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Abstract . We propose that self-organiza tion may provide a mech­
anism by which power-law cluster distributions of mob ile pr ey (i.e. ,
fish , phytoplankton ) may develop ; in cont rast , such dist ributi ons have
ofte n bee n at t ributed to scaling of the background environment. Evi ­
dence support ing our proposal is provided by examining the dynamics
of a cellular automato n-like model of a pr edator-pr ey syste m. The
model , which is discret e in space and t ime , is robust an d evolves to
a state with oscillatory, phase-shifted po pulat ions for a lar ge range of
parameter values, nam ely the pr edator and pr ey breeding times and
the pr edator starvation t ime. T he distribution functi on ]5(s) of the
prey cluster sizes s has roughly power-law form, ]5(s ) <X s - a , over a
range of moderately large sizes but is cut off at lar ge s. The exponent
a ~ 1.35 ± 0.10 dep end s only weakl y on the paramet ers of the model.

1. Introduction

The study of predator-prey int erac tions includes a diverse class of systems
in which, for exa mple, fish eat plankton , wolves at tack deer , or a fire engulfs
a forest . In such systems the average number of predators and prey have
been observed to oscillate about some average "populat ion" although t he
amplitude an d period of the oscillations may vary greatly in t ime. Typically,
becaus e the number of predators tends to increase when there is an abun­
dan ce of prey and the number tends to decrease when prey are scarce, the
predat or population cycle lags that of the prey.

Mathematical models of these interactions inherently involve nonlinear
dynami cs. For example, t he classical descrip tion of a predator-prey system
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is given by the Lotka-Volterra equ at ions (e.g., Hedrick [8]) which const itu te
a coup led , nonlinear set of differential equations

(1)

in which the prey and pr edator populations ar e Pf and P" resp ect ively, a f is
the prey breeding rate in the absence of pr edators , as is the pre dator death
rate in the absence of pre y, and (31 and (32 ar e interacti on coefficients. If t he
pr ey and pr edator populations are assumed to be homogeneously distributed,
then (31 represents the probab ility per unit time that a pr edator encounters
and eats a pr ey and (32 represents the probability that a predator encounters
and devours enough pr ey per uni t t ime to ensure it s survival. With empir­
ically determined parameters, equat ion (1) adequate ly reproduces the basic
dynamics of a predator-prey syst em in that both populat ions oscillate about
mean values and the predator population lags that of the prey. In reality ,
however , the prey and pr edator populations are inhomogeneously distributed
since, as is well known, pr ey oft en gather in clusters (schoo ls, herds, gagg les,
et c.) , whi ch provide some protect ion from pr edat ion . Attempts have been
mad e to extend the Lotka-Volt erra equations to include the effects of spa­
tial and temporal variations of an ecological system (e.g. , by incorporat ing
diffusive effects [13]). However , these models do not describe the process of
clustering, nor do such techniques seem capable of pr ed ict ing the distribu­
t ion of cluster sizes in an ecosyste m . Indeed , Hastings [6] has po inted out
t hat two of the most frequently employed models, diffusion-based models and
patch models, appear to be applicable over only a limi ted range of spatial
and temporal scales. It now appears t hat an understand ing of the detailed
spatial distributions for both sp ecies is necessary in order to describe ap­
propriately the dynam ics of such syst ems . For example, in their st udy of
pr edation of Atlantic cod upon capelin in the Western At lantic Ocean, Ros e
and Leggett [16] showed that t he spat ial corr elation between the densities of
the pr edators and prey was dependent on cluster size as well as environmental
factors . Power-law spat ial distributions of species have bee n demonstrated
to appear in observat ions of plankton communit ies by Haury et at. [7] and in
Holling's survey of a wide range of ecosyste ms, includi ng birds and mammals
in the boreal forest and boreal prairie [9] . To exp lain these structures, en­
vironmental factors such as the fractal distribution of energy resources and
landscapes have often been called upon, but we show here that an alt erna­
t ive mechanism , that of self-organizat ion, may also give rise to a power-law
distribution of clusters .

T he capacity for syst ems with intrinsic nonlinear feedb ack mechanisms to
evolve to an organized stat e characterized by a nonscale selective geometry
has be en noted for many diverse natural phenomena (e.g., Mandelbrot [14]).
In particular, Kauffman [12] has noted that self-organi zation is inherent to
many biological and ecological systems. Significant progress has been made
recently toward underst anding the essential dynamics that determine the
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power-law scaling behavior of self-organizing systems t hrough t he develop­
ment and ana lysis of cellular automata (CA) and au tomato n-like models
such as the one that we employ here. CA have proven to be particularly
useful for the study of self-orga nizing syste ms because with only a limited
set of basic instructions they are capable of producing patterns similar t o
many of the complex spat ial st ruc tures and temporal behaviors that are ob­
served in nature. For example, CA have been developed to st udy the size
and frequency dist ribution of avalanches and ear thquakes [2, 10, 11], the spa­
ti al development of a reactive chemical system [4], and the st ructure of an
Ising spin system [15]. Although such models are often too crude to simulate
accurately the dyna mics of the real driven-dissipative system, they provide
an appealing description for self-organizat ion unattainable through st andard
algebraic techniques.

A vari ety of CA and CA-like models have been adapted to simulat e var­
ious processes in ecological systems. Some , such as the so-called "Game of
Life" [1], which models the int eractions of a single species in competit ion
with itself, lack robustness and randomness (after the setting of initi al con­
ditions) and so have questionabl e app licability to real ecological systems.
The "Forest-Fire Mod el" [3] may be interpret ed as a predator-prey model
in which the prey ("t rees" ) are at t acked by a pr edat or ("fire" ) . Comp uter
simulat ions with many adjustable param eters have also been developed to
simu late the dyn ami cs of more complex ecosystems. But these assume the
existence of spat ial sca ling of resour ces in the environment t hat influence
the development of spatial scaling among elements of the ecosyste m a pr iori.
Conversely, we st udy a modified version of the CA-like model "Wa-Tor" due
to Dewdn ey [5] that inclu des only those dynamics which are necessary for
realisti c evolut ion of a pr edat or-prey system. We show that the simulations
are robust in the sense t hat for a wide range of par amet ers they evolve in
a cont inuous state of change but that they nonetheless exhibit sca ling be­
havior. T hat is, t he scaling behavior arises naturally in the model withou t
ad hoc assumptions. Nonetheless, the long time behavior is, on average,
in accordance qualitatively wit h the predictions of the Lotka-Volterr a equa­
tions.

In our model, predat ors and prey (lab eled "sharks" and "fish ," respec­
tively, by Dewdney) move on a square doubly periodic grid of linear size N
such t ha t each grid point is occupied by at most one indi vidual. T he model is
similar to CA in the sense that prey and pre dators move, if possible, to one of
the four neighboring sites and so predator-prey interactions are determined
by local rul es. The model is not deterministi c, however, since the direct ion
of motion is randomly selected . Furthermore, breedin g and starvat ion , which
occur for prey an d predat ors at preset times according to the model par ame­
ters, are det ermined not by the inst antaneous state of t he system bu t rather
by the values of internal clocks carr ied by each individual. The nonlocal
temp oral rules of the model are a departure from the usual class of CA but
these are necessary to capture t he dynami cs of a predator-prey system. T he
rul es of the model are discussed in det ail in sect ion 2.
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In sect ion 3 it is shown t hat, for a br oad range of paramet ers, simulations
of Wa-Tor evolve in a nontrivial manner for long t imes and exh ibit the basic
properties of pr edator-prey systems . We show also that the distribution D (s)
of prey clust er sizes s has power-law behavior at small sizes (1 < s < 20) , and
more importantly, also at large sizes (100 < s < 500) . Both exponents (at
for small s and a for large s) dep end only weakly on the model par amet ers .
For very large clust ers (s > se), t he dist rib ution of cluster sizes decreases
approximate ly exponent ially and so the dist ribution function is subcrit ical.
The value S e is implicitly det ermined by the dynamics of the interacting
spec ies; provided that the domain size is sufficiently large, finit e-size effects
are negligible. The relat ively lar ge value of s., (ty pically S e is of the order
1000 for simulat ions performed with the model param eters discussed herein )
suggest s that the model is near the edge of chaos [12]. Finally, we show that
large prey clusters are compac t for a wide ran ge of par am eters.

2. Description of the model

Our mod el applies only the most basic rules of an ecological system: both
species move, both reproduce with a time lag, pr ey ar e devoured by nearby
predat ors, and a predat or dies when it has not eaten for a sufficient ly long
time. Each individual carr ies an int ernal clock specifying its age A defined
to be the number of t ime st eps elapsed since the individual was bo rn . Each
pr edator also carr ies a second clock (t he "hunger t ime") that spec ifies the
number of t ime ste ps elapsed since t he predator last at e a pr ey (or since it
was born) . Both spec ies breed by parthenogenesis wit h probab ility

P (A ;b) = ~ [1 + erf ( A; b) ] (2)

provided that the parent can move to at least one of its four near est -neighb or
(NN) sites . In equat ion (2) , the parameter b is fb for prey and sb for preda­
tors. Here erf (x ) is the erro rfunction defined by erf(x) = 2/...;;r J; exp (-e)dt ,
a fun ct ion that increases smo ot hly from -1 to l over an int erval of length
~ 1. In Dewdney 's original model [5], (J = 0+ so t hat breeding occurs at pre­
cisely the t ime when A = b. In this case, however , the predator ages tend to
synchronize into cycles of period sb since there is no inherent pro cess in the
rul es of Wa-Tor to randomize the age of a single par ent . We use (J = 0.5 in
order to pr event this unphysical synchronizat ion while maintaining a quasi­
regular br eeding cycle. During each birth event , the offspring are placed at
the original site and at one of t he NN sites. The ages for the offspring of
pr edat ors and pr ey and the hunger clocks for the offspring of predato rs are
set to zero .

The simulat ion is initialized at t ime t = 0 by randomly distributing nf
prey and ns pr edators on an N by N square grid . For nontrivial final states,
the initi al preda tor and prey numbers must be sufficiently large; typ ically,
nf and ns are set so that the ini tial densiti es of pr ey and predato rs are 0.20
and 0.05, respect ively (i.e. , nf = 0.2N2 and ns = 0.05N 2

) . Each time st ep
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Figure 1: Examp le of Wa-Tor rules for a simulation with parameters
fb = 2, sb = 8, and ss = 4. A position on the grid can be occupied
either by a predator or a prey (designated by S or F , respectively). The
superscripts to each species type indicates the age and the subscript
to S indicates the time since the predator last at e a prey. When prey
or predators breed , they do so by parthenogenesis and th e age of bot h
offspring is zero.

begins wit h a sweep over the pr ey. Each pr ey eit her gives birth in the manner
described above or does not give birth; in the lat t er case it random ly moves
to an NN sit e, provided that the sit e is vacant. T he time step is complet ed
by a sweep over the predators. Those that have not eaten after ss t ime steps
(the starvat ion t ime) are removed from the grid . Then , if permissible, births
occur. Finally, predators that do not give birth move to any NN sit e occup ied
by a prey (and devour it); ot herwise they move to any NN site not occup ied
by a predator. Aft er both species have moved, one time step is said to have
elapsed . An example of t he motion of pr edators and pre y in one t ime ste p is
shown in Figure 1.

In our implementat ion of the rules, the data relevant to each pr ey and
pr edator are stored in a linked list . This approach, un like sequenti al scanning,
ensures that there is no inherent dir ectional bias to the motion . For both
species, each element of the list contains the individu al 's pos it ion on the grid
an d it s age. For pr edators, the list also contains the hunger time.

The ru les of Wa-Tor can be extended in many ways , including the fol­
lowing modifications which we have examined.

1. Compet it ion among pr ey is included, whereby prey are said to st arve if
they remain wit hin a large clust er for a certain number Is t ime st eps .
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2. Simulat ions have been performed so that when indi viduals give birth
t he age of only one offspring is set to zero .

3. T he sensit ivity of the dynamics to the restricti ons of the underlying
grid have been examined by performing simulatio ns in which the prey
and pr edators may move to one of eight near est neighb ors (moti on on
t he so-called "Moore" gr id) and also by allowing both species to move
on a grid in three spat ial dimen sions.

Simulations performe d wit h these modified rul es demonst rat e qualit atively
similar results: the simulat ions are rob ust , the predator and pr ey popula­
tions oscillate wit h a phase lag, an d the pr ey clust er size distribution obeys
a power law over a lar ge range of clust er sizes. However , since the appeal of
the model lies largely in the simplicity of it s rul es, whi ch are nonetheless ca­
pabl e of reproducing the fundamental and yet complex dynam ics of observed
pr edator-prey systems , a detailed analysis has been performed only for the
original rules described above.

3. Results and analysis

Simulations have been performed for a large range of param ete rs fb, sb, and
ss on an N by N square grid. T he model is robust : for many values of
jb ,sb ,ss , and N , and for a wide ran ge of init ial condit ions , the system evolves
nontrivially for long times. To demonstrate this detailed tests for rob ustness
have been mad e for simulat ions on a grid with N = 50 and initi al pr ey and
pr edator populatio n densiti es of 0.20 and 0.05, resp ecti vely. Trivial states
are reached when one or both spec ies become ext inct but , for many sets of
par amet ers jb, sb, and ss, nontrivial final states have been observed afte r 5000
time ste ps . In these tests, t he pre y and pr edator populations typically exhibit
oscillat ions with a period of about 50 time st eps and nontrivial simulat ions
evolve through approximate ly 100 periods wit h no apparent ind ication that
either species may eventually become ext inct . In particular, nontrivial final
states have been observed for fb = 1, sb = 10, with ss ranging from 1 to 8,
for fb = 1, ss = 1, with sb ranging from 1 t o at least 16, and for sb = 10,
ss = 5, with fbranging from 1 to 13. A trivial final state is reached if the
pr edator st arvation time ss exceeds the pr edator br eeding t ime since , in this
case , there is no facto r limiting the growth of the pr edator population save
the dom ain size. A trivial final state is also reached if the br eeding t ime of
the pr ey is moderately larger than that of the pr edators. For paramet ers near
values for which a trivial state is reached , the fina l state of the simulat ion is
sensitive to the initial populat ion densit ies, positions, and ages of prey and
pr edators. For int ermediat e par am eter values, the simulat ion is sensit ive
to the initial state for domain sizes with N < 40. Otherwis e, the same
quantitative observations are mad e for different random initi al posit ions and
po pulat ion densities.

For most of the investi gations that follow a detailed an alysis has been
performed for the param eter set jb = 4, sb = 8, and ss = 4. This choice
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Figure 2: Pr edator and prey positions at times t = 1035, and t = 1066
for a simulation with the standard parameter set (fb = 4, sb = 8, and
ss = 4) on a grid with N = 200. At time t = 1035 the prey population
is at a local minimum and at t = 1066 th e population is at a local
maximum.

of par am eters is referr ed to hereafter , t hough som ewh at arbitrarily, as the
"standard" set . Simulations run with these parameters and with other pa­
ram eter set s consist ing of values close to them are relatively insensitive to
the initial condit ions on grids with N > 50, and hence useful comparisons
can be made of the average populations and sca ling exponents for a range of
par am eters around the st andard set . Furthermore, the time scales implicitl y
det ermined by the st andard set are small so that the data may be collecte d
for many popul ati on cycles in a small number of time ste ps. The t ime scale is
large enough , however , that both the pr edators and pr ey usually move more
than one site from their birth place before br eed ing.

In Figure 2 t he positions of predators and pr ey are shown for simulations
run wit h the standard par am eter set on a grid wit h N = 200 at t imes t = 1035
an d 1066 for which the pr ey population cycle is at a local minimum and a
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Prey Positions at t=10000: fb =4, sb=8, ss=4; N=500

Figure 3: Prey positions on a grid with N = 500 at time t = 10000.
The simulat ion is performed with the standard parameter set. The
diagram demonstrates that the sizeof the largest clusters is not limited
by the domain size.

local maximum , respectively. T he self-organizat ion of prey into clusters is
evident from these diagrams. The clustering occurs due to both the birth
rules and the merging of smaller clusters. The predators are most densely
located near the perimeters of the larger clusters. As shown below, the
distribution of the prey cluster size has scaling behavior over two rang es.
The scaling behavior of large clusters is limited , however, by a self-induced
cut-off size s, which is not due to the finit e dom ain size. Qualit atively, this
is evident in Figure 3 which shows the prey distribution on a large grid with
N = 500 for a simulat ion run with the standard paramet er set. The figur e,
which is taken from the simulation at t ime t = 10000, clearly demonstra tes
the complex and dynami c arrangement of the prey.

The pr ey organize into clusters wit h similar scaling behavior for other
para mete rs as demonstrated quantitatively in Figur e 4 which shows the prey
posit ions for simulations on a grid with N = 200 at t imes after t = 1000
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sb=8, ss=2
--....,...",....

c) fb=4, sb=12, ss=4 d) fb=4, sb=8, ss=8

Figure 4: Prey positions on a grid with N = 200 for simulations with
parameters a) fb = 4, sb = 4, ss = 4, b) fb = 4, sb = 8, ss = 2,
c) fb = 4, sb = 12, ss = 4, and d) fb = 4, sb = 8, ss = 8. The
times for each diagram shown are chosen to be the shortest time after
t = 1000 for which the prey population is approximately equal to the
populat ion average and is increasing.

when the prey population is near the average po pu lation and is increasing.
T he two left-most diagram s show the effect of changing the pr edator br eeding
t ime from the standard valu e, sb = 8, to sb = 4 (diagram a) and sb = 12
(diagram c). The two righ t-most diagr am s show the effect of changing the
predator starvat ion time from the standard value , 88 = 4, to 88 = 2 (diagram
b) and 88 = 8 (diagram d) . It is apparent from these diagrams that the pr ey
clust ers tend t o be larger when t he br eeding time of the pr edators is large
compared to the starvat ion t ime. Becau se t he population densit ies of pr ey are

, large in such cases (e.g., Figur es 4b and 4c) a grid wit h N = 200 may not be
\sufficiently large to avoid finite-size effects. Most of the detailed analyses of

the predator and prey populations and of the prey clusters are presented for
siniulations on a grid wit h N = 300 which has been found to be adequate ly
large.
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Paramet ers Pf r , Ao o' 0:

fb = 4 N = 50 0.372 0.058 7.6 2.32 1.32
sb = 8 N = 100 0.366 0.059 7.4 2.33 1.31
ss = 4 N = 200 0.359 0.059 7.3 2.34 1.31

N = 300 0.361 0.059 7.3 2.34 1.29
N = 400 0.360 0.059 7.3 2.34 1.31

N = 300 fb = 2 0.354 0.083 5.2 2.26 1.31
sb = 8 fb = 4 0.361 0.059 7.3 2.34 1.29
ss = 4 fb = 6 0.362 0.047 9.2 2.38 1.28

fb = 8 0.359 0.039 11.0 2.39 1.29
N= 300 sb = 4 0.243 0.063 6.7 2.39 1.43
fb = 4 sb = 6 0.314 0.061 7.0 2.38 1.29
ss = 4 sb = 8 0.361 0.059 7.3 2.34 1.29

sb = 10 0.387 0.059 7.5 2.30 1.31
sb = 12 0.406 0.058 7.5 2.26 1.33
sb = 14 0.422 0.058 7.6 2.23 1.37
sb = 16 0.433 0.058 7.6 2.20 1.39

N= 300 ss = 2 0.502 0.057 8.1 2.17 1.31
fb = 4 ss = 4 0.361 0.059 7.3 2.34 1.29
sb = 8 ss = 6 0.270 0.061 6.7 2.42 1.30

ss = 8 0.204 0.063 6.7 2.43 1.37
N = 300 fb = 20 0.224 0.023 30.0 2.56 1.35
sb = 40 ss = 20

Table 1: Average prey and pred ator population densities, the half-life
Ao of old prey (20 ::; A ::; 100), and prey cluster scaling exponents
0:' and a for small (1 ::; s ::; 20) and large (100 ::; s ::; 500) clusters ,
respectively. The linear grid size is N and the parameters fb , sb,
and ss are defined in the text . The average pop ulation densities and
expone nts are calculat ed from simulations for times between 1000 and
10000 in each case. The result s given in the table are quoted to the
accuracy of th e associated errors.

Tab le 1 summarizes most of t he resu lt s to be presented in t he following
sections by listi ng values of the relevant quantitat ive features of t he model run
un der different paramet ers . The table list s values of Pf and Ps , the average
prey and pred ator populations; Ao, a measure of the life expectancy of pr ey
within large clusters; and 0:' and 0: , which measure the scaling behavior of
clusters of prey at small and large cluster sizes. Each of these quantit ies will
be described in det ai l in the following section s and an interpretation of the
result s will be given .

3.1 Population analysis

If the ini t ial population densities of the predators and pr ey are sufficient ly
large, t he populations of bo th sp ecies rapidly set t le into oscillations with
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Figure 5: a) The prey populat ion density from th e initial random state
at time t = a to t = 5000 for a simulat ion with the standard parameter
set on a grid with N = 300. b) A close-up of the prey and predator
population densities shown between times t = 4500 and 5000. Th e
predator population lags the prey populat ion. Superposed on the slow
variations of the predator populat ion cycle are fast variations which
are related to the breeding time sb = 8 of the predators.

approximately constant period but wit h varying amp lit ude . Figur e Sa shows
the prey populat ion from the init ial random state to t = 5000 in a simulation
with the standard parameter set on a grid wit h N = 300; over this t ime
the population oscillates more than 70 times. A closer examinat ion of the
pr ey populat ion between t = 4500 and t = 5000 in F igur e 5b shows that
the oscillati ons are regular though the amplit ude may vary by as much as
twenty percent of the average po pulation , even afte r long times . The predator
populat ion , which is comp ar ed with the pr ey po pulation in the lower diagram ,
has the same period as t he prey population but lags in phase. Superp osed
on the predat or populati on cycle is a fast variation , the pe riod of which is
a mult iple of the pr edator breeding rate, sb = 4. T he fast varia t ion occurs
because predators near a large cluster are unlikely to starve and these tend
to have a single ancestor in common so that they breed at approximate ly the
same t ime. The amplit ude of the fast variat ion is large for small values of (J in
equation (2) and for (J < 0.1 sympathetic fast variat ions are also observed in
the pr ey populat ion. For (J = 0.5, which we use for the simulations examined
in det ail here, the amplitude of the fast var iations superpose d on the prey
populati on cycle is negligibly small .
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Studies have been carried out about the depend ence of the average preda­
tor and prey population on the par ameters jb, sb, ss, and on th e linear syste m
size N. The populations of both species have been averaged over times be­
tween t = 1000 and t = 10000 for simulat ions with the standa rd parameters
set on grids with N = 50, 100, 200, 300, and 400. The average population
densit ies of the prey Pf and predators P, ar e listed in Table 1. For N > 100,
t he average population of both pr edator and prey varies app roxima tely as the
area of th e domain. That is, th e average popu lat ion density is independ ent
of N for sufficient ly large domains. For grids smaller than N = 50, boundary
effects become significant as the natural cut-off cluster size is comparable to
the dom ain size. For a variety of fixed par ameter sets , we have performed
10 independ ent simulat ions on a grid with N = 300. The initial popu lation
densities of each species in the simulat ions are t he same in each of t he 10
cases, though the random init ial placements of both species vary from case
to case . The averages of P f and Ps over th e 10 cases are given in Tab le 1.
For a wide rang e of parameters, the average populat ion densities calculated
in simulat ions on a smaller grid with N = 100 have been found to corre­
spond within two percent of the average popul ation densities calculated for
the simulations with N = 300.

From Table 1 it is apparent that the average prey population density Pf
increases as a function of decreasing predator starvat ion time ss and increas­
ing pr edator br eedin g time sb. Pf is relatively insensitive to the breeding
time fbof th e prey. The average predato r population density Ps incre ases
with decreasing prey breeding time and is relat ively insensitive to the preda­
tor breeding and st arvation t imes. These tr end s agree, at least qualit atively,
with tho se of the equilibrium populations predicted by the Lotka-Volterra
equat ions (1) : (Pf , Ps ) = (as!132, a f /131)' Here the death rat e of predators
in th e absence of prey as is related t o the inverse of the predator starva­
tion time ss and the bir th rate of prey a f is relat ed to t he inverse of the
prey breeding time fb. A more quantitative connect ion between the model
results and th e Lotka-Volterr a equations (1) does not appear possible both
because the depend ence of t he prey populat ion on the preda tor bir th rat e
does not appear explicitly in the equat ions and because the coefficients 131
and 132 , which par ametr ize the effect of interact ions between homog eneously
mixed populations , may be not be defined explicit ly in terms of the model
paramet ers. Fur thermore, unlike t he Lotka-Volterr a mod el, pr ey births occur
only on t he perimeter of clusters in our model, and so the growth rate is not
proportional to the popu lation in the absence of predators.

3.2 Age distribution of prey

Prey in the int erior of clust ers cannot breed and may therefore be much
older than the breedin g t ime fb . The distribution DN(A) of prey of age A is
exponent ial for large A so that DN(A) ex 2- A / A o . Such a distribution is ant ic­
ipat ed since the pro bability for prey either to be eaten or to give birt h after
they have been within a cluster for some ti me should not be a function of the
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Prey Age Dislribulion: fb=4, sb=8, ss=4
9000p----~-----r----~---,

200

Figure 6: The prey age distribution calculated for times between t =
1000 and 10000 for a simulation with the standard parameter set
on a grid with N = 300. For old prey, the distr ibution is close to
exponential. The solid line represents the least-squares fit line to a
log-plot of the distribution for ages between 20 and 100; the line is
shifted above th e distribution curve for clarity. Note th at younger
prey have a moderat ely smaller half-life than older prey.

age of the prey. Figure 6 shows the age distribution of pr ey calculate d from a
simulat ion over t imes between t = 1000 and 10000 for the standard parameter
set on a grid with N = 300. The least-squares fit line to In[DN(A) ] is calcu­
lated for 20 :S A :S 100 and is shown in the figure shifte d ver tically above the
dist ribution curve . Though there is some deviation from st raight -line behav­
ior for small A, t he diagram shows that the age dist ribution of the older pr ey
is approximately exponent ial and that this behavior persists for A > 100.
The half-life of the older pr ey, which is det ermined from t he slope of the
least -squares fit line, is Ao ~ 7.3. T he half-life of younger pr ey is marginally
smaller (between 5 and 7) because br eedin g cannot t ake place wit hin clust ers
and new-born prey are therefore more prone to be eate n or to give bir th .

The half-life Ao has been calculate d for var ious par amet er set s. These
values, which are listed in Tabl e 1, depend st rongly on the pr ey br eeding
t ime but weakly on the pr edator breeding and starva tion times. In ot her
words, the pr ey half-life is a strong function of the par ameter det ermining
the prey source rate but is a weak fun cti on of the par am eters dete rmining the
pr ey sink rat e. Such behavior is readily understo od becau se the dynamics
governing the ext ract ion of pr ey by pr edators do not depend on the age of
prey that are long-lived and becau se the dynamics det ermining the source of
prey explicit ly requires new-born prey to have age zero .
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(3)

3.3 Cluster distribution analysis

The prey positions at long times (e.g., Figures 2, 3, and 4) reveal that the
prey organize int o clust ers of varying sizes and tha t there exists a natural
cut-off size which is not due to the dom ain size. In this section we quantify
these ideas.

A prey cluster is defined recursively as follows. A prey h is said to
belong to the same cluster as a prey 11 either if h is adjacent to il (i.e.,
h is sit uated at one of the four nearest neighbo r positions of il) or if h
is adjace nt to anot her prey 13 which is also in the same cluster as fl' The
clust er size s is defined to be the number of prey in the clust er.

The clust er distribution function D( s; t) is the number of clusters that
have size s at time t . Analysis of the distribution function requires the calcu­
lation of the average D (s) = (1/ n) 'L'{:;T, D(s;t) for large n (to improve the
stat ist ics) and sufficient ly lar ge T1 (to remove th e effect of the start ing con­
ditions) . Small clust ers are common, large clust ers rare , and D( s) decreases
with s. Because very large clust ers (i.e. , s > 500) occur with ext remely
low frequency, the distribution D(s) is noisy unless n is unreasonably large
(i.e., n > 106 ) , making analysis difficult. We have therefore used a binning
pro cedure in which the binned distribution of the number of clusters of size
s is the weight ed average of the number of clust ers with sizes in the neigh­
borh ood of s. We employ a f -distribut ion as a weighting factor since it is
asymmetric about it s mean and, for fixed a and b, I'( s;a,b) has a long tail
for large s , thus giving more weight to sizes moderately smaller than s. The
binned distribution function Dr(s) is defined by

1
S +1/ 2 00_

Dr(s ) = s-1/2 dss~ D(s')f(s;a(s') ,b(s'))

in which a and b are set so that the mean and standa rd deviation of the I'
function are ab = s' and b..ja = v(s' ), respectively. The st andard deviat ion
v(s) is generally set to increase with larger s so that averages ar e taken over
a wider range where dat a are sparse. Specifically, we set

v(s) = vs(s - 1) + Va (4)

in which V s = 0.2 and Va = 0.1. The results of the binning pro cedure are
relatively insensitive to the values of V s and Va.

Figur e 7 shows log-log plots of the unbinned and binned cluster distri­
bution functions obtained using the standard parameter set on a grid with
N = 300. The data are averaged over times between t = 1000 and 10000.
The cluster distribution functions exhibit scaling behavior D(s ) ex: s-a over
two ranges of cluster sizes, 1 < s < 20 and 100 < s < 500. Also shown on both
diagrams are the least-squares fit lines to log-log plots of the data , calculated
and plotted over the two rang es, shifted vertically above the dat a . The scal­
ing exponents a' and a for small and large clusters are the slopes of the lines
calculated for 1 < s < 20 and 100 < s < 500, respectively. For the unbinned
distribution function shown in Figure 7a , a' = 2.35±0.07 and a = 1.28±0.03.
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Figure 7: a) A log-log plot of the cluster distribution 15(s) for the
standard parameter set calculated on a grid with N = 300 for times
between t = 1000 and 10000. The least-squares fit line with slope
o' is found spanning the range 1 ~ s ~ 20 and the least-squares fit
line with slope (X is found spanning the range 100 ~ s ~ 500. Both
lines are shifted above the dist ribut ion curve for clari ty. b) The data
in a) are binned to generate DrCs) shown in the bot tom diagram .
The least-squares fit lines calculated for this curve over the same two
ranges have slope comparable to the corresponding lines for the raw
dat a. Th e inset demonstr ates the exponential behavior of the binned
data for large s.

For comparison, the corr esponding exponents calcula ted for the binned dat a
shown in Figure 7b are c/ = 2.34 ± 0.07 and a = 1.290 ± 0.003. The ex­
ponents calculate d for t he binned data are wit hin the err ors allowed by the
least- squares fit to the unbinned data . The advantage of binning the data
is clearly to reduce the magnitude of the err or of the large-cluster exponent
a by an order of magnitude and therefore enables better evaluation of the
dependence of a on the par ameters.

The least -squares fit lines to the binned data also pr ovide a consiste nt
definition of the cut-off scale S e ' For S > S e , t he number of clusters of
size S decreases approximately exponent ially as demonst rated by the inset to
Figure 7b . We define s, as the largest value of S for which t he binned data lie
wit hin the err or to lerances of the leas t-squar es fit line to the unbinned data .
That is, the cut-off size is set so that for S > S e , In[Dr (s)] < (-a - fa) In (s)+



400 B. R. Sutherland and A . E. Jacobs

a) fb=4, sb=4, ss=4

s,=1263

b) fb=4, sb=8, ss=2

s,=687

90

9 90 900 9000

c) fb=4, sb=12, ss=4

s,=1076

F igur e 8: Log-log plots of the binned cluster distributi on fun ctions
calculated for simulations on a grid wit h N = 300 for t imes between
t = 1000 and 10000 with paramete rs a) fb = 4, sb = 4, ss = 4,
b) fb = 4, sb = 8, ss = 2, c) fb = 4, sb = 12, ss = 4, and d) fb = 4,
sb = 8, ss = 8. Leas t-squares fit lines calc ulated over ranges 1 ::; s ::;
20 and 100 ::; s ::; 500 in each diagram are shown shifte d above the
distribut ion functi on for clarity.

(bH - EbH ) ' in which -a and bn are th e slope and intercept , respect ively, of
the least- squares fit line to the unbinned data with Ea and EbH being th e
errors associated with the slope and int ercept of this line. The cut -off size so
calculated is shown in Figure 7b in which s, = 970.

It is remarkable that t he form of t he cluster distribut ion function is rela­
t ively insensit ive to the values of the breedin g and starvat ion para meters . In
Figur e 8 the binned cluster distributi on function is shown for th e four para m­
eter sets used to generate the clusters shown in Figur e 4, but for simulatio ns
on grids with N = 300. The dat a are calculated for times between 1000 and
10000. T he least-squares fit lines are shown over t he ranges 1 ::::; S ::::; 20 and
100 ::::; S ::::; 500 and t he cut -off size s; is displayed in the upper right-hand
corner of each diagram. All four cases shown are characterized by a stee p
scaling regime for small clusters and a regime with smaller scaling exponent
for large clusters. The slopes calculated for the least-squares fit lines in bot h
regimes vary lit tle with the different parameter sets . In Table 1, the scaling
exponents over both regimes are calculated by findin g t he mean of t he ex­
pone nts determine d from 10 simula t ions with different init ial condit ions. In
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all four cases, the small-clust er scaling expo nent is approximately a.' ~ 2.3
(±0.1), alt hough there is some tendency for t his value to decrease with in­

, creas ing predator breeding rate. Similarly, the large-cluster scaling exponent
is 0'. ~ 1.35 (±0.10).

The different exponent s for small and large clusters are believed to reflect
the different predator-prey dynamics that occur when the prey form clusters
large enough to have an interior . Large clusters are imp ervious to immediate
attack and their growth is inh ibited only when enough predators accumulate
on t he perimeter. Therefore larger clusters are longer lived . The small-cluster
scaling breaks down for s > 20, which is of the correct size for a compact clus­
ter with prey located ent irely on the perimeter . Evidence for this assertion is
provided by an analysis of simulat ions performed on three-dimensional grids;
in such cases, log-log plots of the clust er distribution function (not shown
here) exhibit a trans it ional range between small- and large-cluster scaling for
50 < S < 200.

The cut-off cluste r size Se is determined by the time required for predators
to find the prey and to multiply sufficient ly to limit the expa nsion of large
clust ers. For a sufficient ly large domain , the cut -off is not constrained by
the domain size. The cut -off tends to be larger when the predator breeding
time is significant ly larger than both the prey breeding time an d the predator
starvat ion t ime . In t his case the prey clusters accumulate to large sizes be­
fore the predators breed sufficient ly to arrest their growth. The existence of
th e cut-off Se means t hat the prey distribution function is sub crit ical. Wi th
increasing sb and decreasing ss, t he cut-o ff increases so th at the distribu­
tion becomes more crit ical and it appears that crit icality can be appro ached
arbitrarily closely in sufficient ly lar ge domains.

3 .4 R adius of gyrat ion of prey clu st er s

The distribution D(s) gives no information concern ing the cluster geometry
or, more specifically, it does not demonst rate how the linear extent of the
prey clusters varies with size s . Therefore, we have examined the radius of
gyra t ion that for a particular cluster Ci is defined by

R(Ci ) =
1 s ;

- .Eh I2
s ; j =i

(5)

in which s, is t he size of c; and "i is the distance between the j th element of c,
and the cente r of mass of the clust er. The radius dist ribut ion function R(s; t)
is th en defined to be the average radius of gyration of all clusters of size S

at a t ime t. As with the definition of D(s), the mean radius distribu tion is
- T,

defined by R (s) = (l In ) L t';:T
1

R (s;t ) for large n and sufficiently large Ti ·

The sparsi ty of data for large cluster sizes results in var iations of R(s )
which are too noisy for analysis. To smooth these dat a a harmonic mean
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a) Unbinned Radius Distribution: fb=4, sb=8, ss=4

90 900 9000

b) Binned Radius Distribution: fb=4 , sb=8, ss=4
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Figure 9: a) Log-log plot of the radius distribution R(s) ca lculate d for
a simulation wit h the standard par amet er set on a grid with N = 300
for times between t = 1000 and 10000 . T he leas t- squares fit line with
slope (3 is found sp anning the ran ge 100 ::; s ::; 500. The line is shown
shifted above the distribution for clarity . b ) A harmonic mean binning
pr ocedure is applied to the data in a) to generate Rb(S). Shifted above
t his cur ve is the correspo nding least- squ ar es fit line calculated over the
same ran ge as in a) .

binning procedure is applied so that the binned radius distribution is

(6)

in which Sn = max(O, lO.01(s - 20)J) det ermines the bin size as an increasing
funct ion of s . (The not ation lxJ denotes the largest integer not exceeding
x.) Note t hat if t his procedure is applied to a set of point s sampled from
a power-law distribut ion t hen t he dist ribut ion is exactly recovered . If R(s),
and hence Rb(s), exhibits power-law behavior for large s so th at R ex: s(3 , then
the geometry of the clusters is characte rized by the dimension 1/ {3 which, if
less than 2, is the fractal dimension [14].

Figur e 9a shows th e unbinned radius distribut ion calculated for t imes
between t = 1000 and 10000 from a simulat ion with the standard parameter
set on a grid with N = 300. The least-squar es fit line to the data on a
log-log plot is calculated for 100 :::; s :::; 500 and provides a good fit over
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this range with exponent (3 = 0.505 ± 0.006. The exponent determined by
a least- squ ares fit line t o a log-log plot over the ran ge 100 ~ S ~ 500 of
the binned dat a shown in Figure 9b is (3 = 0.505 ± 0.003. In both cases
the exponent is close to 0.5 as expe cted for a compac t dist ribu tio n (e.g., the
size of the clust er varies as the square of the radius and so the clust ers are
obj ects of dim ension 2). Indeed , for all t he parameter sets we have examined
on sufficient ly large domains , the binned ra dius dist ribution function fits well
to a 0.5 exponent for 100 ~ S ~ 500. P rey clust ers therefore exhibit weak, if
any, fract al st ructure. We do note, however, that there appears to be some
tendency toward lower dimensional scaling for large cluste rs (s > 500). T his
may be att ributed to noise due to sparse data , or it may be that some lower
dim ensional st ructures develop when predat ors encompass a prey cluster wit h
size S > Se '

4. Conclusion

We have shown t hat Wa-Tor successfully simulates some basic features of
predator-prey systems: the predat or and prey populat ions vary quas i-period­
ically about resp ective average values and the predator popu lation lags that
of the prey; the average populations and the period of the oscillations are
insensitive to the initial state; and the model is robust , in the sense that the
system evolves nont rivially for a large ran ge of parameters. In agreement
with the predictio ns of t he Lotka-Volt erra equations , the average prey pop­
ulati on density depends only on the breeding t ime and starvat ion times of
predators, increasing with the former and decreasing wit h the lat ter. The
average predat or population density increases with increasing prey breeding
time.

The prey naturally form clusters wit h a size dist ribut ion D (s) that varies
as a power law over two ran ges of s . For small clust ers, the scaling expo nent
is 0/ = 2.3 ± 0.1 for a wide ran ge of breedin g and starvat ion par ameters.
The exponent tends t o be smaller if the predator breeding t ime is large
compared with either the st arvat ion time or the prey breeding t ime. For
large clust ers 100 ~ s ~ 500 the clust er distribution scales with a smaller
exponent a = 1.35 ± 0.10. T he exponent a tend s to increase wit h increasing
predator breedin g time and decreasing prey breedin g time, it is also large
when the breeding t ime of predators and prey equal the starvat ion time of
the predators. The scaling is appropriate for clust ers of size smaller t ha n a
cut-off size s; '::' 1000.

We note t ha t the model lies close t o the edge of chaos, a state which
Kauffman [12] has prop osed may be opt imal for adaptation . In the context
of t his model, the edge of chaos corres ponds to power-law behavior (without
a cut-off) , the ordered state to a spanning clust er , and the chaotic state to
small clust ers only. Both t he ordered and the chaotic states have limi ted bio­
logical viability. In the first, t he population is in too st rong contact ; diversity
and ultimately spec iat ion are inhibited , and the species is too sensitive to
disease. In the second, t he population is too scatte red to retain identi ty. It
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is int riguing t hat a mod el with such simple rules has the desirab le biological
feature of lying close to the edge of chaos. The existe nce of a cut-off me ans
that the sys te m is subcrit ical; that is , it lies tow ard the chaos side of t he edge
of chaos, whereas Kauffman makes the hypothesis "Living syste ms exist in
the solid regime near the edge of chaos ...," (solid here meaning ordered).
Subcrit icality seems a desir ab le feature, since true power- law behavior wou ld
imply strong prey contact , inhibiting speciat ion .
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