
Method and apparatus for obtaining images and measurements of
density uctuations in transparent media
U.S. Provisional Patent Application (No. 60/170,928)

S. B. Dalziel1 G. O. Hughes2 and B. R. Sutherland3

1 Introduction

This document describes in detail the setup and use of \synthetic schlieren", an inexpensive
technique that can be used to visualise density changes, for example, the uctuations due
to heat rising above a hand. The technique can visualise changes in any solid, uid or
gaseous medium that is transparent to a portion of the electromagnetic spectrum. Thus,
for example, the technique can be employed using x-rays to visualise density changes in the
human body, or using visible light to visualise shock waves in air. For ease of discussion,
here we illustrate the synthetic schlieren technique primarily using visible light to detect
and measure changes of transparent liquid or gaseous ow.

A commonly observed phenomenon is the shimmer of light due to heat rising above an
asphalt road. This occurs because the index of refraction of air decreases with increasing
air temperature. Thus the path of sunlight is deected when passing through turbulent,
hot air. In an extreme circumstance, this can create the illusion of an mirage: a pool of
water appears to lie in the road because light appears to reect from the road surface. In
fact downward propagating light rays approaching the road at glancing angles do not reect
but refract upwards as they pass through the extremely hot air above the pavement. This
phenomenon is illustrated schematically in Figure 1.

In the above example, turbulent air is easily detected because one is looking beyond it
to the horizon. As a result of the way light is deected as it passes through hot air, the
position of the horizon appears to rapidly uctuate, creating a shimmering e�ect. The air
well above the horizon can be quite hot, but the e�ect of heat shimmer is not so easily seen
because there is no shimmering object in the distance, such as the horizon.

Synthetic schlieren makes use of this shimmering e�ect to visualise density di�erences,
e.g. due to heating of air, not just along a one-dimensional object (like the horizon-line), but
over a two-dimensional �eld of view. One way that this is done is to place in the distance
an object (hereafter, the \object-image") composed of a stack of equally spaced horizontal
lines. Each horizontal line plays the role of an arti�cial horizon. If heat or other density
uctuations occur between the object-image and the viewer, each line in the object-image
appears to uctuate. Thus, the vertical as well as the horizontal structure of the region of hot
air can be visualised. (Though, note, no information is provided about the structure along

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge,

England
2Research School of Earth Sciences, The Australian National University, Canberra, Australia
3Department of Mathematical Sciences, University of Alberta, Edmonton, AB, Canada



Dalziel, Hughes and Sutherland 2

hot 
pavement

sourceobserver
in car

FIG. 1. Schematic showing the occurrence of a mirage. Light is bent due to the reduced
index of refraction of hot air over pavement (solid line). To an observer it appears the light
reects from the road (dashed line) and results in the illusion of water in the road. Synthetic
schlieren makes use of this e�ect to enhance images of heat shimmer and other phenomena.

the ray between the viewer and the image.) The selection of the object-image is somewhat
arbitrary. To gain information about horizontal as well as vertical uctuations, an array of
randomly positioned dots, or other sharply resolved features, may be used instead of a set
of lines.

In addition to visualising density uctuations over a two dimensional area, by digitising
and enhancing the object image on computer, synthetic schlieren is far more sensitive than
the naked eye. Briey, an object-image is compared with a snap shot of the object-image
at an earlier time. This can be done e�ectively by subtracting or dividing the intensities
of one image by the other, on a pixel-by-pixel basis. For ease of discussion, we assume
below the digitised images are subtracted. If there is no change, subtracting the digitised
images produces a uniform (e.g. black) schlieren image. If, for example, heat uctuations
cause the real-time object-image to di�er from the initial object-image, then subtracting the
digitised images will show where the di�erences occur, and so show the spatial extent of the
uctuations. The di�erence can be multiplied by an arbitrary constant to further enhance
the uctuations.

Synthetic schlieren has many advantages over other schlieren systems[1]. Traditional
schlieren systems require two parabolic mirrors which limit the size of the region being
examined to less than approximately 1 metre. The two parabolic mirrors, or a pair of masks
in the Moir�e method[2, 1], must be very accurately positioned. Mirrors and masks are prone
to damage, thus prohibiting their use outside controlled laboratory conditions. In contrast,
synthetic schlieren is much less expensive and easier to implement: the object-image (e.g.
of lines or dots) can be as large as required to visualise the heat source and the placement
of the object-image does not need to be precise. Furthermore, optical imperfections, which
are problematic in classical schlieren methods, are digitally corrected in synthetic schlieren.

So far, the use of synthetic schlieren in \qualitative mode" has been outlined. This refers
to the use of synthetic schlieren to observe the occurrence and extent of density uctuations
in real time. In many circumstances, synthetic schlieren can be also be used in \quantitative



Dalziel, Hughes and Sutherland 3

mode". In this mode, the strength of the uctuations can themselves be measured.
We illustrate here the simplest use of the quantitative mode, which can be used if the

density uctuations in the region of interest have a known spanwise structure. That is, the
variation in the uctuations are assumed to be known along the line-of-sight between the
observer/camera and the object-image. For example, a disturbance in a (non-turbulent)
uid caused by a moving horizontal cylinder is uniform along the direction of the cylinder
axis. Thus one can assume the uctuations are uniform over the line of sight in the direction
along the cylinder axis.

More generally, standard tomographic techniques can be used to reconstruct a three-
dimensional �eld from two or more simultaneous perspectives through region of interest.

The quantitative mode has been used to examine internal motions in a tank of water
that is density strati�ed with varying concentrations of salt. As with many strati�ed uids,
the index of refraction of salt water is a function of salinity and, therefore, of density. The
salinity of the water increases with depth in the tank. In a typical setup, an object-image
is placed on one side of the tank and a camera on the opposite side of the tank is focussed
on the object-image. Light from the object-image passes through the salt-strati�ed uid
and is deected because more saline water has a larger index of refraction. In qualitative
mode, synthetic schlieren can be used to visualise density perturbations within the uid, for
example due to waves that propagate within the uid under the inuence of buoyancy. The
qualitative mode can be used to measure the wavelength and speed of propagation of the
waves. In quantitative mode, if the waves are uniform along the span of tank (between the
camera and the object-image) then the amplitude of the waves can also be determined[3].

This disclosure document describes, on a level understandable to a non-specialist, the
setup and use of synthetic schlieren in both qualitative and quantitative modes. Section 2
describes how the camera and object-image should be set up to record movies that can
be later played back or immediately processed by computer. The basics of image digiti-
sation are also discussed. Section 3 describes the use of synthetic schlieren in qualitative
mode. The information is supplemented with information in the appendix, which explicitly
describes how this mode of operation is implemented using the image processing software
package \DigImage". Section 4 describes the use of synthetic schlieren in quantitative mode,
including the theory and computer algorithms used to compute density perturbations from
observed uctuations.

2 Setup of Synthetic Schlieren

The typical setup to visualise density changes using synthetic schlieren is shown in Figure 2.
A camera (analogue or digital; video or still) is focussed on an object-image which, for
example, may be a grid of horizontal black lines or a random pattern of black dots. (Even
more generally, any image capture device that scans an area, line or even a single point will
su�ce.) For ease of discussion in what follows, the object-image is assumed to be composed
of lines. The camera may be hooked up to a computer so that synthetic schlieren is used
instantaneously. Otherwise, the object-image may be recorded on tape or stored digitally
to be played back at a later time and processed using synthetic schlieren. If possible, digital



Dalziel, Hughes and Sutherland 4

test section object−
image

*****
*****
*****
*****
*****
*****
*****
*****

camera
(with recorder and/or
cable to computer)

a)

b)

signal
from 

camera
/////
/////
/////

Monitor Computer Monitor

raw image digitise and 
process image

synthetic schlieren
image

FIG. 2. Set-up of the Synthetic Schlieren system. a) A camera records an object-image
(e.g. of a grid or horizontal black lines or an array of dots). Between the camera and the
object-image is the object being studied, for example, heat rising from a surface or density
changes resulting from wave-like motions in a density strati�ed uid. b) The signal (either
in real time or played back from recording) is processed on a computer which has a frame-
grabber card installed (see text). The computer performs calculations to make a synthetic
schlieren image on the computer screen or on a second monitor.

storage is preferred because this helps to reduce signal noise and prevents signal degradation
over time.

The distance from the camera to the object-image is at the discretion of the user. In
principle it could be very close for microscopic applications or hundreds of metres away for
large industrial applications. However, the size of detail (e.g. the thickness of the lines)
in the object-image depends on the resolution and �eld of view of the camera. When the
object-image is digitised each line should be at least as wide as one pixel. The lines should
be spaced su�ciently far apart so that the distance between any two lines spans at least
�ve pixels. Synthetic schlieren is most sensitive and o�ers the highest spatial resolution if
the lines are as small and as closely spaced as possible. (In an object-image of dots, each



Dalziel, Hughes and Sutherland 5

dot should occupy one or two pixels and they should be separated on average by �ve or six
pixels in any direction).

For example, suppose the camera is focussed on a 1 square metre area of the object-
image, and suppose the digitised image has a resolution of 512 by 512 pixels. Then, for
optimal use of synthetic schlieren, the horizontal lines on the object-image should be spaced
apart by a distance of approximately 5� 1metre

512
' 1 cm. Each line should be approximately

0:2 cm thick.
The test section illustrated in Figure 2a indicates a region where the density variations

of interest occur, for example, the region above a hot plate or the volume of salt strati�ed
uid in a glass tank. Synthetic schlieren is more sensitive to tiny density uctuations if the
test section is farther from the object-image and nearer the camera. The test section is thus
best placed as close to the camera as possible so that the region of interest �lls the �eld of
view, but not so close that the e�ects of parallax are signi�cant. The object-image should
be placed as far away as physical constraints and cost allows. Preferably, the object-image
and test section should both be within the depth of �eld of the camera lens.

Either in real-time during �lming (if a computer setup is on-site) or when the �lm or
digitised image is played back, a computer equipped with a frame grabber card and image
processing software may be used to apply synthetic schlieren. A typical setup for analysis
is shown in Figure 2b. Ideally, the signal from the camera is split so that the raw image is
shown on a monitor while being processed on computer. The computer digitises the signal
and performs calculations that enhance small changes in the object-image (e.g. due to heat
shimmer) over time. The resulting enhanced image (hereafter, the \schlieren image") may
be shown on a second monitor or on the computer screen itself.

The details of synthetic schlieren itself are described in the next section. So that this
ensuing discussion is clear, the process of digitisation is described here. Digitisation may
be done by the camera itself or the analogue signal may be converted to a digital signal by
a \frame grabber card" on a computer, or by a high-resolution scanner. For example, this
can be done using one of Data Translation's frame grabber cards DT2861 or DT2862 (see
appendix C), which can be inserted in a ISA slot in a PC.

Figure 3 schematically illustrates the process of digitisation. In the example, it is sup-
posed that the camera records a greyscale picture of an object-image of horizontal black
lines. (The object-image can be colour, but the computer makes practical use only of the
intensity information). The digitised image subdivides the object-image into a regular grid
of tiny rectangular regions, called \pixels". The incident light is averaged over the area of
the pixel so that, for example, a pixel centred on the edge of a black line, will be gray - the
average of the black and white regions which each span half the pixel area. If a larger area
of the black line spans the pixel then the pixel will be a darker shade of gray.

In the digitised image, each pixel is assigned a number, representing the average intensity
of light over the pixel. In the following example, the pixels are represented by 8-bit numbers
(0-255): if there is no light on the pixel (if it is black) then it is assigned the value 0 (zero);
if the pixel is saturated with light (if it is white) then it is assigned the value 255; pixels
that are gray hold an integer value between 0 and 255 depending on the shade of gray. (The
total number of values a pixel can hold is 256 = 28; each value is conveniently represented as



Dalziel, Hughes and Sutherland 6

object−image
(of horizontal
black lines)

close−up
 of digitised

image

pixel intensities
represented by numbers: 

0−black; 255−white.

210 212 209 205 208

130 128 131 127 129

3635393135

143 147 145 146 147

202206200203201

a pixel

FIG. 3. The object-image (here a grid of horizontal black lines) is digitised giving an array
(e.g. a 512 by 512 matrix) of pixels. The pixel intensity is the average intensity of the image
over the area of the pixel. The intensity of each pixel is a number ranging, typically, from 0
(black) to 255 (white). Thus the digitised image may be represented by a matrix of integers.

a binary number on a computer using the memory equivalent to one byte.) More generally,
the intensity of the pixel may be represented by a oating point number. But for ease of
discussion, below it is assumed the intensities are represented by integers in the range 0 to
255.

Thus a digitised image may be stored on a computer as a matrix of integers. The size
of the matrix depends upon the number of pixels that horizontally and vertically span the
entire image. The Data Translation Frame Grabber Cards DT2861 and DT2862 subdivide
the image into a 512 by 512 matrix of pixels. Thus, a digitised image requires 512� 512 '
256 kbytes of memory. Some frame grabber cards have memory chips on the board su�cient
for storing at least one digitised image. (The cards DT2862 and DT2861 can store 4 and
16 digitized images, respectively.) Frame grabber cards can also access computer memory
directly though the speed at which data can be stored in computer memory or disk may be
restrictive.

3 Qualitative Mode

Synthetic schlieren can be run in either \qualitative" or \quantitative mode". The latter
mode, which is described in detail in the next section, is used in special circumstances to
determine how the variations in the object-image correspond to the actual values of the



Dalziel, Hughes and Sutherland 7

density uctuations.
In qualitative mode, synthetic schlieren can be used to visualise instantaneous changes

in an object-image due, for example, to heat shimmer. Briey, the technique works by
comparing one digitised image with another taken at an earlier time. The object-image at
an earlier time is referred to as the \initial image". (Though, possibly, the initial image
could be the time-average of many images taken at an earlier time. Time-averaging can be
used in this way to reduce signal noise.) The other object-image, referred to as the \current
image", may be a snapshot taken at a time after the initial image is taken. Alternately, the
current image may be taken continuously in real time so that the the current and initial
images are compared continuously. The images are compared digitally on a pixel-by-pixel
basis and then enhanced so as to make small changes more apparent. This may be done,
for example, by taking the di�erence between respective pixels on two images and then
multiplying the result by an \enhancement factor", a number that multiplies the di�erence
and so makes small changes more apparent.

For ease of discussion, the examples below assume the comparison is taking the absolute
value of the di�erence between two images and multiplying the result by an enhancement
factor.

A owchart illustrating the steps to the qualitative mode of synthetic schlieren is shown
in Figure 4. The steps are described in detail below.

The initial image (either a \snap-shot" or \time-average") is digitised. The image is
thus represented on the computer by a matrix of integers. Each element of the matrix
corresponds to a pixel of the image. The integer value of that element corresponds to the
average intensity of light over the pixel. In this discussion, the matrix of initial data is
represented symbolically by Iinit, and the elements of the matrix are represented by (Iinit)ij,
where i is the i'th row of the matrix and j is the j'th column of the matrix. The intensity
of the pixel in the top left corner of the digitised image is given by the value of (Iinit)00.
Each element of Iinit can be an integer between 0 and 2b � 1, where b is the number of
bits of computer memory used to resolve the actual intensity. Typically, one byte (8 bits)
of memory is used. Thus the intensity of a pixel (a shade of gray) is represented by a
number between 0 and 255. For example, if (Iinit)00 = 0, the top corner pixel is black; if
(Iinit)00 = 255, the top corner pixel is white.

An enhancement factor is entered. In this discussion, the enhancement factor is repre-
sented by an integer, m. Typically the enhancement factor equals 5, though it may be larger
if the uctuations of the image over time are small and greater enhancement is required.
Likewise, if the intensity variation of the image with time is large, then no enhancement is
required and the enhancement factor may be entered as 1.

Next the current image is digitised. This may be done from a snapshot or done con-
tinuously while the image is being recorded or played back. In this discussion, the matrix
of integers resulting from this digitised image is represented by Icurrent, which has elements
(Icurrent)ij.

The computer then computes the value of mjIcurrent�Iinitj, where the vertical lines denote
the absolute value (e.g. j � 2j = 2). The result is a matrix Isynth with elements (Isynth)ij =
mj(Icurrent)ij � (Iinit)ijj. If (Isynth)ij lies above the range allowed by computer memory, i.e.



Dalziel, Hughes and Sutherland 8

Flowchart Illustrat ing Qualitative Sch lieren Mode

digitise initial
image (A)

read
enhancement

factor (m)

digitise present
image (B)

compute
m|B−A|

display
result

end

start

"A" is a matrix of integers ranging from 0
(black) to 255(white). The value of each
element of the matrix corresponds to the
intensity of the corresponding pixel.

Larger values for "m" enhance changes
in the image to a greater degree.
Typically m=5.

"B" is the matrix of integers
corresponding to the array of pixel
intensities of the digitised image taken
some time after the initial image.

Compute "m" times the absolute value
of the difference of the two matrices.

From the resulting matrix, display the
corresponding intensity values.

FIG. 4. Flow chart describing the \qualitative mode" of synthetic schlieren. In a typical
set up, the loop is run continuously so that the constantly changing value of the schlieren
image, given by values of the array mjB � Aj, can be visualised.



Dalziel, Hughes and Sutherland 9

initial image

current image

synthetic
schlieren

image

C

150
255

200

210
130

35

A

B

190
40

75

m|B-A|

(m=5)

FIG. 5. Example showing the calculation used to enhance the di�erence between two images
to generated a \synthetic schlieren" image in qualitative mode.

(Isynth)ij � 2b, then (Isynth)ij is instead assigned the maximum allowed value, (Isynth)ij !
2b � 1. Likewise, if (Isynth)ij is negative, then (Isynth)ij ! 0.

Finally, the elements of Isynth are interpreted as pixels of an image whose intensities
are given by the values (Isynth)ij. This \synthetic schlieren" image may be displayed on a
monitor. Often, this is done in false colour to make small changes even more apparent.

An example of this calculation procedure is illustrated in Figure 5.
The calculationmjIcurrent�Iinitj is useful because the response to changes, both small and

large, is linear. However, one can also compute, for example, m(Icurrent� Iinit)
2 to exaggerate

the e�ect of large uctuations. Or one can compute m
q
(jIcurrent � Iinitj) to exaggerate the

e�ect of small uctuations. Similarly, other functions of Icurrent � Iinit may be computed,
depending upon the application and the quantities of interest to be visualised.

The qualitative mode of synthetic schlieren has been implemented using DigImage, an
image processing software package (see appendix A).

An example of DigImage's implementation of the qualitative mode of synthetic schlieren
is shown in Figure 6. These plates were produced by focussing the camera on a 12cm by
8cm region of a grid of horizontal black lines. The grid is 3:5m from the camera. Between
the camera and the image is a 20 cm wide tank �lled with salt-strati�ed water. A periodic
disturbance at the water surface creates waves in the uid that propagate downward. Be-
cause the disturbed uid induces density perturbations in the tank the path of light rays
from the image to the camera is deected and the current image (Fig. 6b) is distorted. (In
this example, the signal is particularly strong and distortions of the current object-image
are easily apparent. Even if the distortions are not apparent on the current image, synthetic
schlieren can reveal them.)



Dalziel, Hughes and Sutherland 10

a) initial image

b) current image

c) synthetic schlieren image

FIG. 6. Qualitative mode of synthetic schlieren used to visualise waves in a tank of salt-
strati�ed uid: a) initial image of horizontal black lines; b) current image distorted by
waves; c) synthetic schlieren image found by taking di�erence of the digitised current and
initial images and multiplying the absolute value of the result by an enhancement factor of
5.



Dalziel, Hughes and Sutherland 11

Fig. 6a shows the initial image taken before the surface is disturbed. All the lines are
parallel and horizontal. Fig. 6b shows the current image taken while the surface is disturbed
and waves propagate downward. Indeed, a slight deection of the lines is evident in this
image. Fig. 6c shows the synthetic schlieren image produced by calculating mjIcurrent � Iinitj
using an enhancement factor of m = 5. The slight deections in the lines are immediately
apparent as the bright regions in this image.

4 Quantitative Mode

Synthetic schlieren may be used in quantitative mode to determine how the uctuations in
an image correspond to the magnitude of the density uctuations themselves. We illustrate
its implementation here under laboratory conditions in which the density uctuations are
assumed to be spanwise uniform over the test section. (More generally, a pre-existing
knowledge of the spatial structure (e.g.uniform or axisymmetric) allows the quantitative
mode to be used with only one camera providing a single perspective of the test section. If,
by using additional cameras or mirrors, two or more simultaneous perspectives of the test
section are examined, then more complex three dimensional geometries may be reconstructed
both qualitatively and quantitatively.)

In the discussion below, it is assumed that the test section is a tank �lled with salt-
strati�ed uid. Assuming the uid is initially static, the density of the uid decreases with
increasing distance above the bottom of the tank as the uid becomes less saline. This
\background" density distribution as a function of distance z above the bottom of the tank
is represented by �(z). (In general, the background density may vary either along or across
the camera's line of sight.)

A simple calculation shows that as a light ray passes through the uid, entering the
tank from the side at a small angle �0 to the horizontal, the ray follows a parabolic path,
as illustrated schematically in Figure 7a. The vertical position z of the ray as it passes at
distance y through the strati�ed uid is

z(y) = z0 + y tan�0 �
1

2

 
1

n0

dn

d�

! 
�
d�

dz

!
y2; (1)

where z0 is the vertical position at which the light ray enters the tank, n0 = 1:3330 is
the index of refraction of water, �0 = 0:9982 g=cm3, the density of fresh water at room
temperature, and dn=d� = 0:246 is the rate of change of the index refraction with increasing
density of saline water. The quantity �d�

dz
is positive because the uid density decreases as

z increases.
Equation (1) may also be written in terms of the more standard quantity (called the

\squared buoyancy frequency"),

N2 = �(g=�0)d�=dz: (2)

Hence z(y) = z0 + y tan�0 �
1

2
N2y2, where  = (�0=gn0)dn=d� = 1:878� 10�4 s2=cm.



Dalziel, Hughes and Sutherland 12

test section
object−
image

b)

L t L g

a)

y

z

φ

L t

FIG. 7. a) The path of a light ray (dashed line) through a strati�ed uid. The ray enters
the tank at an angle � to the horizontal and is bent along a parabolic arc. The degree
to which it is bent depends upon the rate of change of density with depth d�=dz. b) The
path of the light ray from the image to camera passing through a tank, of width Lt, that is
�lled with strati�ed uid. Note, in both diagrams the vertical scale is greatly exaggerated;
typically the system is set up so that the angle � ' 0.

It follows immediately from equation (1) that light is bent to a greater degree if the
density gradient is larger and it is bent to a lesser degree if the density gradient is smaller.

Now assume a wave propagates within the tank inducing a disturbance to the density
�eld. This is a wave that moves under the inuence of buoyancy forces within a density
strati�ed uid. If the wave is uniform across the span of the tank, the e�ect of the wave is
to increase and decrease the local density gradients. By determining how much the light is
deected, it is possible to use (1) to measure how much the density gradient has changed,
and so measure the amplitude of the wave.

Explicitly, by comparing initial and current images of a grid of horizontal lines, the
vertical displacement, �z, of pixels on the edge of the lines can be measured. Assuming the
thickness of the tank walls is negligibly small, the resulting change in the density gradient



Dalziel, Hughes and Sutherland 13

in the tank is
@�

@z
= �z

n0

dn=d�

�
1

2
Lt

2 + Ltn0

�
Lg

na

��
�1

; (3)

where na = 1:000 is the index of refraction of air, Lt is the width of the tank and Lg is the
distance from the tank to the image, as illustrated in Figure 7b.

The quantity

�N2 = �g=�0
@�

@z
(4)

may be computed from the value of the perturbation density gradient given by (3). In
equation (4), g ' 980 cm=s2 is the acceleration of gravity and �0 ' 1:0 g=cm3 is the density
of fresh water.

Figure 8 shows three stages in the generation of the �N2 �eld found from equations (3)
and (4). The computed images are found from the initial and current images shown in �gs 6a
and b, respectively. In �g. 8a the values of �N2 are computed for pixels at the edges of the
black lines in the initial image. The black lines indicate regions where the computation was
not performed in order to reduce signal noise. Fig. 8b is found from Fig. 8a by replacing
black pixels with pixels whose intensities hold the average of surrounding non-black pixels.
E�ectively this uses the calculation that determined Fig. 8 and interpolates over regions
where the calculation could not be performed. Finally, a low pass Fourier �lter is applied
to smooth the result and produce the quantitative schlieren image of the �N2 �eld shown
in Fig. 8c.

Synthetic schlieren is also usefully applied to a time series. This is a digitised image that
displays how a cross-section through a spatial image evolves in time. Alternately, the time
series image may be created directly from a line-scan device which directly records the time
evolution of an image over a single line of pixels.

For example, Figure 9 shows the evolution in time (horizontal axis) of a vertical slice
through the image shown in �g. 6a. The vertical slice is e�ectively a column in the matrix
representing the digitised array of pixels. The periodic disturbance is initiated at a time cor-
responding to the left side of the picture. As time evolves, successive vertical slices (columns
of the matrix) are successively placed proceeding from left to right in the picture. The slices
are taken at a rate determined by the person processing the image. (See appendix AA.4.)
In �g. 6a, slices are taken every 0:2 sec for 1 minute.

By comparing each column of the resulting digitised matrix with the �rst column of
the matrix (a vertical slice through the initial image), the time series of the �N2 �eld
can be found. This is shown in �g. 9b. This quantitative schlieren image clearly shows
the leading edge of the disturbances propagating downward as time progresses, from left
to right. (The disturbances are waves whose front moves downward while the wave crests
propagate upward.) Furthermore, by comparing a vertical slice with a vertical slice taken
a short time earlier (typically a fraction of a second), the time rate of change of the �N2

�eld can be found. This is shown in �g. 9c. The latter is useful, because it �lters out slowly
evolving disturbances.



Dalziel, Hughes and Sutherland 14

a) at calculated points∆ N
2

b) w. interpolated points∆ N
2

c) filtered image∆ N
2

FIG. 8. Quantitative mode of synthetic schlieren used to visualise waves in a tank of salt-
strati�ed uid. The initial and current images are the same as those shown in Fig. 6a and
b. a) the calculation determines the change in �N2, which is proportional to the change
in density gradient @�=@z induced by the waves. The calculation is performed on the edges
of the lines in the initial image in Fig. 6a. Pixels where the calculation are not performed
are left black (intensity zero); b) pixels that are black are assigned intensities equal to the
average of the surrounding pixels; c) the result is smoothed by a low pass �lter.



Dalziel, Hughes and Sutherland 15

a) time series of image

b) time series of ∆ N
2

c) time series of ∆ N
2

( )t

FIG. 9. Quantitative mode of synthetic schlieren used to visualise time series of waves in a
tank of salt-strati�ed uid. a) image of time series showing the evolution of the image along
a vertical slice taken along the left edge of the image shown, for example, in Fig. 6. b) Time
series of the �N2 �eld (see text). The image shows the wave front propagating downward
in time (though the crests of the waves move upward). c) Time series of time derivative of
the �N2 �eld (see text). This image �lters motions that evolve more slowly.



Dalziel, Hughes and Sutherland 16

5 Applications

Synthetic schlieren may cost-e�ectively replace present techniques that visualise and mea-
sure density changes which are used in industry, medicine and other sciences. Some examples
illustrating the potential breadth of application are listed here.

� Visualisation and measurement of heat: Synthetic schlieren can be used to monitor
heat rising from a human body, machinery, pavements or other objects. This could
be used to measure heat loss, or detect leakage of heat from insulated objects - for
example, around windows or from the roof of a house. It could be used to monitor
wind gusts near runways.

� Visualisation and measurement of shock waves: Shock waves, for example in air, com-
press and expand gas and so locally heat and cool it, respectively. The waves can thus
be visualised. Synthetic schlieren could be used to examine shock waves, for example,
from supersonic aircraft (or models of them in laboratory conditions) or from a gun
being �red.

� Visualisation of non-homogeneous turbulence: turbulence is easily apparent in a con-
vecting uid, whether due to heat (hot under cold uid) or, for example, salinity (fresh
under salty, dense uid). In a uid that is stably strati�ed (light uid over dense),
turbulence due to mixing can be visualised. This has applications in identifying the
extent and longevity of turbulence in a non-homogeneous uid. Examples are turbu-
lence due to combustion in the combustion chamber of a car's engine; the turbulent
wake behind a submarine in the ocean (whose salinity and temperature varies with
depth); mechanical mixing by jets or a stirrer in a vat �lled with liquids of varying
concentration.

� Visualisation and measurement of disturbances in non-homogeneous objects: If the in-
dex of refraction of a solid, liquid or gas is non-uniform (whether due to density or
compositional changes), then synthetic schlieren can detect and measure the magni-
tude of time-variations of density due to sound waves (in solids) and due to waves,
such as internal waves (which move due to buoyancy e�ects) in liquids and gases. This
has applications, for example, in solid state physics (e.g. detecting defects in silicon
wafers), and detecting internal waves behind submarines.

� Visualization and measurement of changes in internal organs: If x-rays, rather than
visual light, is used, synthetic schlieren can be applied to examine density variations
in the human body, and so detect chemical changes and defects in organs. If more
than one perspective is of the organ is examined, standard tomographic techniques
can be employed to measure the three-dimensional spatial structure of the variations.



Dalziel, Hughes and Sutherland 17

A DigImage Commands

DigImage is a versatile menu-driven software program that runs on PCs equipped with
a Data Translation Frame Grabber Card (DT2861 or DT2862). Contact information is
provided in Appendix C.

Digitised images are stored in memory. Many images can be stored at the same time
in di�erent memory locations. These locations are called bu�ers. For example, four images
can be stored and manipulated in bu�ers 0, 1, 2 and 3.

A.1 Grab a Single Image

The following sequence of commands allows a single image to be digitised and stored in a
bu�er. In the example below the image is stored in bu�er 0 after the space bar is pressed.

Command Explanation
; Go to main menu
G Grab images menu
G Grab an image
0 Bu�er (memory location) where image is put
henteri grab image when enter key is pressed

A.2 Grab a Sequence of Images

The following sequence of commands allows a sequence images to be digitised and stored in
bu�ers. In the example below the images are grabbed at times 0, 4, 8 and 12 seconds after
the space bar is pressed. The images are stored in bu�ers 1, 2, 3 and 4.

Command Explanation
; Go to Main Menu
G Grab Images Menu
S Grab a Sequence of Images
0 time (in sec) to grab �rst image
4 grab second image after 4 seconds
8 grab third image after 8 seconds
12 grab fourth image after 12 seconds
-1 done specifying when to grab frames
hreturni Don't save results to �le
hspacei grabbing images begins as soon as pressed



Dalziel, Hughes and Sutherland 18

A.3 Continuously Acquire an Image

The following sequence of commands allows an image to be digitised continuously. DigImage
can then perform real-time arithmetic operations on the evolving image.

Command Explanation
; Go to main menu
G Grab images menu
G Grab an image
0 Bu�er (memory location) where image is put
C Continuously acquire image

A.4 Make a Time Series

The following sequence of commands will make an image showing how a column or row of
pixels evolve over time. In the particular example below, a vertical time series is created
from a continuously evolving image. A vertical time series is formed by taking a vertical
slice through the image at successive intervals. Each slice is stacked one after the other thus
creating a new image which varies vertically in space and horizontally in time.

An initial image is assumed to be already stored in bu�er 1. Cross-hairs are oriented
on this image at the position where the vertical time series is to be taken. In order to span
the screen (�lling 512 pixels horizontally) the time series is taken for 17.033 seconds at a
sampling period of 1/30th second. (This is the standard video rate for NTSC systems, such
as that used in North America. For PAL systems, as used in most of Europe, the sampling
period is 1/25th second, and the shortest time series that �lls the screen is taken for 20.44
seconds.) Time series can be taken for arbitrarily longer times at the expense of reduced
temporal resolution.

Command Explanation
; Go to Main Menu
T Time Series Menu
L Time Series along a horizontal or vertical line
1 Locate position of line in bu�er 1 using cross-hairs
P After locating position exit to continue
C Take vertical time series (L for horizontal)
2 Put image of time series in bu�er 2
N Don't take time series anywhere else
17.033 Time series 17.033 sec. long: time increment is �t = 0:033 sec between samples
M Take image by pressing a key on the keyboard
hreturni Image taking begins when return is pressed



Dalziel, Hughes and Sutherland 19

A.5 Save a bitmap (.bmp) Image to a File

Command Explanation
; Go to Main Menu
K Save or restore image Menu
C save a .BMP �le to �le
1 save image in bu�er number 1
img1.bmp save to �le called "img1.bmp"
S save the screen
300 number of horizontal pixels
300 number of vertical pixels
8 number of bits/pixel

A.6 Load a Bitmap (.bmp) Image into DigImage

Command Explanation
; Go to Main Menu
K Save or restore image Menu
B read a .BMP �le into DigImage
1 put image in bu�er number 1
img1 read in �le called "img1.bmp"
S make image �ll the screen

A.7 Save Image to a .PIC �le (DigImage's special image format)

Command Explanation
; Go to Main Menu
K Save or restore image Menu
S save a .PIC �le
1 save image in bu�er number 1
img1.pic save to �le called "img1.pic"
y compress image
8 number of bits/pixel

A.8 Load an image from a .PIC �le

Command Explanation
; Go to Main Menu
K Save or restore image Menu
R load image in a .PIC �le to a bu�er
1 load image into bu�er number 1
img1 load image from �le called "img1.pic"



Dalziel, Hughes and Sutherland 20

A.9 Set Up Physical Co-ordinate System

Command Explanation
; Start from to main menu
P Co-ordinate system menu
W map pixel to physical co-ordinate menu
I initialize co-ordinate system
cm co-ordinate in centimetres
L locate speci�c co-ordinate to make map
0 locate co-ordinates in bu�er number 1
hcursor keysi move cross-hairs to co-ordinate
P exit
0 0 co-ordinates of point in cm: x=0 cm; z=0 cm
Y locate another co-ordinate
hcursor keysi move cross-hairs to another co-ordinate
P exit
0 30 co-ordinates at: x=0 cm; z=30 cm
Y locate another co-ordinate
hcursor keysi move cross-hairs to another co-ordinate
P exit
30 0 co-ordinates at: x=30 cm; z=0 cm
N stop getting co-ordinates

A.10 Filter noise from an image

Command Explanation
; Start from main menu
F �lter image
F perform Fourier �lters
L Low pass �lter: get rid of small scale (high frequency) noise . . . low frequencies

remain
1 Filter image in bu�er 1
B �lter both horizontal and vertical directions
32 cut o� variations with frequencies faster than 32/512 pixels



Dalziel, Hughes and Sutherland 21

A.11 Run Synthetic Schlieren in Qualitative Mode

Qualitative mode may be run by typing each of the commands below.

Command Explanation
; Go to main menu
G Grab images menu
G Grab an image
1 Bu�er (memory location) where image is put
henteri grab image when enter key is pressed

; Go to main menu
G Grab images menu
M Image Manipulation
A Grab an image and perform arithmetic operations on it
38 Subtract one bu�er from another
0 Leave present image as is before performing operations
V read formula that de�nes what to do with result
abs(p-256)*5 di�erence is value from 0-511 (256-511 correspond to negative numbers); sub-

tract 256 from di�erence and �nd absolute value. Multiply result by \enhance-
ment factor" of 5.

S Set result to 255 if actual result exceeds 255
2 Bu�er containing current image
1 Bu�er containing initial image
3 Bu�er in which to put synthetic schlieren image
1 do not zoom in on result
0 no vertical o�set
0 no horizontal o�set



Dalziel, Hughes and Sutherland 22

Alternately, these commands may be put in a slightly modi�ed form in a �le called, for
example, \synth.cmd":

; Start from main menu
G: Grab/Display Menu
G Grab single frame
!^ Grab reference image
1 put result in bu�er 1

A grab image and perform arithmetic operations on it
B grab a single image
0 put result in bu�er 0
1 compare result with image bu�er 1
38 subtract image in bu�er 1 from image in bu�er 0; result is denote by \P"
0 do not adjust result . . .
V except to perform following calculation after enhancement factor is entered
!^ Enhance? Get enhancement factor
!!0:=!!GK Assign enhancement factor to variable called !!0
abs(P-256)*!!G0 take result \P", subtract 256, �nd absolute value and multiply by !!0
S perform operation on whole screen
!L C grab frame continuously

DigImage automatically executes the commands prompting the user for input as shown
below:

Command Explanation
!P synth execute commands in �le \synth.cmd"
henteri grab image when enter key is pressed
5 Enter enhancement factor



Dalziel, Hughes and Sutherland 23

A.12 Run Synthetic Schlieren in Quantitative Mode

If DigImage is compiled with the Fortran subroutines that calculate how uctuations in
an image of horizontal black lines correspond to density uctuations, then the following
commands are typed to process the image.

The commands assume the user starts from the synthetic schlieren menu.

Command Explanation
N Find �N2 �eld
S �eld is spatial, not space-time image
1 bu�er containing initial image
2 bu�er containing current image
S process entire image
34.2 Lg: distance from tank to grid (in cm)
350.0 Lc: distance from camera to tank (in cm)
0.0 horizontal position of center of image (in cm)
13.0 vertical position of center of image (in cm)
10 tolerance: process only if intensity di�erence between upper and lower pixels

exceeds 10
-0.1 values �N2 � �0:1 are given pixel intensity 1
0.1 values �N2 � +0:1 are given pixel intensity 255

(for �0:1 � �N2 � 0:1 pixel intensity is found by linear interpolation.)
3 put resulting \quantitative schlieren" image in bu�er 3
Y accept result (other try other values of min and max �N2

Y accept result (other try other values of tolerance)

Now interpolate over black regions (where calculation was not performed) in order to
compute values everywhere on the image.

Command Explanation
I Average over regions of zero intensity
3 bu�er containing \quantitative schlieren" image
S process entire image
4 put result in bu�er 4
A calculate average of surrounding pixels
5 average over box 5 pixels wide . . .
5 and 5 pixels tall
W perform Gaussian weighted average (points within standard deviation � given

more weight)
2.0 �: standard deviation
B only perform average over pixels that are \black" (zero intensity)

At this point, the resulting image may be �ltered using the commands, for example, in
subsection A.10.



Dalziel, Hughes and Sutherland 24

B DigImage Source Code to Run Synthetic Schlieren

in Quantitative Mode

Special software subroutines have been written for use by DigImage to use synthetic schlieren
in quantitative mode. The source codes are interpreted by Microsoft Fortran version 5.0 or
5.1 and are compiled along with the DigImage source code. When running DigImage, the
subroutines allow the user to supply data as prompted through a series of menus. The data
is then used to calculate the magnitude of density changes from the observed uctuations of
an object-image. The resulting calculation is shown as image which may be further enhanced
to interpolate over regions where the calculation could not accurately be performed.

For simplicity, it is assumed in the discussion below that the image is a grid of horizontal
lines.

Two main subroutines are listed in subsection B.1 below. The �rst, \Schlieren2DSpace",
computes the density uctuation �eld given an initial and �nal image, and the second,
\SchlierenSpaceTime", computes the density uctuation �eld from a vertical time series -
an image showing the time-evolution of a column of pixels. Each subroutine performs a
similar set of operations, reading in data and calling other subroutines, as illustrated in
Figure 10.

Both subroutines begin by reading in the matrices of data representing the images to be
processed. For example, these may be the initial and current images. The programs then ask
the user to supply information about the setup of the camera, object-image and test section.
Both \Schlieren2DSpace" and \SchlierenSpaceTime" call the specialised subroutines in the
main part of the routine.

In order to reduce signal noise, the calculation is not performed for every pixel in the
image. Part of the calculation requires interpolating between the intensities of a stack of
three pixels. In order for the interpolation to be unambiguous, the intensities from top
to bottom must increase or decrease monotonically. Thus, the calculation is performed
e�ectively for pixels at the upper and lower edges of each horizontal line, but it is not
performed at the center of the lines or the centre of the bright areas between the lines.

Furthermore, in order to reduce signal noise, the calculation is performed for a particular
pixel at the edge of a line, the calculation being performed only if its intensity di�ers by
more than some threshold, typicaly 10, from the intensity of the pixel immediately above
and beneath it. An example is the close-up of the digitised image illustrated in Figure 3

Subsection B.2 lists some of the FORTRAN 90 subroutines used to calculate disturbances
from uctuations in arbitrary images, e.g. an array of dots.

B.1 Source Code for Horizontal Line Images

The following subroutines are used, optimally, to calculate how density changes by observing
uctuations in a grid of horizontal lines.



Dalziel, Hughes and Sutherland 25

Flowchart for Quant itative Mode

DigImage
Main Menu

Schlieren
Menu

Schlieren2DSpace
input image and

setup data

SchlierenSpaceTime
input image and

setup data

CheckMinTol

is pixel on edge
of line?

GetDelZ
what is vertical
displacement,

of pixel?
∆z,

Interpl

compute change in
density from   ∆z,

RescaleIfNotZero

convert result to
value from 0-255

display resultdisplay result

Schlieren
Menu

FIG. 10. Flow chart describing the \quantitative mode" of synthetic schlieren. One of two
subroutines may be called, one that calculates the density uctuation �eld given an initial
and present image, and one that calculates a vertical time series of the density uctuation
�eld from a time series of the raw image.



Dalziel, Hughes and Sutherland 26

Schlieren2DSpace

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C% Schliern.FOR OVERLAY %

C% Subroutines for calculating vertical displacements %

C% of grid lines and fluid parcels. %

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C$ Calls defined by SCHLIERN.FOR: $

C$ Schlieren2DSpace $

C$ SchlierenSpaceTime $

C$ GetDelZ $

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

C^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C^ Calls made by SCHLIERN.FOR: ^

C^ CALL AcceptBuffer ^

C^ CALL AcceptInteger ^

C^ CALL GetLineFromBuffer ^

C^ CALL MoveArrayToWindow ^

C^ CALL MoveBufferToMemory ^

C^ CALL SetCurrentHelpFile ^

C^ CALL ShowBuffer ^

C^ CALL WindowOrScreen ^

C^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

$STORAGE:2

$DECLARE

C***********************************************************************

C* Schlieren2DSpace *

C* This subroutine is designed to find the motion of lines *

C* on a schlieren grid due to density changes in a stratified fluid *

C* Options determine whether the relative motion of lines, physical *

C* displacement of lines, change in N^2 of water, vertical *

C* displacement of lines, fluctuation density, or vertical velocity *

C* fields should be found. *

C***********************************************************************

SUBROUTINE Schlieren2DSpace(Mode)

$INCLUDE:'All.INC'

$INCLUDE:'WorkSpce.INC'

$INCLUDE:'Configur.INC'

C==Define and dimension variables

LOGICAL NotDone,iError

INTEGER*1 jCol,jCol2,iRow,iRow2

INTEGER*2 iWant1,iWant2,iWant3,iHandle,iOnboard

INTEGER*2 iw0,iw1,jw0,jw1,i,j



Dalziel, Hughes and Sutherland 27

INTEGER*2 Ir,Irn,Irp,In,I0,Ip,Id,iMinTol

INTEGER*2 nmax,nn,nc,nz,iz

REAL Ltank,Lperspex,Lgrid,Lcam,nwater,nperspex,nair,nw2nsqr

REAL PyCam,PzCam,ScaleTG,Lpg,coefdelz,Rho0OverG

REAL maxfld,minfld,maxfldi,minfldi

REAL delz,dt,yw0,zw0,n2zw

REAL zzmin,zzmax,n2min,n2max

REAL fz,z,dfzdz,zz,n2

CHARACTER Mode,AcptScaling,AcptMinTol,SetBndyConds

CHARACTER N2file*(20)

PARAMETER (nmax=256)

DIMENSION jCol(0:511),jCol2(0:511),iRow(0:511),iRow2(0:511)

DIMENSION n2(nmax),zz(nmax)

DIMENSION dfzdz(nmax),z(nmax),fz(nmax)

EQUIVALENCE (iWork1(0),jCol(0))

EQUIVALENCE (iWork1(512),jCol2(0))

EQUIVALENCE (iWork1(1024),iRow(0))

EQUIVALENCE (iWork1(1536),iRow2(0))

EQUIVALENCE (rWork1(0),fz(1))

EQUIVALENCE (rWork1(256),z(1))

EQUIVALENCE (rWork1(512),dfzdz(1))

EQUIVALENCE (rWork1(768),zz(1))

EQUIVALENCE (rWork1(1024),n2(1))

C==Set default options

DATA iMinTol /10/

DATA minfld,maxfld /-0.1,0.1/

C==default lengths in cm: span of tank, perspex, and distance to grid

DATA Ltank /20.3/, Lperspex /1.1/, Lgrid /34.2/, Lcam /343./

C==position of camera in grid co-ordinates

DATA PyCam /0.0/, PzCam /13.0/

C==indices of refraction for water, perspex and air

DATA nwater /1.3330/, nperspex /1.49/, nair /1.0000/

C==scaling from index of refraction gradient to N^2 (in s^2/cm)

C== (d(nw)/dz)/nw = -nw2nsqr*N^2

DATA nw2nsqr /0.0001878/

C==Density of water divided by accn of gravity (in g s^2/cm^4)

DATA Rho0OverG /0.001019/

C

C CALL SetCurrentHelpFile('Norminty.F01',' ')

C

C= Make sure option passed to this subroutine is allowed



Dalziel, Hughes and Sutherland 28

IF (Mode .EQ. 'G') THEN

WRITE(6,*) 'Calculate line displacement in grid world co-ords'

ELSEIF (Mode .EQ. 'N') THEN

WRITE(6,*) 'Calculate Delta N^2 field'

ELSEIF (Mode .EQ. 'P') THEN

WRITE(6,*) 'Calculate time derivative of Delta N^2'

ELSEIF (Mode .EQ. 'R') THEN

WRITE(6,*) 'Calculate flucutation density field'

ELSEIF (Mode .EQ. 'S') THEN

WRITE(6,*) 'Calculate relative shift in line displacement'

ELSEIF (Mode .EQ. 'T') THEN

WRITE(6,*) 'Calculate line displacement in tank world co-ords'

ELSEIF (Mode .EQ. 'U') THEN

WRITE(6,*) 'Calculate horizontal velocity field'

ELSEIF (Mode .EQ. 'W') THEN

WRITE(6,*) 'Calculate vertical velocity field'

ELSEIF (Mode .EQ. 'Z') THEN

WRITE(6,*) 'Calculate vertical displacement field'

ELSE

WRITE(6,*)'Option to SchlierenTank not valid'

RETURN

ENDIF

C==Get the buffer containing initial picture of a grid

WRITE(6,*)'What is buffer containing initial image?'

CALL AcceptBuffer(iWant1,1)

IF (EscapePressed) THEN

RETURN

ENDIF

CALL ShowBuffer(iWant1,iOnboard,.FALSE.)

C==Get the buffer containing instantaneous picture of a grid

WRITE(6,*)'What is buffer containing current image?'

CALL AcceptBuffer(iWant2,1)

IF (EscapePressed) THEN

RETURN

ENDIF

CALL ShowBuffer(iWant2,iOnboard,.FALSE.)

CALL WindowOrScreen(iWant2,iw0,iw1,jw0,jw1,.TRUE.,' ',' ')

C==Get time difference between buffers

IF (Mode .EQ. 'P' .OR. Mode .EQ. 'U' .OR. Mode .EQ. 'W') THEN

dt = 0.1



Dalziel, Hughes and Sutherland 29

WRITE(6,*)'What is time difference, dt, between buffers?'

CALL AcceptReal(dt,0.01,10.0,2)

ENDIF

C==Get file containing N^2 profile and set boundary conds for integration

IF (Mode .EQ. 'U' .OR. Mode .EQ. 'W' .OR. Mode .EQ. 'Z') THEN

N2file='N2T*.XPT'

WRITE(6,*)'XPlot filename of N^2 profile'

CALL AcceptString(N2file,2)

CALL OpenFile(iHandle,' ',N2file,

& 'unknown','formatted','sequential',iError)

IF (iError .OR. iHandle .EQ. 0) THEN

CALL Warning('Cannot open specified N2 file')

ELSE

READ(iHandle,'(A)') N2file

READ(iHandle,'(E11.3,/,E11.3)') n2min,n2max

READ(iHandle,'(E11.3,/,E11.3)') zzmin,zzmax

READ(iHandle,'(I3,/,I3)') nc,nn

WRITE(6,*) 'File contains nn=',nn,' points of (n2,z) ...'

IF (nn .GT. nmax) THEN

WRITE(6,*) 'too many points for n2 and zz'

ELSE

DO i=1,nn

READ(iHandle,'(2E11.3)') n2(i), zz(i)

ENDDO

ENDIF

CALL CloseFile(iHandle)

ENDIF

C==Prompt to determine setting of boundary conditions

IF (Mode .EQ. 'U') THEN

WRITE(6,*)'Bndy cond: fld=0 at Left, Right, or on Average'

Call PressOneOf(SetBndyConds,'ALR',1)

ELSE

WRITE(6,*)'Bndy cond: fld=0 at Bottom, Top, or on Average'

Call PressOneOf(SetBndyConds,'ABT',1)

ENDIF

ENDIF

C==========================================================================

C= Now define coefficients used to scale from observed vertical =

C= motion of grid to change in N^2 in tank. =

C= Delta N^2 = coefdelz * Delta Zgrid =



Dalziel, Hughes and Sutherland 30

C= ScaleTG calculates world co-ordinates on Schlieren grid from world =

C= co-ordinates given by grid placed in centre of tank. =

C= =

C= Delta N^2 gives the vertical gradient of density fluctuation which, =

C= in turn, gives the gradient of the vertical displacement, Delta Ztank. =

C= Rho' = (d(Rho_bkgd)/dz) Delta Ztank =

C= = -(Rho_0/G) (N_bkgd)^2 Delta Ztank. =

C= d(Delta Ztank)/dz = 1/(N_bkgd)^2 Delta N^2 =

C==========================================================================

IF (Mode .EQ. 'S' .OR. Mode .EQ. 'T') THEN

ScaleTG = 0.0

ELSE

C==Prompt to change lengths and indices of refraction

WRITE(6,*)'What is width of tank (in cm)?'

CALL AcceptReal(Ltank,0.0,100.0,2)

WRITE(6,*)'What is distance (in cm) from tank to grid?'

CALL AcceptReal(Lgrid,0.0,100.0,2)

WRITE(6,*)'What is distance (in cm) from camera to tank?'

CALL AcceptReal(Lcam,0.0,500.0,2)

WRITE(6,*)'What is horiz. posn. (in tank co-ords) of camera?'

CALL AcceptReal(PyCam,-50.0,50.0,2)

WRITE(6,*)'What is vertical posn. (in tank co-ords) of camera?'

CALL AcceptReal(PzCam,0.0,40.0,2)

Lpg = Lperspex/Nperspex + Lgrid/Nair

coefdelz = -1.0/(Nw2Nsqr*(0.5*Ltank*Ltank + Nwater*Lpg*Ltank))

ScaleTG = 0.5*(Ltank/Nwater + Lperspex/Nperspex)*Nair

ScaleTG = (ScaleTG + Lgrid)/(ScaleTG + Lcam)

C==Allow user to reset minimum tolerance to reduce noise

WRITE(6,*) 'Min. intensity diff. between upper and lower pixels?'

CALL AcceptInteger(iMinTol,1,255,2)

C==Prompt to set min and max field values between intensities of 1 and 255

WRITE(6,*)'I=1 is what min. field value?'

CALL AcceptReal(minfld,-100.0,100.0,2)

WRITE(6,*)'I=255 is what max. field value?'

CALL AcceptReal(maxfld,-100.0,100.0,2)

ENDIF

C==Get the output buffer

WRITE(6,*)'Put result in which buffer?'

CALL AcceptBuffer(iWant3,1)



Dalziel, Hughes and Sutherland 31

IF (iWant3 .EQ. iWant1 .OR. iWant3 .EQ. iWant2) THEN

CALL ERROR('This buffer is one of the grid buffers!!')

ENDIF

C==========================================================================

C= Whew! At last, the MAIN LOOP =

C==========================================================================

NotDone = .TRUE.

DO WHILE (NotDone)

maxfldi = 0.0

minfldi = 0.0

CALL EraseBuffer(iWant3)

CALL MoveBufferToMemory(iMemory,iWant1)

IF (Mode .EQ. 'U') THEN

C========================================================================

C= Find horizontal velocity field =

C========================================================================

DO i=iw0,iw1

CALL CheckIfEscape

IF (EscapeNotPressed) THEN

CALL GetLineFromBuffer(iWant2,i,iRow)

C==Find vertical displacement of grid and field as reqd by Mode

iz=0

DO j=jw0,jw1

CALL GetColumnFromBuffer(iWant2,j,jCol)

CALL GetIFromVector(i,jCol(0),iw0,iw1,Irn,Ir,Irp)

CALL CheckMinTol(Irn,Ir,Irp,i,iw0,iw1,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetIFromMatrix(i,j,iw0,iw1,In,I0,Ip)

CALL CheckMinTol(In,I0,Ip,i,iw0,iw1,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetDelZ(Ir,In,I0,Ip,i,j,iw0,iw1, yw0,zw0,

& PyCam,PzCam,ScaleTG, delz,Id)

ENDIF

ENDIF

iRow2(j) = Id

IF (Id .GT. 0) THEN

iz = iz+1

CALL INTERPL(zz(1),n2(1),nn,zw0,n2zw)



Dalziel, Hughes and Sutherland 32

z(iz) = yw0

dfzdz(iz) = -coefdelz*delz/(n2zw*dt)

ENDIF

ENDDO

nz = iz

C==Now integrate dfzdz to get fz. fz(1)=0.0 by default

CALL IntegrateWithBCs(z(1),dfzdz(1),nz,fz(1),SetBndyConds)

C==Finally, return scaled fz at all points where Id>0

CALL RescaleIfNotZero(iRow2(0),jw0,jw1,fz(1),nz,

& minfld,maxfld,minfldi,maxfldi)

CALL PutLineInBuffer(iWant3,i,iRow2)

ENDIF

ENDDO

ELSE

C========================================================================

C= Find vertical displacement of grid and field as required by Mode =

C========================================================================

DO j=jw0,jw1

CALL CheckIfEscape

IF (EscapeNotPressed) THEN

CALL GetColumnFromBuffer(iWant2,j,jCol)

iz=0

DO i=iw1,iw0,-1

CALL GetIFromVector(i,jCol(0),iw0,iw1,Irn,Ir,Irp)

CALL CheckMinTol(Irn,Ir,Irp,i,iw0,iw1,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetIFromMatrix(i,j,iw0,iw1,In,I0,Ip)

CALL CheckMinTol(In,I0,Ip,i,iw0,iw1,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetDelZ(Ir,In,I0,Ip,i,j,iw0,iw1, yw0,zw0,

& PyCam,PzCam,ScaleTG, delz,Id)

ENDIF

ENDIF

jCol2(i) = Id

IF (Mode .NE. 'S' .AND. Id .GT. 0) THEN

iz = iz+1

IF (Mode .EQ. 'G' .OR. Mode .EQ. 'T') THEN

fz(iz) = delz

ELSEIF (Mode .EQ. 'N') THEN



Dalziel, Hughes and Sutherland 33

fz(iz) = coefdelz*delz

ELSEIF (Mode .EQ. 'P') THEN

fz(iz) = coefdelz*delz/dt

ELSEIF (Mode .EQ. 'R') THEN

z(iz) = zw0

dfzdz(iz) = -coefdelz*Rho0OverG*delz

ELSE

CALL INTERPL(zz(1),n2(1),nn,zw0,n2zw)

z(iz) = zw0

IF (Mode .EQ. 'Z') THEN

dfzdz(iz) = coefdelz*delz/n2zw

ELSE

dfzdz(iz) = coefdelz*delz/(n2zw*dt)

ENDIF

ENDIF

ENDIF

ENDDO

nz = iz

C==Now integrate dfzdz to get fz. fz(1)=0.0 by default

IF (Mode .EQ. 'R' .OR. Mode .EQ. 'W' .OR.

& Mode .EQ. 'Z') THEN

CALL IntegrateWithBCs(z(1),dfzdz(1),nz,fz(1),

& SetBndyConds)

ENDIF

C==Finally, return fz at all points where Id>0

IF (Mode .NE. 'S') THEN

CALL RescaleIfNotZero(jCol2(0),iw1,iw0,fz(1),nz,

& minfld,maxfld,minfldi,maxfldi)

ENDIF

CALL PutColumnInBuffer(iWant3,j,jCol2)

ENDIF

ENDDO

ENDIF

CALL ShowBuffer(iWant3,iOnboard,.FALSE.)

WRITE(6,*) 'Actual Field range:',minfldi,'... ',maxfldi

WRITE(6,*) 'Is scaling from Field -> Intensity acceptable?'

CALL PressOneOf(AcptScaling,'NY',1)

IF (AcptScaling .EQ. 'N') THEN



Dalziel, Hughes and Sutherland 34

WRITE(6,*)'I=1 is what min. field value?'

CALL AcceptReal(minfld,-100.0,100.0,2)

WRITE(6,*)'I=255 is what max. field value?'

CALL AcceptReal(maxfld,-100.0,100.0,2)

ENDIF

WRITE(6,*) 'Accept Min. inten. diff. of surrounding pixels?'

CALL PressOneOf(AcptMinTol,'NY',1)

IF (AcptMinTol .EQ. 'N') THEN

WRITE(6,*)'What is new minimum intensity?'

CALL AcceptInteger(iMinTol,0,255,2)

ENDIF

IF (AcptMinTol .EQ. 'Y' .AND. AcptScaling .EQ. 'Y') THEN

NotDone = .FALSE.

ENDIF

ENDDO

RETURN

END

SchlierenSpaceTime

C***********************************************************************

C* SchlierenSpaceTime *

C* This subroutine takes a space time image from a schlieren grid *

C* experiment and works out space-time fields of Delta N^2, *

C* Delta Ztank, or vertical velocity. *

C***********************************************************************

SUBROUTINE SchlierenSpaceTime(Mode)

$INCLUDE:'All.INC'

$INCLUDE:'WorkSpce.INC'

$INCLUDE:'Configur.INC'

C==Define and dimension variables

LOGICAL NotDone,iError

INTEGER iMinTol

INTEGER*1 jCol,jCol2,iRow,iRow2,iRC1n,iRC1p,iRCn,iRCp,iRC0

INTEGER*2 iWant1,iWant2,iWant2n,iWant2p,iWant3,iHandle,iOnboard

INTEGER*2 iw0,iw1,jw0,jw1,i,j,ixy

INTEGER*2 imin,imax,jmin,jmn,jmx,jj,ii,iz,nz

INTEGER*2 Ir,Irn,Irp,Id,I0,In,Ip

INTEGER*2 nn,nc,nmax,ndt

REAL Ltank,Lperspex,Lgrid,Lcam,nwater,nperspex,nair,nw2nsqr



Dalziel, Hughes and Sutherland 35

REAL PyCam,PzCam,ScaleTG,Lpg,coefdelz,Rho0OverG

REAL n2min,n2max,zzmin,zzmax,yw0,zw0,n2zw,delz

REAL minfld,maxfld,minfldi,maxfldi,dt

REAL fz,z,dfzdz,n2,zz

CHARACTER Mode,SpaceAxis,AcptScaling,AcptMinTol,SetBndyConds

CHARACTER N2File*(20)

PARAMETER (nmax=256)

DIMENSION jCol(0:511),jCol2(0:511),iRow(0:511),iRow2(0:511)

DIMENSION iRC1n(0:511),iRC1p(0:511),iRCn(0:511),iRCp(0:511)

dimension iRC0(0:511)

DIMENSION fz(nmax),z(nmax),dfzdz(nmax),n2(nmax),zz(nmax)

EQUIVALENCE (iWork1(0),jCol(0))

EQUIVALENCE (iWork1(512),jCol2(0))

EQUIVALENCE (iWork1(1024),iRow(0))

EQUIVALENCE (iWork1(1536),iRow2(0))

EQUIVALENCE (iWork1(2048),iRC1n(0))

EQUIVALENCE (iWork1(2560),iRC1p(0))

EQUIVALENCE (iWork1(3072),iRCn(0))

EQUIVALENCE (iWork1(3584),iRCp(0))

EQUIVALENCE (iWork1(4096),iRC0(0))

EQUIVALENCE (rWork1(0),fz(1))

EQUIVALENCE (rWork1(256),z(1))

EQUIVALENCE (rWork1(512),dfzdz(1))

EQUIVALENCE (rWork1(768),zz(1))

EQUIVALENCE (rWork1(1024),n2(1))

C==Set default options

DATA ixy /0/, iMinTol /10/

DATA minfld,maxfld /-0.1,0.1/, dt,ndt /0.1, 1/

DATA N2File /'n2******.xpt'/

C==default lengths in cm: span of tank, perspex, and distance to grid

DATA Ltank /20.3/, Lperspex /1.1/, Lgrid /34.2/, Lcam /343./

C==position of camera in grid co-ordinates

DATA PyCam /0.0/, PzCam /13.0/

C==indices of refraction for water, perspex and air

DATA nwater /1.3330/, nperspex /1.49/, nair /1.0000/

C==scaling from index of refraction gradient to N^2 (in s^2/cm)

C== (d(nw)/dz)/nw = -nw2nsqr*N^2

DATA nw2nsqr /0.0001878/

C==Density of water divided by accn of gravity (in g s^2/cm^4)

DATA Rho0OverG /0.001019/

C



Dalziel, Hughes and Sutherland 36

C CALL SetCurrentHelpFile('Norminty.F01',' ')

C

C==Check that option passed to this routine is valid

if (Mode .eq. 'G') then

write(6,*) 'S-T plot: Find vertical disp. of grid lines'

elseif (Mode .eq. 'N') then

write(6,*) 'S-T plot: Find change in N^2 in tank'

ELSEIF (Mode .EQ. 'P') THEN

WRITE(6,*) 'S-T plot: Calculate time derivative of Delta N^2'

ELSEIF (Mode .EQ. 'R') THEN

WRITE(6,*) 'S-T plot: Calculate flucutation density field'

ELSEIF (Mode .EQ. 'S') THEN

WRITE(6,*) 'S-T plot: Calculate relative shift in lines'

ELSEIF (Mode .EQ. 'T') THEN

WRITE(6,*) 'S-T plot: Find line displc. in tank world co-ords'

elseif (Mode .eq. 'U') then

write(6,*) 'S-T plot: Find horizontal velocity in tank'

elseif (Mode .eq. 'W') then

write(6,*) 'S-T plot: Find vertical velocity in tank'

elseif (Mode .eq. 'Z') then

write(6,*) 'S-T plot: Find vertical disp. in tank'

else

write(6,*) 'Option passed to SchlierenSpaceTime is invalid'

write(6,*) 'You are a TeFal-head'

return

endif

C==Get the buffer containing initial picture of a grid

IF (Mode .NE.'P' .AND. Mode .NE.'U' .AND. Mode .NE.'W') THEN

WRITE(6,*)'What is buffer containing initial image?'

CALL AcceptBuffer(iWant1,1)

if (EscapePressed) then

return

endif

CALL ShowBuffer(iWant1,iOnboard,.FALSE.)

ENDIF

C==Get the buffer containing space-time plot

WRITE(6,*)'What is buffer containing space-time image?'

CALL AcceptBuffer(iWant2,1)

if (EscapePressed) then

return

endif



Dalziel, Hughes and Sutherland 37

CALL ShowBuffer(iWant2,iOnboard,.FALSE.)

CALL WindowOrScreen(iWant2,iw0,iw1,jw0,jw1,.TRUE.,' ',' ')

C==Determine dir'n of space axis on space-time plot and see if Mode is valid

write(6,*)'Is space axis horizontal or vertical?'

CALL PressOneOf(SpaceAxis,'HV',1)

IF (SpaceAxis .EQ. 'V' .AND. Mode .EQ. 'U') then

call Warning('Cannot find U from vertical space axis')

RETURN

else IF (SpaceAxis .EQ. 'H' .AND. (Mode .EQ. 'R'

& .OR. Mode .EQ. 'Z' .OR. Mode .EQ. 'W')) THEN

call Warning('Cannot find Rho/delZ/W from horiz. space axis')

return

ENDIF

C==Get vertical pixel position of horizontal cut

if (SpaceAxis .eq. 'V') then

WRITE(6,*)'What is horizontal pixel co-ord. of vertical slice?'

else

WRITE(6,*)'What is vertical pixel co-ord. of horizontal slice?'

endif

CALL AcceptInteger(ixy,0,511,0)

C==For U, need to have space-time plots of upper and lower pixels too

IF (Mode .EQ. 'U') THEN

WRITE(6,*)'Buffer of space-time image at vert. pixel ',ixy-1

CALL AcceptBuffer(iWant2n,1)

WRITE(6,*)'Buffer of space-time image at vert. pixel ',ixy+1

CALL AcceptBuffer(iWant2p,1)

endif

C==Get time difference between buffers

IF (Mode .EQ. 'P' .OR. Mode .EQ. 'U' .OR. Mode .EQ. 'W') THEN

WRITE(6,*)'What is time difference, dt, between pixels?'

CALL AcceptReal(dt,0.01,10.0,2)

WRITE(6,*)'Take time derivative across how many dt?'

CALL AcceptInteger(ndt,1,10,2)

ENDIF

C==Get background N^2 profile if determining delz or delw

IF (Mode .EQ. 'U' .OR. Mode .EQ. 'Z' .OR. Mode .EQ. 'W') THEN

WRITE(6,*)'For rho->Delta Z conversion: XPlot file of N^2(z)'

CALL AcceptString(N2File,2)



Dalziel, Hughes and Sutherland 38

CALL OpenFile(iHandle,' ',N2file,

& 'old','formatted','sequential',iError)

IF (iError .OR. iHandle .EQ. 0) THEN

CALL Warning('Cannot open specified N2 file')

RETURN

ELSE

READ(iHandle,'(A)') N2File

READ(iHandle,'(E11.3,/,E11.3)') n2min,n2max

READ(iHandle,'(E11.3,/,E11.3)') zzmin,zzmax

READ(iHandle,'(I3,/,I3)') nc,nn

WRITE(6,*) 'File contains nn=',nn,' points of (n2,z) ...'

IF (nn .GT. nmax) THEN

WRITE(6,*) 'too many points for n2 and zz'

ELSE

DO i=1,nn

READ(iHandle,'(2E11.3)') n2(i), zz(i)

ENDDO

ENDIF

CALL CloseFile(iHandle)

ENDIF

C==Prompt to determine setting of boundary conditions

IF (Mode .EQ. 'U') THEN

WRITE(6,*)'Zero bndy. cond. at Left, Right, Average'

Call PressOneOf(SetBndyConds,'ALR',1)

ELSE

WRITE(6,*)'Zero bndy. cond. at Bottom, Top, Average'

Call PressOneOf(SetBndyConds,'ABT',1)

ENDIF

ENDIF

C==========================================================================

C= Now define coefficients used to scale from observed vertical =

C= motion of grid to change in N^2 in tank. =

C= Delta N^2 = coefdelz * Delta Zgrid =

C= ScaleTG calculates world co-ordinates on Schlieren grid from world =

C= co-ordinates given by grid placed in centre of tank. =

C= =

C= Delta N^2 gives the vertical gradient of density fluctuation which, =

C= in turn, gives the gradient of the vertical displacement, Delta Ztank. =

C= Rho' = (d(Rho_bkgd)/dz) Delta Ztank =

C= = -(Rho_0/G) (N_bkgd)^2 Delta Ztank. =



Dalziel, Hughes and Sutherland 39

C= d(Delta Ztank)/dz = 1/(N_bkgd)^2 Delta N^2 =

C==========================================================================

IF (Mode .EQ. 'S' .OR. Mode .EQ. 'T') THEN

ScaleTG = 0.0

ELSE

C==Prompt to change lengths and indices of refraction

WRITE(6,*)'What is width of tank (in cm)?'

CALL AcceptReal(Ltank,0.0,100.0,2)

WRITE(6,*)'What is distance (in cm) from tank to grid?'

CALL AcceptReal(Lgrid,0.0,100.0,2)

WRITE(6,*)'What is distance (in cm) from camera to tank?'

CALL AcceptReal(Lcam,0.0,500.0,2)

WRITE(6,*)'What is horiz. posn. (in tank co-ords) of camera?'

CALL AcceptReal(PyCam,-50.0,50.0,2)

WRITE(6,*)'What is vertical posn. (in tank co-ords) of camera?'

CALL AcceptReal(PzCam,0.0,40.0,2)

Lpg = Lperspex/Nperspex + Lgrid/Nair

coefdelz = -1.0/(Nw2Nsqr*(0.5*Ltank*Ltank + Nwater*Lpg*Ltank))

ScaleTG = 0.5*(Ltank/Nwater + Lperspex/Nperspex)*Nair

ScaleTG = (ScaleTG + Lgrid)/(ScaleTG + Lcam)

ENDIF

C==Allow user to reset minimum tolerance to reduce noise

WRITE(6,*)'Min. intensity diff. between upper and lower pixels?'

CALL AcceptInteger(iMinTol,1,255,2)

C==Prompt to scale from min/max field to intensities between 1 and 255

WRITE(6,*)'I=1 is what min. field value?'

CALL AcceptReal(minfld,-100.0,100.0,2)

WRITE(6,*)'I=255 is what max. field value?'

CALL AcceptReal(maxfld,-100.0,100.0,2)

C==Get the output buffer

WRITE(6,*)'Put result in which buffer?'

CALL AcceptBuffer(iWant3,1)

if (EscapePressed) then

RETURN

ENDIF

IF (iWant3 .EQ. iWant2 .OR. iWant3 .EQ. iWant1) THEN

CALL Warning('Warning this buffer is one of the grid buffers!!')

RETURN



Dalziel, Hughes and Sutherland 40

ENDIF

C==========================================================================

C= Whew! At last, the MAIN LOOP =

C==========================================================================

NotDone = .TRUE.

DO WHILE (NotDone)

minfldi = 0.0

maxfldi = 0.0

CALL EraseBuffer(iWant3)

IF (Mode .NE.'P' .AND. Mode .NE.'U' .AND. Mode .NE.'W') THEN

CALL MoveBufferToMemory(iMemory,iWant1)

ENDIF

IF (Mode .EQ. 'U') THEN

C=======================================================================

C= Find horizontal velocity field =

C= Note, "0,512" passed to CheckMinTol ensures i is not at upper or =

C= lower boundary. =

C=======================================================================

DO j=jw0,jw1

iRow2(j)=0

enddo

CALL PutLineInBuffer(iWant3,iw0,iRow2)

DO i=iw0+1,iw1

CALL CheckIfEscape

IF (EscapeNotPressed) THEN

CALL GetLineFromBuffer(iWant2,i,iRow)

CALL GetLineFromBuffer(iWant2n,i,iRC1n)

CALL GetLineFromBuffer(iWant2p,i,iRC1p)

CALL GetLineFromBuffer(iWant2,i-1,iRC0)

CALL GetLineFromBuffer(iWant2n,i-1,iRCn)

CALL GetLineFromBuffer(iWant2p,i-1,iRCp)

iz=0

DO j=jw0,jw1

Ir = I2fromI1(iRow(j))

Irn = I2fromI1(iRC1n(j))

Irp = I2fromI1(iRC1p(j))

CALL CheckMinTol(Irn,Ir,Irp,i,0,512,iMinTol,Id)

IF (Id .GT. 0) THEN



Dalziel, Hughes and Sutherland 41

I0 = I2fromI1(iRC0(j))

In = I2fromI1(iRCn(j))

Ip = I2fromI1(iRCp(j))

CALL CheckMinTol(In,I0,Ip,i,0,512,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetDelZ(Ir,In,I0,Ip,ixy,j,0,512, yw0,zw0,

& PyCam,PzCam,ScaleTG, delz,Id)

ENDIF

ENDIF

iRow2(j) = Id

IF (Id .GT. 0) THEN

iz = iz+1

CALL INTERPL(zz(1),n2(1),nn,zw0,n2zw)

z(iz) = yw0

dfzdz(iz) = -coefdelz*delz/(n2zw*dt)

ENDIF

ENDDO

nz = iz

C==Now integrate dfzdz to get fz. fz(1)=0.0 by default

CALL IntegrateWithBCs(z(1),dfzdz(1),nz,fz(1),SetBndyConds)

C==Finally, return scaled fz at all points where Id>0

CALL RescaleIfNotZero(iRow2(0),jw0,jw1,fz(1),nz,

& minfld,maxfld,minfldi,maxfldi)

CALL PutLineInBuffer(iWant3,i,iRow2)

ENDIF

ENDDO

ELSE

C========================================================================

C= Find vertical displacement of grid and field as required by Mode =

C========================================================================

IF (Mode .EQ. 'P' .OR. Mode .EQ. 'W') THEN

DO i=iw0,iw1

jCol2(i)=0

enddo

CALL PutColumnInBuffer(iWant3,jw0,jCol2)

jmin = jw0+1

ELSE

jmin = jw0

ENDIF



Dalziel, Hughes and Sutherland 42

DO j=jmin,jw1

CALL CheckIfEscape

If (EscapeNotPressed) THEN

IF (Mode .EQ. 'P' .OR. Mode .EQ. 'W') THEN

jmn = MAX(jw0, INT(REAL(j)-0.5*ndt) )

jmx = min(jw1, INT(REAL(j)+0.5*ndt) )

CALL GetColumnFromBuffer(iWant2,jmn,iRC0)

CALL GetColumnFromBuffer(iWant2,jmx,jCol)

c WRITE(6,*)j,jmn,jmx

c call PressAnyKeyToContinue

else

CALL GetColumnFromBuffer(iWant2,j,jCol)

ENDIF

iz=0

DO i=iw1,iw0,-1

IF (SpaceAxis .EQ. 'H') THEN

Ir = I2fromI1(jCol(i))

Id = Ir

ii = ixy

jj = j

imin=-1

imax=512

ELSE

CALL GetIFromVector(i,jCol(0),iw0,iw1,Irn,Ir,Irp)

CALL CheckMinTol(Irn,Ir,Irp,i,iw0,iw1,iMinTol,Id)

ii = i

jj = ixy

imin = iw0

imax = iw1

ENDIF

IF (Id .GT. 0) THEN

IF (Mode .EQ. 'P' .OR. Mode .EQ. 'W') THEN

CALL GetIFromVector(i,iRC0(0),iw0,iw1,In,I0,Ip)

ELSE

CALL GetIFromMatrix(ii,jj,imin,imax,In,I0,Ip)

ENDIF

CALL CheckMinTol(In,I0,Ip,ii,imin,imax,iMinTol,Id)

IF (Id .GT. 0) THEN

CALL GetDelZ(Ir,In,I0,Ip,ii,jj,imin,imax, yw0,zw0,

& PyCam,PzCam,ScaleTG, delz,Id)



Dalziel, Hughes and Sutherland 43

ENDIF

ENDIF

jCol2(i) = Id

IF (Mode .NE. 'S' .AND. Id .GT. 0) THEN

iz = iz+1

IF (Mode .EQ. 'G') THEN

fz(iz) = delz

ELSEIF (Mode .EQ. 'N') THEN

fz(iz) = coefdelz*delz

ELSEIF (Mode .EQ. 'P') THEN

fz(iz) = coefdelz*delz/(ndt*dt)

ELSEIF (Mode .EQ. 'R') THEN

z(iz) = zw0

dfzdz(iz) = -coefdelz*Rho0OverG*delz

ELSE

CALL INTERPL(zz(1),n2(1),nn,zw0,n2zw)

z(iz) = zw0

IF (Mode .EQ. 'Z') THEN

dfzdz(iz) = coefdelz*delz/n2zw

ELSE

dfzdz(iz) = coefdelz*delz/(n2zw*ndt*dt)

ENDIF

ENDIF

ENDIF

ENDDO

nz = iz

C==Now integrate dfzdz to get fz. fz(1)=0.0 by default

IF (Mode .EQ. 'R' .OR. Mode .EQ. 'W' .OR.

& Mode .EQ. 'Z') THEN

CALL IntegrateWithBCs(z(1),dfzdz(1),nz,fz(1),

& SetBndyConds)

ENDIF

C==Finally, return fz at all points where Id>0

IF (Mode .NE. 'S') THEN

CALL RescaleIfNotZero(jCol2(0),iw1,iw0,fz(1),nz,

& minfld,maxfld,minfldi,maxfldi)

ENDIF

CALL PutColumnInBuffer(iWant3,j,jCol2)

ENDIF



Dalziel, Hughes and Sutherland 44

ENDDO

ENDIF

CALL ShowBuffer(iWant3,iOnboard,.FALSE.)

WRITE(6,*) 'Actual Field range:',minfldi,' ... ',maxfldi

WRITE(6,*) 'Is scaling from Field -> Intensity acceptable?'

CALL PressOneOf(AcptScaling,'NY',1)

IF (AcptScaling .EQ. 'N') THEN

WRITE(6,*)'I=1 is what min. field value?'

CALL AcceptReal(minfld,-100.0,100.0,2)

WRITE(6,*)'I=255 is what max. field value?'

CALL AcceptReal(maxfld,-100.0,100.0,2)

ENDIF

WRITE(6,*) 'Accept Min. inten. diff. of surrounding pixels?'

CALL PressOneOf(AcptMinTol,'NY',1)

IF (AcptMinTol .EQ. 'N') THEN

WRITE(6,*)'What is new minimum intensity?'

CALL AcceptInteger(iMinTol,0,255,2)

ENDIF

IF (AcptMinTol .EQ. 'Y' .AND. AcptScaling .EQ. 'Y') THEN

NotDone = .FALSE.

ENDIF

ENDDO

CALL ShowBuffer(iWant3,iOnboard,.FALSE.)

RETURN

END

GetDelZ

C***********************************************************************

C* GetDelZ *

C* This subroutine takes an intensity Ir, compares it with the *

C* upper, lower, and middle intensities of the background grid *

C* and returns the interpolated displacement in terms of an *

C* intensity Id (255 for one pixel up, 1 for one pixel down) and *

C* physical displacement, delz calculated from world co-ordinates. *

C* NB: Id=0 if interpolation is inaccurate as determined by iMinTol. *

C* Background grid is stored in iMemory(j,i). *

C***********************************************************************



Dalziel, Hughes and Sutherland 45

SUBROUTINE GetDelZ(Ir,In,I0,Ip,i,j,imin,imax,

& yw0,zw0,y0,z0,scltg,delz,Id)

$INCLUDE:'All.INC'

$INCLUDE:'WorkSpce.INC'

$INCLUDE:'Configur.INC'

C==Declare variables

INTEGER*2 i,j,imin,imax,Id,Ip,I0,In,Ir

REAL delz,yw,yw0,zwp,zw0,zwn

REAL y0,z0,scltg

REAL t1,t2,t3

CALL Map2DWorldCoordinates(REAL(i),REAL(j),yw0,zw0)

zw0 = zw0 + scltg*(zw0-z0)

IF (i .EQ. imin) THEN

C==Perform linear interpolation near top boundary using i=0,i=1

CALL Map2DWorldCoordinates(REAL(i+1),REAL(j),yw,zwn)

zwn = zwn + scltg*(zwn-z0)

t1=REAL(Ir-I0)/REAL(Ip-I0)

delz = (zwn-zw0)*t1

Id=MIN(255,MAX(1,INT(-127*t1+128.0)))

ELSEIF (i .EQ. imax) THEN

C==Perform linear interpolation near bottom boundary using i=510,i=511

CALL map2DWorldCoordinates(REAL(i-1),REAL(j),yw,zwp)

zwp = zwp + scltg*(zwp-z0)

t1=REAL(Ir-I0)/REAL(In-I0)

delz = (zwp-zw0)*t1

Id=MIN(255,MAX(1,INT(127*t1+128.0)))

ELSE

C==Perform quadratic interpolation between i-1 (255), i (128), i+1 (1)

CALL map2DWorldCoordinates(REAL(i-1),REAL(j),yw,zwp)

zwp = zwp + scltg*(zwp-z0)

CALL map2DWorldCoordinates(REAL(i+1),REAL(j),yw,zwn)

zwn = zwn + scltg*(zwn-z0)

t1 = REAL((Ir-I0)*(Ir-Ip))/REAL((In-I0)*(In-Ip))

t2 = REAL((Ir-In)*(Ir-Ip))/REAL((I0-In)*(I0-Ip))

t3 = REAL((Ir-I0)*(Ir-In))/REAL((Ip-I0)*(Ip-In))

delz = (zwp-zw0)*t1 + (zwn-zw0)*t3

Id = MIN(255,MAX(1,INT(255*t1+128*t2+t3)))

ENDIF



Dalziel, Hughes and Sutherland 46

RETURN

END

CheckMinTol

C***********************************************************************

C* CheckMinTol *

C* This subroutine checks whether the intensity difference *

C* between three consecutive pixels is sufficiently large and the *

C* gradient uniform to perform interpolation routines later on. *

C***********************************************************************

SUBROUTINE CheckMinTol(In,I0,Ip,i,imin,imax,iMinTol,Id)

$INCLUDE:'All.INC'

$INCLUDE:'WorkSpce.INC'

$INCLUDE:'Configur.INC'

C==Declare variables

INTEGER*2 imin,imax,i,Ip,I0,In,iMinTol,Id

Id = I0

IF (i .EQ. imin) THEN

IF (ABS(Ip-I0) .LT. iMinTol) THEN

Id=0

ENDIF

ELSEIF (i .EQ. imax) THEN

IF (ABS(In-I0) .LT. iMinTol) THEN

Id=0

ENDIF

ELSE

IF ( (Ip-I0)*(I0-In) .LE. 0 .OR.

& ABS(In-I0) .LT. iMinTol .OR.

& ABS(Ip-I0) .LT. iMinTol ) THEN

Id=0

ENDIF

ENDIF

RETURN

END

RescaleIfNotZero

C***********************************************************************

C* RescaleIfNotZero *

C* This subroutine replaced intensities in a vector with rescaled *



Dalziel, Hughes and Sutherland 47

C* values function scaled between 1 and 255. No scaling occurs if *

C* the intensity in the vector is zero to begin with. *

C* *

C* Note: f(iz) is ordered from 1 to nz corresponding to points *

C* from imn to imx. If imn>imx then have to loop backwards. *

C***********************************************************************

SUBROUTINE RescaleIfNotZero(iVec,imn,imx,f,n,

& sclmn,sclmx,fmn,fmx)

$INCLUDE:'All.INC'

$INCLUDE:'WorkSpce.INC'

$INCLUDE:'Configur.INC'

C==Declare variables

INTEGER*1 iVec(0:511)

INTEGER*2 n,imn,imx,iz,i,Id

REAL f(n),sclmn,sclmx,fmn,fmx

iz=0

if (imn .le. imx) then

DO i=imn,imx

IF (I2fromI1(iVec(i)) .GT. 0) THEN

iz = iz+1

Id = INT(254*(f(iz)-sclmn)/(sclmx-sclmn)+1.0)

Id = MAX(1,MIN(255,Id))

iVec(i) = Id

fmx = MAX(f(iz),fmx)

fmn = MIN(f(iz),fmn)

ENDIF

ENDDO

else

DO i=imn,imx,-1

IF (I2fromI1(iVec(i)) .GT. 0) THEN

iz = iz+1

Id = INT(254*(f(iz)-sclmn)/(sclmx-sclmn)+1.0)

Id = MAX(1,MIN(255,Id))

iVec(i) = Id

fmx = MAX(f(iz),fmx)

fmn = MIN(f(iz),fmn)

ENDIF

ENDDO

endif

RETURN

END



Dalziel, Hughes and Sutherland 48

B.2 Source Code for Arbitrary Images

AnalyseSchlieren

C

C***********************************************************************

C* AnalyseSchlieren AnalyseSchlieren_Do *

C* Calculate the optimal shift for the entire array of windows. *

C* Par The control parameters.

C***********************************************************************

subroutine AnalyseSchlieren_Do(Par)

C=====Parameters

type (D_AnalyseSchlieren) Par

C=====Local variables

type (F_Window) Window,TestWindow

integer (4) i,j,ii,jj,ix,jy,nx,ny,k,i0,i1,j0,j1,n

integer (4) iCoarse,jCoarse,iLastPass,jLastPass,iPass,iSubPix

integer (4) iw0,iw1,jw0,jw1

type (F_Location) Shift

type (F_Location), Allocatable :: Location(:,:)

type (F_WLocation), Allocatable :: Displace(:,:)

real, Allocatable :: Density(:,:)

real xMin,xMax,yMin,yMax,Step,Mean,xMean,yMean

real a,b,d,x,y

real u,v,u2,v2,uv,us,vs

integer nPoints

type (F_Image) Grad

type (F_View) DispView

type (F_LUT) LUT

type (F_LeastSquares) LSBase,LS

type (F_ImageStatistics) Stats

logical Again,OK,InterpolatedGuess

C=====Open source images

call OpenImage(Par%Back)

call OpenImage(Par%Fore)

if (Par%InWindow%Right .eq. Par%InWindow%Left) then

Par%InWindow = CurrentWindow(Par%Back)

endif

C=======================================================================

C= Initialisation =

C=======================================================================

! Set constants

nx = (Par%InWindow%Right - Par%InWindow%Left)/Par%iStep

ny = (Par%InWindow%Top - Par%InWindow%Bottom)/Par%jStep



Dalziel, Hughes and Sutherland 49

! Allocate memory for arrays

allocate(Location(0:nx-1,0:ny-1))

allocate(Displace(0:nx-1,0:ny-1))

allocate(Density(0:nx,0:ny))

! Setup least squares problem: a + bx + cy + dxy + ex^2 + fy^2

call Create(LSBase,9,6,1)

call Create(LS,9,6,1)

k = 0

do i=-1,1

do j=-1,1

LSBase%A(k,0) = 1.0

LSBase%A(k,1) = i

LSBase%A(k,2) = j

LSBase%A(k,3) = i*j

LSBase%A(k,4) = i*i

LSBase%A(k,5) = j*j

k = k + 1 ! Equation number

enddo

enddo

! Initialise displacements

do j=0,ny-1

do i=0,nx-1

Displace(i,j)%x = Huge(0.0)

Displace(i,j)%y = Huge(0.0)

enddo

enddo

! Select output colour scheme

call OpenLUT(LUT,'Test.LUT')

C=======================================================================

C= Display Difference images =

C= This is effectively the qualitative mode output. =

C=======================================================================

if (Use(Par%Diff)) then

call CreateImage(Par%Diff,Width(Par%Back),Height(Par%Back))

Par%Diff = Par%Back - Par%Fore

Par%Diff = LUT ! Set LUT

call DisplayImage(Par%Diff,DisplayImage$Resize

& +DisplayImage$NewView)



Dalziel, Hughes and Sutherland 50

endif

C=======================================================================

C= Set-up output image and location arrays =

C=======================================================================

call CreateView(DispView,'Displacement',Width(Par%Back),

& Height(Par%Back),255)

call SetLUT(DispView,LUT)

C=======================================================================

C= Initialise for quantitative mode scans =

C=======================================================================

! Vector spacing for first pass

iCoarse = 4

jCoarse = 4

! Initialise

iLastPass = nx

jLastPass = ny

iPass = 0

C=======================================================================

C= Quantitative mode scans of image pairs =

C=======================================================================

do while (iCoarse .gt. 0 .and. jCoarse .gt. 0 .and. Continue())

iPass = iPass + 1

write(6,*)'Pass:',iPass

C-----------------------------------------------------------------------

C- Scan through image at required spatial resolution for this pass-

C-----------------------------------------------------------------------

do j=0,ny-1,jCoarse

! Position within image

jy = Par%InWindow%Bottom + (float(j) + 0.5)*Par%jStep

j0 = jLastPass*(j/jLastPass)

j1 = min(j0 + jLastPass,ny-1)

if (j1 .ne. j0) then

b = float(j1-j)/float(j1-j0)

else

b = 0.0

endif

do i=0,nx-1,iCoarse

ix = Par%InWindow%Left + (float(i) + 0.5)*Par%iStep



Dalziel, Hughes and Sutherland 51

! Set up window and test for texture level

Window%Bottom = max(Par%InWindow%Bottom,jy - Par%ySize/2)

Window%Top = min(Par%InWindow%Top,jy + Par%ySize/2)

Window%Left = max(Par%InWindow%Left,ix - Par%xSize/2)

Window%Right = min(Par%InWindow%Right,ix + Par%xSize/2)

TestWindow%Bottom = max(Par%InWindow%Bottom,jy-Par%jStep/2)

TestWindow%Top = min(Par%InWindow%Top,jy + Par%jStep/2)

TestWindow%Left = max(Par%InWindow%Left,ix - Par%iStep/2)

TestWindow%Right = min(Par%InWindow%Right,ix + Par%iStep/2)

Stats = Statistics(Par%Back,Window)

if (Abort()) then

! Do nothing more

elseif (Stats%StdDev .lt. Par%MinTexture) then

! Too little texture - do not pattern match

Displace(i,j) = F_WLocation(Huge(1.0),Huge(1.0))

elseif (Contains(Par%Back,Window,0)) then

! There is a zero here - do not pattern match

Displace(i,j) = F_WLocation(Huge(1.0),Huge(1.0))

elseif (mod(i,iLastPass) .eq. 0 .and.

& mod(j,jLastPass) .eq. 0) then

! Already have details of this one

else

C.......................................................................

C. Pattern match for this location .

C.......................................................................

Location(i,j)%i = ix

Location(i,j)%j = jy

! Initial guess for displacement

i0 = iLastPass*(i/iLastPass)

i1 = min(i0 + iLastPass,nx-1)

if (Displace(i0,j0)%x .eq. Huge(0.0) .or.

& Displace (i1,j0)%x .eq. Huge(0.0) .or.

& Displace(i0,j1)%x .eq. Huge(0.0) .or.

& Displace(i1,j1)%x .eq. Huge(0.0)) then

! None of the surrounding points have displacement vectors.

! Interpolation not possible, so must start from scratch.

! Do integer search.

Displace(i,j) = F_WLocation(0.0,0.0)

else

! Have information from surrounding displacement vectors

! on which an estimate for this vector may be based.



Dalziel, Hughes and Sutherland 52

! Use bi-linear interpolation.

if (i1 .ne. i0) then

a = float(i1-i)/float(i1-i0)

else

a = 0.0

endif

Displace(i,j) = a*b*Displace(i0,j0)

& + (1.0-a)*b*Displace(i1,j0)

& + a*(1.0-b)*Displace(i0,j1)

& + (1.0-a)*(1.0-b)*Displace(i1,j1)

endif

C.......................................................................

C. Determine optimal shift and interpolate to get it .

C. subpixel .

C.......................................................................

call Copy(LS,LSBase)

! Get optimal shift to pixel resolution, then interpolate

! in neighbourhood of this position

call PixelPasses(OK,Displace(i,j),Par,Window,LS)

if (Displace(i,j)%x .ne. huge(0.0)) then

! First estimate for optimal solution found.

! Now refine this estimate using sub-pixel interpolated

! images.

Step = 0.25

do iSubPix=0,Par%iSubPixelPasses-1

call Copy(LS,LSBase)

call SubPixelPasses(OK,Displace(i,j),Par,Window,LS,

& Step)

Step = Step/2.0

enddo

endif

C.......................................................................

C. Display apparent displacement arrows .

C.......................................................................

call SetColour(0)

if (Displace(i,j)%x .ne. Huge(0.0)) then

Shift = Par%VectorScale*Displace(i,j) ! Rescale

call Arrow(Location(i,j),Shift)

endif

endif

enddo



Dalziel, Hughes and Sutherland 53

enddo

C.......................................................................

C. Refine mesh for next pass to pick up vectors missed .

C.......................................................................

iLastPass = iCoarse

jLastPass = jCoarse

iCoarse = iCoarse/2

jCoarse = jCoarse/2

enddo

C-----------------------------------------------------------------------

C- Rescale displacements to world units -

C-----------------------------------------------------------------------

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

Displace(i,j)%y = Displace(i,j)%y*Par%Fore%AspectRatio

endif

enddo

enddo

C=======================================================================

C= Filter and tidy up apparent displacements =

C=======================================================================

IF (Continue()) THEN

C-----------------------------------------------------------------------

C- Remove outliers, replacing by local means -

C-----------------------------------------------------------------------

if (Par%RemoveOutliers) then

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

n = 0

xMean = 0.0

yMean = 0.0

do jy=max(0,j-1),min(j+1,ny-1)

do ix=max(0,i-1),min(i+1,nx-1)

if (Displace(ix,jy)%x .ne. Huge(0.0) .and.

& (i .ne. ix .or. j .ne. jy)) then

xMean = xMean + Displace(ix,jy)%x

yMean = yMean + Displace(ix,jy)%y

n = n + 1

endif

enddo



Dalziel, Hughes and Sutherland 54

enddo

if (n .ge. 4) then

xMean = xMean/real(n)

yMean = yMean/real(n)

if (abs(Displace(i,j)%x-xMean) .gt. 1.0 .or.

& abs(Displace(i,j)%y-yMean) .gt. 1.0) then

Displace(i,j)%x = xMean

Displace(i,j)%y = yMean

endif

endif

endif

enddo

enddo

endif

C-----------------------------------------------------------------------

C- Constrain mean displacements -

C-----------------------------------------------------------------------

if (Par%MeanZero) then

C.......................................................................

C. Global mean constrained .

C.......................................................................

xMean = 0.0

yMean = 0.0

n = 0

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

xMean = xMean + Displace(i,j)%x

yMean = yMean + Displace(i,j)%y

n = n + 1

endif

enddo

enddo

if (n .gt. 0) then

xMean = xMean/real(n)

yMean = yMean/real(n)

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

Displace(i,j)%x = Displace(i,j)%x - xMean

Displace(i,j)%y = Displace(i,j)%y - yMean

endif

enddo



Dalziel, Hughes and Sutherland 55

enddo

endif

endif

if (Par%xMeanZero) then

C.......................................................................

C. Horizontal mean of x displacement for each row .

C.......................................................................

do j=0,ny-1

Mean = 0.0

n = 0

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

Mean = Mean + Displace(i,j)%x

n = n + 1

endif

enddo

if (n .gt. 0) then

Mean = Mean/real(n)

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

Displace(i,j)%x = Displace(i,j)%x - Mean

endif

enddo

endif

enddo

endif

if (Par%yMeanZero) then

C.......................................................................

C. Vertical mean of y displacement for each column .

C.......................................................................

do i=0,nx-1

Mean = 0.0

n = 0

do j=0,ny-1

if (Displace(i,j)%y .ne. Huge(0.0)) then

Mean = Mean + Displace(i,j)%y

n = n + 1

endif

enddo

if (n .gt. 0) then

Mean = Mean/real(n)

do j=0,ny-1

if (Displace(i,j)%y .ne. Huge(0.0)) then



Dalziel, Hughes and Sutherland 56

Displace(i,j)%y = Displace(i,j)%y - Mean

endif

enddo

endif

enddo

endif

C=======================================================================

C= Produce and display output images =

C=======================================================================

if (Use(Par%DensLarge) .or. Use(Par%DensSmall)) then

C-----------------------------------------------------------------------

C- Calculate potential field: this is the density perturbation -

C-----------------------------------------------------------------------

! Can make this multi-grid to get faster convergence!

call CalculatePotential(Density,Displace,nx,ny,1.0/float(nx),

& 1.0/float(ny)*Par%Fore%AspectRatio)

! Construct image of the density

call CreateImage(Par%DensSmall,nx+1,ny+1)

call RenameImage(Par%DensSmall,'Density field')

call SetImageLUT(Par%DensSmall,LUT)

do j=0,ny

do i=0,nx

if (Density(i,j) .eq. Huge(0.0)) then

call SetPixel(Par%DensSmall,i,j,0)

else

call SetPixel(Par%DensSmall,i,j,min(254.0,max(1.0,

& 128.0+511.0*Par%DensityScale*Density(i,j))))

endif

enddo

enddo

! Display density image

! One pixel per density point.

call DisplayImage(Par%DensSmall,DisplayImage$Resize

& +DisplayImage$NewView)

if (Use(Par%DensLarge)) then

! Display a copy of the density image, rescaled to the size

! of the source images. Use bi-linear interpolation.

call CreateImage(Par%DensLarge,Width(Par%Back),

& Height(Par%Back))



Dalziel, Hughes and Sutherland 57

call RenameImage(Par%DensLarge,'Density field')

call SetImageLUT(Par%DensLarge,LUT)

call RescaleImage(Par%DensLarge,Par%DensSmall)

call DisplayImage(Par%DensLarge,DisplayImage$Resize

& +DisplayImage$NewView)

endif

endif

if (Use(Par%xGrad)) then

C-----------------------------------------------------------------------

C- x component of gradient -

C-----------------------------------------------------------------------

! Create small image

call CreateImage(Grad,nx,ny)

call RenameImage(Grad,'x Gradient')

call SetImageLUT(Grad,LUT)

! Copy the gradient data to the image

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .eq. Huge(0.0)) then

call SetPixel(Grad,i,j,0)

else

d = min(254.0,max(1.0,

& 128.0+32.0*Par%GradientScale*Displace(i,j)%x))

call SetPixel(Grad,i,j,d)

endif

enddo

enddo

! Create final output image

call CreateImage(Par%xGrad,Width(Par%Back),Height(Par%Back))

call RenameImage(Par%xGrad,'Density gradient: x component')

call SetImageLUT(Par%xGrad,LUT)

! Rescale small image to output image (bi-linear interpolation)

call RescaleImage(Par%xGrad,Grad)

! Display output image and destroy small image

call DisplayImage(Par%xGrad,DisplayImage$Resize

& +DisplayImage$NewView)

call DestroyImage(Grad)

endif



Dalziel, Hughes and Sutherland 58

if (Use(Par%yGrad)) then

C-----------------------------------------------------------------------

C- y component of gradient -

C-----------------------------------------------------------------------

! Create small image

call CreateImage(Grad,nx,ny)

call RenameImage(Grad,'z Gradient')

call SetImageLUT(Grad,LUT)

! Copy the gradient data to the image

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%y .eq. Huge(0.0)) then

call SetPixel(Grad,i,j,0)

else

d = min(254.0,max(1.0,

& 128.0+32.0*Par%GradientScale*Displace(i,j)%y))

call SetPixel(Grad,i,j,d)

endif

enddo

enddo

! Create final output image

call CreateImage(Par%yGrad,Width(Par%Back),Height(Par%Back))

call RenameImage(Par%yGrad,'Density gradient: z component')

call SetImageLUT(Par%yGrad,LUT)

! Rescale small image to output image (bi-linear interpolation)

call RescaleImage(Par%yGrad,Grad)

! Display output image and destroy small image

call DisplayImage(Par%yGrad,DisplayImage$Resize

& +DisplayImage$NewView)

call DestroyImage(Grad)

endif

IF (Use(Par%Disp)) THEN

C.......................................................................

C. Show apparent displacement vectors on density image .

C.......................................................................

! Need a copy of the full-size density image

if (Use(Par%DensLarge)) then



Dalziel, Hughes and Sutherland 59

call CopyImage(Par%Disp,Par%DensLarge)

else

call CreateImage(Par%Disp,Width(Par%Back),Height(Par%Back))

Par%Disp = LUT

endif

! Display the density image

call DisplayImage(Par%Disp,DisplayImage$Resize

& +DisplayImage$NewView)

call SetColour(255)

! Superimpose the displacement vectors

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

Shift = Par%VectorScale*Displace(i,j)

call Arrow(Location(i,j),Shift)

endif

enddo

enddo

call ReadDisplay(Par%Disp)

endif

endif

C=======================================================================

C= Calculate statistics =

C=======================================================================

u = 0.0

v = 0.0

u2 = 0.0

v2 = 0.0

uv = 0.0

nPoints = 0

do j=0,ny-1

do i=0,nx-1

if (Displace(i,j)%x .ne. Huge(0.0)) then

u = u + Displace(i,j)%x

v = v + Displace(i,j)%y

u2 = u2 + Displace(i,j)%x*Displace(i,j)%x

v2 = v2 + Displace(i,j)%y*Displace(i,j)%y

uv = uv + Displace(i,j)%x*Displace(i,j)%y

nPoints = nPoints + 1

endif



Dalziel, Hughes and Sutherland 60

enddo

enddo

if (nPoints .gt. 0) then

u = u/real(nPoints)

v = v/real(nPoints)

u2 = sqrt(u2/real(nPoints))

v2 = sqrt(v2/real(nPoints))

us = sqrt(u2*u2-u*u)

vs = sqrt(v2*v2-v*v)

uv = (uv/real(nPoints) - u*v)/(us*vs)

write(*,'(1x,"Mean :",f10.6,1x,f10.6)')u,v

write(*,'(1x,"RMS :",f10.6,1x,f10.6)')u2,v2

write(*,'(1x,"Std Dev :",f10.6,1x,f10.6)')us,vs

write(*,'(1x,"Correlation:",f10.6)')uv

endif

C=======================================================================

C= Save images and tidy up =

C=======================================================================

call TidyUp(Par%Disp)

call TidyUp(Par%yGrad)

call TidyUp(Par%xGrad)

call TidyUp(Par%DensLarge)

call TidyUp(Par%DensSmall)

call DestroyView(DispView)

call TidyUp(Par%Diff)

call Destroy(LS)

call Destroy(LSBase)

deallocate(Density)

deallocate(Displace)

deallocate(Location)

call TidyUp(Par%Fore)

call TidyUp(Par%Back)

return

end subroutine

PixelPasses

C

C***********************************************************************

C* PixelPasses PixelPasses *

C* Do the subpixel passes *

C***********************************************************************

subroutine PixelPasses(OK,Disp,Par,Window,LS)



Dalziel, Hughes and Sutherland 61

C=====Parameters

logical OK

type (F_WLocation) Disp

type (D_AnalyseSchlieren) Par

type (F_Window) Window

type (F_LeastSquares) LS

C=====Local variables

type (F_Location)Shift,Check

type (F_Window) BaseWindow

integer (4) iw0,iw1,jw0,jw1,i,j,k,ijMax,ijWindow

real (8) Diff(-32:32,-32:32),tmp,dx,dy

logical Again,Reject

C=======================================================================

C= Initialise =

C=======================================================================

Again = .true.

iw0 = Par%iSearch0

iw1 = Par%iSearch1

jw0 = Par%jSearch0

jw1 = Par%jSearch1

Shift%i = Disp%x

Shift%j = Disp%y

BaseWindow = Window

ijWindow = 0 ! Size increase in window

do while (Again)

C-----------------------------------------------------------------------

C- Determine optimal shift, repeating until it is found -

C-----------------------------------------------------------------------

Reject = .false.

call OptimalShift_I(Shift,Diff,Par%Back,Par%Fore,Window,

& iw0,iw1,jw0,jw1,Par%DifferenceType)

if (Shift%i .eq. Huge(1)) then

C.......Can't do the optimisation here

Again = .false.

Reject = .true.

elseif (Shift%i .le. Par%iMin .or.

& Shift%i .ge. Par%iMax .or.

& Shift%j .le. Par%jMin .or.

& Shift%j .ge. Par%jMax) then

C.........Shifted past its limits

Reject = .true.

Again = .false.

elseif (Shift%i .gt. iw0 .and.



Dalziel, Hughes and Sutherland 62

& Shift%i .lt. iw1 .and.

& Shift%j .gt. jw0 .and.

& Shift%j .lt. jw1) then

C.........The internal point is optimum

ijMax = max(abs(Shift%i),abs(Shift%j))

ijMax = min(ijMax,Par%SizeIncreaseLimit)

if (ijMax .gt. ijWindow) then

C...........Should do again with a bigger window

Again = .true.

ijWindow = ijMax + 1

Window%Left = BaseWindow%Left - ijWindow

Window%Right = BaseWindow%Right + ijWindow

Window%Bottom = BaseWindow%Bottom - ijWindow

Window%Top = BaseWindow%Top + ijWindow

elseif (Diff(Shift%i,Shift%j) .gt. Par%MaxDifference)

& then

C...........A minimum is found, but it is not a very good one.

C...........Enlarge search region

iw0 = max(Par%iMin,iw0 - 2)

iw1 = min(Par%iMax,iw1 + 2)

jw0 = max(Par%jMin,jw0 - 2)

jw1 = min(Par%jMax,jw1 + 2)

Again = (iw0 .gt. Par%iMin .or. iw1 .lt. Par%iMax .or.

& jw0 .gt. Par%jMin .or. jw1 .lt. Par%jMax)

Reject = (Diff(Shift%i,Shift%j) .gt. Par%AcceptDifference)

else

C...........This is a good minimum - use it!

Again = .false.

endif

else

C.........Shift search window and try again

if (Shift%i .eq. iw0) then

iw0 = Shift%i - 2

iw1 = Shift%i + 1

elseif (Shift%i .eq. iw1) then

iw0 = Shift%i - 1

iw1 = Shift%i + 2

else

iw0 = Shift%i - 1

iw1 = Shift%i + 1

endif

if (Shift%j .eq. jw0) then

jw0 = Shift%j - 2



Dalziel, Hughes and Sutherland 63

jw1 = Shift%j + 1

elseif (Shift%j .eq. iw1) then

jw0 = Shift%j - 1

jw1 = Shift%j + 2

else

jw0 = Shift%j - 1

jw1 = Shift%j + 1

endif

iw0 = max(Par%iMin,iw0)

iw1 = min(Par%iMax,iw1)

jw0 = max(Par%jMin,jw0)

jw1 = min(Par%jMax,jw1)

ijWindow = min(ijWindow + 1,Par%SizeIncreaseLimit)

Window%Left = BaseWindow%Left - ijWindow

Window%Right = BaseWindow%Right + ijWindow

Window%Bottom = BaseWindow%Bottom - ijWindow

Window%Top = BaseWindow%Top + ijWindow

endif

enddo

if (Reject) then

C=======================================================================

C= Flag as no good =

C=======================================================================

Shift%i = Huge(1)

Shift%j = Huge(1)

Disp%x = Huge(1.0)

Disp%y = Huge(1.0)

OK = .false.

else

C=======================================================================

C= Interpolate to subpixel accuracy =

C=======================================================================

k = 0

do i=-1,1

do j=-1,1

LS%A(k,6) = Diff(Shift%i+i,Shift%j+j)

k = k + 1 ! Equation number

enddo

enddo

call LeastSquares(LS)

k = LS%n

! Check on the curvature as in DigImage

tmp = LS%A(3,k)*LS%A(3,k)-4.0*LS%A(4,k)*LS%A(5,k)



Dalziel, Hughes and Sutherland 64

if (tmp .ne. 0.0 .and. LS%A(4,k) .gt. Par%MinCurvature .and.

& LS%A(5,k) .gt. Par%MinCurvature) then

dx = (2.0*LS%A(1,k)*LS%A(5,k)-LS%A(2,k)*LS%A(3,k))/tmp

dy = (2.0*LS%A(2,k)*LS%A(4,k)-LS%A(1,k)*LS%A(3,k))/tmp

dx = max(-1.0,min(1.0,dx))

dy = max(-1.0,min(1.0,dy))

Disp%x = real(Shift%i) + dx

Disp%y = real(Shift%j) + dy

OK = .true.

else

Disp%x = Shift%i

Disp%y = Shift%j

OK = .false.

endif

endif

return

end subroutine

SubPixelPasses

C

C***********************************************************************

C* SubPixelPasses SubPixelPasses *

C* Do the subpixel passes *

C***********************************************************************

subroutine SubPixelPasses(OK,Disp,Par,Window,LS,Step)

C=====Parameters

logical OK

type (F_WLocation) Disp

type (D_AnalyseSchlieren) Par

type (F_Window) Window

type (F_LeastSquares) LS

real (8) Step

C=====Local variables

integer (4) i,j,k

real (8) tmp,dx,dy

C=====Code

k = 0

do i=-1,1

dx = Disp%x + real(i)*Step

do j=-1,1

dy = Disp%y + real(j)*Step

LS%A(k,6) = WindowDifference_R(Par%Back,Par%Fore,Window,

& dx,dy,Par%DifferenceType)



Dalziel, Hughes and Sutherland 65

k = k + 1 ! Equation number

enddo

enddo

call LeastSquares(LS)

k = LS%n

! Check on curvature as in DigImage

tmp = LS%A(3,k)*LS%A(3,k)-4.0*LS%A(4,k)*LS%A(5,k)

if (tmp .ne. 0.0 .and. LS%A(4,k) .gt. Par%MinCurvature .and.

& LS%A(5,k) .gt. Par%MinCurvature) then

dx = (2.0*LS%A(1,k)*LS%A(5,k)-LS%A(2,k)*LS%A(3,k))/tmp

dy = (2.0*LS%A(2,k)*LS%A(4,k)-LS%A(1,k)*LS%A(3,k))/tmp

dx = max(-2.0,min(2.0,dx))

dy = max(-2.0,min(2.0,dy))

Disp%x = Disp%x + dx*Step

Disp%y = Disp%y + dy*Step

OK = .true.

else

C.......Leave Disp unchanged

OK = .false.

endif

return

end subroutine

OptimalShift

C

C***********************************************************************

C* OptimalShift OptimalShift_I *

C* Calculates the (pixel) optimal shift based on the absolute *

C* difference between two images. *

C* Shift *

C* Diff *

C* Image0 *

C* Image1 *

C* Window *

C* iMin,iMax,jMin,jMax Limits on shift *

C* DifferenceType The type of difference to be *

C* optimised. *

C***********************************************************************

subroutine OptimalShift_I(Shift,Diff,Image0,Image1,Window,

& iMin,iMax,jMin,jMax,DifferenceType)

C=====Parameters

type (F_Location) Shift

integer (4) iMin



Dalziel, Hughes and Sutherland 66

integer (4) iMax

integer (4) jMin

integer (4) jMax

real (8) Diff(-32:32,-32:32)

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

integer (4) DifferenceType

C=====Local variables

integer (4) iOff

integer (4) jOff

integer (4) iLo,jLo

real Lower

C=====Code

Lower = Huge(1.0)

iLo = Huge(1)

jLo = Huge(1)

do jOff=jMin,jMax

do iOff=iMin,iMax

Diff(iOff,jOff) = WindowDifference_I(Image0,Image1,

& Window,iOff,jOff,DifferenceType)

if (Diff(iOff,jOff) .lt. Lower) then

if (Diff(iOff,jOff) .ge. 0.0) then

Lower = Diff(iOff,jOff)

iLo = iOff

jLo = jOff

endif

endif

enddo

enddo

Shift = F_Location(iLo,jLo)

return

end subroutine

WindowDi�erence

C

C***********************************************************************

C* WindowDifference WindowDifference_I *

C* Calculates mean absolute difference between images. Ignores *

C* difference when one of the pixels is zero. *

C* Image0 *

C* Image1 *

C* Window *



Dalziel, Hughes and Sutherland 67

C* iOff,jOff *

C* DifferenceType *

C***********************************************************************

function WindowDifference_I(Image0,Image1,Window,iOff,jOff,

& DifferenceType)

C=====Parameters

real WindowDifference_I

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

integer (4) iOff

integer (4) jOff

integer (4) DifferenceType

C=====Code

select case (DifferenceType)

case (AnalyseSchlieren$AbsoluteDiff)

WindowDifference_I =

& WindowDifference_I_Absolute(Image0,Image1,Window,iOff,jOff)

case (AnalyseSchlieren$SquareDiff)

WindowDifference_I =

& WindowDifference_I_Square(Image0,Image1,Window,iOff,jOff)

case (AnalyseSchlieren$CrossCorr)

WindowDifference_I = 1.0 -

& WindowDifference_I_CrossCorr(Image0,Image1,Window,iOff,jOff)

end select

return

end function

WindowDi�erenceAbsolute

C

C***********************************************************************

C* WindowDifference WindowDifference_I_Absolute *

C* Calculates mean absolute difference between images. Ignores *

C* difference when one of the pixels is zero. *

C* Image0 *

C* Image1 *

C* Window *

C* iOff,jOff *

C***********************************************************************

function WindowDifference_I_Absolute(Image0,Image1,Window,iOff,

& jOff)

C=====Parameters

real WindowDifference_I_Absolute



Dalziel, Hughes and Sutherland 68

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

integer (4) iOff

integer (4) jOff

C=====Local variables

integer (4) n,Sum

integer (4) Pix0,Pix1

call PresetPixel(Window)

Sum = 0

n = 0

do while (NextPixel(Window))

Pix0 = Pixel(Image0,Window)

Pix1 = PixelRel(Image1,Window,iOff,jOff)

if (Pix0 .gt. 0 .and. Pix1 .gt. 0) then

Sum = Sum + abs(Pix0 - Pix1)

n = n + 1

endif

enddo

if (n .gt. 0) then

WindowDifference_I_Absolute = float(Sum)/float(n)

else

WindowDifference_I_Absolute = -1.0 ! Flag as invalid

endif

return

end function

WindowDi�erencSquare

C

C***********************************************************************

C* WindowDifference WindowDifference_I_Square *

C* Calculates mean Square difference between images. Ignores *

C* difference when one of the pixels is zero. *

C* Image0 *

C* Image1 *

C* Window *

C* iOff,jOff *

C***********************************************************************

function WindowDifference_I_Square(Image0,Image1,Window,iOff,

& jOff)

C=====Parameters

real WindowDifference_I_Square

type (F_Image) Image0



Dalziel, Hughes and Sutherland 69

type (F_Image) Image1

type (F_Window) Window

integer (4) iOff

integer (4) jOff

C=====Local variables

integer (4) n,Sum

integer (4) Pix0,Pix1

call PresetPixel(Window)

Sum = 0

n = 0

do while (NextPixel(Window))

Pix0 = Pixel(Image0,Window)

Pix1 = PixelRel(Image1,Window,iOff,jOff)

if (Pix0 .gt. 0 .and. Pix1 .gt. 0) then

Sum = Sum + (Pix0 - Pix1)*(Pix0 - Pix1)

n = n + 1

endif

enddo

if (n .gt. 0) then

WindowDifference_I_Square = float(Sum)/float(n)/256.0

else

WindowDifference_I_Square = -1.0 ! Flag as invalid

endif

return

end function

WindowDi�erenceCrossCorr

C

C***********************************************************************

C* WindowDifference WindowDifference_I_CrossCorr *

C* Calculates mean CrossCorr difference between images. Ignores *

C* difference when one of the pixels is zero. *

C* Image0 *

C* Image1 *

C* Window *

C* iOff,jOff *

C***********************************************************************

function WindowDifference_I_CrossCorr(Image0,Image1,Window,iOff,

& jOff)

C=====Parameters

real WindowDifference_I_CrossCorr

type (F_Image) Image0

type (F_Image) Image1



Dalziel, Hughes and Sutherland 70

type (F_Window) Window

integer (4) iOff

integer (4) jOff

C=====Local variables

integer (4) n

real Pix0,Pix1,Sum2,SumP0,Sum2P0,SumP1,Sum2P1

call PresetPixel(Window)

SumP0 = 0.0

SumP1 = 0.0

Sum2P0 = 0.0

Sum2P1 = 0.0

Sum2 = 0.0

n = 0

do while (NextPixel(Window))

Pix0 = float(Pixel(Image0,Window))

Pix1 = float(PixelRel(Image1,Window,iOff,jOff))

if (Pix0 .gt. 0.0 .and. Pix1 .gt. 0.0) then

SumP0 = SumP0 + Pix0

SumP1 = SumP1 + Pix1

Sum2P0 = Sum2P0 + Pix0*Pix0

Sum2P1 = Sum2P1 + Pix1*Pix1

Sum2 = Sum2 + Pix0*Pix1

n = n + 1

endif

enddo

if (n .gt. 0) then

Sum2P0 = Sum2P0 - SumP0*SumP0/float(n)

Sum2P1 = Sum2P1 - SumP1*SumP1/float(n)

if (Sum2P0 .gt. 0.0 .and. Sum2P1 .gt. 0.0) then

WindowDifference_I_CrossCorr = (Sum2 - SumP0*SumP1/float(n))

& /sqrt(Sum2P0*Sum2P1)

else

WindowDifference_I_CrossCorr = 2.0 ! Flag as invalid

endif

else

WindowDifference_I_CrossCorr = 2.0 ! Flag as invalid

endif

return

end function

OptimalShiftR

C

C***********************************************************************



Dalziel, Hughes and Sutherland 71

C* OptimalShift OptimalShift_R *

C* Calculates the (subpixel) optimal shift based on the absolute *

C* difference between two images. A return value of exactly 0.0 *

C* indicates no optimal found. *

C* Image0 *

C* Image1 *

C* Window *

C* xMin,xMax,yMin,yMax Limits on shift *

C* xStep,yStep The shifts *

C* DifferenceType The type of difference to be *

C* optimised. *

C***********************************************************************

function OptimalShift_R(Image0,Image1,Window,xMin,xMax,yMin,yMax,

& xStep,yStep,DifferenceType)

C=====Parameters

type (F_WLocation) OptimalShift_R

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

real xMin

real xMax

real yMin

real yMax

real xStep

real yStep

integer (4) DifferenceType

C=====Local variables

real xLo,yLo,xOff,yOff

real Lower,Diff

real, parameter :: Limit = 1.0E10

C=====Code

Lower = Limit

yOff = yMin

do while (yOff .le. yMax)

xOff = xMin

do while (xOff .le. xMax)

Diff = WindowDifference_R(Image0,Image1,Window,xOff,

& yOff,DifferenceType)

if (Diff .lt. Lower) then

if (Diff .ge. 0.0) then

Lower = Diff

xLo = xOff

yLo = yOff



Dalziel, Hughes and Sutherland 72

endif

endif

xOff = xOff + xStep

enddo

yOff = yOff + yStep

enddo

if (Lower .lt. Limit) then

OptimalShift_R%x = xLo

OptimalShift_R%y = yLo

else

OptimalShift_R%x = Huge(0.0)

OptimalShift_R%y = Huge(0.0)

endif

return

end function

WindowDi�erencR

C

C***********************************************************************

C* WindowDifference WindowDifference_R *

C* Calculates mean difference between images. Ignores difference *

C* when one of the pixels is zero. *

C* Image0 *

C* Image1 *

C* Window *

C* xOff,yOff *

C* DifferenceType *

C***********************************************************************

function WindowDifference_R(Image0,Image1,Window,xOff,yOff,

& DifferenceType)

C=====Parameters

real WindowDifference_R

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

real xOff

real yOff

integer (4) DifferenceType

C=====Code

select case (DifferenceType)

case (AnalyseSchlieren$AbsoluteDiff)

WindowDifference_R =

& WindowDifference_R_Absolute(Image0,Image1,Window,xOff,yOff)



Dalziel, Hughes and Sutherland 73

case (AnalyseSchlieren$SquareDiff)

WindowDifference_R =

& WindowDifference_R_Square(Image0,Image1,Window,xOff,yOff)

case (AnalyseSchlieren$CrossCorr)

WindowDifference_R = 1.0 -

& WindowDifference_R_CrossCorr(Image0,Image1,Window,xOff,yOff)

end select

return

end function

WindowDi�erenceRAbsolute

C

C***********************************************************************

C* WindowDifference WindowDifference_R_Absolute *

C* Calculates mean absolute difference between images. *

C* Image0 *

C* Image1 *

C* Window *

C* xOff,yOff *

C***********************************************************************

function WindowDifference_R_Absolute(Image0,Image1,Window,xOff,

& yOff)

C=====Parameters

real WindowDifference_R_Absolute

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

real xOff

real yOff

C=====Local variables

integer (4) n

real Pix0,Pix1,Sum

call PresetPixel(Window)

Sum = 0.0

n = 0

do while (NextPixel(Window))

Pix0 = float(Pixel(Image0,Window))

Pix1 = PixelRel(Image1,Window,xOff,yOff)

if (Pix0 .gt. 0 .and. Pix1 .gt. 0.0) then

Sum = Sum + abs(Pix0 - Pix1)

n = n + 1

endif

enddo



Dalziel, Hughes and Sutherland 74

if (n .gt. 0) then

WindowDifference_R_Absolute = Sum/float(n)

else

WindowDifference_R_Absolute = -1.0 ! Flag as invalid

endif

return

end function

WindowDi�erenceRSquare

C

C***********************************************************************

C* WindowDifference WindowDifference_R_Square *

C* Calculates mean Square difference between images. *

C* Image0 *

C* Image1 *

C* Window *

C* xOff,yOff *

C***********************************************************************

function WindowDifference_R_Square(Image0,Image1,Window,xOff,yOff)

C=====Parameters

real WindowDifference_R_Square

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

real xOff

real yOff

C=====Local variables

integer (4) n

real Pix0,Pix1,Sum

call PresetPixel(Window)

Sum = 0.0

n = 0

do while (NextPixel(Window))

Pix0 = float(Pixel(Image0,Window))

Pix1 = PixelRel(Image1,Window,xOff,yOff)

if (Pix0 .gt. 0 .and. Pix1 .gt. 0.0) then

Sum = Sum + (Pix0 - Pix1)*(Pix0-Pix1)

n = n + 1

endif

enddo

if (n .gt. 0) then

WindowDifference_R_Square = Sum/float(n)/256.0

else



Dalziel, Hughes and Sutherland 75

WindowDifference_R_Square = -1.0 ! Flag as invalid

endif

return

end function

WindowDi�erenceRCrossCorr

C

C***********************************************************************

C* WindowDifference WindowDifference_R_CrossCorr *

C* Calculates mean CrossCorr difference between images. *

C* Image0 *

C* Image1 *

C* Window *

C* xOff,yOff *

C***********************************************************************

function WindowDifference_R_CrossCorr(Image0,Image1,Window,xOff,

& yOff)

C=====Parameters

real WindowDifference_R_CrossCorr

type (F_Image) Image0

type (F_Image) Image1

type (F_Window) Window

real xOff

real yOff

C=====Local variables

integer (4) n

real Pix0,Pix1,Sum2,SumP0,Sum2P0,SumP1,Sum2P1

call PresetPixel(Window)

SumP0 = 0.0

SumP1 = 0.0

Sum2P0 = 0.0

Sum2P1 = 0.0

Sum2 = 0.0

n = 0

do while (NextPixel(Window))

Pix0 = float(Pixel(Image0,Window))

Pix1 = PixelRel(Image1,Window,xOff,yOff)

if (Pix0 .gt. 0.0 .and. Pix1 .gt. 0.0) then

SumP0 = SumP0 + Pix0

SumP1 = SumP1 + Pix1

Sum2P0 = Sum2P0 + Pix0*Pix0

Sum2P1 = Sum2P1 + Pix1*Pix1

Sum2 = Sum2 + Pix0*Pix1



Dalziel, Hughes and Sutherland 76

n = n + 1

endif

enddo

if (n .gt. 0) then

Sum2P0 = Sum2P0 - SumP0*SumP0/float(n)

Sum2P1 = Sum2P1 - SumP1*SumP1/float(n)

if (Sum2P0 .gt. 0.0 .and. Sum2P1 .gt. 0.0) then

WindowDifference_R_CrossCorr = (Sum2 - SumP0*SumP1/float(n))

& /sqrt(Sum2P0*Sum2P1)

else

WindowDifference_R_CrossCorr = 2.0 ! Flag as invalid

endif

else

WindowDifference_R_CrossCorr = 2.0 ! Flag as invalid

endif

return

end function

CalculatePotential

C

C***********************************************************************

C* CalculatePotential CalcualtePotential *

C* Integrates vector field to obtain potential. The vector and *

C* potential fields are arranged as follows: *

C* P0n P1n P2n P3n ... Pmn *

C* v0n v1n v2n v3n v(m-1)(n-1) *

C* . . . . . . . . . . *

C* . . . . . . . . . . *

C* . . . . . . . . . . *

C* v01 v11 v21 v31 v(m-1)1 *

C* P01 P11 P21 P31 ... Pm1 *

C* v00 v10 v20 v30 v(m-1)0 *

C* P00 P10 P20 P30 ... Pm0 *

C* Potential(0:nx,0:ny) Returns the potential. *

C* Vector(0:nx-1,0:ny-1) The vector field to be *

C* integrated. *

C* nx,ny Size of grid *

C* dx,dy The mesh spacing. *

C***********************************************************************

subroutine CalculatePotential(Potential,Vector,nx,ny,dx,dy)

C=====Parameters

integer (4) nx

integer (4) ny



Dalziel, Hughes and Sutherland 77

real Potential(0:nx,0:ny)

type (F_WLocation) Vector(0:nx-1,0:ny-1)

real dx

real dy

C=====local variables

integer (4) i,j,nPotential,iStart,jStart

integer (4) iCount,nPasses,iTotal

real PotentialMin,PotentialMax,PotentialMean

C-----------------------------------------------------------------------

C- Initialise whole grid as unaccessed -

C-----------------------------------------------------------------------

do j=0,ny

do i=0,nx

Potential(i,j) = Huge(0.0)

enddo

enddo

C-----------------------------------------------------------------------

C- Set the potential for some arbitrary point at the centre of the -

C- grid. -

C-----------------------------------------------------------------------

iStart = nx/2

jStart = ny/2

Potential(iStart,jStart) = 0.0

C-----------------------------------------------------------------------

C- Repeatedly scan through the grid until all the points -

C- connected to the starting point have been set. -

C-----------------------------------------------------------------------

nPasses = 0

iCount = 1

iTotal = 0

do while ((nPasses .eq. 0 .or. iCount .gt. 0 .or.

& iTotal .lt. nx*ny/8) .and. iStart .lt. nx)

nPasses = nPasses + 1

call PassForPotential(iCount,Potential,Vector,nx,ny,dx,dy)

if (nPasses .eq. 1 .and. iCount .eq. 0 .and.

& iStart .lt. nx) then

C.......................................................................

C. On the first pass, we were unable to update any stream .

C. function values. This suggests the starting point was .

C. not a valid flow point. We shall try again with a .

C. different point, slowly moving out along the x axis .

C. until we find a suitable one .

C.......................................................................



Dalziel, Hughes and Sutherland 78

do while (Potential(iStart,jStart) .ne. Huge(0.0) .and.

& iStart .lt. nx)

iStart = iStart + 1

enddo

Potential(iStart,jStart) = 1.0

nPasses = 0

endif

C.......................................................................

C. Keep track of the total number of grid points set .

C.......................................................................

iTotal = iTotal + iCount

enddo

do i=0,40*nx !5*nx !40*nx

C.......Do a couple of extra passes to smooth the error

call PassForPotential(iCount,Potential,Vector,nx,ny,dx,dy)

enddo

C-----------------------------------------------------------------------

C- Determine mean value of potential -

C-----------------------------------------------------------------------

PotentialMean = 0.0

PotentialMin = 1.0

PotentialMax = 1.0

nPotential = 0

do i=0,nx

do j=0,ny

if (Potential(i,j) .ne. Huge(0.0)) then

PotentialMean = PotentialMean + Potential(i,j)

PotentialMin = min(PotentialMin,Potential(i,j))

PotentialMax = max(PotentialMax,Potential(i,j))

nPotential = nPotential + 1

endif

enddo

enddo

PotentialMean = PotentialMean/float(max(1,nPotential))

do i=0,nx-1

do j=0,ny-1

if (Vector(i,j)%x .eq. Huge(0.0)) then

C...........The velocity field is not valid, so the Potential field is

C...........also not valid. Indicate by setting to Huge

Potential(i,j) = Huge(0.0)

Potential(i+1,j) = Huge(0.0)

Potential(i,j+1) = Huge(0.0)

Potential(i+1,j+1) = Huge(0.0)



Dalziel, Hughes and Sutherland 79

elseif (Potential(i,j) .ne. Huge(0.0)) then

C...........Give zero mean

Potential(i,j) = Potential(i,j) - PotentialMean

endif

enddo

enddo

return

end subroutine

PassForPotential

C

C***********************************************************************

C* PassForPotential Internal: PassForPotential *

C* Calculates updated potential for the grid. *

C***********************************************************************

subroutine PassForPotential(iCount,Potential,Vector,nx,ny,dx,dy)

C=====Parameters

integer (4) iCount

integer (4) nx

integer (4) ny

real Potential(0:nx,0:ny)

type (F_WLocation) Vector(0:nx-1,0:ny-1)

real dx

real dy

C=====local variables

integer (4) i,j,is,js,i0,i1,j0,j1

real Phi

C=====Central point

C=======================================================================

C= Divide domain into four quadrants and integrate over all four =

C= simultaneously. This speeds up convergence as it allows the =

C= seed points to more rapidly fill the domain. =

C=======================================================================

is = nx/2

js = ny/2

iCount = 0

do i=0,is

i0 = max(0,is-i)

i1 = min(nx,is+i)

do j=0,js

j0 = max(0,js-j)

j1 = min(ny,js+j)

C.......................................................................



Dalziel, Hughes and Sutherland 80

C. i0j0 quadrant .

C.......................................................................

Phi = PotentialForPoint(i0,j0,Vector,Potential,nx,ny,dx,dy)

if (Phi .ne. Huge(0.0)) then

if (Potential(i0,j0) .ne. Huge(0.0)) then

Potential(i0,j0) = 0.3*Potential(i0,j0) + 0.7*Phi

else

Potential(i0,j0) = Phi

iCount = iCount + 1

endif

endif

C.......................................................................

C. i0j1 quadrant .

C.......................................................................

Phi = PotentialForPoint(i0,j1,Vector,Potential,nx,ny,dx,dy)

if (Phi .ne. Huge(0.0)) then

if (Potential(i0,j1) .ne. Huge(0.0)) then

Potential(i0,j1) = 0.3*Potential(i0,j1) + 0.7*Phi

else

Potential(i0,j1) = Phi

iCount = iCount + 1

endif

endif

C.......................................................................

C. i1j0 quadrant .

C.......................................................................

Phi = PotentialForPoint(i1,j0,Vector,Potential,nx,ny,dx,dy)

if (Phi .ne. Huge(0.0)) then

if (Potential(i1,j0) .ne. Huge(0.0)) then

Potential(i1,j0) = 0.3*Potential(i1,j0) + 0.7*Phi

else

Potential(i1,j0) = Phi

iCount = iCount + 1

endif

endif

C.......................................................................

C. i1j1 quadrant .

C.......................................................................

Phi = PotentialForPoint(i1,j1,Vector,Potential,nx,ny,dx,dy)

if (Phi .ne. Huge(0.0)) then

if (Potential(i1,j1) .ne. Huge(0.0)) then

Potential(i1,j1) = 0.3*Potential(i1,j1) + 0.7*Phi

else



Dalziel, Hughes and Sutherland 81

Potential(i1,j1) = Phi

iCount = iCount + 1

endif

endif

enddo

enddo

return

end subroutine

PotentialForPoint

C

C***********************************************************************

C* PotentialForPoint Internal: PotentialForPoint *

C* Evaluates an updated estimate of the potential for this point. *

C* The points are arranged as follows: *

C* Pi1 *

C* v01 v11 *

C* P0j Pij P1j *

C* v00 v10 *

C* Pi0 *

C* The potential indices are i0,i1,j0,j1. The Vector indices are *

C* iv0,iv1,jv0,jv1. *

C***********************************************************************

function PotentialForPoint(i,j,Vector,Potential,nx,ny,dx,dy)

C=====Parameters

real PotentialForPoint

integer (4) i

integer (4) j

integer (4) nx

integer (4) ny

real Potential(0:nx,0:ny)

type (F_WLocation) Vector(0:nx-1,0:ny-1)

real dx

real dy

C=====local variables

integer (4) i0,i1,j0,j1,iv0,iv1,jv0,jv1,nCount

real u0,u1,v0,v1,u00,u01,u10,u11,v00,v01,v10,v11

real Phi

C=====Neighbouring potential grid points

i0 = max(0,i-1)

i1 = min(nx,i+1)

j0 = max(0,j-1)

j1 = min(ny,j+1)



Dalziel, Hughes and Sutherland 82

C=====Neighbouring velocity grid points

iv0 = max(i-1,0)

iv1 = min(i,nx-1)

jv0 = max(j-1,0)

jv1 = min(j,ny-1)

C=====Contributing velocities

if (Vector(iv0,jv0)%x .eq. Huge(0.0)) then

u00 = Vector(iv1,jv0)%x

v00 = Vector(iv0,jv1)%y

else

u00 = Vector(iv0,jv0)%x

v00 = Vector(iv0,jv0)%y

endif

if (Vector(iv0,jv1)%x .eq. Huge(0.0)) then

u01 = Vector(iv1,jv1)%x

v01 = Vector(iv0,jv0)%y

else

u01 = Vector(iv0,jv1)%x

v01 = Vector(iv0,jv1)%y

endif

if (Vector(iv1,jv0)%x .eq. Huge(0.0)) then

u10 = Vector(iv0,jv0)%x

v10 = Vector(iv1,jv1)%y

else

u10 = Vector(iv1,jv0)%x

v10 = Vector(iv1,jv0)%y

endif

if (Vector(iv1,jv1)%x .eq. Huge(0.0)) then

u11 = Vector(iv0,jv1)%x

v11 = Vector(iv1,jv0)%y

else

u11 = Vector(iv1,jv1)%x

v11 = Vector(iv1,jv1)%y

endif

if (u00 .eq. Huge(0.0)) then

u00 = 0.0

endif

if (u01 .eq. Huge(0.0)) then

u01 = 0.0

endif

if (u10 .eq. Huge(0.0)) then

u10 = 0.0

endif



Dalziel, Hughes and Sutherland 83

if (u11 .eq. Huge(0.0)) then

u11 = 0.0

endif

if (v00 .eq. Huge(0.0)) then

v00 = 0.0

endif

if (v01 .eq. Huge(0.0)) then

v01 = 0.0

endif

if (v10 .eq. Huge(0.0)) then

v10 = 0.0

endif

if (v11 .eq. Huge(0.0)) then

v11 = 0.0

endif

u0 = (u00 + u01)/2.0

u1 = (u10 + u11)/2.0

v0 = (v00 + v10)/2.0

v1 = (v01 + v11)/2.0

C=====Now accumulate the contributions for this point

nCount = 0

Phi = 0.0

C-----Treat as velocity potential

if (Potential(i0,j) .ne. Huge(0.0) .and. i .ne. i0)

& then

Phi = Phi + Potential(i0,j) + u0*dx

nCount = nCount + 1

endif

if (Potential(i1,j) .ne. Huge(0.0) .and. i .ne. i1)

& then

Phi = Phi + Potential(i1,j) - u1*dx

nCount = nCount + 1

endif

if (Potential(i,j0) .ne. Huge(0.0) .and. j .ne. j0)

& then

Phi = Phi + Potential(i,j0) + v0*dy

nCount = nCount + 1

endif

if (Potential(i,j1) .ne. Huge(0.0) .and. j .ne. j1)

& then

Phi = Phi + Potential(i,j1) - v1*dy

nCount = nCount + 1

endif



Dalziel, Hughes and Sutherland 84

C=====Finally, determine the mean, provided nCount nonzero

if (nCount .eq. 0) then

C.......Indicate invalid value

Phi = Huge(Phi)

else

C.......Calcualte mean

Phi = Phi/float(nCount)

endif

PotentialForPoint = Phi

return

end function



Dalziel, Hughes and Sutherland 85

C Contact Information

C.1 DigImage Software

DL Research Partners
c/o Stuart Dalziel
Dept. of Applied Mathematics and Theoretical Physics
University of Cambridge
Silver Street
Cambridge, UK CB3 9EW

C.2 Frame Grabber Cards

A large number of companies o�er \A2D" cards that can be used to translate an analogue
image into a digital image. The software package DigImage requires the PC to be equipped
with one of two frame grabber cards (DT2861 or DT2862) sold by Data Translation.

The contact information for the American headquarters is given below. (See the web for
more international contacts.)

Data Translation Inc.
100 Locke Drive
Marlboro, MA 01752-1192
U.S.A.
Phone: 1 (508) 481-3700
Fax: 1 (508) 481-8620
Web: http://www.datx.com/
Email: info@datx.com



Dalziel, Hughes and Sutherland 86

References

[1] S. B. Dalziel, G. O. Hughes, and B. R. Sutherland. Whole �eld density measurements.
Experiments in Fluids, 28:322{335, 2000.

[2] S. Sakai. Visualisation of internal gravity waves by Moir�e method. Kashika-Joho, 10:65{
68, 1990.

[3] B. R. Sutherland, S. B. Dalziel, G. O. Hughes, and P. F. Linden. Visualisation and
measurement of internal waves by \synthetic schlieren". Part 1: Vertically oscillating
cylinder. J. Fluid Mech., 390:93{126, 1999.


