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We report upon laboratory experiments and numerical simulations examining the
evolution of an interfacial internal solitary wave incident upon a triangular ridge
whose peak lies below the interface. If the ridge is moderately large, the wave is
observed to shoal and break similar to solitary waves shoaling upon a constant slope,
but interfacial waves are also observed to transmit over and reflect from the ridge.
In laboratory experiments, by measuring the interface displacement as it evolves in
time, we measure the relative transmission and reflection of available potential energy
after the incident wave has interacted with the ridge. The numerical simulations of
laboratory- and ocean-scale waves measure both the available potential and kinetic
energy to determine the partition of incident energy into that which is transmitted
and reflected. From shallow-water theory, we define a critical amplitude, Ac, above
which interfacial waves are unstable. The transmission is found to decrease from one
to zero as the ratio of the incident wave amplitude to Ac increases from less than to
greater than one. Empirical fits are made to analytic curves through measurements of
the transmission and reflection coefficients.
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1. Introduction

Oceanic internal solitary waves are generated in many locations as the result of the
tides moving over the continental shelf or other locations of elevated topography
(Osborne & Burch 1980; Apel et al. 1985; New & Pingree 1992; van Gastel
et al. 2009; Farmer et al. 2011). They are characterized by undulations of the
thermocline, which can be drawn downwards by tens to hundreds of metres, with
surface flows changing speed by up to 1 m s−1 (Pinkel 2000; Farmer et al. 2011).
Being large-amplitude waves, they propagate faster than the linear long-wave speed
and can maintain their form without significant dispersion. But when the waves do
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break, for example as they shoal in a progressively shallowing ambient, they release
significant energy that substantially mixes the ambient and can resuspend sediment
and nutrients into the fluid column (Sandstrom & Elliott 1984; Bourgault & Kelley
2003; Diamessis & Redekopp 2006; Reeder, Ma & Yang 2011; Xu et al. 2012;
Richards et al. 2013). Thus the sites of solitary-wave breaking, while productive for
marine life, also pose a hazard to submerged pipelines and infrastructure associated
with the offshore oil industry. Solitary waves also comprise an efficient mechanism
for the transfer of energy from the large-scale barotropic tide to small-scale mixing.
Cumulatively this energy pathway could comprise a non-negligible part of the oceanic
energy budget (Bourgault & Kelley 2003). Several investigations have examined
the breaking structure, energy deposition and partial reflection of solitary waves
incident upon a uniform slope (Helfrich 1992; Michallet & Ivey 1999; Boegman,
Ivey & Imberger 2005; Bourgault & Kelley 2007; Aghsaee, Boegman & Lamb 2010;
Sutherland, Barrett & Ivey 2013). Less well studied is the evolution of solitary waves
over complex topography such as submarine ridges, sea mounts or the submerged
shoulders of islands. This paper takes a step in this direction using a general
theoretical framework to construct empirical formulae for the energy transmission
and reflection of an internal solitary wave of depression passing over a triangular
ridge.

Several theoretical models have been derived to predict the steady speed and
structure of internal solitary waves as they depend upon the ambient stratification
and the amplitude or energy of the wave. (For a review of models and observations,
see Helfrich & Melville (2006).) But these models break down as the wave shoals,
overturns and imparts at least some of its energy to mixing and viscous dissipation
through turbulence. Experimentalists and numerical modellers have instead measured
the partition of incident wave energy into that lost through turbulence, that which is
associated with a reflected wave and, in the case of waves incident upon a localized
submerged ridge, that which is associated with a transmitted wave. For experiments of
solitary waves of depression incident upon a uniform slope, Michallet & Ivey (1999)
suggested that the reflection coefficient R (the ratio of reflected to incident wave
energy) should increase approximately linearly with the width Lsw of the incident
wave relative to the length of the slope, provided the latter is greater than twice
Lsw. In reality, the mechanism of wave breaking depends not upon the length of the
slope, but upon the magnitude of the slope, s, relative to the characteristic slope of
the incident wave as expressed through the Iribarren number (Boegman et al. 2005;
Sutherland et al. 2013):

Ir≡ s√
Asw/Lsw

. (1.1)

Through a reanalysis of the experiments of Michallet & Ivey (1999) and through
numerical simulations, an empirical formula was determined for the reflection
coefficient in the form R = 1 − exp(−Ir/Ir0), in which different studies have found
Ir0 = 0.78 (Bourgault & Kelley 2007) and Ir0 = 0.65 (Aghsaee et al. 2010).

Relatively few laboratory experiments have been performed examining the evolution
of internal waves incident upon a submerged localized obstacle (Sveen et al. 2002;
Guo et al. 2004; Chen et al. 2007; Hult, Troy & Koseff 2011a,b) and most of these
focused upon the structure of the breaking wave as it depended upon the properties
of the incident wave and the ambient conditions above the hill top. In their study of
periodic internal waves incident upon a submerged Gaussian hill, Hult et al. (2011a)
found that reflection decreased as the incident wavelength decreased and that the
reflection coefficient had no significant dependence upon incident wave amplitude.
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These trends, opposite to those for solitary waves incident upon a uniform slope, are
a consequence of the incident waves being periodic and interacting only weakly with
the submerged hill.

Solitary waves of depression incident upon a near-triangular ridge with a smooth
apex were examined experimentally by Sveen et al. (2002). However, their focus was
upon the structure of the wave as it passed over the top of the ridge. They classified
whether the interaction was weak, moderate or strong both in terms of the flow speed
relative to the predicted shallow-water speed over the ridge and in terms of a blockage
parameter measuring the maximum depth of the upper layer above the wave trough
relative to the ambient depth above the ridge. Interactions were found to be strong
if the blockage parameter was approximately greater than 0.6. For three experiments,
in which the wave–barrier interaction was ‘weak’ or ‘moderate’, they measured the
energy of the transmitted wave relative to the incident energy after calibrating for
viscous losses at the tank boundaries. From experiments with ‘strong’ wave–barrier
interactions, transmission coefficients were not computed and reflection coefficients
were generally estimated to be 0.01–0.02, though their explicit dependence upon
the properties of the incident wave, ambient conditions and topography were not
evaluated. Separately, Chen (2010) developed a statistical methodology for classifying
interactions between a solitary wave and a ridge in terms of the blockage parameter.
However, general equations for the transmission and reflection of solitary waves
incident upon a ridge were not explicitly formulated.

Given the empirical results of a solitary wave incident upon a uniform slope, it is
likely that the reflection coefficient should depend upon the slope of the topography
as well as the depth of the ridge below the surface. Rather than heuristically use the
blockage parameter, we turn to fully nonlinear shallow-water theory for a two-layer
fluid to define a critical amplitude that is used to formulate transmission and reflection
coefficients.

In § 2 we review shallow-water theory for nonlinear disturbances of arbitrary
amplitude in a two-layer fluid. From this we propose a formula for the critical
amplitude at which incident waves are unstable over the top of topography. The results
of laboratory experiments and simulations are represented in terms of the incident
amplitude relative to this critical amplitude. The laboratory experiments are described
in § 3, with a focus upon the energetics associated with the transmitted and reflected
waves. In § 4 two-dimensional numerical simulations are performed first to simulate
the conditions of the laboratory experiments and then to simulate circumstances
representative of internal solitary waves observed in the South China Sea. In § 5 we
present empirical formulae for the transmission and reflection coefficients of solitary
waves on laboratory and oceanic scales. The results are summarized in § 6.

2. Theory

Although in special cases weakly nonlinear theory can be used to predict the
evolution of a moderately large-amplitude internal solitary wave as it interacts with
topography (Maderich et al. 2009, 2010), in general it is not possible to derive an
analytic model for the approach and interaction of an internal solitary wave with
submerged topography. Nonetheless, by examining the stability of shallow-water
disturbances in a two-layer fluid, we can gain insight into its evolution and, in
particular, the potential for breakdown due to mixing. In this approach, we consider
a solitary wave of depression situated initially over topography so deep or so flat
that the ambient can be approximated as having uniform depth. In the spirit of the
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Wentzel–Kramers–Brillouin (WKB) approximation, if the topography rises slowly
compared to the horizontal extent of the wave, the wave is expected to evolve as if
the underlying topography is locally flat. Thus we assess the stability of the wave with
respect to its amplitude Asw, the (constant) upper-layer depth H1 and the lower-layer
depth H2, which is smaller when the wave is situated over a hill.

In considering the stability of the wave as it depends upon its relative amplitude,
we suppose the ambient is a two-layer fluid of finite uniform depth, H. In a stationary
ambient, the upper layer has depth H1 and density ρ1 while the lower layer has depth
H2 and density ρ2. Arbitrarily we suppose that H1 < H2 so that solitary waves are
manifest as waves of depression, with the interface displaced downwards by η(x, t),
taken to be positive. We also allow for the free surface to be displaced by η0(x, t),
which is taken to be positive if upwards. Thus in the presence of a wave, the upper
layer has depth h1(x, t)=H1 + η+ η0 and the lower layer has depth h2 =H2 − η.

For shallow hydrostatic disturbances, momentum and mass must be conserved in
each layer, so that

Du1

Dt
= g

∂η0

∂x
,

Du2

Dt
= g

∂η0

∂x
+ g′

∂η

∂x
, (2.1a,b)

∂h1

∂t
+ ∂

∂x
(u1h1)= 0,

∂h2

∂t
+ ∂

∂x
(u2h2)= 0. (2.2a,b)

Here u1(x, t) and u2(x, t) are the horizontal velocities in the upper and lower layers,
respectively. Consistent with the shallow-water assumption, the flows are independent
of depth z. With the understanding that ‖η0‖ is small compared to the layer depths
and ‖η‖, and assuming that there is no flow in the absence of waves, we also have
that

h1 + h2 'H1 +H2 =H and h1u1 + h2u2 = 0. (2.3a,b)

Following Long (1956), we reduce (2.1)–(2.3) to two equations in u1 and h1 alone.
These are scaled with respect to H and the characteristic speed c0≡ (g′H)1/2, in which
g′= g(ρ2− ρ1)/ρ0 is the reduced gravity and ρ0 is the characteristic density. Thus we
define the non-dimensional functions u ≡ u1/c0 and h = h1/H and the scaled space
and time variables χ = x/H and τ = c0t/H. The resulting coupled pair of nonlinear
equations are

∂u
∂τ
+ 1− 3h

1− h
u
∂u
∂χ
+
[
(1− h)− u2

(1− h)2

]
∂h
∂χ
= 0, (2.4)

∂h
∂τ
+ h

∂u
∂χ
+ u

∂h
∂χ
= 0. (2.5)

Seeking solutions for unidirectional disturbances, the equations can be reduced
further to one equation in one unknown using the method of characteristics. This
can be done explicitly or using the transformation a ≡ 1 − 2h and b = u/(1 − h),
which yields the appealing symmetric pair of equations aτ + (b(a2 − 1)/2)x = 0
and bτ + (a(b2 − 1)/2)x = 0, upon which analyses can be more simply performed
(Chumakova et al. 2009). The (scaled) characteristic speeds are

λ± = 1− 2h
1− h

u±
[

h(1− h)
(

1− u2

(1− h)2

)]1/2

. (2.6)
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Whereas for a one-layer fluid the speeds are strictly real-valued, here we find that
the speeds are real-valued (i.e. the system is hyperbolic) only if Ri≡ [(1−h)/u]2 > 1,
a criterion written in terms of a bulk Richardson number because in dimensional
units Ri = g′H/(u1 − u2)

2 (Milewski et al. 2004; Chumakova et al. 2009). In terms
of energetics, Ri represents the potential energy gain due to mixing divided by the
kinetic energy loss. If Ri< 1, the flow is sufficiently energetic that it could completely
mix the two layers (Milewski et al. 2004).

The Riemann invariants of the two-layer shallow-water system are

r± = sin−1(1− 2h)∓ sin−1(u/(1− h)). (2.7)

In particular, for rightward-propagating disturbances satisfying u= 0 if h= H̃1≡H1/H,
we have from r− = sin−1(1− 2H̃1) that

u= 2(1− h)
[
(1− 2H̃1)

√
h(1− h)− (1− 2h)

√
H̃1(1− H̃1)

]
. (2.8)

Thus we can write the stability criterion, Ri > 1, in terms of h alone. In dimensional
units, this sets a limit, Ac, on the amplitude of an internal solitary wave:

Asw 6 Ac ≡ H2 −H1

2
+√H1H2. (2.9)

Alternatively, the critical condition can be written in terms of the maximum deepening
of the upper layer such that H1 + Asw 6 H/2+√H1H2, in which H =H1 +H2 is the
total ambient depth. Because the geometric mean is always less than the arithmetic
mean of H1 and H2, the right-hand side of this inequality is always less than the total
fluid depth.

The predicted critical value is plotted in figure 1. In the limit of a relatively
shallow upper layer (H1/H2 → 0), the prediction gives the usual expression for the
limiting amplitude: H1 + Asw . (H1 + H2)/2 ⇒ Asw 6 H2/2. If H1 = H2, then the
amplitude of the wave can be almost as large as the lower-layer depth without having
sufficient kinetic energy to uniformly mix the fluid column. However, as the lower
layer becomes relatively more shallow, the critical amplitude for stability decreases
up to the limit H1/H2= 3+ 2

√
2, beyond which any downward-displaced disturbance

has sufficient kinetic energy to mix the ambient.
Returning to our motivation for this analysis, we consider a solitary wave with

incident amplitude Asw approaching a submerged hill that rises to maximum height Hb,
which is nonetheless below the interface of the upper- and lower-layer fluids. At the
hill top, the upper-layer depth is H1 and the local lower-layer depth is H2−Hb. Using
(2.9) with H2 replaced by H2 − Hb, our expectation is that the wave will transmit
over the hill with minimum loss due to mixing and reflection if the wave remains
sufficiently subcritical during its passage over the hill: that is to say, Asw� Ac0, with

Ac0 ≡ 1
2(H2 −Hb −H1)+

√
H1(H2 −Hb). (2.10)

If the wave is supercritical while passing over the hill (Asw� Ac0), little transmission
is expected, the energy going into mixing and wave reflection.

The analysis neglects changes in Asw as the wave passes over the hill. It assumes
unidirectional waves and so does not account for wave reflection. Nor does the
amplitude criterion predict the proportion of transmitted energy if the wave is close
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FIGURE 1. Predicted critical amplitude, Ac, of an internal solitary wave of depression
in a shallow-water two-layer fluid with upper-layer depth H1 and lower-layer depth H2.
This is plotted as the amplitude relative to the lower-layer depth (solid line) and the total
upper-layer depth relative to the total ambient depth (dashed line).

to critical. However, through laboratory experiments and numerical simulations, we
are able to show that (2.10) provides a good estimation for transition from strong
to weak transmission depending upon the value of Asw/Ac0. The assessment of
relative transmission and reflection is determined empirically guided by this criticality
condition.

3. Laboratory experiments
A schematic of the experimental set-up is shown in figure 2. The experiments were

performed in a 197.3 cm long × 40 cm high × 17.3 cm wide glass tank. Before
filling the tank, one of three different symmetric obstacles were inserted: a ‘thin’
vertical barrier, a ‘short’ triangular barrier or a ‘long’ triangular barrier. All were
composed of 4 mm thick and 17.1 mm wide acrylic sheets with electrical tape and
pieces of foam tape around the side to provide some friction between the acrylic
and tank side walls while still permitting small (<1 mm) gaps for water to flow
through when filling the tank. We denote the height of the barrier by Hb and the
half-length of the barrier by Lb. The barrier heights ranged between 5 and 25 cm,
with most experiments having Hb ' 20 cm. The maximum height of the topography
was situated near the midpoint along the length of the tank. The barrier widths
varied from Lb ' 0.0 cm (for the ‘thin’ vertical barrier) to Lb ' 48 cm (for the short
triangular barrier) and Lb ' 80 cm (for the long triangular barrier). In the case of
the long barrier, we provided additional vertical supports in order to ensure that the
slopes along the leading and trailing edges were constant.

With the barrier in place, blue-dyed salt water was poured into the tank to a
prescribed depth. The salinity, measured with an Anton Paar DMA 4500 density
meter, ranged from 1.0001 to 1.0500 g cm−3 between different experiments. In all
cases the depth of the salt water was larger than Hb, so that the topography was
completely submerged. Clear fresh water was then layered on top by pouring water
through a sponge float. The generation of an internal solitary wave was accomplished
through the standard lock–release method (Grue et al. 1999). A gate was inserted
vertically between thin glass guides extending close to, but not touching, the bottom
of the tank. This formed a lock, which in all experiments had length L` = 28.7 cm.
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FIGURE 2. Schematic of the side view of the initial set-up of a lock–release experiment
with triangular bottom topography.

At this point more fresh water was poured through a sponge float in order to deepen
the fresh water in the lock to a depth H`. In the process, the salt water at the bottom
of the lock ran underneath the gate, moderately deepening the lower-layer depth
of the ambient. This measured lower-layer depth was H2 and the upper-layer depth
was H1. In all experiments we set H1 < H2 so that the generated solitary wave was
one of depression, the interface displacing downwards from the relatively shallow
upper layer. Values for H1 ranged from 2.5 to 11 cm, with typical upper-layer depths
around 5 cm. Values for H2 ranged from 20 to 30 cm, with typical lower-layer
depths around 20 cm. The depth, H`, of the fresh-water layer in the lock ultimately
set the amplitude and lateral extent of the solitary wave. Typically, only one wave
was generated as a consequence of the relatively small lock length (Sutherland et al.
2013). Values of H` ranged from 7 to 30 cm.

For visualization purposes, two 4 mm thick translucent white plastic sheets were
placed behind the tank and a bank of fluorescent lights was placed behind these. On
the other side of the tank a camera was situated on a tripod approximately 3 m from
the tank with the lens at the same height as the interface of the two-layer ambient and
situated midway along the length of the tank. Movies were recorded using a Canon
Rebel T3i camera.

At the start of an experiment, the gate was rapidly extracted vertically. Typically a
single solitary wave of depression developed within one lock length from the gate. It
was then observed as it interacted with the submerged topography. By design, in most
experiments the wave was observed to break partially against the barrier with some
energy transmitting across it and some reflecting back from it.

In all, 118 experiments were successfully performed. The incident solitary wave
propagated at speeds between Csw ' 3 and 15 cm s−1. The corresponding Reynolds
number based upon Csw and H1 ranged between 1500 and 18 000, with most
experiments having Reynolds numbers between 5000 and 9000. In no experiments
did we observe the development of Kelvin–Helmholtz billows arising from shear
instability in the lee of the wave, as was observed by Fructus et al. (2009) in
their experiments of solitary waves propagating along a thick interface. Because the
energetics of the incident, transmitted and reflected waves were determined over an
inspection window extending over a 1.5 m length, the effects of viscosity were not
expected to play a significant role. This was confirmed by analysis of waves that
interacted weakly with the barrier.

Snapshots taken from movies of experiments with thin, short and long topographic
barriers are reproduced in figure 3 at a time when the solitary wave interacts with
each type of barrier. In all three cases the incident solitary-wave amplitude was so
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(a)

(b)

(c)

FIGURE 3. Successive snapshots from experiments in which a solitary wave approaches
(a) a thin barrier (see supplementary movie 1, available at http://dx.doi.org/10.1017/jfm.
2015.306), (b) a short barrier (see supplementary movie 2) and (c) a long barrier
(see supplementary movie 3). In all three experiments, H1 ' 5.5 cm, H2 ' 21.5 cm,
g′ ' 22 g cm−3, H` = 15.5 cm, Hb = 15.0 cm and the measured incident solitary-wave
amplitude is Asw ' 6.5 cm. The measured transmission and reflection coefficients are
T = 0.33 and R= 0.20, T = 0.49 and R= 0.09, and T = 0.52 and R= 0.08, respectively,
for the thin-, short- and long-barrier experiments. Typical measurement errors for T and
R are ±0.03.

large that the maximum upper-layer depth was comparable to the depth of the ambient
above the ridge, H1 +H2 −Hb 'H1 + Asw ' 12 cm.

As each wave approached the barrier, the upper layer over the ridge deepened while
the lower layer became more shallow. As a consequence, the return flow in the lower-
layer ambient became constrained to pass though an increasingly narrow region. In
the thin-barrier experiment, the leftward lower-layer flow interacted with the rightward
upper-layer flow of the approaching wave such that the interface on the facing side
of the barrier plunged to great depth (figure 3a). This resulted in turbulent mixing
between the upper- and lower-layer ambient fluid, behaviour similar to that observed
by Maderich et al. (2010) in their study of a solitary wave approaching step-shaped
topography.

In the short-barrier experiment, the constrained lower-layer flow over the top of the
barrier ran downslope, eventually separating from the boundary (figure 3b). At the
same time, because the trailing flank of the solitary wave was in relatively deeper
water, it caught up to the leading flank and overturned. The simultaneous boundary-
separated flow with overturning aloft was observed in some of the experiments of
Sveen et al. (2002) and Vlasenko & Hutter (2002), and has since been classified as
a ‘collapsing–plunging’ breaker (Boegman et al. 2005; Sutherland et al. 2013).

In the long-barrier experiment shown in figure 3(c), the structure of the breaking
wave appears predominantly as a plunging breaker with less evidence of boundary
layer separation of the opposing downslope lower-layer flow (figure 3c).

In all three cases, some mixing occurred to the left of the ridge as the waves
interacted with the barrier. But then the flow partially surged over the barrier,
launching rightward-propagating interfacial waves on the other side. Meanwhile,
reflected leftward-propagating waves were also evident.

http://dx.doi.org/10.1017/jfm.2015.306
http://dx.doi.org/10.1017/jfm.2015.306
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FIGURE 4. (Colour online) (a) Time series showing the downward displacement of the
interface along the length of the tank for the thin-barrier experiment shown in figure 3(a).
This field is Hilbert-transformed to show the displacement associated with (b) rightward-
and (c) leftward-propagating disturbances. The vertical white dotted lines in (b) denote the
typical extents of the left and right windows used to measure the energy of incident and
transmitted waves. The vertical white dotted lines in (c) denote the typical extent of the
window used to measure the energy of reflected waves.

The transmitted and reflected waves were clearly evident in time series of the
measured interface displacement, η(x, t). For example, figure 4(a) shows the time
series corresponding to the thin-barrier experiment shown in figure 3(a). To produce
this figure, the displacement of the interface at each snapshot in time was found by
importing successive frames from the movie into MatLab and finding the position
of the contour where the intensity between the relatively dark-dyed lower layer and
clear upper layer changed most rapidly. The downward displacement of the contour
from the initial level of the interface in the ambient outside the lock is denoted by
η(x, t). In constructing η, there was some difficulty extracting reliable values at the
horizontal position where the two white plastic sheets behind the tank were abutted
together (at x = 78 cm for this experiment). Because the error in the measurement
of η is localized about this position, it could be filtered from measurements used to
determine the wave energetics.
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The Hilbert transform methodology of Mercier, Garnier & Dauxois (2008) is
used to separate η into the displacements ηR and ηL associated respectively with
the rightward- and leftward-propagating disturbances. The results are shown in
figure 4(b,c). Note that the initial disturbance in the lock (between x= 0 and 28.7 cm)
becomes decomposed into the superposition of rightward- and leftward-propagating
waves, consistent with this stationary displacement being represented as a standing
wave. Between t = 4 and 8 s the disturbance in the tank is composed entirely of
rightward-propagating waves. Thereafter this disturbance continues rightwards, though
at smaller amplitude, while the generation of a leftward-propagating wave is evident
at the location of maximum interfacial deepening to the left of the barrier.

From ηR(x, t) and ηL(x, t), we characterized the energy associated with the incident,
transmitted and reflected waves and so found transmission and reflection coefficients
for a solitary wave of depression passing over a submerged barrier. We chose to
characterize the energy of the waves in terms of their available potential energy alone.
This is defined directly in terms of the interface displacement, η, in a Boussinesq fluid
by

A ≡ 1
2ρ0g′|η|2, (3.1)

which is the available potential energy per unit horizontal area.
To calculate the time evolution of the energy associated with propagating waves

alone, we integrate A horizontally only within windows that exclude the lock, the
region around the peak of the barrier where significant plunging and mixing of the
interface occurs, and the rightmost region of the tank where the transmitted wave
reflects off the endwall. Thus we define the available potential energy per unit width
associated with rightward-propagating waves to be

EA+ ≡
∫ x2

x1

A+ dx+
∫ x4

x3

A+ dx, (3.2)

and that associated with the leftward-propagating waves to be

EA− ≡
∫ x2

x1

A− dx, (3.3)

in which A+ and A− are given by (3.1) with η in the integrand replaced by ηR and
ηL, respectively. The choice of the windowing ranges, [x1, x2] and [x3, x4], varies
between experiments depending upon the positioning and type of topographic barrier
used. Typically, we set x1 = 30 cm, x2 = 90 cm, x3 = 120 cm and x4 = 170 cm.
Within these windows, the interface remains sharp, with the transition from the clear
(upper-layer) and dark (lower-layer) fluid to the midpoint of the interface occurring
typically over a distance of 2 mm (the vertical extent scale of 2 pixels of the
digitized images). Taking the error in measurements of η to be half this distance,
the corresponding uncertainty is of the order of 2 % of the typical transmitted and
reflected wave amplitudes. This suggests errors of the order of a few per cent in the
measurement of EA+ and EA− due to errors associated with the measurement of η.

Figure 5 plots values of the available potential energy per unit width computed for
the experiment of a solitary wave approaching a thin barrier, as shown in figure 3(a).
Shortly after t = 0 s, the total available potential energy increases as the rightward-
propagating wave moves into the analysis window, [x1, x2]. The energy peaks around
6 s, which is the time when the disturbance begins to propagate out the right side
of the window and the wave itself begins to interact with the barrier. Shortly after
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FIGURE 5. Evolution of the horizontally integrated available potential energy (APE) per
unit width computed from the displacement fields of rightward- and leftward-propagating
disturbances as shown in figure 4(b,c). The energy associated with rightward-propagating
waves is given by (3.2) with [x1, x2] = [30, 90] and [x3, x4] = [120, 170]. The energy
associated with leftward-propagating waves is given by (3.3) with [x1, x2] = [30, 90].
The total energy, which is the sum of EA+ and EA−, is plotted as the thick solid line.
The horizontal dotted lines indicate the particular values associated with the incident,
transmitted and reflected waves. For this experiment, the measured transmission and
reflection coefficients are T = 0.33 and R= 0.20, respectively.

this time, the available potential energy associated with the leftward-propagating wave
grows as the waves propagate from the right into the window [x1, x2]. The values of
EA− and EA+ both plateau and then decrease after t = 17 s when the leftward- and
rightward-propagating waves leave their respective interrogation windows.

The behaviour shown in figure 5 is typical of most of our experiments. From such
graphs, we define the ‘incident available potential energy’, EI , to be the maximum
available potential energy per width associated with the rightward-propagating wave.
The average of EA− over the time where it plateaus is called the ‘reflected available
potential energy’, ER. The average of EA+ over the later time when it plateaus is
called the ‘transmitted available potential energy’, ET . These values are indicated by
the dotted lines in figure 5.

From these values, we define the transmission and reflection coefficients to be

T ≡ ET

EI
and R≡ ER

EI
. (3.4a,b)

The typical error in these measurements was ±0.03 as determined by the standard
deviation of EA+ and EA− over regions where the energies plateaued.

From the theory in § 2, an internal solitary wave is predicted to be unstable if
its amplitude exceeds a critical value Ac0, given by (2.10). If the incident wave
amplitude Asw is much smaller than Ac0 measured above the ridge, the wave is
expected to transmit with negligible breaking or reflection, as if the barrier was not
present. However, if Asw is much larger than Ac0, the transmission is expected to
reduce significantly as a result of instability. Although we cannot expect to derive
an analytic formula for the transmission and reflection coefficients as a function of
Asw/Ac0, we anticipate that the coefficients should change significantly as Asw/Ac0
changes from small to large values, with the transition occurring around Asw/Ac0 ∼ 1.
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FIGURE 6. (Colour online) Transmission (thick symbols; red online) and reflection (thin
symbols; blue online) coefficients determined from laboratory experiments plotted against
the incident wave amplitude relative to the critical amplitude Ac0 predicted by theory.
Values are shown separately for experiments with (a) a thin barrier, (b) a short barrier and
(c) a long barrier. In all three plots the triangles, squares and circles denote the amplitude
of the incident wave relative to the upper-layer depth, as indicated in the legend in (b). In
(c) we also plot by stars the transmission data of Sveen et al. (2002) and by ‘turnstiles’
the results of simulations reported in § 4. Empirical fits to the transmission and reflection
data of the long-barrier experiments are plotted in (c) according to equations (5.1) and
(5.2) with parameters given in table 1. The typical error in measurements is indicated by
the error bar to the lower left in (c).

Figure 6 plots the measured transmission and reflection coefficients against Asw/Ac0

separately for experiments with the thin, short and long barriers. As a measure of the
nonlinearity of the incident wave, different symbols are plotted depending on whether
Asw/H1 < 0.5 (weakly nonlinear; triangles), 0.5 6 Asw/H1 < 1.5 (moderately nonlinear;
squares) and Asw/H1 > 1.5 (strongly nonlinear; circles). In each plot, transmission
coefficients are plotted as thick symbols (red online) and reflection coefficients are
plotted as thin symbols (blue online).

Consistent with expectations, we find that the measured transmission coefficients
are near unity and reflection coefficients are near zero if Asw/Ac0 is sufficiently small.
Transmission drops rapidly as Asw/Ac0 & 1. Despite some scatter in the data, which
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we attribute to the choice of windowing used to measure the available potential
energy of the incident, transmitted and reflected waves, the data show reasonably
good collapse when plotted against Asw/Ac0. In particular, there is no significant
dependence of T and R upon the amplitude of the incident wave relative to the
upper-layer depth. There is a qualitative difference between the dependence of T and
R upon Asw/Ac0 between the thin-barrier and the short- and long-triangular-barrier
cases. The transmission of waves across a thin barrier decreases significantly from
unity if Asw/Ac0 is greater than 0.4, and wave reflection becomes evident if Asw/Ac0
is greater than 0.6 (figure 6a). For waves approaching either the short or long
triangular barrier, we find that transmission decreases significantly from unity if
Asw/Ac0 is greater than 0.5–0.6, and wave reflection becomes evident only as Asw/Ac0
exceeds 0.9. Even with Asw/Ac0 ' 1.5, transmission remains relatively large, with
T ' 0.4± 0.1, and reflection is small, with R' 0.1± 0.05. The reflection coefficient
is moderately smaller than that found by Michallet & Ivey (1999), who estimated R
to lie in the range 0.2–0.3, with large slopes having s ' 0.169. But R is an order
of magnitude larger than the value estimated by Sveen et al. (2002) resulting from
strong wave–barrier interactions. Perhaps this is because the experiments for which
they examined reflection did not access the regime with Asw/Ac0 > 1.

Figure 6(c) also plots as stars the transmission coefficients from data provided in
Sveen et al. (2002). In all three cases the topographic slope was 0.1, approximately
half that of our long-barrier experiments. Although Asw/Ac0<0.5 (and Asw/(H2−Hb)<

0.5) in all cases, they observed substantially less transmission than our experiments
would suggest. Comparison of our short- and long-barrier experiments and the
numerical results we present later suggests that their relatively low transmission is
not a consequence of the lower slope in their experiments. Indeed, our simulations
show that transmission increases with decreasing slope. Part of the discrepancy may
be due to our definition of the reflection coefficient in terms of available potential
rather than total energy. But our numerical simulations suggest that this would result
in at most a 5 % change. More likely is the fact that Sveen et al. (2002) measured
the transmitted wave energetics far from the barrier and the heuristics they used
to account for viscous attenuation of the leading pulse and trailing waves did not
accurately estimate the true loss due to viscosity.

There is no significant difference in the dependence of T and R upon Asw/Ac0
between the short- and long-barrier cases. Even though the long barrier still has large
slope ('0.19) relative to typical slopes (.0.1) occurring below the coastal oceans,
the results of these experiments suggest that they may be extended to oceanographic
circumstances. The dependence of topographic slope upon the transmission and
reflection of ocean-scale waves is examined in more detail through results of
numerical simulations presented in the next section.

4. Numerical simulations

Numerical simulations were performed using a code, generously provided by Kevin
Lamb, which solves the fully nonlinear Navier–Stokes equations in two dimensions
using finite differences on a terrain-following coordinate system (Lamb 1994; Lamb &
Yan 1996). This has been used in the study of large-amplitude internal solitary waves
(Lamb 2002; Lamb & Wilkie 2004), the shoaling of internal solitary waves upon a
uniform slope (Aghsaee et al. 2010) and the bottom boundary layer stresses and flow
separation that results from a solitary wave of depression passing over a uniform-depth
ambient (Aghsaee et al. 2012). Here the code is used to simulate experiments of
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internal solitary waves incident upon triangular barriers and to simulate circumstances
more representative of oceanic phenomena.

The background density is prescribed to be a two-layer fluid with finite-depth
interface, D, at depth z=−H1 according to

ρ(z)= ρ2 − 1
2
(ρ2 − ρ1)

[
1+ tanh

(
z+H1

D

)]
. (4.1)

To simulate flow over a triangular ridge while avoiding sharp gradients, the bottom
topography was approximated so that the height above the bottom was given by the
following sum of analytic functions:

h(x) = Hb

{
1
2

[
x+ Lb

Lb
+ 1
ε

log
(

2 cosh
(
ε

x− xL

Lb

))]
−
[

x
Lb
+ 1
ε

log
(

2 cosh
(
ε

x− xC

Lb

))]
+ 1

2

[
x− Lb

Lb
+ 1
ε

log
(

2 cosh
(
ε

x− xR

Lb

))]}
. (4.2)

Here ε= 0.02 sets the (small) relative transition between flat and sloping segments of
each curve and we have arbitrarily centred the hill at x= 0.

Rather than simulating the evolution of the solitary wave after its release from a
lock, we used the iterative procedure of Lamb (2002) to initialize the simulations
with a single solitary wave using the computed solution of the Dubreil-Jacotin–Long
equation (Dubreil-Jacotin 1937; Long 1953, 1956; Lamb 2002; White & Helfrich
2008):

∇2ξ + 1
c2

N2(z− ξ)ξ = 0, (4.3)

in which N2 is the squared buoyancy frequency associated with the background
stratification. If the solitary wave moves at speed c through an otherwise stationary
ambient, ξ(x, z) describes the displacement of streamlines due to the wave taken in a
frame of reference moving with the wave.

The code advances the simulation in time solving the fully nonlinear momentum
and internal energy equations in the x–z plane. The effects of viscosity and diffusion
were included through the usual Laplacian operator. The kinematic viscosity was set to
be that of water and the Schmidt number was 10, smaller than that of salt water, but
inconsequential for the dynamics of the transmitted and reflected waves. In simulations
of ocean-scale waves, viscosity and diffusion are included for numerical stability.

The equations were solved using finite differences on a staggered grid as described
by Lamb (1994). The horizontal domain extended from xL≡−300 cm to xR≡ 300 cm
with a resolution of dx = L/3000 = 0.2 cm. The vertical resolution was dz = H/100
away from the model hill where the total ambient depth was H, and the resolution
was finer proportionally to the decreasing ambient depth over the hill. Fields were
advanced in time by steps of 0.005 s typically up to t = 40 s when the transmitted
and reflected waves had moved away from the model ridge.

The snapshots shown in figure 7 are taken from a simulation run with parameters
corresponding approximately to the experiment shown in figure 3(c).

Initially the solitary wave is centred at x=−180 cm having amplitude Asw= 5.9 cm
and half-length Lsw = 27.8 cm (figure 7a). When interacting with the hill at t= 15 s
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FIGURE 7. (Colour online) Snapshots at times (a) 0 s, (b) 15 s and (c) 30 s taken
from numerical simulation with experimental parameters corresponding closely to those
in figure 3(c) showing as a colour scale the relative difference of density from ρ1. The
superimposed white arrows indicate velocity. The colour scale and magnitude of the
velocity vectors are indicated in the legend in (a). (See supplementary movie 4.)

(figure 7b), it began its development into a plunging breaker, consistent with
experimental observations (see figure 3c). At this time, an upper-layer rightward
flow on the far side of the barrier is apparent, while the lower-layer flow is observed
to accelerate leftwards as it approaches the constriction above the peak of the hill.
Because the simulation is restricted to two dimensions, it is not possible for the
overturning fluid to break down into fully three-dimensional turbulence. Nonetheless,
mixing was effective at eroding the small scales while preserving the formation of
transmitted and reflected waves to either side of the barrier (figure 7c).

As with the experiments, we performed an analysis of energetics to measure the
relative energy associated with the transmitted and reflected waves. From the density
field we determined the available potential energy density as the difference of the
potential energy in the presence of perturbations from the undisturbed potential energy
of the ambient. Explicitly, at any horizontal location, x, we computed the available
potential energy as

A =
∫ 0

−H
g(ρ − ρ)(z+H1) dz. (4.4)

This is defined so that a parcel with zero potential energy is situated at z = −H1,
the depth of the undisturbed interface. Doing so ensures that (4.4) reduces to the
formula (3.1) in the limit of a two-layer fluid. Knowing the velocity field output by
the simulations, the kinetic as well as available potential energy can be computed. In
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FIGURE 8. Temporal evolution of the available potential energy (APE; solid lines) and
kinetic energy (KE; dashed lines) computed within windows extending leftwards from
−δLb to the left of the barrier (thin lines) and rightwards from δLb to the right of the
barrier (thick lines) computed from the simulation shown in figure 7. The transmission
and reflection coefficients determined from available potential energy alone are T = 0.282
and R= 0.124, respectively. The corresponding coefficients determined from total energy
are T = 0.279 and R= 0.120.

particular, the vertical integral of the kinetic energy is

K =
∫ 0

−H

1
2
ρ0(u2 +w2) dz. (4.5)

For small-amplitude waves, K is expected to equal A . The simulations allow us to
measure the magnitude of the departure from energy equipartition for the case of large-
amplitude solitary waves.

To measure the kinetic and available potential energies associated with the incident,
transmitted and reflected waves, we horizontally integrate the values of K and A
within windows to the left and right of the hill. Specifically we define

(EK−, EA−)=
∫ −δLb

−L/2
(K ,A ) dx and (EK+, EA+)=

∫ L/2

δLb

(K ,A ) dx, (4.6a,b)

in which δ = 1.5 is set so that the windows include wave-like behaviour while
neglecting processes taking place over and near the barrier.

Figure 8 shows the time evolution of the kinetic and available potential energies
computed in the windows to the left and right of the barrier. Initially, all the energy
is contained within the left window. Here it is evident that the kinetic and available
potential energies are close to equipartition, with EK− = 0.150 J m−1 being just 10 %
larger than EA− = 0.137 J m−1. Consistent with experiments, the computed available
potential energy is of the order of that measured shortly after the wave was released
from the lock. By t= 40 s the energy in each window is approximately constant and
the kinetic and available potential energies associated with these smaller-amplitude
waves are closer to equipartition.

A sequence of simulations were performed with conditions similar to those of
the laboratory experiments. The ambient fluid was set with upper- and lower-layer
depths of 5.3 cm and 22.0 cm, respectively, and the half-depth of the interface was



320 B. R. Sutherland, S. Keating and I. Shrivastava

D = 0.5 cm. The incident solitary wave had amplitude Asw = 5.9 cm and width
Lsw = 27.8 cm centred at 180 cm to the left of the centre of the hill. The hill itself
had fixed slope of s= 0.2 and height that varied between simulations from Hb = 4.0
to Hb = 21.0 cm.

The transmission and reflection coefficients are compared with results of the
long-barrier experiments in figure 6(c). The simulations show a sharp decrease in
the transmission coefficient as Asw/Ac0 increases above '0.6 and an increase in the
reflection coefficient to '0.6 for Asw/Ac0 & 6. Comparing this with the long-barrier
experiments, we find that the transmission is close to the smallest values measured in
experiments as Asw/Ac0 ranged from small to large values. The reflection coefficient
measured in simulations is significantly larger than that measured in experiments,
probably because the simulations are restricted to two dimensions and so do not
properly capture turbulent dissipation and mixing as the wave breaks upon the facing
slope of the barrier.

The initialization of simulations of ocean-scale internal solitary waves was based
upon the observations of waves in the South China Sea reported by Farmer et al.
(2011). In these, the incident solitary-wave amplitude was set to be 142 m with width
386 m in an ambient with a thermocline with half-thickness 20 m centred 50 m below
the surface. The ambient depth far from the hill was set to be H= 440 m. In different
sequences of simulations, the half-width of the hill was set to be Lb= 2.5, 5, 10 and
20 km. The hill heights ranged from Hb = 120 to 368 m.

Snapshots from simulations with Lb = 10 km and Hb = 300 m are shown in
figure 10. In this case, because the wavelength is comparable to the fluid depth, the
flow is nearly uniform in the positive direction and nearly uniform in the negative
direction, respectively, above and below the trough. The structure of the wave
as it steepens is somewhat different from the experiment/simulations of the wave
approaching the long barrier. Here the lee of the wave piles up as it approaches
topography, making the upper layer more shallow. After passing over the ridge, a
single long wave is reflected while the transmitted wave appears in the form of a
wave train, consistent with the weakly nonlinear results of Grimshaw et al. (2004)
and El, Grimshaw & Kamchatnov (2007).

Figure 9 plots the reflection and transmission coefficients as a function of
amplitude scaled by Ac0. Although the amplitude and along-wave extent of the
simulated ocean-scale waves are several orders of magnitude larger than those of the
simulated laboratory-scale waves, the reflection coefficients are comparable when the
topographic slope is relatively steep (s = 0.16 for ocean-scale waves and s = 0.20
for laboratory-scale waves). However, the corresponding transmission coefficient for
laboratory-scale waves is smaller. Transmission drops from '0.8 to 0.2 as A/Ac0

increases from '0.6 to 1.0. In comparison, for ocean-scale waves incident upon a
topographic slope of 0.16, the transmission drops over this range as A/Ac0 increases
from '0.7 to 1.6. This shift to higher transmission may be a consequence of the
incident ocean-scale waves being long compared with the ambient depth far from
topography such that the leftward flow at depth is significant.

For ocean-scale waves at fixed incident relative amplitude, it is clear that greater
transmission occurs if the topographic slope is smaller. The sensitivity of the
transmission coefficient to slope is most pronounced for Asw ' Ac0, with T increasing
successively by '0.15 as the slope decreases from s= 0.16 to 0.08 to 0.04 to 0.02.
Importantly, as in the laboratory experiments, the results do not depend sensitively
upon the amplitude of the incident wave itself.
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FIGURE 9. (a) Transmission and (b) reflection coefficients measured from numerical
simulations of laboratory- and ocean-scale internal waves. Simulations of laboratory
experiments (‘turnstiles’) are based upon the long-triangular-barrier experiment with
ambient conditions given in figure 3(c) and with topographic slope 0.2 on either side of
the ridge. The ocean-scale simulations have H1= 50 m, H2= 390 m and an incident wave
with amplitude Asw = 142 m and width Lsw = 387 m incident upon a ridge with slope
s= 0.16 (open circles), s= 0.08 (closed circles), s= 0.04 (open diamonds) and s= 0.02
(closed triangles), and with amplitude Asw= 79 m and width Lsw= 253 m incident upon a
ridge with slope s= 0.04 (crosses). In laboratory-scale simulations, the hill height ranges
from 0 to 21 cm; these are the same data as those plotted as ‘turnstiles’ in figure 6. In
ocean-scale simulations, the hill height ranges from Hb= 100 to 368 m. The empirical fit
to the sequence of simulations of ocean-scale waves with Asw = 142 m and s = 0.04 is
shown by the dotted line.

5. Empirical predictions

In an attempt to generalize these results, we have empirically fitted the data from
experiments and simulations to analytic curves. The transmission coefficients were
fitted to a curve that asymptotes exponentially to unity as Ã ≡ Asw/Ac0 decreases to
zero and that decreases exponentially to zero for large Ã according to

T = 1+ αt exp[(Ã− at0)/σt− − Ã/σt+]
1+ exp[(Ã− at0)/σt−]

. (5.1)

The reflection coefficients were fitted to a curve that decreases exponentially to zero
as Ã decreases to zero and asymptotes exponentially to Rmax for large Ã according to

R= Rmax
1− αr exp[−Ã/σr+]

1+ exp[−(Ã− ar0)/σr−]
. (5.2)
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FIGURE 10. (Colour online) As in figure 7, but showing snapshots at times (a) 0 s,
(b) 1500 s and (c) 3000 s taken from a numerical simulation of an ocean-scale incident
solitary wave incident upon a ridge with half-width Lb = 10 km and height Hb = 300 m.
(See supplementary movie 5.)

In both cases, the results were most sensitive to the choices of at0 and ar0, which
determine where T and R change most rapidly as Ã changes. If σt−� σt+, then σt−
determines the e-folding scale over which the transmission curve asymptotes to unity
with decreasing Ã, and σt+ determines the e-folding scale over which the transmission
curve decreases exponentially to zero with increasing Ã. A similar interpretation exists
for the e-folding scales σr± associated with the reflection curves.

For numerical simulations, a regression analysis was performed to find the best-
fitting parameters for the T and R curves to simulations with fixed incident wave
amplitude and topographic slope and with varying Ã, which changed as a consequence
of changing the height of the barrier. For the long-barrier experiments, the parameters
were selected manually to produce order-of-magnitude correct values that reasonably
produced a curve passing through the experimental data.

The parameters for experiments and simulations are listed in table 1. The resulting
empirical fits to the transmission and reflection coefficient data measured in the long-
barrier experiments are plotted as the dashed curves in figure 6(c). The dotted lines
in figure 9(a,b) plot the empirical fits to the transmission and reflection coefficients
determined in simulations of ocean-scale waves with a solitary wave of amplitude
Asw = 142 m incident upon a barrier with slope s= 0.04.

Comparing the first two rows of data, we can make a quantitative comparison
between the long-barrier experimental results and the results of simulations run with
comparable parameters. The relatively low value of at0 = 0.58 determined from the
simulations shows that the transmission begins to drops off at smaller values of
Ã, and the larger value of Rmax = 0.53 indicates that more energy is reflected than
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dissipated in simulations with waves that strongly interact with the barrier. As stated
above, we attribute the discrepancy to unrealistic representation of turbulence in a
two-dimensional model.

The parameters determined for ocean-scale waves give a quantitative measure of
the effect of incident wave amplitude and topographic slope upon transmission and
reflection coefficients. Comparing the two simulations with slope s = 0.04 and with
incident amplitudes 79 and 142 m, we see little difference in the values of at, which
most significantly controls the transition amplitude from strong to weak transmission.
The value of at does vary with slope, increasing from 0.75 to 1.37 as the slope
decreases from s= 0.16 to 0.02.

Finally, we may use our predicted value for the maximum reflection coefficient
Rmax (occurring in the limit of a barrier that penetrates through the interface) to
the predictions of wave reflection from a uniform slope (Bourgault & Kelley 2007;
Aghsaee et al. 2010).

Fitting an exponential to the values of 1−Rmax versus the Iribarren number (1.1), we
find Rmax=1− exp[−Ir/(0.33±0.05)]. The e-folding value is about half that estimated
by Aghsaee et al. (2010). The discrepancy could be because our results are based on
very large-amplitude ocean-scale waves. But it may also be that the dynamics of wave
breaking and reflection differ quantitatively when the topographic barrier penetrates
through the interface and surface.

6. Conclusions

We have performed laboratory experiments and numerical simulations examining the
transmission, reflection and deposition of energy by an internal solitary wave incident
upon tall and shallow triangular ridges. This was done in laboratory experiments
through measurements of the interface displacement and, from this, the available
potential energy. From numerical simulations of a laboratory experiment initialized
with a solitary wave with relative amplitude Asw/H1 ' 1.1, we found that the initial
wave kinetic energy was 10 % larger than the available potential energy. In simulations
of an ocean-scale internal wave with Asw/H1' 2.8, the initial kinetic energy was only
15 % larger than the available potential energy. In both cases, when the wave was
incident upon a moderately large hill, resulting in smaller-amplitude transmitted and
reflected waves, the energies were in equipartition. These results suggest that, even for
very large incident solitary waves, measuring transmission and reflection coefficients
using available potential energy alone gives results within 15 % of the coefficients
measured using total energy.

We have characterized transmission and reflection coefficients as they depend
upon the incident wave amplitude relative to the critical amplitude, Ac, predicted by
shallow-water theory for fully nonlinear disturbances with no dispersion or viscosity.
Specifically, we evaluate the critical amplitude, Ac0, using values of the ambient
depth above the ridge of the barrier. Consistent with expectations, we find that T . 1
if Asw � Ac0 and T & 0 if Asw � Ac0, with the transition occurring for Asw ∼ Ac0.
An accurate prediction for the transmission coefficient should take into account
the evolution of the wave as it approaches the peak of the submerged ridge. This
is affected not only by the incident wave amplitude and depth of the lower layer
above the peak of the ridge, but also by the lateral extents of the wave and ridge.
Nonetheless, our results show that transmission, reflection and energy deposition are
determined primarily by the amplitude and depth parameters as well as the slope of
the ridge.
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Future work will explore the scattering of internal solitary waves from submerged
conical topography. The steering of the waves by the varying depth of the hill
across the span of the waves is expected to change the transmission and reflection
characteristics. Nonetheless, it is hoped that the empirical formulae for transmission
and reflection will assist in the interpretation and prediction of wave transmission
over more complex topography. More generally, this work may provide insight into
observations of interactions between internal waves and the Tasman Rise taken during
the 2015 TTIDES programme.
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