given by (2.1) with d = 0.04H and z0 = −0.019H,
and the initial parent internal tide has wavenumber kH = 0.2.

For comparison with the simulation of a modulated wave packet with f = 0 (figure 7),
in figure 10 we also show snapshots of the horizontal velocity, the induced Eulerian flow
and the Lagrangian flow computed from a simulation of the modulated wave packet with
f = 0.003N0. As anticipated, this shows that the Stokes drift and Eulerian flow have largest
magnitude where the amplitude envelope of the modulated waves is largest. At the times
where the induced Eulerian flow is strongest (N0t � 1000 and 3000), it dominates over the
Stokes drift resulting in negative Lagrangian transport near the surface. After an inertial
period (N0t � 2000), the Eulerian flow is weakest and the Stokes drift dominates, resulting
in a positive Lagrangian transport at the surface. The results are thus consistent with the
predicted and simulated behaviour of horizontally periodic waves (figure 9), with the
amplitude envelope modulation simply resulting in a corresponding spatial modulation
of the Eulerian flow, Stokes drift and Lagrangian transport.
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Figure 10. As in figure 7 but for a simulation of a horizontally modulated wave packet with f = 0.003N0.

4. Conclusions

The self-interaction of internal tides results in the forcing of an induced Eulerian flow.
Although the internal tide can transform into a solitary wave train as a consequence of
excitation of superharmonics, the sum of the forcing due to the primary wave and its
superharmonics remains nearly constant in time. The evolution and structure of the mean
flow response to this forcing depends upon the influence, or not, of Coriolis effects.

In the presence of Coriolis forces (|f | > 0), the forcing acts equally upon all vertical
modes in the decomposition of the induced Eulerian flow. This flow responds through
inertial oscillations at frequency f with predominantly negative flow at the surface reaching
a peak that is opposite to and nearly double the time-independent Stokes drift at the
surface. Consequently, the superposition of the Stokes drift and induced Eulerian flow
gives a Lagrangian transport that oscillates between positive and negative in time, with
zero net transport over one inertial period.

If f = 0, the induced Eulerian flow is negligible with respect to the Stokes drift for
horizontally periodic waves. This prediction lies in contrast with the theory for the steady
(time-invariant in a frame moving with the group velocity of the internal tide) induced
Eulerian flow, which predicts the excitation of a relatively strong flow with mode-1
structure. Such steady flows are unlikely to be manifest in practice. For horizontally
modulated internal tides, oppositely signed induced Eulerian flows are excited on either
side of the peak in the modulation which initially grows linearly in time. While the
component of the induced Eulerian flow that has vertical mode-1 structure translates with
the group velocity of the internal tide as it grows, higher modes propagate at different
speeds leading to a complex vertical structure in space and time. In reality, of course, at
the equator the waves would be influenced by the quasi-steady zonal currents manifest
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there. And so, while interesting in theory to consider the Lagrangian transport by internal
tides where f = 0, in practice zonal flows would dominate transport. Nonetheless, the
spatiotemporally evolving complex structure of the induced Eulerian flow as the internal
tide nears the equator, could influence the vertical structure of the equatorial currents.

In the context of the influence of the internal tide upon mass transport, we have seen that
their Lagrangian transport by internal tides is negligible when averaged over an inertial
period on the f -plane or when averaged horizontally over the spatial scale of amplitude
modulations. Instantaneously, the magnitude of the Lagrangian flow is of the order of
cpα

2 which, for observed values near Hawaii, is approximately 0.03 m s−1. Although
insignificant near the surface, the transport persists at depths hundreds of metres below
the surface where the influence of the Stokes drift due to surface waves is negligible.

The theory makes several approximations that limit its application to realistic internal
tides. As well as assuming constant-depth fluid, the waves are assumed to be spanwise
invariant. Preliminary three-dimensional numerical simulations on the f -plane examining
the evolution of a periodic internal tide with finite spanwise extent show its evolution is
qualitatively similar to spanwise invariant waves in that superharmonics are excited along
the centre of the beam and the Eulerian induced flow oscillates at the inertial periodic
across the lateral extent of the beam. Ongoing research aims to develop quantitative
predictions for the observed flows. The work presented here is also limited to the initial
value problem in which a modulated tide is prescribed on the f -plane. Ongoing work is
extending this study to examine a tide that is forced near the left-hand side of the domain
and propagates rightward on the beta-plane towards decreasing f . We have also neglected
the influence of the barotropic mode associated with the waves (Dong et al. 2020).
Interactions with currents and eddies have also been neglected. A complete understanding
for mass transport influenced by internal tides should additionally account for depth
variations and effects associated with ocean currents and eddies.
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Appendix A. Steady-state solutions with f = 0

The study of van den Bremer et al. (2019) predicted the steady-state Eulerian induced
flow resulting from a horizontally periodic mode-1 internal wave in non-rotating fluid.
That work provided analytic solutions for the case of piecewise-constant N2 background
stratification. In a system with no background rotation, the equation for the stream function
of the Eulerian induced flow driven by the mode-1 internal tide is given by the solution
of Lψ(0) = ∇ · F 1, in which the forcing is given generally by (2.24) and the response
is given by (2.26). Setting f = 0, neglecting time derivatives, and integrating twice with
respect to X, we find

N2
∑

j

ψ̄j

(
1 − c2

g

c2
j

)
Āj = 1

2
d
[
(1 + 2χ)(1 − χ)N2ψ̄1ψ̄

′
1 − χ2 dN2

dz
ψ̄2

1

]
, (A1)
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in which we have taken |a1| = 1 and |an| = 0 for n > 1. Here Āj is used to denote the
amplitude of the steady mode-j response to the forcing. Using the orthogonality of ψ̄j with
respect to the weight N2, we find an explicit formula for the amplitude of each vertical
mode:

Āj = 1
2

d
1

1 − c2
g/c

2
j

[∫
(1 + 2χ)(1 − χ)N2ψ̄1ψ̄

′
1ψ̄j − χ2 dN2

dz
ψ̄2

1 ψ̄j dz
] [∫

N2ψ̄2
j dz

]−1

.

(A2)

If N2 is symmetric about the mid-depth, then so is the vertical structure of the mode-1
disturbances ψ̄j. Hence the integrals in the numerator on the right-hand side of (A2) is
zero for j = 1, owing to the even structure of ψ̄1 and the odd structure of ψ̄ ′

1 and dN2/dz.
It is for this reason, that the dominant structure of the induced Eulerian flow is mode-2.

If N2 is asymmetric, the integrals with j = 1 are non-zero. Furthermore, we note that
the long wave phase speed of the mode-1 wave, c1, is close to the phase speed, cp, of the
mode-1 parent wave, with both being close to the group speed, cg, owing to the linear
dispersion relation of long waves (2.15). Hence 1 − c2

g/c
2
1 � 1 − χ2 � 0. Although the

first term in the integrand of (A2) is proportional to 1 − χ , the second term is not, and so
dominates the integral. For higher vertical modes, j � 2, cg/cj is much larger than 1, and
so there is no singularity in front of the integrals in (A2). This reveals that the induced
Eulerian flow is dominated by a mode-1 disturbance, if N2 is asymmetric.

Appendix B. Relationship between Ej,f and Sj

Here we demonstrate that Sj, given by (2.22) is equal and opposite to Ej,f , given by (2.37),
for long waves on the f -plane. From the eigenfunction relation for ψ̄j given by (2.17), we
suppose f � ‖N‖. Multiplying both sides by ψ̄1ψ̄

′
1 and integrating gives∫

N2ψ̄1ψ̄
′
1ψ̄j dz � − f 2

κ2
j

∫
ψ̄1ψ̄

′
1ψ̄

′′
j dz, (B1)

in which the integrals are performed over the domain depth. Integrating by parts, the
right-hand integral becomes

−
∫ [

(ψ̄ ′
1)

2 + ψ̄1ψ̄
′′
1

]
ψ̄ ′

j dz � −
∫ [

(ψ̄ ′
1)

2 − κ2
1

f 2 N2ψ̄2
1

]
ψ̄ ′

j dz, (B2)

in which we have used (2.17) with f � ‖N‖ and j = 1. Once more integrating by parts and
using (2.17) with f � ‖N‖ and j = 1 gives the integral∫ [

−4
κ2

1
f 2 N2ψ̄1ψ̄

′
1 − κ2

1
f 2

dN2

dz
ψ̄2

1

]
ψ̄j dz. (B3)

Putting this result into (B1) gives∫
N2ψ̄1ψ̄

′
1ψ̄j dz � κ2

1

κ2
j

∫ [
4N2ψ̄1ψ̄

′
1 + dN2

dz
ψ̄2

1

]
ψ̄j dz. (B4)

Replacing the left-hand integral by the right-hand integral in the expression for Sj (2.22)
gives the negative of the expression for Ej,f in (2.37).
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