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Through theory supported by numerical simulations, we examine the induced local
and long range response flows resulting from the momentum flux divergence as-
sociated with with a two-dimensional Boussinesq internal gravity wavepacket in a
uniformly stratified ambient. Our theoretical approach performs a perturbation anal-
ysis that takes advantage of the separation of scales between waves and the amplitude
envelope of a quasi-monochromatic wavepacket. We first illustrate our approach by
applying it to the well-studied case of deep water surface gravity waves, showing that
the induced flow, UDF, resulting from the divergence of the horizontal momentum
flux is equal to the Stokes drift. For a localized surface wavepacket, UDF is itself a
divergent flow and so there is the well-known non-local response manifest in the form
of a deep return flow beneath the wavepacket. For horizontally periodic and vertically
localized internal wavepackets, the divergent-flux induced flow, uDF, is found from
consideration of the vertical gradient of the vertical flux of horizontal momentum as-
sociated with the waves. Because uDF is itself a non-divergent flow field, this accounts
entirely for the wave-induced flow; there is no response flow. Our focus is upon inter-
nal wavepackets that are localized in the horizontal and vertical. We derive a formula
for the divergent-flux induced flow that, as in this case of surface wavepackets, is itself
a divergent flow. We show that the response is a horizontally long internal wave that
translates vertically with the wavepacket at its group velocity. Scaling relationships
are used to estimate the wavenumber, horizontal extent, and amplitude of this induced
long wave. At higher order in perturbation theory we derive an explicit integral for-
mula for the induced long wave. Thus, we provide validation of Bretherton’s analysis
of flows induced by two-dimensional internal wavepackets [F. P. Bretherton, “On the
mean motion induced by gravity waves,” J. Fluid Mech. 36, 785–803 (1969)] and
we provide further analyses that give intuitive insights into the physics governing the
properties of the induced long wave. In particular, consistent with momentum conser-
vation, we show that the horizontally-integrated horizontal flow associated with the
long wave is given exactly by the horizontal integral of uDF. However, qualitatively
different from horizontally periodic internal waves, the vertical profile of the induced
horizontal flow across the horizontally localized wavepacket is positive at the leading
edge and negative at the trailing edge. These results are validated by the results of
numerical simulations of a Gaussian wavepacket initialized in an otherwise stationary
ambient. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4899262]
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I. INTRODUCTION

Internal waves propagate vertically through the atmosphere and ocean moving under the in-
fluence of buoyancy forces in a stratified medium. Where they break, the consequent momentum-
flux divergence irreversibly accelerates the ambient fluid. Cumulatively in the atmosphere, this
non-negligibly affects the zonal wind speeds and, through thermal wind balance, the mean
temperatures.2–4 Despite their importance, the mechanism for momentum transport and deposi-
tion by internal waves remains unclear. Although linear theory is sometimes employed to predict
where anelastic internal waves break,5 it is now clear that weakly nonlinear effects can significantly
change the evolution and breaking levels.6–8 Most studies into vertically propagating weakly nonlin-
ear internal waves have examined wavepackets that are vertically localized and horizontally periodic.
Such wavepackets have a well-defined wave-induced mean flow that translates vertically with the
wavepacket at its group velocity before being irreversibly deposited to the background when the
waves break. Even before breaking, the wave-induced mean flow Doppler shifts the waves as they
grow to large amplitude giving rise to modulational stability or instability.6 If an internal wavepacket
is horizontally as well as vertically localized, the direct counterpart to the induced flow for hori-
zontally periodic waves is a horizontally divergent flow field. And so there must be response flow
that ensures the total flow field is incompressible. Using the concept of wave-action conservation,
Bretherton1 examined the wave-induced flow resulting from two- and three-dimensional internal
wavepackets. He predicted that a small-amplitude localized two-dimensional wavepacket should
excite a horizontally long disturbance while a three-dimensional (spanwise localized) wavepacket
should generate a horizontal recirculation, which in itself could have a far-field influence on the
ambient.9, 10

In this paper we revisit the theory for the flow induced by two-dimensional internal wavepack-
ets. Our objectives are threefold. First, rather than relying on wave-action conservation, we de-
velop a wavepacket-based theory to derive intuitive formulae for the (local) divergent-flux in-
duced flow and the (non-local) induced long wave associated with a localized quasi-monochromatic
wavepacket. Second, we derive approximate scaling estimates and analyses of the integral equa-
tion describing the induced long wave that provides insight into the structure of the non-local
motion induced by the wavepacket. Third, we compare the theoretical predictions with fully non-
linear numerical simulations of a small-amplitude wavepacket initialized in a stationary ambient.
Thus we observe the approach to steady-state and confirm that this is consistent with the theoret-
ical predictions. These results provide the foundation for theoretical and physical understanding
upon which future studies into large-amplitude and three dimensional effects will be developed
further.

To lay the theoretical groundwork, we first review the theory for the wave-induced flow of
surface wavepackets and of horizontally periodic, vertically localized internal wavepackets.

Even without breaking, surface gravity waves have associated with them a wave-induced flow
known commonly as the Stokes drift.11 From a Lagrangian perspective, the flow is a consequence of
fluid parcels being advected further in the wave-direction at the top of their orbits than they propagate
in the opposite direction at the bottom of their orbits, as well as an equivalent effect during motion
in the horizontal direction. The expression for the vertical integral of the Stokes drift is equal to the
pseudomomentum per unit mass. But the latter is conceptually distinct, arising from consideration
of conservation laws. The formulae for the Stokes drift and pseudomomentum have been derived for
plane waves, but are readily extended to wavepackets. In Sec. II A, we present another perspective,
showing that the pseudomomentum per unit mass is identical to the flow arising from the divergence
of the horizontal flux of horizontal momentum associated with a quasi-monochromatic wavepacket.
This we refer to as the “divergent-flux induced flow.” If the surface wavepacket has finite horizontal
extent, the Stokes drift is zero ahead and behind the wavepacket resulting in a convergence and
divergence of the horizontal flow at the wavepacket’s leading and trailing edge, respectively. This
results in a response flow that moves opposite to the direction of the Stokes drift, and is hence referred
to as the return flow. For deep water it extends far below the surface12 (cf. Fig. 2 of McIntyre13).
The vertically integrated volume flux of this response flow is equal and opposite to the volume flux
associated with the Stokes drift. It is for this reason that the Stokes drift is sometimes referred to
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as the pseudomomentum per unit mass, a reminder that the actual momentum of the wavepacket
(which includes the return flow) is zero.13

For internal waves in a uniformly stratified fluid, the properties of their associated wave-
induced flow are not so well understood. It is well known that plane periodic Boussinesq internal
waves are an exact solution of the fully nonlinear equations of motion. The mean Lagrangian
displacement of fluid parcels due to the waves is zero: there is no Stokes drift. However, the
pseudomomentum, inferred through wave-action conservation1, 14, 15 or derived through the principles
of Hamiltonian fluid dynamics,16 is non-zero.10 Indeed, for horizontally periodic, vertically localized
internal wavepackets, the pseudomomentum per mass gives the wave-induced mean flow.17 This is
a transient, horizontally uniform flow that translates vertically with the wavepacket at the vertical
group velocity. Through a separate theoretical approach that examines momentum transport by quasi-
monochromatic wavepackets, the origin of the wave-induced mean flow for horizontally periodic
wavepackets is clear: the flow results from the vertical divergence of the horizontal momentum
flux.18, 19 The derivation of this divergent-flux induced flow is reviewed in Sec. II B.

If a two-dimensional internal wavepacket is horizontally as well as vertically localized, the
divergence of the pseudomomentum is non-zero. And so, as in the case of surface wavepackets,
there must be a response flow. However, this flow cannot simply return above and below the
wavepacket because stratification inhibits vertical motions associated with such a re-circulation.
Different from the approach of Bretherton,1 in Sec. III we use a wavepacket approach to derive what
we call the “divergent-flux induced flow” for localized internal wavepackets. Therein we show that
the divergent-flux induced flow itself induces a response flow such that the total wave-induced flow
extends broadly in the horizontal to either side of the wavepacket. Higher-order perturbation theory
reveals that the flow induced by the wavepacket is a horizontally long internal wave that moves
vertically with the wavepacket.

In Sec. IV these predictions are compared with numerical simulations a of quasi-monochromatic
horizontally periodic and horizontally localized wavepackets showing that the theory well captures
the flow induced by a small-amplitude internal wave after a transient start-up time. Conclusions are
drawn and implications discussed in Sec. V.

II. SURFACE WAVES AND HORIZONTALLY PERIODIC INTERNAL WAVES

In this section we begin by reviewing the theory for the wave-induced mean flow associated
with surface waves. Therein we show that the Stokes drift is equal (but not equivalent) to the pseu-
domomentum per unit mass and that both are reproduced by consideration of the divergence of the
horizontal flux of horizontal momentum associated with quasi-monochromatic surface wavepackets.
Likewise we show that the divergence of the vertical transport of horizontal momentum associated
with horizontally periodic internal wavepackets reproduces the pseudomomentum. With this phys-
ically intuitive derivation of the wave-induced flow which is local to the wavepacket, we go on to
examine the divergent-flux induced flow and the total wave-induced flow associated with horizontally
and vertically localized wavepackets, which are non-local to the wavepacket.

A. Surface gravity waves

The purpose of this section is not only to review the theory for surface waves, but also to
establish the mathematical terminology in a familiar setting. Plane surface gravity waves in deep
water of horizontal wavenumber k (assumed positive) have frequency ω = √

gk, in which g is gravity
and we have assumed ω > 0 corresponding to rightward-propagating waves. Assuming the waves
have vertical-displacement amplitude A0, the polarization relations give the horizontal and vertical
velocities:

u = ωA0ekzeı(kx−ωt), (1a)

w = −ıωA0ekzeı(kx−ωt), (1b)
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and the corresponding horizontal and vertical displacement fields:

ξx = ı A0ekzeı(kx−ωt), (2a)

ξz = A0ekzeı(kx−ωt), (2b)

in which it is understood that the actual fields are the real part of the right-hand expressions.
Averaging these fields in time over one period gives zero. However, performing a Taylor-series

expansion of the horizontal velocity up to order amplitude squared (thus following particles in their
leading-order Lagrangian motion) and averaging gives11

USD = 〈u〉 + 〈ξx ∂x u〉 + 〈ξz ∂zu〉 = (ω/k)α2e2kz (3)

in which α ≡ A0k is the wave steepness and 〈 · 〉 denotes averaging over either a period or a
wavelength. This is the Stokes drift, which corresponds to the mean Lagrangian advection of fluid
parcels by a surface wave in the absence of any background (i.e., Eulerian) flow. The corresponding
Lagrangian volume flux is given by vertically integrating (3). Multiplied by the density of water ρ0

the Stokes drift of periodic surface gravity waves has an associated vertically integrated momentum:

M = ρ0
ω

2k2
α2. (4)

An analogous result was first derived in an Eulerian framework by Starr.20 In an Eulerian framework,
a net mass flux is identified by integrating the horizontal velocity from the bottom up to the free
surface. Because the flow is higher at a crest than at a trough, the result gives a mean depth-integrated
horizontal flux consistent with the flux obtained by depth integration of (3).

The vertically integrated energy associated these waves is E = ρ0(g/2)A0
2. The analogy to

momentum as a conserved quantity for fluids is the so-called “pseudomomentum,” which, from the
principle of conservation of wave-action,14 is given generally for waves in a stationary ambient by

P = k E/ω. (5)

Substituting the expression for E into (5) and using the dispersion relation reveals that P = M: the
pseudomomentum is equal to the momentum computed from the Stokes drift.

These results have assumed an infinitely periodic wave train. Perhaps a more physically intuitive
appreciation of the near-surface momentum associated with surface waves comes from consideration
of quasi-monochromatic surface wavepackets. By analogy with (1), we suppose the horizontal and
vertical velocity fields are given by

u(1) = ωA(X, T )ekzeı(kx−ωt), (6a)

w(1) = −ıωA(X, T )ekzeı(kx−ωt), (6b)

in which A is the amplitude envelope with initial magnitude A0 ≡ ||A||, and the superscripts on
the left-hand side emphasize that these are velocities given to O(α1). The amplitude envelope is
assumed to vary slowly in space and time compared to the fast scales k−1 and ω−1, respectively. The
leading-order evolution of the wavepacket is its translation at the group velocity. This is captured
by setting X ≡ ε(x − cgt) with ε = 1/(σk) � 1, in which σ represents the spatial extent of the
wavepacket and cg = (

√
g/k)/2 is the group velocity. The dispersion of the wavepacket is a slower

process that depends upon the curvature of the amplitude envelope, as represented by T = ε2t.
Because our examination is not concerned with weakly nonlinear effects, we need not provide a
scaling between α and ε for the multiple scale asymptotic expansion that follows.

Now consider the flux-form of the horizontal momentum equation:

∂t u = −∂x (uu) − ∂z(uw) − ∂x (p/ρ0). (7)

Substituting (6) into the advective terms on the right-hand side and keeping the slowly varying terms
we find that the vertical divergence term vanishes because u(1) and w(1) are 90◦ out of phase. The
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remaining flux term is:

− ∂x u(1)u(1) → −ε∂X

[
ω2

2
|A(X, T )|2 e2kz

]
. (8)

Here the over-line denotes effective averaging over the fast scales so as to retain only slowly varying
terms. As a result, we have retained the x-derivative term in (8), which represents the horizontal
transport of horizontal momentum per unit mass.

The order α2 divergent flux in (8) results in an acceleration which itself must be order α2. The
resulting divergent-flux induced flow we denote by UDF(X, T), an O(α2) quantity that translates at the
group velocity of the surface wavepacket. Substituting UDF on the left-hand side of (7) and taking
the time derivative gives −∂ tUDF 	 −εcg∂XUDF, in which we have retained terms of order ε alone.
Equating this to the divergent-flux term and integrating in X gives the explicit expression for the
divergent-flux induced flow:

UDF = 1

cg
u(1)u(1) = ωk|A|2 e2kz . (9)

For plane waves |A| = A0 and (9) becomes equal to the formula for the Stokes drift (3). The
vertical integral of (9) after multiplying by density gives the pseudomomentum, given by generally
(5) and specifically by (4). The physics of the near-surface flow are clear under this macroscopic
examination of the momentum conservation law, which reveals that the horizontal flow results from
the divergence of the horizontal flux of horizontal momentum per unit mass.

Of course, this is not the whole story. Because UDF for horizontally localized wavepackets is
itself a horizontally divergent flow there must also be a response flow in order to ensure volume is
conserved. This is taken care of by the pressure gradient term in (7). The divergence of UDF gives
rise to an order α2 pressure p(2) that drives a return flow 
URF below the wavepacket. The structure of
this flow was first computed by Longuet-Higgins and Stewart12 (cf. Figure 2 of McIntyre13) through
a spectral analysis that extracted a mean flow resulting from wave-wave interactions within the
wavepacket. The perspective provided by our wavepacket analysis reveals that, ignoring dispersion,
this return flow results from an effective mass source-sink dipole acting at the upper boundary of an
irrotational fluid.

The total wave-induced flow associated with surface waves is the sum of the divergent-flux
induced flow and the return flow: 
U (2) = UDF x̂ + 
URF, where x̂ is the unit-vector in the x-direction.

B. Horizontally periodic internal waves

Plane periodic two-dimensional internal waves in Boussinesq fluid have a dispersion relation
ω = Nkx/|
k|, in which 
k = (kx , kz) is the wavenumber vector and N = √−(g/ρ0)dρ̄/dz is the
buoyancy frequency, which is a function of the background density gradient ρ̄. The polarization
relations for these waves expressed in terms of the vertical-displacement amplitude A0 give the
velocities:

u = ı
kz

kx
ωA0eı(kx x+kz z−ωt), (10a)

w = −ıωA0eı(kx x+kz z−ωt). (10b)

Using these expressions to compute the Lagrangian horizontal displacement of fluid parcels at order
amplitude-squared, as in (3), gives zero. Thus there is no Stokes drift for internal waves.

However, from the energy density, E = ρ0 N 2 A0
2/2, one can determine the pseudomomentum:

P ≡ kx

ω
E = sgn(kx )

1

2
ρ0 N |
k|A0

2, (11)

in which sgn(kx) denotes the sign of the horizontal wavenumber. And so one can infer a corresponding
induced flow:

u P ≡ sgn(kx )
1

2
N |
k|A0

2. (12)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.244.193.55 On: Tue, 28 Oct 2014 21:36:21



106601-6 T. S. van den Bremer and B. R. Sutherland Phys. Fluids 26, 106601 (2014)

From Hamiltonian fluid mechanics16 or through consideration of the circulation associated with
isopycnals displaced by periodic internal waves (cf Sec. 3.4.5 of Sutherland18), the wave-induced
flow is alternately expressed by −〈ξζ 〉x, the negative correlation of the vertical displacement (ξ ) and
spanwise vorticity (ζ ) fields. Using the polarization relations, it is straightforward to show that this
expression is equivalent to that given by uP in (12).

As above, we reconsider this problem by examining the evolution of quasi-monochromatic
internal wavepackets6, 7 (cf Sec. 3.4.5 of Sutherland18). In this section, we suppose the wavepacket
is horizontally periodic but vertically localized with vertical displacement field is given by

ξ (1) = A(Z , T )eı(kx x+kz z−ωt), (13)

in which A(Z, T) is the (complex) amplitude envelope of the wavepacket that translates at the vertical
group velocity cgz, as represented by the choice of the slow scale Z = εz(z − cgzt), in which εz ≡
1/(kxσ z) where σ z measures the vertical extent of the wavepacket. The effects of dispersion, which
come in at higher order in εz, are expressed through the long time scale T = ε2

z t .
As in (10b), the corresponding horizontal and vertical velocity fields at leading order in ε are

u(1) = ı
kz

kx
ωA(Z , T ) eı(kx x+kz z−ωt), (14a)

w(1) = −ıωA(Z , T ) eı(kx x+kz z−ωt), (14b)

in which it is understood the actual fields are the real parts of the expressions on the right-hand side.
Again we consider the flux-form of the horizontal momentum equation (7). Because the wavepacket
is horizontally periodic, the x-average of (7) gives the usual expression for momentum transport per
unit mass:

∂

∂t
〈u〉x = − ∂

∂z
〈uw〉x . (15)

It is important to appreciate that u on the left-hand side of (15) does not represent the fluctuation
horizontal velocity due to waves. If it were, the average would give zero. Instead 〈u〉x represents
the horizontal mean flow that is induced by a wavepacket whose amplitude envelope varies in
the vertical. This is not the irreversible mean flow that results from wave breaking. Rather, it is
transient: it translates with the vertical group velocity of the wavepacket, the flow accelerating at the
wavepacket’s leading edge and decelerating at its trailing edge according to (15).

With this in mind, we expect 〈u〉x to depend upon the slow variables Z and T. And so, continuing
the informal separation of scales argument, the time derivative on the left-hand side of (15) is
replaced by Z and T derivatives according to ∂t = −εzcgz∂Z + ε2

z ∂T , and the second of these is
neglected under the assumption that εz is small. Likewise, ∂/∂z on the right-hand side of (15)
becomes the slow vertical derivative εz∂Z. And so we have to leading order in εz:

〈u(2)〉x = 1

cgz
〈u(1)w(1)〉x . (16)

The induced mean flow 〈u(2)〉 is O(α2), hence the superscript. Note that (16) is analogous to
the well-known result that the mean energy of a wave times its group velocity is just the energy
flux. Multiplying both sides of (16) by the background density ρ0 and by cgz gives the statement
that the horizontal momentum times the vertical group velocity equals the vertical flux of horizontal
momentum.

Substituting the horizontal and vertical velocities from (14b), we obtain an explicit expression
for the divergent-flux induced flow in terms of the amplitude envelope of the vertical displacement
field:

uDF ≡ 〈u(2)〉x = sgn(kx )
1

2
N |
k| |A|2. (17)

For vertically as well as horizontally periodic waves, A(Z, T) = A0, in which case uDF reduces
to the formula (12) for the wave-induced mean flow derived from the pseudomomentum. Because
(17) was derived for horizontally periodic wavepackets, uDF is independent of x and so itself is a
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divergence-free flow. Indeed, being derived from the horizontally averaged horizontal momentum
equation (15), we see there is no additional induced flow that would result from an order amplitude-
squared pressure field. For horizontally periodic internal wavepackets, the divergent-flux induced
flow (hence the pseudomomentum per unit mass) is the total wave-induced flow.

III. HORIZONTALLY LOCALIZED INTERNAL WAVEPACKETS

A. The divergent-flux induced flow

Vertically and horizontally localized wavepackets translate in the x-z plane at the group velocity

cg = (cgx , cgz). As such, in addition to the slow variable Z = εz(z − cgzt) used above, we introduce
the slow scale in a frame translating at the horizontal group velocity X = εx(x − cgxt), in which εx

≡ 1/(kxσ x) and σ x measures the horizontal extent of the wavepacket. For convenience, we suppose
σ ≡ σ x ∼ σ z so that ε ≡ εx ∼ εz. The slow variables are thus defined to be

X = ε(x − cgx t), (18a)

Z = ε(z − cgzt), (18b)

T = ε2t. (18c)

Similar to (13), the leading-order vertical displacement field is

ξ
(1)
0 = A(X, Z , T )eı(kx x+kz z−ωt), (19)

in which the subscript and superscript emphasize that the term is O(ε0α1). Corresponding expressions
for the horizontal and vertical velocity are found as in (14b), respectively, but with the arguments to
A additionally involving the slow variable X.

The flux-form of the horizontal momentum equation is again given by (7). But now we cannot
meaningfully average in the horizontal. Neglecting pressure for now, we focus on the flow resulting
from the vertical divergence of the horizontal momentum flux uDF:

∂t uDF = −∂x u(1)
0 u(1)

0 − ∂zu
(1)
0 w

(1)
0 . (20)

As in (8), the over-line denotes the operation of effectively averaging with respect to the fast scales
keeping only the slow variations.

Following the same procedure, we write the vertical momentum equation in flux-form and
consider the slowly varying, order amplitude-squared terms crucially neglecting the mean pressure
gradient and buoyancy forcing that arise at the same order. The resulting equation for the vertical
component of the divergent-flux induced flow is thus given by

∂twDF = −∂x 〈u(1)
0 w

(1)
0 〉 − ∂z〈w(1)

0 w
(1)
0 〉. (21)

We now recast these equations in terms of the slow variables, keeping terms of order ε alone. In
particular, at O(ε), the partial time-derivative on the left-hand sides of (20) and (21) becomes ∂ t ∼
−εcgx∂X − εcgz∂Z. Thus, we arrive at the pair of equations


cguDF = u(1)
0 
u(1)

0 , (22a)


cgwDF = w
(1)
0 
u(1)

0 . (22b)

Finally, using the polarization relations of the form (14b), we derive an explicit expression for the
divergent-flux induced flow of horizontally and vertically localized internal gravity wavepackets:

(uDF, wDF) = sgn(kx )
1

2cgx
N |
k| |A|2
cg = sgn(kx )

1

2
N |
k| |A|2

(
1,− kz

kx

)
. (23)

The horizontal component is the same as that found for horizontally periodic wavepackets in
(17). But it is now evident that the divergent-flux induced flow has a vertical component as well.
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(a) Gaussian wavepacket
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FIG. 1. (a) Vertical displacement field associated with a localized internal wavepacket defined to propagate upward and to
the right, (b) its corresponding divergent-flux induced flow given by (23), and (c) the negative divergence of this induced flow
field. The wavepacket is defined with 
k = kx (1, 1), envelope width σ = σ x = σ z = 20kx

−1 and amplitude A0 = 0.01k−1
x .

The legend in (b) indicates the magnitude of the displayed arrow.

By way of illustration, Figures 1(a) and 1(b) show the vertical displacement field and divergent-
flux induced flow associated with a Gaussian wavepacket centred at the origin whose vertical
displacement field is given by

ξ = A0 exp

[
−1

2

(
x2

σx
2

+ z2

σz
2

)]
cos(kx x + kzz), (24)

with kz = −kx, σ x = σ z = 20kx
−1, and A0 = 0.01kx

−1. The divergent-flux induced flow in Figure
1(b) is negligible except within the wavepacket itself and the direction of the flow is everywhere
parallel to the group velocity vector.

Unlike the case of horizontally periodic waves, (23) cannot represent the total wave-induced
flow. Computing the negative divergence of (23), shown in Figure 1(c), we see that there is a net
transport of mass away from the trailing edge of the packet and a net deposition of mass at the leading
edge. The flow is not divergence free. So, as in the case of horizontally localized surface gravity
wavepackets, there must be a response flow that results in a divergence-free total wave-induced flow.

B. Total wave-induced flow and leading-order response flow

Here we derive an expression that predicts the leading-order, divergence-free, wave-induced
flow that is the sum of the divergent-flux induced flow (23) and the response flow. After finding the
total flow, it is straightforward to find the response flow.

We first manipulate the fully nonlinear equations describing motion in a uniformly stratified,
Boussinesq fluid. Neglecting diffusion, the internal energy equation is DρT/Dt = 0, in which ρT =
ρ̄(z) + ρ(x, z, t) is the background ρ̄(z) plus perturbation density ρ(x, z, t) and D/Dt is the material
derivative. This is recast in terms of the vertical displacement field using

ξ = −ρ/ρ̄ ′, (25)

in which the prime denotes the z-derivative. Thus the internal energy equation is written

Dξ

Dt
= w. (26)

Taking the curl of the momentum equations conveniently eliminates pressure and gives the
equation for the evolution of spanwise vorticity:

Dζ

Dt
= N 2 ∂ξ

∂x
. (27)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.244.193.55 On: Tue, 28 Oct 2014 21:36:21

bruce
Cross-Out

bruce
Inserted Text
-1
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Being an incompressible fluid, the velocity fields can be written in terms of gradients of the stream-
function, ψ :

u = −∂ψ/∂z (28a)

and

w = ∂ψ/∂x, (28b)

and the vorticity is related to the streamfunction through

ζ = −∇2ψ. (29)

Finally, we combine (26) and (27) to give a differential equation written in terms of a linear
differential operator L acting on ψ on the left-hand side and the divergence of a nonlinear vector 
F
on the right-hand side[

∂t t (∂xx + ∂zz) + N 2∂xx

]
︸ ︷︷ ︸

≡L

ψ = ∇ ·
[
∂t

(
ζ 
u) + N 2∂x

(
ξ 
u)]︸ ︷︷ ︸

≡ 
F

. (30)

Equations (26) and (30), together with (29) and (28), comprise the two coupled fully nonlinear gov-
erning equations in ξ and ψ .

As in Sec. III A, we consider a horizontally and vertically localized wavepacket whose vertical
displacement field ξ

(1)
0 is given by (19), in which the slow variables are defined by (18). The

polarization relations of plane waves give corresponding formulae at first order in amplitude for the
velocity 
u(1)

0 and the vorticity ζ
(1)
0 . Substituting these relations in the right-hand side of (30), gives

the second-order amplitude equation:

Lψ (2) = ∇ ·
[
∂t

(
ζ (1) 
u(1)

) + N 2∂x
(
ξ (1) 
u(1)

)]
, (31)

where the linear operator L is defined in (30) and, for now, we have included terms at all orders in
ε arising from the various slow derivatives. If we substitute plane-wave solutions, for which A(X, Z,
T) = A0 is constant, into the right-hand side of (31), we find the operator is identically zero. This
demonstrates the well-known result that plane periodic internal gravity waves satisfy the nonlinear
equations exactly. The total wave-induced flow, derived from the O(α2) streamfunction ψ (2), is a
consequence of the internal wavepacket having finite spatial extent as expressed by the small but
non-zero value of ε.

However, if we use the O(α1ε0) wavepacket formulae for ξ
(1)
0 , ζ

(1)
0 , and 
u(1)

0 , as in (19), to

compute the slowly varying products ζ
(1)
0 
u(1)

0 and ξ
(1)
0 
u(1)

0 in (31), again we get zero. This is because
the vertical displacement and vorticity fields associated with plane waves are 90◦ out of phase with
the components of the velocity field. As shown in Sec. III D and the Appendix, the leading non-zero
terms resulting from the products of vorticity and vertical displacement with velocity are O(α2ε).
Therefore, the scales of each term in (31) are given as follows:[

∂t t
(
∂xx + ∂zz

)︸ ︷︷ ︸
O(α0ε4)

+ N 2∂xx︸ ︷︷ ︸
O(α0ε2)

]
ψ (2)(X, Z )︸ ︷︷ ︸

O(α2ε0)

= ∇ ·
[
∂t

(
ζ (1) 
u(1)) + N 2∂x

(
ξ (1) 
u(1))]︸ ︷︷ ︸

O(α2ε3)

, (32)

where we have assumed the divergence on the right-hand side induces a response expressed in terms
of the streamfunction ψ (2), which is a function of the slow scales X and Z. Extracting the leading-order
term, gives the differential equation ε2∂XXψ (2)(X, Z) = 0, which has the general solution:

ψ (2) = f (Z )X − g(Z ),

where f(Z) and g(Z) are arbitrary functions of the slow scale Z. Using (28), we find that the general
velocity field for the leading-order total wave-induced flow in a frame of reference moving with the
wavepacket is (u(2), w(2)) = (− f ′(Z )X + g′(Z ), f (Z )

)
. Requiring bounded horizontal flows as X

→ ±∞, we must have f ′(Z) = 0. And so f (Z) is constant. But the additional requirement that the
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wave-induced vertical velocity must be zero as Z → ±∞ means f(Z) = 0. Therefore, at this order of
approximation the total wave-induced flow is

u(2) = G(Z ), (33a)

w(2) = 0, (33b)

in which G(Z) ≡ g′(Z) is some function of Z. Thus we have shown that at O(α2ε1) the total wave-
induced flow has no vertical motion but extends horizontally far from the wavepacket.

These equations for the total wave-induced flow, together with Eq. (23) for the divergent-flux
induced flow of internal waves, gives formulae for the response flow (uRF, wRF). To satisfy (33b),
we must have

wRF = −wDF = 1

2

N 2kz

ω
|A|2.

Because the total horizontal wave-induced flow u(2) = G(Z) is independent of x, momentum conser-
vation dictates that the response flow at this order must act to spread the local divergent-flux induced
flow uDF horizontally uniformly in x. Explicitly, the horizontal component of the response flow is

uRF = −uDF + 1

Lx

∫
uDF dx,

in which the integral is performed over the horizontal extent of the domain Lx. Combining these
results, the total wave-induced flow at O(α2ε) is


u(2) =
( 1

Lx
Iu,DF, 0

)
, (34)

in which

Iu,DF =
∫

uDF dx (35)

is the horizontally integrated horizontal component of the divergent-flux induced flow. In partic-
ular, for a Gaussian wavepacket centred at the origin with vertical displacement given by (24),
Eqs. (23) and (35) give

Iu,DF = sgn(kx )
1

2

√
π σx N |
k|A2

0 e−z2/σz
2
. (36)

C. Horizontal long wave response: Scaling considerations

At first glance, (34) suggests the counter-intuitive prediction that the wave-induced flow de-
creases to zero as the horizontal extent of the domain in which the wavepacket propagates extends
to infinity. Yet, it must be kept in mind that the prediction (33) arises as a result of truncating the
perturbation expansion on the right-hand side of (32) at O(α2ε2). As we will show in Sec. III D, by
considering terms at O(α2ε3) on the right-hand side of (32), the wave-induced flow at higher order
in ε is in fact a horizontally long internal wave that translates vertically with the wavepacket.

This insight does not negate the usefulness of results in Sec. III B. In the wavepacket’’s immediate
surroundings, the wave-induced flow does appear to be horizontally uniform. Only in the far field
to either side of the wavepacket does the horizontal flow gradually decrease to zero. Nonetheless,
the horizontal extent of the induced flow is finite. And so it is not useful to compute the average
of a localized horizontal flow over the domain as in (34). It is useful, however, to characterize the
magnitude of the induced horizontal flow in terms of the integral given by (35). Here we use this
diagnostic and physical reasoning to make order-of-magnitude estimates for the structure of the long
wave induced by the wavepacket. The estimates will be compared with the long wave properties
derived more rigorously in Sec. III D.

We imagine the wavepacket as a translating body force in a stratified ambient that excites a
long, hence hydrostatic, internal wave. This part of the induced flow we describe as the “response
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wave.” Its spatiotemporal structure (denoted by “r” subscripts) is described by the following three
relationships:

ωr = N
kxr

|kzr | , (37a)

ωr

kzr
= cgz, (37b)

|kzr | 	 2π

4σz
. (37c)

The first identity is the dispersion relation for long waves (|kxr| � |kzr|). The second iden-
tity equates the vertical phase speed of the response wave to the vertical group velocity of the
localized wavepacket cgz, which is the source of the response waves. Finally, assuming the localized
wavepacket travels rightward, the horizontal velocity field associated with the response wave near the
localized wavepacket must positive over the total vertical extent ∼2σ z of the localized wavepacket.
This gives rise to the third expression for the approximate vertical wavenumber of the response
wave.

Combining the expression in (37) gives the horizontal wavenumber of the response wave and
the lateral extent of the disturbance Li, estimated to be half a horizontal wavelength of the response
wave:

|kxr | = |cgz|
N

k2
zr 	 (π2

4

k2
x |kz|
|
k|3 εz

2) kx , (38a)

Li = π/|kxr | 	 ( 4

π

|
k|3
k2

x |kz| εxεz
−2) σx . (38b)

The scaling for |kxr| emphasizes that the response wave is long compared to the horizontal
wavenumber of the waves kx, and the scaling for Li emphasizes that the horizontal extent of the long
wave is indeed much wider than the wavepacket extent σ x, under the assumption that εx ∼ εz. The
scaling relationship for Li is alternately found by considering the distance travelled by a long wave
at its horizontal group velocity |cgxr| 	 N|kxr|/kzr

2 over the time, σ z/cgz, in which the wavepacket
travels vertically at its group velocity over its vertical extent. Likewise, by examining characteristic
velocity and time scales, Bretherton1 proposed the scaling Li ∼ ε−1Nσ z

2/cgz, in which ε = εx ∼ εz.
By matching the dispersion characteristics of the wavepacket and the response wave, (38) is more
explicit in the dependence of Li upon the vertical and horizontal extents of the wavepacket.

The response wave should emanate from the localized wavepacket qualitatively like a bow
wave. The corresponding magnitude of the slope of lines of constant phase of the response wave is∣∣∣∣kxr

kzr

∣∣∣∣ = π

2
cos2 θ sin |θ | εz, (39)

which, being small, is consistent with this being a long wave.
The amplitude of the response wave is estimated by the requirement that the horizontal integral

of the horizontal flow over a crest of the long wave should equal Iu, DF, given by (35). Thus the
amplitude of the horizontal velocity associated with the long wave is

A0ur 	 1

2
kxr Iu,DF. (40)

In particular, for the Gaussian wavepacket given by (24), we estimate

A0ur 	 π2

16
(
√

πσx )
Nk3

x |kz|
|
k|2 |A0|2εz

2 = π5/2

16

N |kz|
|
k|2 α2εx

−1εz
2, (41)

in which we have used (36). Because the divergent-flux induced flow has spread laterally over a
distance of order Li, the total wave-induced flow within the wavepacket, estimated by A0ur, is smaller
than uDF by a factor εx

−1εz
2.
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D. Estimation of the horizontal long wave response

In Sec. III B we derived the fully nonlinear equation (30) expressed in terms of a linear
response Lψ to nonlinear forcing ∇ · 
F . There we showed that substitution of the leading order
fields associated with the wavepacket into the quadratic terms of 
F gives zero. One must express the
fields associated with the wavepacket to next order in ε in order to produce a non-trivial nonlinear
forcing term. The details of this calculation are provided in the Appendix. Therein we derive
expressions for 
u, ξ , and ζ at O(α1ε1) and from these we find ∇ · 
F at O(α2ε3).

With the insight provided in Sec. III C, we expect the nonlinear forcing given by (A4) to
excite a disturbance that is long compared to the horizontal extent of the forcing region. Following
Bretherton,1 we therefore approximate the x-dependent forcing by a Dirac delta function. Explicitly,
we write the nonlinear forcing term as

(∇ · 
F)(2)
3 	 N (z̃)δ(kx x̃), (42)

in which

N (z̃) = kx

∫ ∞

−∞
(∇ · 
F)(2)

3 dx̃ . (43)

For later convenience, we have written the result in terms of the fast variables in a reference frame
translating at the group velocity of the wavepacket x̃ = X/ε = x − cgx t and z̃ = Z/ε = z − cgzt . In
particular, if the amplitude envelope of the vertical displacement field is a Gaussian in the horizontal
so that A(x̃, z̃) = A0 exp[−x̃2/(2σ 2

x )] A(z̃) with ||A|| = 1, then (43) together with (A4) gives

N (z̃) = −1

2
(
√

π σx ) N 3 k3
x k2

z

|
k|5 A2
0∂z̃ z̃ z̃|A|2. (44)

In deriving this result we note that the integral in x̃ , hence in X, eliminates all terms in (A4) that
involve at least one X derivative. The term that remains results from the vertical divergence of ∂t (ζw).
Transforming from Z- to z̃-derivatives results in the implicit appearance of ε3

z = (kxσz)−3.
To find the induced long wave response at O(α2) to the nonlinear forcing of a horizontally

Gaussian wavepacket, we solve for the streamfunction ψ (2) by substituting (42) and (44) on the
right-hand side of (30). On the left-hand side we solve in the vertically translating frame and make
use of the long wave approximation so that ∂t t ∼ −c2

gz∂z̃ z̃ and ∂xx + ∂zz ∼ ∂z̃ z̃ . Explicitly, we have(
c2

gz∂z̃ z̃ z̃ z̃ − N 2∂x̃ x̃

)
ψ (2) = N (z̃)δ(kx x̃). (45)

The solution is found by taking the double Fourier transform in x̃ and z̃ of the resulting
differential equation. We begin by taking the Fourier transform of the right-hand side (42) with N (z̃)
given by (44): ∫ ∞

−∞

∫ ∞

−∞
(∇ · 
F)(2)

3 e−ı(κ x̃+μz̃)dx̃dz̃ = ıπ

2
N 3 k2

x k2
z

|
k|5 A2
0σxσz μ3 |̂A|2, (46)

in which |̂A|2(μ) is the Fourier transform of |A|2(z̃). In particular, if the wavepacket is a Gaussian in
the vertical as well as horizontal such that A = exp(−z2/2σ 2

z ), we have the Fourier transform pair

|A|2 = exp(−z̃2/σ 2
z ), |̂A|2 = exp(−(μσz)

2/4). (47)

The solution to (45) in Fourier space is given generally by

ψ̂ (2)(κ, μ) = ıπ

2
N 3 k2

x k2
z

|
k|5 A2
0σxσz

μ3 |̂A|2
c2

gzμ
4 − N 2κ2

. (48)

While inverting the double Fourier transform to obtain the solution for ψ (2) in real space, the integral
with respect to κ can be evaluated explicitly. In doing so, it is necessary to select the branch cut
corresponding to outgoing waves.1 Thus we find

ψ (2)(x̃, z̃) = −1

8
N

kx kz

|
k|2 A2
0σxσz

∫ ∞

0
|̂A|2μ cos

(
μz + μ2 cgz|x |

N

)
dμ, (49)
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which corresponds to the solution given by (3.15-3.16) in Bretherton.1 Therefore, the horizontal
flow associated with the induced long wave is

u(2)(x̃, z̃) = −1

8
N

kx kz

|
k|2 A2
0σxσz

∫ ∞

0
|̂A|2μ2 sin

(
μz + μ2 cgz|x |

N

)
dμ. (50)

In particular, for a bivariate Gaussian wavepacket, according to (47) we have

ψ (2)(x̃, z̃) = −1

8
N

kx kz

|
k|2 A2
0
σx

σz

∫ ∞

0
e−μ̃2/4μ̃ cos

(
μ̃

z̃

σz
+ μ̃2 cgz|x |

Nσ 2
z

)
dμ̃ (51)

and

u(2)(x̃, z̃) = −1

8
N

kx kz

|
k|2 A2
0
σx

σ 2
z

∫ ∞

0
e−μ̃2/4μ̃2 sin

(
μ

z

σz
+ μ̃2 cgz|x |

Nσ 2
z

)
dμ̃. (52)

Figure 2 plots the predicted streamfunction and horizontal velocity associated with the long
wave induced by an upward-propagating Gaussian wavepacket given by (24). Clearly, the induced
wave is significantly longer than the horizontal extent of the wavepacket, which is σx = 20k−1

x . From
(38b), the predicted horizontal extent of the wavepacket is Li 	 1440k−1

x , which is a reasonable
estimate of the lateral extent of the induced long waves to either side of the wavepacket at z = 0.
Below the wavepacket the induced long waves extend much further laterally, spreading in a manner
qualitatively similar to that of a bow wake.

Crucially, these lee waves have zero net horizontal flow associated with them. Even though the
induced long wave has alternating positive and negative horizontal velocity field, as anticipated from
the results in Sec. III B these cancel upon integration except at the level of the wavepacket itself.
This can be shown by horizontally integrating (50):∫ ∞

−∞
u(2) dx = N |
k|(√πσx )

∫ ∞

0
|̂A|2 cos(m̂z̃) dm̂ = 1

2
N |
k|(√πσx ) |A|2. (53)

This is equal to the horizontal integral of the horizontally integrated divergent-flux flow given
generally by (23) and (35), and given explicitly by (36) for a wavepacket that is Gaussian in the
vertical and horizontal. The result is plotted as the thick solid line in Figure 2(c).

−3200 −1600 0 1600 3200
kxx

−500

−400

−300

−200

−100

0

100

k
x
z

−2×10−5 0 2×10−5

kx
2

N
ψ(2)

(a)

−3200 −1600 0 1600 3200
kxx

−2×10−6 0 2×10−6

kx

N
u(2)

(b)

−0.002 0 0.002
∫

u(2) dx

(c)

FIG. 2. Predicted (a) streamfunction and (b) horizontal velocity field of the long wave induced by a Gaussian wavepacket
centred at the origin with kz = −kx, kxσ x = kxσ z = 20, and kx A0 = 0.01. The diagonal dashed lines in (a) and (b) indicate
the predicted slope of phase lines of the long wave according to (39). Panel (c) shows the horizontal integral of the horizontal
velocity predicted by theory (solid line) and computed numerically in a finite sized domain with −500 ≤ kxz ≤ 100 and
−3217 ≤ kxx ≤ 3217 (dotted line) and with −5500 ≤ kxz ≤ 500 and −25736 ≤ kxx ≤ 25736 (dashed line).
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Although the horizontally integrated flow is strictly positive, the local horizontal flow about the
wavepacket itself changes sign in the vertical. In particular, from (52) a wavepacket with bivariate
Gaussian amplitude envelope has an induced horizontal velocity profile along its horizontal center
given by

u(2)(x̃ = 0, z̃) = 1

2
N

kx kz

|
k|2 A2
0
σx

σ 2
z

[
− z̃

σ
+

(
2
( z̃

σ

)2 − 1
)

D(z̃/σz)
]
, (54)

in which D(x) = e−x2 ∫ x
0 et2

dt = (1/2)
∫ ∞

0 e−t2/4 sin(xt) dt is Dawson’s integral.21 Because D(x)
is an odd function, it is evident that u(2) is zero at the vertical center of the wavepacket, begin
positive above and negative below if the wavepacket propagates upward and to the right. This result
has potentially important consequences for the modulational stability of moderately large amplitude
internal wavepackets. The stability of horizontally periodic Boussinesq internal waves was assessed
through the derivation of a nonlinear Schrödinger equation in which the nonlinear term was strictly
positive as a consequence of the wave-induced mean flow being positive.6 Though beyond the scope
of this paper, future work will consider the weakly nonlinear influence upon a wavepacket of an
induced horizontal flow that changes sign over its vertical extent.

Finally, we comment upon the implementation of these results in numerical simulations. For
this purpose, the Fourier transforms in (51) and (52) must be estimated by computing Fourier series
in a finite sized domain. Because the lee wave, shown, for example, in Figure 2(b), has significant
amplitude far from the wavepacket, this means that the inverse transform must be computed on a
very wide and deep domain in order to reproduce properly the horizontally integrated horizontal
flow. To illustrate this, in Figure 2(c) we also plot the horizontally integrated, horizontal flow found
by inverse transforming (52) on two different sized domains. In a domain with the horizontal and
vertical extent of the fields plotted in Figures 2(a) and 2(b), the horizontally integrated horizontal
velocity is moderately smaller than that predicted by (36) about the level of the wavepacket and at
greater depths it alternates between positive and negative flows whose magnitude decreases with
vertical distance away from the wavepacket. These result because the lee wave is significant at
the sides of the domain. If the domain is much wider (over 200 times the wavepacket width), the
computed horizontally integrated flow is closer to the prediction (36) and there is better cancellation
of the positive and negative flows with depth.

Although accurate numerical calculation of the integrated horizontal velocity requires a large
domain, the streamfunction, horizontal velocity, and other fields associated with the long wave
change negligibly about the location of the wavepacket if the domain is sufficiently wide (i.e., about
4Li) and sufficiently deep so that the trailing waves have negligible amplitude at the bottom of the
domain.

All of this is to say that numerical simulations of a wavepacket that include the predicted lee wave
as an initial condition would have to be performed on (perhaps impractically) large domains in order
to give an accurate representation of the momentum transport expressed through the horizontally
integrated horizontal flow. This insight guides the design of the numerical simulations used to test
the predictions of theory.

IV. NUMERICAL SIMULATIONS

A. Numerical model and initial conditions

The evolution of internal wavepackets in a uniformly stratified fluid is simulated using a
code that solves the fully nonlinear, Boussinesq Navier Stokes equations in two dimensions.22

Instead of directly solving the momentum equations, the code evolves the spanwise vorticity field
ζ ≡ (∇ × 
u) · ŷ, whose evolution equation is found from taking the curl of the momentum equations.
As discussed in Sec. III B, instead of considering density perturbations, we evolve the vertical
displacement field ξ ≡ −(ρ̄ ′)−1ρ through manipulation of the internal energy equation (26).
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Explicitly, ξ and ζ are advanced in time according to the (non-dimensional) equations obtained
from (26) and (27) with added viscous damping and thermal diffusion terms:

∂ξ

∂t = −u ∂ξ

∂x − w
∂ξ

∂z + w + 1
RePrDξ,

∂ζ

∂t = −u ∂ζ

∂x − w
∂ζ

∂z + g
ρ0

∂ρ

∂x + 1
ReDζ,

(55)

in which D represents a diffusivity operator and we set the Prandtl number to be Pr = 1 and the
Reynolds number Re ≡ (N/kx

2)/ν = 106. The effects of diffusivity are included to ensure numerical
stability but their influence is set to be negligible as far as the evolution of the wavepacket and induced
mean flow is concerned. To minimize the influence of diffusivity upon the wavepacket and wave-
induced flow, in the simulations reported upon here, Laplacian diffusivity acts only on disturbances
with horizontal wavenumbers much larger than the wavenumber of the localized wavepacket kx. The
equations are solved in a horizontally periodic domain with free-slip upper and lower boundaries.
The fields themselves are discretized by Fourier modes in the horizontal and by discrete evenly
spaced grid points in the vertical. In this horizontal Fourier space, in which ∂x → ık, the diffusivity
operator is expressed by

D =
{

0 k ≤ k�

−k2 + ∂zz k > k�.
(56)

In the simulations reported upon here we set the cut-off wavenumber to be k� = 2kx.
Given ζ , the stream function is found by inverting Poisson’s equation ζ = −∇2ψ , which

is equivalent to inverting a tri-diagonal matrix in horizontal Fourier space. From ψ , the velocity
components are found using (28).

The simulation is initialized by a Gaussian wavepacket whose vertical displacement field in
general is given in real-space by

ξ (x, z, t = 0) = A(x, z, 0) cos(kx x + kzz). (57)

In simulations of vertically localized and horizontally periodic wavepackets centred initially at
the origin, the amplitude envelope is A(x, z, 0) = A0exp [z2/(2σ z

2)] and the width of the domain is set
to be λx = 2π /kx. In simulations of horizontally and vertically localized wavepackets the amplitude
envelope is given as in (24) by A(x, z, 0) = A0exp [x2/(2σ x

2) + z2/(2σ z
2)] and the width of the domain

is set to be very much larger than σ x. In either case, assuming small amplitude quasi-monochromatic
wavepackets, linear theory is used to initialize the corresponding vorticity field through

ζ (x, z, t = 0) = Aζ cos(kx x + kzz), (58)

in which Aζ ≡ N(kx
2 + kz

2)1/2A.
Here we report upon simulations of the wavepacket examined in Sec. III. Explicitly, using kx

−1

and N−1 to define the characteristic length and time scales, we fix kz = −kx and set A0 = 0.01kx
−1.

According to the dispersion relation, the wave has constant-phase lines oriented at 45◦ to the vertical
and the wavepacket propagates upward to the right at group velocity (cgx , cgz) = N/(2

√
2kx ) (1, 1).

The vertical extent of the wavepacket is σ z = σ ≡ 20kx
−1 (εz = 0.05) and in horizontally localized

wavepacket simulations we also set σ x = σ (εx = 0.05).
According to (38), the horizontal extend of the induced long wave is expected to be on the

order of Li = 3200
√

2/π kx
−1 	 1440kx

−1 on either side of the wavepacket. With this in mind,
in simulations of horizontally localized wavepackets the horizontal extent of the domain is set
to be 1024λx = 6434kx

−1. We will show that this is sufficiently wide that the periodic boundary
conditions do not affect the wavepacket or the induced mean flow about the level of the wavepacket
as it translates upward.

For straightforward comparison of the numerical results with theory, the wavepacket is situated
initially with its centre at the origin. Thus, after time Nt = 200, the wavepacket is expected to
be centred about (x, z) 	 (70.7, 70.7)k−1

x after propagating diagonally a distance of approximately
5σ . In this location, after the transient start-up time resulting from choosing the initial ambient to
be stationary, we may reasonably compare the measured flow induced by the wavepacket with the
predictions of steady state theory. This is demonstrated explicitly below in the examination of the
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horizontally periodic wavepacket. The upper and lower boundaries of the domain are situated at z
= 200kx

−1 and z = −100kx
−1, sufficiently far that these do not influence the wavepacket evolution

over the duration of a simulation.
For horizontally periodic, vertically localized wavepackets, Sutherland6 showed that one should

also superimpose on the perturbation fields the horizontal component of the wave-induced flow,
given by (23) for rightward-propagating waves: uDF(z, t = 0) = −〈ξζ 〉t=0 = (1/2)N |
k||A0(z)|2,
in which A0(z) = A(z, t = 0) is the initial amplitude envelope of the vertical displacement field.
This is not a steady background flow but the transient induced mean horizontal flow at t = 0 that
at later times translates vertically at the vertical group velocity with the wavepacket. If a simula-
tion is initialized with zero mean horizontal flow then, by momentum conservation, the vertically
integrated mean horizontal momentum must be zero for all time. So the zero mean flow initial con-
dition is actually specifying a wavepacket initially situated at the level of a steady background flow
with flow profile ū = −uDF(z, t = 0). In these simulations, as time progresses and the wave moves
vertically away from its initial position, the steady background flow is revealed about the initial
position of the wavepacket while the opposite signed transient flow is observed to translate verti-
cally with the wavepacket which, neglecting dispersion, is given by uDF ≡ (1/2)N |
k||A0(z̃)|2, with
z̃ = z − cgzt .

For horizontally and vertically localized wavepackets, it is not appropriate to superimpose upon
the wave field the divergent-flux induced flow uDF, because this is a divergent flow. Instead of
making assumptions about the divergent-flux and response flow a priori, here we initialize with
no wave-induced flow whatsoever and observe how the induced flow evolves as the wavepacket
propagates. We will see that for both horizontally periodic and horizontally localized wavepackets,
the horizontal velocity field evolves so that there is a horizontally integrated horizontal flow that
translates with the wavepacket while a nearly equal and opposite but non-translating flow appears
about the initial vertical location of the wavepacket.

B. Horizontally periodic wavepacket simulation

First, a simulation with a horizontally periodic wavepacket is performed with zero initial mean
horizontal flow. This provides a basis for comparison with horizontally localized wavepackets. The
results are shown in Figure 3 (Multimedia view). The initial condition in Figure 3(a) shows contours
of the horizontal velocity field to the left and to the right shows the vertical profile of the horizontally
integrated horizontal flow:

Iu ≡
∫ Lx

−Lx

u dx, (59)

in which the horizontal extent of the domain is the horizontal wavelength: λx = 2Lx. Because the
wavepacket is horizontally periodic and we have not superimposed a mean background flow initially,
Iu(z, t = 0) = 0 for all z.

At later times, the wavepacket is seen to propagate upwards at the predicted vertical group
speed, being centred around z 	 70 at time Nt = 200. During its propagation, the horizontally
integrated flow develops into a “double-jet” profile. A negative jet centred around z = 0 is evident
at Nt = 100 and remains centred there at Nt = 200. Meanwhile, a positive jet appears, being centred
around z = 35kx

−1 at Nt = 100 and around z = 70kx
−1 at Nt = 200. At this last time, the lower

positive jet conforms almost exactly to the predicted horizontally integrated divergent-flux induced
flow, defined by (35). Explicitly, the dashed line shows

Iu,DF = λx

{
1

2
N |
k|A0

2 exp
[−(z − cgzt)

2/σz
2
]}

. (60)

This simple prediction assumes the wavepacket translates at the group velocity from its initial
position at the origin and does not disperse. Indeed the small discrepancy between Iu and Iu, DF at Nt
= 200 about z = 70kx

−1 is the result of dispersion. If Iu, DF is computed using |A(z, t)|2 rather than
|A(z − cgzt, t = 0)|2, the curves exactly overlap about z = 70kx

−1.
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FIG. 3. Simulation of a horizontally periodic wavepacket at times Nt = (a) 0, (b) 100, and (c) 200. The left panels show the hor-
izontal velocity field, the right panels show the horizontally integrated horizontal flow Iu (black line). The dashed line plots the
predicted integrated horizontal induced flow given by (60). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4899262.1]
[URL: http://dx.doi.org/10.1063/1.4899262.2]

Momentum conservation for a Boussinesq fluid predicts that the domain integrated horizontal
flow

∫
Iu dz is unchanging in time. In our simulations, we indeed find that

∫
Iu dz = 0 at each time step.

In particular, at Nt = 200 the positive momentum associated with the lower positive jet is exactly
cancelled by the upper negative jet situated around z = 0. This result reaffirms the assertion by
Sutherland6 that simulations of horizontally periodic, vertically localized wavepackets in otherwise
stationary fluid should nonetheless have a non-zero mean flow, ū(z, t = 0) = uDF, imposed at the
outset. To require zero mean flow, as we have done in the simulation shown in Figure 3, means that
one is actually simulating a wavepacket centred about a (steady) background negative jet whose
speed is equal and opposite to the (transient) divergent-flux induced flow so that the sum of both
equals zero at each height z. When the wavepacket propagates vertically away, the wave-induced
flow moves with the waves and reveals itself as a positive, through vertically translating horizontal
jet. Simultaneously the steady negative background jet is revealed.

Herein, the primary purpose of Figure 3 is to demonstrate that the wave-induced flow has fully
separated from the background flow at Nt = 200. And so at this time, in a frame of reference moving
at the group velocity the wavepacket and its induced flow can be regarded as being in steady state.
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C. Horizontally localized wavepacket: Non-local wave-induced flow

We now consider the simulation of a horizontally as well as vertically localized wavepacket.
Diagnostics at Nt = 200 are shown in Figure 4 (Multimedia view). This is the time at which the
horizontally periodic wavepacket and its induced mean flow was shown to have reached steady state
in a reference frame translating vertically at speed cgz. Although the domain extended over −3200
< kxx < 3200, here the fields are plotted only for −100 ≤ kxx ≤ 100.

As expected, the horizontal and vertical velocity fields in Figures 4(a) and 4(b) show that the
wavepacket has translated to the origin with little dispersion. Because the magnitude of the wave-
induced flows is predicted to be of order amplitude squared, the signal is too weak to be seen on the
colour scale shown in these two plots. Indeed, (41) predicts the magnitude of the induced horizontal
flow to be A0ur/(N/kx) ∼ (π5/2/128) × 10−5 	 1.4 × 10−6.

To reveal the induced flows, we perform a horizontal fast Fourier transform of both fields over
the entire domain and set to zero all Fourier components with horizontal wavenumbers between
0.5kx and 1.5kx. Inverse transforming gives the resulting wavepacket-filtered horizontal and vertical
velocity fields u and w shown in Figures 4(c) and 4(d), respectively. These fields, plotted with a
colour scale spanning a much smaller range of non-dimensional speeds, e.g., ||u|| < 2 × 10−6 N/kx ,
show that magnitude of the horizontal response flow is indeed well-predicted by (41).

Even though the momentum flux divergence associated with the wavepacket is predicted to
generate a local u and w-dependent divergent-flux induced flow according to (23), consistent with
(34) the response flow results in a total wave-induced flow moving the fluid almost entirely in the
x-direction. In Figure 4(c), u appears to be nearly independent of x. However, the plots of u over
the entire horizontal computational domain in Figure 5 (Multimedia view) shows that u exhibits a
pattern similar to a bow wake. Somewhat more directly, it resembles the pattern of internal waves
created by a translating cylinder,23, 24 although in the case of a vertically translating cylinder the
horizontal flow field is an odd function in x centred about the cylinder and in our case it is an even
function of x centred about the wavepacket.
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FIG. 4. Horizontally and vertically localized Gaussian wavepacket at Nt = 200 showing the (a) horizontal, u, and (b) vertical,
w, velocity fields and the wavepacket-filtered (c) horizontal, u, and (d) vertical, w, velocity fields. (Multimedia view) [URL:
http://dx.doi.org/10.1063/1.4899262.3]
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FIG. 5. Wavepacket-filtered horizontal flow (left) associated with the Gaussian wavepacket at Nt = (a) 50, (b) 100, (c) 150,
and (d) 200 shown over the entire horizontal extent of the domain. The size of the localized wavepacket is indicted by the ellipse
in each of the left-hand images. The diagonal dashed lines in the left-hand image of (d) are drawn with the slope of the long
wave phase lines predicted by (39). The horizontally integrated horizontal velocity computed from the unfiltered horizontal
velocity field is plotted by the solid lines in the corresponding panels to the right. The dashed line shows the prediction (61)
for the horizontally integrated induced horizontal flow. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4899262.4]
[URL: http://dx.doi.org/10.1063/1.4899262.5]

The result in Figure 4(c) clearly shows that the momentum flux divergence associated with the
wavepacket acts as translating localized forcing that excites horizontally long internal waves. The
slope of the phase-lines associated with these waves is consistent with the assumptions leading to
the order-of-magnitude prediction (38) for the lateral extent of the wave-induced flow. The vertical
wavelength of the long waves is on the order σ z = 20kx

−1 and the slope of the constant-phase
lines predicted by (39) to have magnitude |kxr/kzr | = πεz/4

√
2 	 0.028 is consistent with the slope

evident in Figure 5(d).
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FIG. 6. Vertical profiles of the measured horizontal velocity (solid lines) at x̃ = 0, corresponding to the horizontal position
of the centre of the wavepacket, shown at nondimensional times Nt = (a) 0, (b) 5, (c) 10, and (d) 200. These are compared
with the predicted horizontal flow (dashed lines) given by (54).

Tracking the constant phase line of the long wave emanating from the front of the wavepacket at
time Nt = 200 (Figure 5(d)), we see that the disturbance field becomes negligibly small at a vertical
level corresponding to the trailing edge of the wavepacket. The lateral extent of the disturbance is
kx|x| 	 1000, close to the value kxLi 	 1440kx

−1 predicted by (38). The disturbance field further in
the lee of the wavepacket continues to emanate outward. Yet this can be understood as the passive
propagation of long waves after their forcing is turned off.

The long waves are the result of the wave-induced flow associated with the localized wavepacket.
Despite the somewhat complex structure of the long waves, horizontally integrating the (unfiltered)
horizontal velocity field reveals horizontal vertical profiles shown in the right panels of Figure 5
similar to those produced by a horizontally periodic wavepacket. Again, as time progresses, the
initially zero flow evolves to reveal a superposition of a steady negative “jet” centred around z = 0
and a vertically translating positive “jet.” (We have put the word “jet” in quotations here because the
flow is in fact x-dependent, though over long horizontal distances compared with the wavepacket
width.) Furthermore, the vertical structure of the “jet” is well predicted by theory. From (17) and (35),
we predict

Iu,DF = √
πσx

{
1

2
N |
k|A0

2 exp
[−(z − cgzt)

2/σz
2
]}

. (61)

The right-hand panels in Figure 5 show that this prediction closely overlaps with the integrated
horizontal flow calculated from the simulations in the vicinity of the wavepacket after it has translated
sufficiently far from its initial position and left the negative “jet” in its wake. Although the wave-
induced velocities from momentum flux divergence (23) are of order α2ε0, the resulting velocities
associated with the long wave corresponding to (61) are of order α2ε1, as shown in (41) setting
ε = εx = εz.

Comparing the structure of the predicted horizontal velocity shown in Fig. 2(b) (for a wavepacket
centred at the origin) with the numerically computed horizontal velocity associated with the induced
long wave shown in Fig. 5(d), it is clear that a wavepacket in an otherwise stationary ambient induces
a long wave with the structure and amplitude predicted by theory.

While the horizontally integrated horizontal flow is positive over the vertical extent of the
wavepacket, the induced horizontal flow measured along a vertical profile through the centre of the
wavepacket changes from positive on the leading flank to negative on the trailing flank as illustrated
in Figure 6. This shows vertical profiles of u(x̃ = 0, z) at four different times and compares the
results with the theoretical prediction given by (54). Because the ambient is stationary at Nt = 0,
the measured wavepacket-filtered horizontal flow is zero at this time. However, after less than one
buoyancy period the vertical profile of the wavepacket-filtered horizontal flow through the centre
of the wavepacket conforms closely to the predicted flow (Figure 6(b)). The measurements and
prediction are close to overlapping at Nt = 10 (Figure 6(c)) and much later at Nt = 200 (Figure 6(d)).
This shows that a wavepacket generated in an ambient initially at rest rapidly induces a horizontal
flow field across its breath whose structure can be predicted by steady-state theory.
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V. CONCLUSIONS

We have examined theoretically and numerically the structure of the flow induced by a
small-amplitude, two-dimensional, Boussinesq, horizontally and vertically localized internal gravity
wavepacket. This induced flow is not the result of wave-breaking, but is a transient flow that varies
broadly in space — compared to the width of the wavepacket — and which is coupled with the
wavepacket as it moves at its group velocity.

Through a theoretical wavepacket approach that seeks a steady wave-induced flow in a frame
of reference that moves with the group velocity of the wavepacket, we find that the leading-order
total wave-induced horizontal flow is a horizontally uniform flow whose horizontal integral is equal
to the horizontal integral of the horizontal component of the divergent-flux induced flow for internal
waves uDF.

Simulations show that an internal wavepacket indeed excites a long horizontal disturbance. But
in a sufficiently wide horizontal domain, it is clear that the disturbance field is not horizontally
uniform to the far reaches of the domain. In an incompressible fluid, information about the presence
of the wavepacket can only be transmitted laterally at the speed of horizontally long internal waves.
The structure and extent of the long disturbance was anticipated by Bretherton.1 However, our
analyses, combined with numerical simulations, clearly show that the wavepacket excites a long
internal wave. Furthermore, our analyses reveal the link between the momentum transport by the
wavepacket and the long wave. Consistent with theory, we find that the horizontally integrated
horizontal flow associated with the long waves is well represented by the horizontal integral of uDF.
This result and the requirement that the horizontally long internal waves propagate with vertical
phase speed equal to the vertical group velocity of the internal wavepacket gives a prediction, not
just for the wavenumber, but also the amplitude of the long waves. Crucially, the characteristic
horizontal scale of the induced long wave is much larger than the horizontal scale associated with
the packet itself: the response is non-local.

This study has focused upon small-amplitude, Boussinesq internal wavepackets confined to
two dimensions. If the spanwise extent of the wavepacket is finite, adding a third dimension to
the problem, then it is possible for a component of the response flow to circulate laterally around
the wavepacket in what has been called “Bretherton flow” (e.g., see Figure 3(a) of Bühler and
McIntyre).9 There is some recent experimental evidence for a recirculating flow resulting from a
spanwise localized internal wave beam,25 though viscosity played an important role in that study.
The dynamics are expected to be more complicated if the waves are large-amplitude or grow to large
amplitude through non-Boussinesq effects.7, 17, 19 Horizontally periodic, vertically localized internal
wavepackets have been shown to be modulationally unstable if their frequency is larger than that
for waves with the fastest vertical group velocity. The amplitude-envelope of these waves narrows
and grows and advances vertically at a slower speed as a consequence of being Doppler-shifted by
the wave-induced mean flow. Otherwise the waves are modulationally stable and the wavepacket
broadens vertically. Qualitatively, the same weakly nonlinear dynamics have been observed for
wavepackets that are horizontally as well as vertically localized.17 This can now be understood to
occur due to weakly nonlinear interactions between the wavepacket and the horizontal flow associated
with the induced long wave. Weakly nonlinear theory has also provided evidence for radiating
wave-like disturbances excited by moderately large, fully three-dimensional wavepackets.26 But
more needs to be done by way of theory and high resolution simulations in large computational
domains. Future work will investigate weakly nonlinear effects associated with interactions between
a spanwise-finite, large-amplitude internal wavepackets and the induced long wave it generates. The
ultimate goal is to evaluate the transport of momentum and energy, not only by the wavepacket, but
by the horizontally long internal waves they generate.
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APPENDIX: NONLINEAR FORCING OF LONG INTERNAL WAVES

Here we compute the leading-order non-zero expression for ∇ · 
F in (30), in which 
F is given
explicitly by


F ≡
[ ∂

∂t

[
ζ (1) 
u(1)

] + N 2 ∂

∂x

[
ξ (1) 
u(1)

]]
, (A1)

and the velocity, vorticity, and vertical displacement fields 
u(1), ζ (1), and ξ (1) are given in terms
of the quasi-monochromatic internal wavepacket. Further to (19), we neglect dispersion, expressed
through the dependence of the amplitude envelope upon the slow variable T. Thus for the vertical
displacement field we suppose at leading order:

ξ (1) = ξ
(1)
0 ≡ A(X, Z )eıϕ, (A2)

in which it is understood that the actual field is the real part of the right-hand side, ϕ ≡ kxx +
kzz − ωt, and (X, Z) = (ε(x − cgxt), ε(z − cgzt)) represent the slow spatial variables associated
with the amplitude envelope that translates at the group velocity of the wavepacket. Here we have
assumed the slow vertical and horizontal scales are comparable in magnitude so that ε ≡ εx = εz.
For convenience here, we also drop the superscript, (1), with the understanding that all the fields
under consideration are O(α) and so write the perturbation expansion in ε for each of the fields as ζ

= ζ 0 + εζ 1 + . . . , etc.
From the linearized equations of motion for internal waves, we express the O(ε0) fields in terms

of the vertical displacement amplitude envelope, as listed in the second column of Table I. At O(ε),
we assume that ξ is an imposed field and so set ξ (1)

1 ≡ 0 (and ξ (1)
n ≡ 0 for n ≥ 1). To get the remaining

fields we extract terms involving exactly one derivative of the amplitude envelope. So, for example,
from the differential relations w = ∂tξ = ∂xψ we find

−cgx AX eıϕ − cgz AZ eıϕ = −(N/|
k|)AX eıϕ + ıkxψ1,

in which the subscripts to A denote partial derivatives. Solving for ψ1 and simplifying using
cgx = Nk2

z /|
k|3 and cgz = −Nkx kz/|
k|3 gives

ψ1 = −ı(N/|
k|3)[kx AX + kz AZ ]eıϕ.

This and the corresponding expressions for the other O(ε) fields of interest are given in the third
column of Table I.

Next, we consider the leading-order, O(α2ε1), contributions from each of the four products of
pairs of fields in the expression for 
F in (A1). In doing so, we explicitly extract the real part of each
expression and keep only the slowly varying result (i.e., those terms in the product for which eıϕ

multiplies its complex conjugate). At O(α2ε0) the result gives zero. At next order in ε we consider

TABLE I. Expressions for different fields at O(αε0) (second column) and O(αε1) (third column) given in terms of the
amplitude envelope A of the vertical displacement field, as found through the linearized equations for internal waves. It is
understood that the actual fields are the real parts of the tabulated expressions.

Field O(ε0) O(ε1)

Vertical displacement ξ0 = Aeıϕ ξ1 = 0
Streamfunction ψ0 = −(N/|
k|)Aeıϕ ψ1 = −ı(N/|
k|3)[kx AX + kz AZ ]eıϕ

Horizontal velocity u0 = ı(Nkz/|
k|)Aeıϕ u1 = (Nkx/|
k|3)[−kz AX + kx AZ ]eıϕ

Vertical velocity w0 = −ı(Nkx/|
k|)Aeıϕ w1 = (Nkz/|
k|3)[−kz AX + kx AZ ]eıϕ

Vorticity ζ0 = −N |
k|Aeıϕ ζ1 = ı(N/|
k|)[kx AX + kz AZ ]eıϕ
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the product of O(ε0) fields with O(ε1) fields. Thus we find the following:

(ζu)(2)
1 = ε

4
(N 2/|
k|2)

[
2kx kz∂X + (k2

z − k2
x )∂Z

] |A|2,

(ζw)(2)
1 = ε

4
(N 2/|
k|2)

[
(k2

z − k2
x )∂X − (2kx kz)∂Z

] |A|2,

(ξu)(2)
1 = ε

4
(Nkx/|
k|3) [−kz∂X + kx∂Z ] |A|2,

(ξw)(2)
1 = ε

4
(Nkz/|
k|3) [−kz∂X + kx∂Z ] |A|2.

(A3)

These expressions may be substituted into (A1) to get the nonlinear forcing at O(α2ε3). After
some simplifying we find

(∇ · 
F)(2)
3 = 1

4
ε3 N 3

|
k|5
[

− kx kz(3k3
z + k2

x ) ∂X X X + (k4
z + 4k2

z k2
x + k4

x ) ∂X X Z

+ kx kz(5k2
z − k2

x ) ∂X Z Z − 2k2
x k2

z ∂Z Z Z

]
|A|2.
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