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Abstract. We propose that self-organization may provide a mech-
anism by which power-law cluster distributions of mobile prey (i.e.,
fish, phytoplankton) may develop; in contrast, such distributions have
often been attributed to scaling of the background environment. Evi-
dence supporting our proposal is provided by examining the dynamics
of a cellular automaton-like model of a predator-prey system. The
model, which is discrete in space and time, is robust and evolves to
a state with oscillatory, phase-shifted populations for a large range of
parameter values, namely the predator and prey breeding times and
the predator starvation time. The distribution function D(s) of the
prey cluster sizes s has roughly power-law form, D(s) o< s™%, over a
range of moderately large sizes but is cut off at large s. The exponent
o =~ 1.35 4 0.10 depends only weakly on the parameters of the model.

1. Introduction

The study of predator-prey interactions includes a diverse class of systems
in which, for example, fish eat plankton, wolves attack deer, or a fire engulfs
a forest. In such systems the average number of predators and prey have
been observed to oscillate about some average “population” although the
amplitude and period of the oscillations may vary greatly in time. Typically,
because the number of predators tends to increase when there is an abun-
dance of prey and the number tends to decrease when prey are scarce, the
predator population cycle lags that of the prey.

Mathematical models of these interactions inherently involve nonlinear
dynamics. For example, the classical description of a predator-prey system
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is given by the Lotka-Volterra equations (e.g., Hedrick [8]) which constitute
a coupled, nonlinear set of differential equations

&P = oP(1-2P),

s (1)
4P, —a,P,(1 — 2Pp),

Il

in which the prey and predator populations are Py and P;, respectively, oy is
the prey breeding rate in the absence of predators, a; is the predator death
rate in the absence of prey, and [5; and (3, are interaction coefficients. If the
prey and predator populations are assumed to be homogeneously distributed,
then f; represents the probability per unit time that a predator encounters
and eats a prey and (3, represents the probability that a predator encounters
and devours enough prey per unit time to ensure its survival. With empir-
ically determined parameters, equation (1) adequately reproduces the basic
dynamics of a predator-prey system in that both populations oscillate about
mean values and the predator population lags that of the prey. In reality,
however, the prey and predator populations are inhomogeneously distributed
since, as is well known, prey often gather in clusters (schools, herds, gaggles,
etc.), which provide some protection from predation. Attempts have been
made to extend the Lotka-Volterra equations to include the effects of spa-
tial and temporal variations of an ecological system (e.g., by incorporating
diffusive effects [13]). However, these models do not describe the process of
clustering, nor do such techniques seem capable of predicting the distribu-
tion of cluster sizes in an ecosystem. Indeed, Hastings [6] has pointed out
that two of the most frequently employed models, diffusion-based models and
patch models, appear to be applicable over only a limited range of spatial
and temporal scales. It now appears that an understanding of the detailed
spatial distributions for both species is necessary in order to describe ap-
propriately the dynamics of such systems. For example, in their study of
predation of Atlantic cod upon capelin in the Western Atlantic Ocean, Rose
and Leggett [16] showed that the spatial correlation between the densities of
the predators and prey was dependent on cluster size as well as environmental
factors. Power-law spatial distributions of species have been demonstrated
to appear in observations of plankton communities by Haury et al. [7] and in
Holling’s survey of a wide range of ecosystems, including birds and mammals
in the boreal forest and boreal prairie [9]. To explain these structures, en-
vironmental factors such as the fractal distribution of energy resources and
landscapes have often been called upon, but we show here that an alterna-
tive mechanism, that of self-organization, may also give rise to a power-law
distribution of clusters.

The capacity for systems with intrinsic nonlinear feedback mechanisms to
evolve to an organized state characterized by a nonscale selective geometry
has been noted for many diverse natural phenomena (e.g., Mandelbrot [14]).
In particular, Kauffman [12] has noted that self-organization is inherent to
many biological and ecological systems. Significant progress has been made
recently toward understanding the essential dynamics that determine the
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power-law scaling behavior of self-organizing systems through the develop-
ment and analysis of cellular automata (CA) and automaton-like models
such as the one that we employ here. CA have proven to be particularly
useful for the study of self-organizing systems because with only a limited
set of basic instructions they are capable of producing patterns similar to
many of the complex spatial structures and temporal behaviors that are ob-
served in nature. For example, CA have been developed to study the size
and frequency distribution of avalanches and earthquakes [2, 10, 11], the spa-
tial development of a reactive chemical system [4], and the structure of an
Ising spin system [15]. Although such models are often too crude to simulate
accurately the dynamics of the real driven-dissipative system, they provide
an appealing description for self-organization unattainable through standard
algebraic techniques.

A variety of CA and CA-like models have been adapted to simulate var-
ious processes in ecological systems. Some, such as the so-called “Game of
Life” [1], which models the interactions of a single species in competition
with itself, lack robustness and randomness (after the setting of initial con-
ditions) and so have questionable applicability to real ecological systems.
The “Forest-Fire Model” [3] may be interpreted as a predator-prey model
in which the prey (“trees”) are attacked by a predator (“fire”). Computer
simulations with many adjustable parameters have also been developed to
simulate the dynamics of more complex ecosystems. But these assume the
existence of spatial scaling of resources in the environment that influence
the development of spatial scaling among elements of the ecosystem a priori.
Conversely, we study a modified version of the CA-like model “Wa-Tor” due
to Dewdney [5] that includes only those dynamics which are necessary for
realistic evolution of a predator-prey system. We show that the simulations
are robust in the sense that for a wide range of parameters they evolve in
a continuous state of change but that they nonetheless exhibit scaling be-
havior. That is, the scaling behavior arises naturally in the model without
ad hoc assumptions. Nonetheless, the long time behavior is, on average,
in accordance qualitatively with the predictions of the Lotka-Volterra equa-
tions.

In our model, predators and prey (labeled “sharks” and “fish,” respec-
tively, by Dewdney) move on a square doubly periodic grid of linear size N
such that each grid point is occupied by at most one individual. The model is
similar to CA in the sense that prey and predators move, if possible, to one of
the four neighboring sites and so predator-prey interactions are determined
by local rules. The model is not deterministic, however, since the direction
of motion is randomly selected. Furthermore, breeding and starvation, which
occur for prey and predators at preset times according to the model parame-
ters, are determined not by the instantaneous state of the system but rather
by the values of internal clocks carried by each individual. The nonlocal
temporal rules of the model are a departure from the usual class of CA but
these are necessary to capture the dynamics of a predator-prey system. The
rules of the model are discussed in detail in section 2.
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In section 3 it is shown that, for a broad range of parameters, simulations
of Wa-Tor evolve in a nontrivial manner for long times and exhibit the basic
properties of predator-prey systems. We show also that the distribution D(s)
of prey cluster sizes s has power-law behavior at small sizes (1 < s < 20), and
more importantly, also at large sizes (100 < s < 500). Both exponents (o
for small s and « for large s) depend only weakly on the model parameters.
For very large clusters (s > s.), the distribution of cluster sizes decreuses
approximately exponentially and so the distribution function is subcritical.
The value s, is implicitly determined by the dynamics of the interacting
species; provided that the domain size is sufficiently large, finite-size effects
are negligible. The relatively large value of s, (typically s. is of the order
1000 for simulations performed with the model parameters discussed herein)
suggests that the model is near the edge of chaos [12]. Finally, we show that
large prey clusters are compact for a wide range of parameters.

2. Description of the model

Our model applies only the most basic rules of an ecological system: both
species move, both reproduce with a time lag, prey are devoured by nearby
predators, and a predator dies when it has not eaten for a sufficiently long
time. Each individual carries an internal clock specifying its age A defined
to be the number of time steps elapsed since the individual was born. Each
predator also carries a second clock (the “hunger time”) that specifies the
number of time steps elapsed since the predator last ate a prey (or since it
was born). Both species breed by parthenogenesis with probability

P(A;h) =2 {1 S (AT_E)] 2

provided that the parent can move to at least one of its four nearest-neighbor
(NN) sites. In equation (2), the parameter b is fb for prey and sb for preda-
tors. Here erf(z) is the error function defined by erf(z) = 2//7 [y exp(—t?)dt,
a function that increases smoothly from —1 to 1 over an interval of length
~ 1. In Dewdney’s original model [5], o = 07 so that breeding occurs at pre-
cisely the time when A = b. In this case, however, the predator ages tend to
synchronize into cycles of period sb since there is no inherent process in the
rules of Wa-Tor to randomize the age of a single parent. We use ¢ = 0.5 in
order to prevent this unphysical synchronization while maintaining a quasi-
regular breeding cycle. During each birth event, the offspring are placed at
the original site and at one of the NN sites. The ages for the offspring of
predators and prey and the hunger clocks for the offspring of predators are
set to zero.

The simulation is initialized at time ¢ = 0 by randomly distributing nf
prey and ns predators on an N by N square grid. For nontrivial final states,
the initial predator and prey numbers must be sufficiently large; typically,
nf and ns are set so that the initial densities of prey and predators are 0.20
and 0.05, respectively (i.e., nf = 0.2N? and ns = 0.05N?). Each time step
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Figure 1: Example of Wa-Tor rules for a simulation with parameters
fb =2, sb =8, and ss = 4. A position on the grid can be occupied
either by a predator or a prey (designated by S or F, respectively). The
superscripts to each species type indicates the age and the subscript
to S indicates the time since the predator last ate a prey. When prey
or predators breed, they do so by parthenogenesis and the age of both
offspring is zero.

begins with a sweep over the prey. Each prey either gives birth in the manner
described above or does not give birth; in the latter case it randomly moves
to an NN site, provided that the site is vacant. The time step is completed
by a sweep over the predators. Those that have not eaten after ss time steps
(the starvation time) are removed from the grid. Then, if permissible, births
occur. Finally, predators that do not give birth move to any NN site occupied
by a prey (and devour it); otherwise they move to any NN site not occupied
by a predator. After both species have moved, one time step is said to have
elapsed. An example of the motion of predators and prey in one time step is
shown in Figure 1.

In our implementation of the rules, the data relevant to each prey and
predator are stored in a linked list. This approach, unlike sequential scanning,
ensures that there is no inherent directional bias to the motion. For both
species, each element of the list contains the individual’s position on the grid
and its age. For predators, the list also contains the hunger time.

The rules of Wa-Tor can be extended in many ways, including the fol-
lowing modifications which we have examined.

1. Competition among prey is included, whereby prey are said to starve if
they remain within a large cluster for a certain number fs time steps.
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2. Simulations have been performed so that when individuals give birth
the age of only one offspring is set to zero.

3. The sensitivity of the dynamics to the restrictions of the underlying
grid have been examined by performing simulations in which the prey
and predators may move to one of eight nearest neighbors (motion on
the so-called “Moore” grid) and also by allowing both species to move
on a grid in three spatial dimensions.

Simulations performed with these modified rules demonstrate qualitatively
similar results: the simulations are robust, the predator and prey popula-
tions oscillate with a phase lag, and the prey cluster size distribution obeys
a power law over a large range of cluster sizes. However, since the appeal of
the model lies largely in the simplicity of its rules, which are nonetheless ca-
pable of reproducing the fundamental and yet complex dynamics of observed
predator-prey systems, a detailed analysis has been performed only for the
original rules described above.

3. Results and analysis

Simulations have been performed for a large range of parameters fb, sb, and
sson an N by N square grid. The model is robust: for many values of
fb,sb,ss, and NV, and for a wide range of initial conditions, the system evolves
nontrivially for long times. To demonstrate this detailed tests for robustness
have been made for simulations on a grid with N = 50 and initial prey and
predator population densities of 0.20 and 0.05, respectively. Trivial states
are reached when one or both species become extinct but, for many sets of
parameters fb, sb, and ss, nontrivial final states have been observed after 5000
time steps. In these tests, the prey and predator populations typically exhibit
oscillations with a period of about 50 time steps and nontrivial simulations
evolve through approximately 100 periods with no apparent indication that
either species may eventually become extinct. In particular, nontrivial final
states have been observed for fb = 1, sb = 10, with ss ranging from 1 to 8,
for fb =1, ss = 1, with sb ranging from 1 to at least 16, and for sb = 10,
ss = 5, with foranging from 1 to 13. A trivial final state is reached if the
predator starvation time ssexceeds the predator breeding time since, in this
case, there is no factor limiting the growth of the predator population save
the domain size. A trivial final state is also reached if the breeding time of
the prey is moderately larger than that of the predators. For parameters near
values for which a trivial state is reached, the final state of the simulation is
sensitive to the initial population densities, positions, and ages of prey and
predators. For intermediate parameter values, the simulation is sensitive
to the initial state for domain sizes with N < 40. Otherwise, the same
quantitative observations are made for different random initial positions and
population densities.

For most of the investigations that follow a detailed analysis has been
performed for the parameter set fb = 4, sb = 8, and ss = 4. This choice
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d) Predators at t=1066

Figure 2: Predator and prey positions at times ¢t = 1035, and ¢ = 1066
for a simulation with the standard parameter set (fb = 4, sb = 8, and
ss = 4) on a grid with N = 200. At time ¢ = 1035 the prey population
is at a local minimum and at ¢ = 1066 the population is at a local
maximum.

of parameters is referred to hereafter, though somewhat arbitrarily, as the
“standard” set. Simulations run with these parameters and with other pa-
rameter sets consisting of values close to them are relatively insensitive to
the initial conditions on grids with N > 50, and hence useful comparisons
can be made of the average populations and scaling exponents for a range of
parameters around the standard set. Furthermore, the time scales implicitly
determined by the standard set are small so that the data may be collected
for many population cycles in a small number of time steps. The time scale is
large enough, however, that both the predators and prey usually move more
than one site from their birth place before breeding.

In Figure 2 the positions of predators and prey are shown for simulations
run with the standard parameter set on a grid with N = 200 at times ¢t = 1035
and 1066 for which the prey population cycle is at a local minimum and a
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Figure 3: Prey positions on a grid with N = 500 at time ¢ = 10000.
The simulation is performed with the standard parameter set. The
diagram demonstrates that the size of the largest clusters is not limited
by the domain size.

local maximum, respectively. The self-organization of prey into clusters is
evident from these diagrams. The clustering occurs due to both the birth
rules and the merging of smaller clusters. The predators are most densely
located near the perimeters of the larger clusters. As shown below, the
distribution of the prey cluster size has scaling behavior over two ranges.
The scaling behavior of large clusters is limited, however, by a self-induced
cut-off size s, which is not due to the finite domain size. Qualitatively, this
is evident in Figure 3 which shows the prey distribution on a large grid with
N = 500 for a simulation run with the standard parameter set. The figure,
which is taken from the simulation at time ¢ = 10000, clearly demonstrates
the complex and dynamic arrangement of the prey.

The prey organize into clusters with similar scaling behavior for other
parameters as demonstrated quantitatively in Figure 4 which shows the prey
positions for simulations on a grid with N = 200 at times after ¢ = 1000
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8 =4, di=t, sl b) tb=4, sb=B, ss=2

Figure 4: Prey positions on a grid with N = 200 for simulations with
parameters a) fb =4, sb =4, ss =4, b) fb =4, sb =8, 55 = 2,
c) fo =4, sb =12, ss =4, and d) fb = 4, sb = 8, ss = 8. The
times for each diagram shown are chosen to be the shortest time after
t = 1000 for which the prey population is approximately equal to the
population average and is increasing.

when the prey population is near the average population and is increasing.
The two left-most diagrams show the effect of changing the predator breeding
time from the standard value, sb = 8, to sb = 4 (diagram a) and sb = 12
(diagram c). The two right-most diagrams show the effect of changing the
predator starvation time from the standard value, ss = 4, to ss = 2 (diagram
b) and ss = 8 (diagram d). It is apparent from these diagrams that the prey
clusters tend to be larger when the breeding time of the predators is large
compared to the starvation time. Because the population densities of prey are
large in such cases (e.g., Figures 4b and 4c) a grid with N = 200 may not be

\ sufficiently large to avoid finite-size effects. Most of the detailed analyses of
the predator and prey populations and of the prey clusters are presented for
simulations on a grid with N = 300 which has been found to be adequately
large.
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Parameters P 3 Ay « «@
fo=4 | N=50 |0.372]0.058| 7.6|232]|1.32
sb =8 | N=100| 0.366 | 0.059 | 7.4 |2.33|1.31
ss=4 | N=2001 0.359 | 0.059 | 7.3 234|131
N =300 | 0.361 | 0.059 | 7.3 |2.34|1.29
N =400 || 0.360 | 0.059 | 7.3 |2.34 | 1.31
N =300 | =2 0.354 | 0.083 | 5.2 |2.26 | 1.31

sb=8 | fb=4 0.361 | 0.059 | 7.3 |2.34|1.29
ss=4 | fob=6 0.362 | 0.047 | 9.2 |2.38|1.28
=28 0.359 | 0.039 | 11.0 | 2.39 | 1.29
N =300 |sb=4 0.243 | 0.063 | 6.7 | 2.39 | 1.43
fo = sh =6 0.314 | 0.061 | 7.0 |2.38|1.29
ss =4 | sb=8 0.361 | 0.059 | 7.3 |2.34|1.29
sb =10 | 0.387 ] 0.059 | 7.5|2.301.31
sb =12 0.406 | 0.058 | 7.5|2.26 | 1.33
sb =14 | 0.422 | 0.058 | 7.6 | 2.23 | 1.37
sb =16 0.433 | 0.058 | 7.6 | 2.20 | 1.39
N =300 |ss=2 0.502 | 0.057 | 81217 |1.31
fo=4 |ss=4 0.361 | 0.059 | 7.3 |2.34|1.29
sh =8 | ss=6 0.270 | 0.061 6.7 | 2.42 | 1.30
ss =8 0.204 | 0.063 | 6.7 | 2.43 | 1.37
N =300 fb =20 0.224 | 0.023 | 30.0 | 2.56 | 1.35
sb =40 ss =20

Table 1: Average prey and predator population densities, the half-life
Ay of old prey (20 < A < 100), and prey cluster scaling exponents
o' and « for small (1 < s < 20) and large (100 < s < 500) clusters,
respectively. The linear grid size is N and the parameters fb, sb,
and ssare defined in the text. The average population densities and
exponents are calculated from simulations for times between 1000 and
10000 in each case. The results given in the table are quoted to the
accuracy of the associated errors.

Table 1 summarizes most of the results to be presented in the following
sections by listing values of the relevant quantitative features of the model run
under different parameters. The table lists values of Py and P, the average
prey and predator populations; Ag, a measure of the life expectancy of prey
within large clusters; and o and «, which measure the scaling behavior of
clusters of prey at small and large cluster sizes. Each of these quantities will
be described in detail in the following sections and an interpretation of the
results will be given.

3.1 Population analysis

If the initial population densities of the predators and prey are sufficiently
large, the populations of both species rapidly settle into oscillations with
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Figure 5: a) The prey population density from the initial random state
at time ¢ = 0 to ¢ = 5000 for a simulation with the standard parameter
set on a grid with V = 300. b) A close-up of the prey and predator
population densities shown between times ¢ = 4500 and 5000. The
predator population lags the prey population. Superposed on the slow
variations of the predator population cycle are fast variations which
are related to the breeding time sb = 8 of the predators.

approximately constant period but with varying amplitude. Figure 5a shows
the prey population from the initial random state to ¢ = 5000 in a simulation
with the standard parameter set on a grid with N = 300; over this time
the population oscillates more than 70 times. A closer examination of the
prey population between ¢t = 4500 and ¢ = 5000 in Figure 5b shows that
the oscillations are regular though the amplitude may vary by as much as
twenty percent of the average population, even after long times. The predator
population, which is compared with the prey population in the lower diagram,
has the same period as the prey population but lags in phase. Superposed
on the predator population cycle is a fast variation, the period of which is
a multiple of the predator breeding rate, sb = 4. The fast variation occurs
because predators near a large cluster are unlikely to starve and these tend
to have a single ancestor in common so that they breed at approximately the
same time. The amplitude of the fast variation is large for small values of ¢ in
equation (2) and for o < 0.1 sympathetic fast variations are also observed in
the prey population. For ¢ = 0.5, which we use for the simulations examined
in detail here, the amplitude of the fast variations superposed on the prey
population cycle is negligibly small.
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Studies have been carried out about the dependence of the average preda-
tor and prey population on the parameters fb, sb, ss, and on the linear system
size N. The populations of both species have been averaged over times be-
tween ¢t = 1000 and ¢ = 10000 for simulations with the standard parameters
set on grids with N = 50, 100, 200, 300, and 400. The average population
densities of the prey P; and predators P, are listed in Table 1. For N > 100,
the average population of both predator and prey varies approximately as the
area of the domain. That is, the average population density is independent
of N for sufficiently large domains. For grids smaller than N = 50, boundary
effects become significant as the natural cut-off cluster size is comparable to
the domain size. For a variety of fixed parameter sets, we have performed
10 independent simulations on a grid with N = 300. The initial population
densities of each species in the simulations are the same in each of the 10
cases, though the random initial placements of both species vary from case
to case. The averages of P; and P, over the 10 cases are given in Table 1.
For a wide range of parameters, the average population densities calculated
in simulations on a smaller grid with N = 100 have been found to corre-
spond within two percent of the average population densities calculated for
the simulations with N = 300.

From Table 1 it is apparent that the average prey population density Py
increases as a function of decreasing predator starvation time ssand increas-
ing predator breeding time sb. P; is relatively insensitive to the breeding
time fbof the prey. The average predator population density P, increases
with decreasing prey breeding time and is relatively insensitive to the preda-
tor breeding and starvation times. These trends agree, at least qualitatively,
with those of the equilibrium populations predicted by the Lotka-Volterra
equations (1): (Pf, Ps) = (as/P2,c5/P1). Here the death rate of predators
in the absence of prey «; is related to the inverse of the predator starva-
tion time ssand the birth rate of prey oy is related to the inverse of the
prey breeding time fb. A more quantitative connection between the model
results and the Lotka-Volterra equations (1) does not appear possible both
because the dependence of the prey population on the predator birth rate
does not appear explicitly in the equations and because the coefficients [
and [, which parametrize the effect of interactions between homogeneously
mized populations, may be not be defined explicitly in terms of the model
parameters. Furthermore, unlike the Lotka-Volterra model, prey births occur
only on the perimeter of clusters in our model, and so the growth rate is not
proportional to the population in the absence of predators.

3.2 Age distribution of prey

Prey in the interior of clusters cannot breed and may therefore be much
older than the breeding time fb. The distribution Dy(A) of prey of age A is
exponential for large A so that Dy(A) oc 27440, Such a distribution is antic-
ipated since the probability for prey either to be eaten or to give birth after
they have been within a cluster for some time should not be a function of the
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Prey Age Distribution: fb=4, sb=8, ss=4
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Figure 6: The prey age distribution calculated for times between ¢t =
1000 and 10000 for a simulation with the standard parameter set
on a grid with N = 300. For old prey, the distribution is close to
exponential. The solid line represents the least-squares fit line to a
log-plot of the distribution for ages between 20 and 100; the line is
shifted above the distribution curve for clarity. Note that younger
prey have a moderately smaller half-life than older prey.

age of the prey. Figure 6 shows the age distribution of prey calculated from a
simulation over times between ¢ = 1000 and 10000 for the standard parameter
set on a grid with N = 300. The least-squares fit line to In[Dy(A)] is calcu-
lated for 20 < A < 100 and is shown in the figure shifted vertically above the
distribution curve. Though there is some deviation from straight-line behav-
ior for small A, the diagram shows that the age distribution of the older prey
is approximately exponential and that this behavior persists for A > 100.
The half-life of the older prey, which is determined from the slope of the
least-squares fit line, is Ay ~ 7.3. The half-life of younger prey is marginally
smaller (between 5 and 7) because breeding cannot take place within clusters
and new-born prey are therefore more prone to be eaten or to give birth.

The half-life Ay has been calculated for various parameter sets. These
values, which are listed in Table 1, depend strongly on the prey breeding
time but weakly on the predator breeding and starvation times. In other
words, the prey half-life is a strong function of the parameter determining
the prey source rate but is a weak function of the parameters determining the
prey sink rate. Such behavior is readily understood because the dynamics
governing the extraction of prey by predators do not depend on the age of
prey that are long-lived and because the dynamics determining the source of
prey explicitly requires new-born prey to have age zero.
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3.3 Cluster distribution analysis

The prey positions at long times (e.g., Figures 2, 3, and 4) reveal that the
prey organize into clusters of varying sizes and that there exists a natural
cut-off size which is not due to the domain size. In this section we quantify
these ideas.

A prey cluster is defined recursively as follows. A prey f» is said to
belong to the same cluster as a prey fi either if f, is adjacent to f; (i.e.,
fo is situated at one of the four nearest neighbor positions of f;) or if f,
is adjacent to another prey f3 which is also in the same cluster as f;. The
cluster size s is defined to be the number of prey in the cluster.

The cluster distribution function D(s;t) is the number of clusters that
have size s at time ¢. Analysis of the distribution function requires the calcu-
lation of the average D(s) = (1/n) Xi2p, D(s;t) for large n (to improve the
statistics) and sufficiently large T} (to remove the effect of the starting con-
ditions). Small clusters are common, large clusters rare, and D(s) decreases
with s. Because very large clusters (i.e., s > 500) occur with extremely
low frequency, the distribution D(s) is noisy unless n is unreasonably large
(i.e., n > 10°%), making analysis difficult. We have therefore used a binning
procedure in which the binned distribution of the number of clusters of size
s is the weighted average of the number of clusters with sizes in the neigh-
borhood of s. We employ a I'-distribution as a weighting factor since it is
asymmetric about its mean and, for fixed a and b, I'(s;a,b) has a long tail
for large s, thus giving more weight to sizes moderately smaller than s. The
binned distribution function Dr(s) is defined by

Dr(s) = [ d5 3 DTG a(e), () ®)

in which a and b are set so that the mean and standard deviation of the I'
function are ab = s’ and by/a = v(s'), respectively. The standard deviation
v(s) is generally set to increase with larger s so that averages are taken over
a wider range where data are sparse. Specifically, we set

v(s) = vs(s — 1) 4+ vy (4)

in which v, = 0.2 and vy = 0.1. The results of the binning procedure are
relatively insensitive to the values of v, and vy.

Figure 7 shows log-log plots of the unbinned and binned cluster distri-
bution functions obtained using the standard parameter set on a grid with
N = 300. The data are averaged over times between ¢ = 1000 and 10000.
The cluster distribution functions exhibit scaling behavior D(s) o< s™ over
two ranges of cluster sizes, 1 < s < 20 and 100 < s < 500. Also shown on both
diagrams are the least-squares fit lines to log-log plots of the data, calculated
and plotted over the two ranges, shifted vertically above the data. The scal-
ing exponents o and « for small and large clusters are the slopes of the lines
calculated for 1 < s < 20 and 100 < s < 500, respectively. For the unbinned
distribution function shown in Figure 7a, ¢/ = 2.354+0.07 and o = 1.2840.03.
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Figure 7: a) A log-log plot of the cluster distribution D(s) for the
standard parameter set calculated on a grid with N = 300 for times
between t = 1000 and 10000. The least-squares fit line with slope
o' is found spanning the range 1 < s < 20 and the least-squares fit
line with slope « is found spanning the range 100 < s < 500. Both
lines are shifted above the distribution curve for clarity. b) The data
in a) are binned to generate Dr(s) shown in the bottom diagram.
The least-squares fit lines calculated for this curve over the same two
ranges have slope comparable to the corresponding lines for the raw
data. The inset demonstrates the exponential behavior of the binned
data for large s.

For comparison, the corresponding exponents calculated for the binned data
shown in Figure 7b are o/ = 2.34 4+ 0.07 and o = 1.290 & 0.003. The ex-
ponents calculated for the binned data are within the errors allowed by the
least-squares fit to the unbinned data. The advantage of binning the data
is clearly to reduce the magnitude of the error of the large-cluster exponent
« by an order of magnitude and therefore enables better evaluation of the
dependence of a on the parameters.

The least-squares fit lines to the binned data also provide a consistent
definition of the cut-off scale s.. For s > s., the number of clusters of
size s decreases approximately exponentially as demonstrated by the inset to
Figure 7b. We define s, as the largest value of s for which the binned data lie
within the error tolerances of the least-squares fit line to the unbinned data.
That is, the cut-off size is set so that for s > s., In[Dr(s)] < (—a—¢,) In(s)+
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Figure 8: Log-log plots of the binned cluster distribution functions
calculated for simulations on a grid with N = 300 for times between
t = 1000 and 10000 with parameters a) fb = 4, sb = 4, ss = 4,
b) fb =4, sb =8,s8 =2,¢) fb =4, sb =12, ss =4, and d) fb =4,
sb = 8, ss = 8. Least-squares fit lines calculated over ranges 1 < s <
20 and 100 < s < 500 in each diagram are shown shifted above the
distribution function for clarity.

(bg — €by,), in which —« and by are the slope and intercept, respectively, of
the least-squares fit line to the unbinned data with €, and €, being the
errors associated with the slope and intercept of this line. The cut-off size so
calculated is shown in Figure 7b in which s, = 970.

It is remarkable that the form of the cluster distribution function is rela-
tively insensitive to the values of the breeding and starvation parameters. In
Figure 8 the binned cluster distribution function is shown for the four param-
eter sets used to generate the clusters shown in Figure 4, but for simulations
on grids with N = 300. The data are calculated for times between 1000 and
10000. The least-squares fit lines are shown over the ranges 1 < s < 20 and
100 < s < 500 and the cut-off size s. is displayed in the upper right-hand
corner of each diagram. All four cases shown are characterized by a steep
scaling regime for small clusters and a regime with smaller scaling exponent
for large clusters. The slopes calculated for the least-squares fit lines in both
regimes vary little with the different parameter sets. In Table 1, the scaling
exponents over both regimes are calculated by finding the mean of the ex-
ponents determined from 10 simulations with different initial conditions. In
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all four cases, the small-cluster scaling exponent is approximately o/ ~ 2.3
(£0.1), although there is some tendency for this value to decrease with in-
creasing predator breeding rate. Similarly, the large-cluster scaling exponent
is @ ~ 1.35 (+0.10).

The different exponents for small and large clusters are believed to reflect
the different predator-prey dynamics that occur when the prey form clusters
large enough to have an interior. Large clusters are impervious to immediate
attack and their growth is inhibited only when enough predators accumulate
on the perimeter. Therefore larger clusters are longer lived. The small-cluster
scaling breaks down for s > 20, which is of the correct size for a compact clus-
ter with prey located entirely on the perimeter. Evidence for this assertion is
provided by an analysis of simulations performed on three-dimensional grids;
in such cases, log-log plots of the cluster distribution function (not shown
here) exhibit a transitional range between small- and large-cluster scaling for
50 < s < 200.

The cut-off cluster size s is determined by the time required for predators
to find the prey and to multiply sufficiently to limit the expansion of large
clusters. For a sufficiently large domain, the cut-off is not constrained by
the domain size. The cut-off tends to be larger when the predator breeding
time is significantly larger than both the prey breeding time and the predator
starvation time. In this case the prey clusters accumulate to large sizes be-
fore the predators breed sufficiently to arrest their growth. The existence of
the cut-off s, means that the prey distribution function is subcritical. With
increasing sb and decreasing ss, the cut-off increases so that the distribu-
tion becomes more critical and it appears that criticality can be approached
arbitrarily closely in sufficiently large domains.

3.4 Radius of gyration of prey clusters

The distribution D(s) gives no information concerning the cluster geometry
or, more specifically, it does not demonstrate how the linear extent of the
prey clusters varies with size s. Therefore, we have examined the radius of
gyration that for a particular cluster ¢; is defined by

R(e) = | 23 InyP )

i =1

in which s; is the size of ¢; and r; is the distance between the jth element of ¢;
and the center of mass of the cluster. The radius distribution function R(s;t)
is then defined to be the average radius of gyration of all clusters of size s
at a time ¢. As with the definition of D(s), the mean radius distribution is
defined by R(s) = (1/n) ©{2q, R(s;t) for large n and sufficiently large T}.
The sparsity of data for large cluster sizes results in variations of R(s)
which are too noisy for analysis. To smooth these data a harmonic mean
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Figure 9: a) Log-log plot of the radius distribution R(s) calculated for
a simulation with the standard parameter set on a grid with N = 300
for times between ¢ = 1000 and 10000. The least-squares fit line with
slope [ is found spanning the range 100 < s < 500. The line is shown
shifted above the distribution for clarity. b) A harmonic mean binning
procedure is applied to the data in a) to generate Rj(s). Shifted above
this curve is the corresponding least-squares fit line calculated over the
same range as in a).

binning procedure is applied so that the binned radius distribution is

. 1/(28n+1)

R,,(s)z[ I EG)

s'=s—sn

(6)

in which s,, = max(0, [0.01(s —20)|) determines the bin size as an increasing
function of s. (The notation |z] denotes the largest integer not exceeding
z.) Note that if this procedure is applied to a set of points sampled from
a power-law distribution then the distribution is exactly recovered. If R(s),
and hence Ry(s), exhibits power-law behavior for large s so that R o s, then
the geometry of the clusters is characterized by the dimension 1/4 which, if
less than 2, is the fractal dimension [14].

Figure 9a shows the unbinned radius distribution calculated for times
between ¢ = 1000 and 10000 from a simulation with the standard parameter
set on a grid with N = 300. The least-squares fit line to the data on a
log-log plot is calculated for 100 < s < 500 and provides a good fit over
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this range with exponent # = 0.505 % 0.006. The exponent determined by
a least-squares fit line to a log-log plot over the range 100 < s < 500 of
the binned data shown in Figure 9b is § = 0.505 £ 0.003. In both cases
the exponent is close to 0.5 as expected for a compact distribution (e.g., the
size of the cluster varies as the square of the radius and so the clusters are
objects of dimension 2). Indeed, for all the parameter sets we have examined
on sufficiently large domains, the binned radius distribution function fits well
to a 0.5 exponent for 100 < s < 500. Prey clusters therefore exhibit weak, if
any, fractal structure. We do note, however, that there appears to be some
tendency toward lower dimensional scaling for large clusters (s > 500). This
may be attributed to noise due to sparse data, or it may be that some lower
dimensional structures develop when predators encompass a prey cluster with
size s > s.

4. Conclusion

We have shown that Wa-Tor successfully simulates some basic features of
predator-prey systems: the predator and prey populations vary quasi-period-
ically about respective average values and the predator population lags that
of the prey; the average populations and the period of the oscillations are
insensitive to the initial state; and the model is robust, in the sense that the
system evolves nontrivially for a large range of parameters. In agreement
with the predictions of the Lotka-Volterra equations, the average prey pop-
ulation density depends only on the breeding time and starvation times of
predators, increasing with the former and decreasing with the latter. The
average predator population density increases with increasing prey breeding
time.

The prey naturally form clusters with a size distribution D(s) that varies
as a power law over two ranges of s. For small clusters, the scaling exponent
is o = 2.3+ 0.1 for a wide range of breeding and starvation parameters.
The exponent tends to be smaller if the predator breeding time is large
compared with either the starvation time or the prey breeding time. For
large clusters 100 < s < 500 the cluster distribution scales with a smaller
exponent o = 1.3540.10. The exponent « tends to increase with increasing
predator breeding time and decreasing prey breeding time, it is also large
when the breeding time of predators and prey equal the starvation time of
the predators. The scaling is appropriate for clusters of size smaller than a
cut-off size s, ~ 1000.

We note that the model lies close to the edge of chaos, a state which
Kauffman [12] has proposed may be optimal for adaptation. In the context
of this model, the edge of chaos corresponds to power-law behavior (without
a cut-off), the ordered state to a spanning cluster, and the chaotic state to
small clusters only. Both the ordered and the chaotic states have limited bio-
logical viability. In the first, the population is in too strong contact; diversity
and ultimately speciation are inhibited, and the species is too sensitive to
disease. In the second, the population is too scattered to retain identity. It
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is intriguing that a model with such simple rules has the desirable biological
feature of lying close to the edge of chaos. The existence of a cut-off means
that the system is subcritical; that is, it lies toward the chaos side of the edge
of chaos, whereas Kauffman makes the hypothesis “Living systems exist in
the solid regime near the edge of chaos...,” (solid here meaning ordered).
Subcriticality seems a desirable feature, since true power-law behavior would
imply strong prey contact, inhibiting speciation.
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