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We present measurements of the density and velocity �elds produced when an oscil-
lating circular cylinder excites internal gravity waves in a strati�ed 
uid. These mea-
surements are obtained using a novel, non-intrusive optical technique suitable for de-
termining the density 
uctuation �eld in temporally-evolving 
ows which are nominally
two-dimensional. Although using the same basic principles as conventional methods, the
technique uses digital image processing in lieu of large and expensive parabolic mirrors,
thus allowing more 
exibility and providing high sensitivity: perturbations of the order
of 1% of the ambient density gradient may be detected. From the density gradient �eld
and its time derivative, it is possible to construct the perturbation �elds of density and
horizontal and vertical velocity. Thus, in principle, momentum and energy 
uxes can be
determined.

In this paper we examine the structure and amplitude of internal gravity waves gen-
erated by a cylinder oscillating vertically at di�erent frequencies and amplitudes, paying
particular attention to the role of viscosity in determining the evolution of the waves.
In qualitative agreement with theory, it is found that wave motions characterised by
a bimodal displacement distribution close to the source are attenuated by viscosity and
eventually undergo a transition to a unimodal displacement distribution further from the
source. Close quantitative agreement is found when comparing our results with the the-
oretical ones of Hurley & Keady (1997). This demonstrates that the new experimental
technique is capable of making accurate measurements and also lends support to analytic
theories. However, theory predicts that the wave beams are narrower than observed, and
the amplitude is signi�cantly under-predicted for low frequency waves. The discrepancy
occurs in part because the theory neglects the presence of the viscous boundary layers
surrounding the cylinder, and because it does not take into account the e�ects of wave
attenuation resulting from nonlinear wave-wave interactions between the upward and
downward propagating waves near the source.
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1. Introduction

In density strati�ed environments internal gravity waves are a ubiquitous phenomenon
that can transport momentumand energy through the 
uid on relatively fast time scales.
Consequently, there have been a large number of studies devoted to understanding the
mechanisms which are responsible for the generation, interaction and decay of internal
waves. In atmospheric research, for example, it is important to develop predictive models
of the amplitude of internal waves generated by wind 
ow over mountains because it is
known that the momentum carried upward by the waves and deposited in the middle
atmosphere is a signi�cant source of drag that must be taken into account in order to
reproduce the observed 
ow at these altitudes. Much of our understanding of the exci-
tation and viscous attenuation of internal waves is based on linear theory, however, and
the mechanism for coupling of internal waves with the source is poorly understood when
the forcing amplitude is large. The aim of the current experimental study is to revisit
the relatively simple 
ow studied by Mowbray & Rarity (1967), where internal waves
are generated by oscillating a cylinder in a linear strati�cation. A new visualisation and
measurement technique enables us to assess quantitatively the e�ect of the source motion
on the amplitude of excited internal wave modes, to examine the relative importance of
weakly nonlinear wave-wave interactions, and to compare the observed rate of viscous
attenuation of waves with theoretical predictions.
Small-amplitude monochromatic oscillations of a cylinder in a linear strati�cation were

observed by Mowbray & Rarity (1967) to excite a `St. Andrew's Cross' wave-�eld, which
consisted of four internal wave beams radiating from the cylinder at angles � to the
vertical. We de�ne the buoyancy frequency N (z) for a strati�ed Boussinesq 
uid as

N2(z) = � g

�0

d�

dz
; (1.1)

where g is the gravitational acceleration, �0 is a reference density, and �(z) is the back-
ground density distribution as a function of height z. Then, if ! is the frequency of
excitation, � is given by the dispersion relation,

! = N cos�; (1.2)

as obtained from linear theory (e.g.Lighthill (1978), Voisin (1991)) and is valid for ! <
N .
For a vibrating point source, linear theory predicts that inviscid 
uid motion is aligned

along beams of in�nitesimal width (Makarov, Neklyudov & Chashechkin (1990)).
Thomas & Stevenson (1972) recognised that viscosity must reduce the shear to a �nite
value in this region and they produced a similarity solution describing the attenua-
tion of motion with distance r along the beam from a virtual origin. Their prediction,
that the beam width normal to the direction of motion scaled with r1=3 and the 
uid
displacement along the beam with r�1, was con�rmed experimentally by Peters (1985).
Makarov, Neklyudov & Chashechkin (1990) and Kistovich, Neklyudov & Chashechkin (1990)
showed that the structure of the beams along which internal waves propagate was de-
pendent upon the size of the source as well as the amplitude of oscillation. The beams
produced by a �nite-sized source were found to be of a comparable width to the source
(Appleby & Crighton (1986), Appleby & Crighton (1987), Voisin (1991), Hurley & Keady (1997)).
If the source size d was larger than the viscous scale

`� =
(g�)1=3

N
; (1.3)

where � is the kinematic viscosity, each beam appeared to consist of two bands which em-
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anated from the tangential extremities of the source. Makarov, Neklyudov & Chashechkin (1990)
and Kistovich, Neklyudov & Chashechkin (1990) noted that this corresponds to a bi-
modal distribution of 
uid displacement in the along-beam direction, with the max-
imum displacements occurring at the edges of the beam. When d is less than `� ,
viscosity was able to couple wave motion in the two bands across the width of the
beam. If the coupling was su�ciently strong, this resulted in a unimodal displace-
ment distribution in the along-beam direction, with the maximum displacement at the
centre. By modelling the e�ect of dipole sources distributed on a circle of radius R,
Makarov, Neklyudov & Chashechkin (1990) predicted that wave beams with a bimodal
structure close to the source would be attenuated by viscosity, and that the beams would
have a unimodal structure for r > R�, in which

R� =
g

N2
R3=`�

3 =
NR3

�
: (1.4)

For large r, however, the formulae used to estimate (1.4) may not be valid, and it is
possible for the transition from bimodal to unimodal wave beam structures to occur over
a much shorter distance than R�. One result of our experiments is to show that R�
signi�cantly overestimates the transition distance.
Full analytic solutions of the approximate equations describing internal waves gen-

erated by oscillating cylinders were found by Hurley & Keady (1997). The equations
were derived on the basis of linear theory using the \boundary layer approximation"
of Thomas & Stevenson (1972), and their solutions qualitatively reproduced the near-
cylinder bimodal and far �eld unimodal structures of the wave beams. However, it is not
known with what accuracy this approximation models the coupling between the waves
and the source. Speci�cally, because their theory neglects the viscous boundary layer
which in reality surrounds the cylinder, it remains to be determined what e�ect this
layer has on the wave beam width and amplitude. Our experiments are used to test the
Hurley & Keady (1997) theory and to examine where the theory may be improved.
In most previous experimental studies of internal wave �elds, schlieren techniques have

been used qualitatively to visualise the 
ow (e.g. Mowbray & Rarity (1967),
Thomas & Stevenson (1972)). More recently, Peters (1985) andMerzkirch & Peters (1992)
made use of interferometric techniques to visualise the wave-�eld produced by an oscil-
lating cylinder. The latter study also demonstrated that the associated velocity �eld
could be measured using particle image velocimetry techniques. Here we employ a novel
optical technique related to the classical schlieren method but which overcomes many of
the �nancial and practical limitations associated with both schlieren and interferometry.
When light waves pass through a medium in which the index of refraction varies, the

ray path is bent by refraction and undergoes a phase change compared with waves in a
homogeneous medium. Optical techniques may be used to detect the de
ection or phase
changes, and from this the changes in the refractive index and density �elds may be
inferred. These techniques fall into three broad categories. The classical shadowgraph
method (Dvorak (1880)) is sensitive to the curvature in the refractive index �eld which
focuses or defocuses nominally parallel light rays. This technique is essentially qualitative
because it is di�cult to extract quantitative information about the density 
uctuations,
partly because of the need to specify an appropriate boundary condition at the edges
of the �eld of view. Interferometry (Mach & von Weltrubsky (1878)) provides direct
measurements of variations in the speed of light (and hence density) through the phase
change experienced by monochromatic light. However, its application is often limited by
the cost and precision required in setting it up. Schlieren methods (Toepler (1864)) are
sensitive to refractive index variations in the plane normal to light rays passing through
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the medium. In this paper we shall concentrate on a variant of the last of these, a
technique we refer to hereafter as \synthetic schlieren". A thorough review of all three
classes of techniques may be found in Merzkirch (1974).

While schlieren has been used for many years to visualise 
ows containing variations
in refractive index, its application has often been limited by the expense of the optical
components (especially if visualisation of a large region is required) and through di�culty
in extracting quantitative measurements. In its simplest form, the intensity of a `knife-
edge' schlieren image is modulated in proportion to gradients of the refractive index
perturbations in the direction chosen by the orientation of the knife-edge. Variants of
this schlieren technique exist that colour code the refractive index gradients or which are
sensitive to the magnitude of the gradients in the plane normal to the light rays.

A number of recent advances have been reported in the use of schlieren techniques to vi-
sualise the density gradient �eld in strati�ed 
ows. Irvin & Ross (1991) used a linear pho-
todiode array to overcome the common problem of making high accuracy intensity mea-
surements of images produced by knife-edge schlieren methods. This approach was used
to infer the density pro�le in convection experiments. Greenberg, Klimek & Buchele (1995)
described a colour-schlieren technique which overcomes the need to measure intensities,
the changes in refractive index gradient within the 
ow instead appearing as di�erent
hues in the image. They used a colour CCD array and a video digitiser to make exper-
imental measurements of a temperature �eld. The schlieren techniques described thus
far resolve only those density gradients which are e�ectively normal to the knife-edge or
to colour gradations. One solution to this problem is the four-colour schlieren system
developed by Scheitle & Wagner (1990), capable of measuring the density gradient in
any direction.

The principles behind synthetic schlieren and how these may be used to extract in-
formation about the density gradients and its time derivative are outlined in x2. We
believe that synthetic schlieren overcomes many of the disadvantages of more traditional
methods outlined above. In particular, synthetic schlieren is relatively easy to use and
may be scaled up to visualise large regions of the 
ow. Setting up synthetic schlieren is
also much simpler than for the Moir�e fringe method where the precise alignment of two
masks is required. Synthetic schlieren is particularly advantageous in that it can be used
to make non-intrusive quantitative measurements of the full wave �eld continuously in
time, although this is possible only if the 
ow is nominally two dimensional.

Here, with the aid the synthetic schlieren technique, new insight is attained into the
problem of internal wave generation by a circular cylinder oscillating vertically at a
range of di�erent amplitudes and frequencies. In x3 we summarise the recent theory of
Hurley & Keady (1997), and in x4 we compare the theoretically predicted characteristics
of the waves with those found in our experiments. Although the predicted wave struc-
ture is similar to observations, there are consistent discrepancies between the predicted
and observed amplitudes: theory generally under-predicts the wave-beam width, and
the predicted amplitude is signi�cantly smaller than the observed amplitude for waves
with a frequency small compared with the buoyancy frequency. We explain that this
discrepancy occurs, in part, because the viscous boundary layer surrounding the oscil-
lating cylinder is neglected by the theory, and because nonlinear interactions between
upward and downward propagating wave beams radiating from the source enhance the
beam attenuation. In x5 we present conclusions and discuss implications of this work for
future research.
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2. Synthetic Schlieren

When internal gravity waves propagate in a strati�ed 
uid, isopycnal surfaces are
displaced, resulting in regions where the local density gradient is either increased or
decreased relative to the background gradient. As will be shown in this section, the path
of a nearly horizontal light ray through strati�ed 
uid is de
ected due to changes in the
refractive index gradient. We make use of the fact that the density and refractive index
of a salt solution follow an almost linear relationship (Weast (1981)), and by measuring
the de
ection of light rays passing through the solution, the 
uctuation in the density
gradient may be calculated. Ultimately this leads to a measure of the amplitude of the
internal gravity waves.

2.1. Theoretical Determination of Internal Wave Field

Consider the path followed by a light ray incident with an upward inclination upon a
spanwise cross section of a tank �lled with salt strati�ed water, as shown in Figure 1a.
For clarity, the curvature of the ray through the tank in the �gure is exaggerated from
the relatively small curvature that occurs in a typical experiment. Because the index of
refraction increases with salinity, the ray is refracted so that the angle of the ray above
the horizontal decreases. The path taken by a ray of light satis�es Snell's Law,

n cos � = constant; (2.1)

in which n = n(x; y; z) is the index of refraction of the medium and � = �(x; y; z)
is the angle the light ray makes with surfaces of constant n, where z is the height, x
is the distance along the tank, and y is the span-wise distance across the tank. We
introduce the along-ray co-ordinate s and decompose this into co-ordinates parallel (sk)
and perpendicular (s?) to surfaces of constant n. Di�erentiating (2.1) with respect to s,
and noting that dsk=ds = cos� and ds?=ds = sin�, we obtain

@n

@s?
cos � sin�� n sin�

d�

ds
= 0: (2.2)

Eliminating d�=ds using d2s?=dsk
2 = sec3 �d�=ds gives

d2s?
dsk2

=
sec2 �

n

@n

@s?
: (2.3)

We may ignore the along-ray variation in both � and n provided @n=@s? remains �nite
and jds?=dskj � 1, and thus integrate (2.3) using their values at the point of entry of
the light ray into the tank.
For two-dimensional 
ows of the form considered in this paper, spanwise variations

in the refractive index are ignored (n = n(x; z)) and sk coincides with the cross-tank
co-ordinate y. Furthermore, the condition jds?=dskj � 1 linearises (2.3), thus allowing
us to identify s? with either x or z to form two independent equations:

d2x

dy2
=

sec2 �ix
ni

@n

@x
; (2.4)

d2z

dy2
=

sec2 �iz
ni

@n

@z
; (2.5)

where �ix and �iz are the angles that the incident light ray makes to the y axis in the
horizontal and vertical directions, respectively, and ni is the index of refraction where
the ray is incident. For the remainder of this paper we shall consider only the vertical
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Figure 1: a) Schematic showing the curved path of a light ray passing through linearly strati�ed

uid, and b) the complete path of a light ray from a screen to a camera passing through a tank
�lled with strati�ed 
uid. Here the screen is a back-illuminated grid of horizontal lines.

de
ection of the light rays as described by (2.5). Moreover the experimental arrangement
will be such that j�j < 5� and sec2 �iz may be taken as unity.

Except where strong mixing or layering occurs, it is valid to assume that the refrac-
tive index varies linearly over the small depth traversed by the light ray (typically less
than 1 cm), allowing us to replace the vertical gradient in n with the squared buoyancy
frequency N2 at the same level using the relationship

@n

@z
=
dn

d�

@�

@z
= �

�
1

g

�0
n0

dn

d�

�
n0N

2: (2.6)

Here �0 and n0 are reference values of the density and index of refraction, respectively.
Because dn=d� is approximately constant for salt water solutions (Weast (1981)), we
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write

@n

@z
= �n0
N2; (2.7)

where


 =
1

g

�0
n0

dn

d�
' 1:878� 10�4s2=cm: (2.8)

Substituting (2.7) into (2.5) and integrating gives

z(y) = zi + y tan�iz � 1

2

N2y2; (2.9)

where zi is the vertical position of the incident light ray.

Therefore, the e�ect of stable strati�cation is to bend a nearly horizontal light ray along
a (concave downward) parabolic arc. This has two important consequences: the strati�ca-
tion acts to shift the ray downward and the angle of propagation changes. We take advan-
tage of this optical e�ect to determine the refractive index gradients. Synthetic schlieren
measures the intensity change of parts of an image in a manner similar to the classical
schlieren method. The experimental set-up and accuracy of this approach is discussed in
x2.4. In a related novel approach, which we refer to as \pattern matching refractometry",
the apparent motion of a random array of dots are used to determine the density gradient
�eld. This technique, which is more closely akin to \particle-image-velocimetry", will be
discussed in detail in future work (Dalziel, Hughes & Sutherland (1999)).

Quantitative measurements are obtained using synthetic schlieren by modelling the
e�ect of changes in the refractive index gradient on a light ray passing at angles close
to the horizontal through strati�ed 
uid. A typical experimental set-up is illustrated
in �gure 1b. The schematic shows a light ray starting at the image screen, a distance
Lscreen behind the rear Perspex tank wall. This ray �rst passes through the Perspex
wall before being de
ected by refractive index gradients within the body of the 
uid. On
exiting the 
uid it passes through the second Perspex wall ultimately entering the video
camera at an angle �0 above the horizontal.

Repeated application of Snell's Law together with (2.9) gives the total vertical de
ec-
tion of a light ray travelling from the image screen to the camera as

z(N2; �0) ' Lcamera�0

+Lperspex

�
nair

nperspex

�
�0

+Ltank

�
nair

nwater

�
�0 �1

2
N
2L2tank

+Lperspex

�
nair

nperspex

�
�0 �Lperspex

�
nwater

nperspex

�

N2Ltank

+Lscreen�0 �Lscreen
�
nwater

nair

�

N2Ltank ;

in which nair , nwater, and nperspex are the refractive indices of air, water and Perspex,
taken to be 1, 1:333 and 1:49, respectively, and we have taken tan� ' �.

If the isopycnal surfaces are locally perturbed by internal gravity waves, then N2 is
changed and a light ray passing through the wave �eld is de
ected. In particular, the light
ray entering the camera at an angle �0 from the horizontal originates from a di�erent
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location on the screen. The apparent displacement, �z, of the image is given by

�z(�N2; �0) ' �1
2
�N

2L2tank

�Lperspex
�
nwater

nperspex

�

�N2Ltank

�Lscreen
�
nwater

nair

�

�N2Ltank ;

(2.10)

which may be rearranged to give the perturbation to the squared buoyancy frequency in
terms of the vertical displacement:

�N2 ' ��z 1



�
1

2
L2tank + Ltanknwater

�
Lperspex
nperspex

+
Lscreen
nair

���1
: (2.11)

For the experiments reported in this paper, Ltank = 20:0cm, Lperspex = 1:5 cm, and
Lscreen = 34:2cm. Substituting into (2.11) gives �N2 ' �0:2�z where N2 and �z
are measured in s�2 and cm, respectively. Discussion on how the apparent vertical
displacement �z of a light ray can be determined is deferred until x2.2.
Once the �N2 �eld is known, we may construct the perturbation density �eld �0

and the vertical displacement �eld �0. Assuming j�0j is small compared to the vertical
wavelength of the internal waves,

�0(x; z) = ��0
g

Z
�N2 dz; (2.12)

and

�0(x; z) = � 1

N2

Z
�N2 dz: (2.13)

The constants of integration are obtained from boundary conditions speci�c to the ge-
ometry of the wave-�eld. For example, in regions una�ected by the waves �0 and �0 are
set to zero.
In addition, we may calculate a �nite di�erence approximation to the time derivative

of the squared buoyancy frequency (N2)t by determining �z at successive times spaced
at intervals much less than the period of the wave-motion. Assuming incompressibility
and an approximately linear background strati�cation, and provided the amplitude of
the waves is not too large, (N2)t can be used to construct the perturbation horizontal
velocity �eld, u0, and vertical velocity �eld w0:

u0(x; z) =
1

N2

Z
(N2)t dx; (2.14)

and

w0(x; z) = � 1

N2

Z
(N2)t dz: (2.15)

The constants of integration in this case may again be determined by suitable choice of
boundary conditions.

2.2. Optical Arrangement

Figure 2 compares typical experimental set-ups for the classical schlieren, Moir�e fringe
and synthetic schlieren methods. The light rays represented by solid lines in each diagram
indicate their path in the absence of density perturbations (�N2 = 0). Dotted and
dashed lines indicate their path when perturbations result in a decrease and increase,
respectively, of �N2. Recall from (2.10) that the de
ection of a light ray relative to the
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path taken in the absence of any density perturbations is upwards when �N2 < 0 and
downwards when �N2 > 0. Classical schlieren relies on perturbations to the density
�eld altering the passage of the light rays relative to the knife-edge so that a greater or
lesser fraction of the light is blocked by the knife-edge. With the orientation of the edge
as shown in �gure 2a, the amount of light reaching the screen is increased for �N2 > 0
and decreased when �N2 < 0. The Moir�e fringe method operates in a similar manner,
but replaces the pair of parabolic mirrors and knife edge by a pair of accurately aligned
masks. These masks consist of a set of parallel lines and are normally aligned so that
50% of the light passing through the �rst mask is stopped by the second mask. Due
to camera parallax, the lines on the mask in front of the tank are more closely spaced
than those to the rear of the tank. For the relative positions of the masks illustrated in
�gure 2b, the mean intensity of the light, averaged over a scale larger than the spacing
of the lines on the masks, is again increased for �N2 > 0 and decreased when �N2 < 0.
The Moir�e fringe method is cheaper to implement and may be scaled up to cover larger
domains more readily than classical schlieren because expensive parabolic mirrors are
not required. The main di�culty is that the alignment between the apparent position
of the mask behind the tank and the analysing mask in front of the tank is critical and
non-trivial, especially if light entering the camera is not approximately parallel or if the
strati�cation is nonlinear so that the line spacings are not related by a simple scale factor.
The synthetic schlieren method overcomes this di�culty by replacing the analysing mask
used in the Moir�e fringe method with one that is digitally generated.
In the simplest (qualitative) mode of synthetic schlieren operation, a digitised image of

the mask behind the tank is captured when density perturbations in the 
ow are absent.
If the intensity �eld for this unperturbed image is described by I(xp; zp) and the intensity
�eld for a perturbed image is I0(xp; zp), then it is a simple matter to construct

Pabs(xp; zp) = �jI0 � Ij; (2.16)

where � is some gain factor and xp, zp are the (integer) horizontal and vertical pixel
co-ordinates, respectively, of the image. Ideally, the image I is a sequence of perfectly
\black" (I = Iblack) and perfectly \white" (I = Iwhite) horizontal lines on alternate
rows of pixels. In general, however, it is not possible to align the mask and pixels in the
camera with su�cient precision to obtain this idealised sequence of lines. Even if such an
alignment was possible, blurring and distortion by the camera optics and the CCD array
in the video camera would lead to the contrast being reduced. Typically, therefore, the
separation between successive \white" and \black" lines on the mask is arranged to be
approximately 5 pixels. In order to minimise the e�ect of horizontal jitter in the timing
of the video signal, the camera is always oriented so that the scan lines are parallel with
the lines on the mask and thus the system will be sensitive to `vertical' 
uctuations (in
the camera's frame of reference).
The de�nition of Pabs in (2.16) is convenient because it can be calculated in real time

over the full �eld while an experiment is in progress. However, it does not indicate
whether the light rays are de
ected upward or downward. To do this in the simplest
possible way we de�ne

Psign(xp; zp) = sign(@I=@z)�(I0 � I): (2.17)

This expression is evaluated only where the �nite di�erence approximation to j@I=@zj
based on neighbouring rows of pixels is su�ciently large. In x2.3 we shall discuss in more
detail how an accurate quantitative measure of �N2 may be obtained from the image
pair I(xp; zp) and I

0(xp; zp).
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Figure 2: Schematics showing three di�erent experimental set-ups using the schlieren technique
for internal gravity wave visualisation.

2.3. Quantitative Measurements

In order to determine the apparent vertical displacement �eld �z (and hence �N2), it
is necessary to consider how the digitised images I(xp; zp) and I0(xp; zp) are related. We
con�ne our attention to the apparent vertical displacement of nominally horizontal lines:
apparent horizontal displacement of these lines cannot be detected. If the intensity
measured by the pixel at (xp; zp) is initially I(xp; zp), and the subsequent apparent
vertical displacement in pixel co-ordinates is �zp, then the new intensity measured by
that same pixel is

I0(xp; zp) � I(xp; zp ��zp): (2.18)

Here we have neglected the e�ect of curvature in the refractive index �eld so that to �rst
order the camera detects a digitised intensity �eld which has been translated locally by
a fractional vertical pixel displacement �zp. Equation (2.18) could be expanded as a
Taylor series to compute �zp, but in practice the local variation of pixel intensity with
zp is found to be almost linear. Therefore, it is computationallymore e�cient to suppose
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that �zp (and hence �z) can be represented locally by a quadratic in I0:

�z = (z�1 � z0)
(I 0 � I0)(I0 � I1)

(I�1 � I0)(I�1 � I1)
+ (z1 � z0)

(I0 � I0)(I0 � I�1)
(I1 � I0)(I1 � I�1) : (2.19)

Here we have made the transformation from pixel intensity to real space co-ordinates, and
I�1, I0 and I1 are short-hand for I(xp; zp � 1), I(xp; zp) and I(xp; zp + 1), respectively.
The vertical co-ordinates of the pixels in real space are taken to be z�1, z0 and z1,
respectively. We solve (2.19) only if I1 < I0 < I�1 or I�1 < I0 < I1, and the intensity
contrast across the three lines is su�ciently large: jI1 � I�1j > �Imin, in which the
threshold �Imin is set explicitly.
Once �z has been determined, (2.11) is applied to determine �N2. Points for which

�z could not be calculated are replaced by the weighted average of surrounding values
that have been determined. Speci�cally, a Gaussian weighting is used such that its
magnitude is greatest at the location of the pixel being determined. Finally, the resulting
image of �N2 is �ltered in the Fourier domain to reduce noise and systematic errors.
The accuracy of the result is discussed in x2.5.

2.4. Experimental Set-up

Here we describe how the synthetic schlieren technique can be set up for a typical lab-
oratory experiment, giving details of the image processing system and the particular
experiments used to visualise internal gravity waves.
Figure 2c shows a schematic diagram (not to scale) of the arrangement of the ex-

perimental apparatus for synthetic schlieren. A video camera (COHU 4910 Series High
Performance monochrome CCD) is focused through the tank of strati�ed 
uid upon the
back-illuminated image screen. The camera is positioned as far as practicable in front
of the tank (' 350 cm) in order to minimise parallax error, while ensuring the region of
interest in the 
ow, typically 25 cm in the vertical by 30 cm in the horizontal, �lls the
�eld of view. With this arrangement, light rays enter the camera at angles up to 1:7�

from an axis normal to the tank wall. Thus, a light ray originating from the upper or
lower extremities of the �eld of view traverses through a depth of approximately 0:5 cm
of 
uid as it passes through the tank.
To detect accurately the apparent displacement of light rays, the image screen must

consist of �ne details on a high-contrast background. We have used a variety of back-
illuminated screens composed of horizontal black lines, a regular array of dots and a
random array of dots. Following the approach outlined in the previous subsections,
we shall restrict our attention to images produced using horizontal lines. Back-lighting
is provided by several 
uorescent tubes so as to make the illumination as uniform as
possible. Lines of width 0:2 cm are laser-printed at 0:4 cm intervals onto translucent
paper (tracing paper) or onto transparencies that are positioned on top of translucent
paper. The CCD camera is focused upon the image screen so that the intensity contrast
between the centre of the black lines and the back-illuminated spaces between the lines
is maximised.
The basic components in the image processing system are the CCD camera and a

computer (IBM compatible PC with 90 MHz Pentium Processor) �tted with a frame-
grabber card (Data Translation DT2862). The frame-grabber produces an eight bit
digitised image with a spatial resolution of 512� 512 pixels. The intensity assigned to
an individual pixel represents the average intensity over its area (typically 0:01cm2).
The digitised intensities are then manipulated by computer using the software package
DigImage (Dalziel (1992)).
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For all experiments reported here, the tank is �lled with salt strati�ed water to a depth
of approximately 35 cm using the standard \double-bucket" method. The density varia-
tion is approximately linear with depth and is characterised by the buoyancy frequency
N ' 1:0� 0:05 s�1. In most experiments we examine the generation of waves by a verti-
cally oscillating cylinder oriented with its axis horizontal and spanning the width of the
tank. The cylinder radius is R = 1:67 cm. The cylinder is suspended from its centre by
a supporting rod, the opposite end of which is positioned along a 45 cm arm. The rod is
driven in an oscillatory fashion by an eccentric cam from a speed-controlled servo motor.
The maximum amplitude (half the peak to peak displacement) of oscillation is 0:32 cm,
or approximately 20% of the cylinder radius. To ensure the cylinder motion is vertical,
the top of the supporting rod is hinged and the rod itself is con�ned to pass through a
rigid guide. The cylinder is located approximately 12 cm above the bottom of the tank.
Nearby an angled barrier spanning the width of the tank is positioned to block waves
re
ected from the bottom of the tank, but the barrier is not so close that it interferes
with wave generation near the cylinder.

2.5. Experimental Accuracy

The accuracy of synthetic schlieren depends upon the experimental set-up. It is sensitive
to the distance between the tank and the grid, the tank width, the pixel resolution of the
camera, and the distance and intensity contrast between successive light and dark grid
lines. In the set-up of the experiments reported here, the image recorded by a single pixel
typically spans a vertical distance of 0:1 cm, and the intensity contrast between light and
dark lines is approximately 100 out of a full range of 256. Thus, applying (2.19), we �nd
that apparent displacements of grid lines can be detected to a resolution of 1=25 of the
pixel spacing, or approximately 0:004 cm. Putting this value in (2.11), it is found that
changes in �N2 as small as 0:0008 s�2 can be detected under ideal conditions, a fraction
of a percent of the background squared buoyancy frequency. From linear theory for plane
internal gravity waves propagating in a background where N2 ' 1 s�2, it can be shown
that vertical displacements as small as 0:0001 of the vertical wavelength can be detected.

Unfortunately thermal noise in the laboratory environment induces refractive index
variations in the air between the camera and the image screen rendering this ideal limit
inaccessible much of the time. The synthetic schlieren data for these experiments is
�ltered to reduce sources of error, in particular, 
uctuations due to rapid air temperature
variations in the vicinity of the experiment. These variations typically evolve over shorter
time scales than those associated with the internal wave motions. Therefore, the e�ect of
the former can be reduced by applying a low-pass �lter in time to the time-series of �N2

obtained from vertical cross-sections of the 
ow. After �ltering we �nd that changes in
�N2 can be detected over background noise for values as small as 0:002 s�2. Quantitative
measurements, though less accurate, nonetheless provide remarkable sensitivity. Tests
in a di�erent experimental setup where the densities were measured simultaneously by
a conductivity probe and synthetic schlieren helped to con�rm the small magnitude
of this error. The tests were also used to determine the appropriate value for �Imin
and assess its control of the errors. If the wave motion is well resolved, averaging over
many pixels can give substantially narrower error bars. At any particular point, after
�ltering out noise and locally averaging, the technique generally gives measurements
accurate to 0:01 s�2. For the oscillating cylinder experiments presented here, the �N2

�eld associated with large amplitude waves can be as large as 0:2 s�2, and corresponding
measurements are therefore accurate to within 5% of actual values.
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3. Theory of Internal Waves generated by an Oscillating Cylinder

Approximate theoretical solutions for inviscid (Hurley (1997)) and viscously attenuat-
ing (Hurley & Keady (1997)) internal waves generated by oscillating elliptical cylinders
have been derived. For the special case of viscously attenuating waves generated by a
vertically oscillating circular cylinder the solutions may be compared directly with experi-
mental measurements. Here we brie
y review the results, introducing somewhat di�erent
notation than that employed by Hurley & Keady (1997), and we comment upon approx-
imations made in the theory in anticipation of discrepancies observed between theory
and experiment.
It is assumed that the cylinder is oscillating in a uniformly strati�ed 
uid with buoy-

ancy frequency N , and that the vertical velocity of the cylinder in time is given by
W exp(�{!t). The resulting two-dimensional wave motion is given in terms of the stream-
function  (x; z) exp(�{!t), such that the velocity �eld is

u = �@ 
@z

e�{!t; w =
@ 

@x
e�{!t: (3.1)

The Boussinesq approximation is employed. It is supposed that the 
ow is laminar
everywhere and that no 
ow separation occurs, and it is assumed the waves are of small
amplitude so that linear theory applies. That is, it is assumed that A=R � 1, in which
R is the cylinder radius. Then  (x; z) satis�es

N2@
2 

@x2
� !2r2 + {!�r4 = 0; (3.2)

in which � is the kinematic viscosity.
Solutions are found in a co-ordinate system with axes aligned in the along-beam (r)

and across-beam (�) directions. For the wave beam propagating upward and to the right
of the source we take

� = �x cos � + z sin�; r = x sin� + z cos �; (3.3)

in which � = cos�1(!=N ) is the angle of the wave beam with the vertical. In this co-
ordinate system positive values of � correspond to the upper 
ank of the wave beam.
The equations in this co-ordinate system are simpli�ed by applying the \boundary-layer
approximation" (Thomas & Stevenson (1972)) which assumes that the derivatives with
respect to � are everywhere much larger than those with respect to r. Thus, the following
equation is derived:

� @2 

@�@r
+

{�

2! tan�

@4 

@�4
= 0: (3.4)

It is also assumed that

� =
�

2R2! tan�
(3.5)

is small so that the thickness of the boundary layer surrounding the cylinder is small
compared to R. Then the solution to (3.4) for the right and upward propagating wave
beam is given by

 = � {WR

2
e{�

Z 1

0

J1(K)

K
exp

�
�K3�

r

R
� {K �

R

�
dK; r > 0; (3.6)

where J1 is the �rst order Bessel function of the �rst kind (Hurley & Keady (1997)). For
the beams in the other three quadrants similar solutions exist which for the vertically
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oscillating cylinder, may be determined from (3.6) using straightforward symmetry ar-
guments. If  R+(�  ),  R�,  L+ and  L� are the streamfunctions corresponding to the
wave beams in the upper right, lower right, upper left and lower left quadrants, respec-
tively, then � L+(�x; z) = � L�(�x;�z) =  R�(x;�z) =  R+(x; z). The full solution
is the superposition of the streamfunction of each of the four beams. The result exhibits
an even re
ection symmetry about the x-axis and an odd re
ection symmetry about
the z-axis. The existence of this symmetry is demonstrated and the constructive and
destructive interference of the upward and downward propagating beams to the right of
the cylinder is analysed in detail in Appendix A.
Far from the source where the overlap between any two beams is negligible, it is

su�cient to consider the structure of one beam alone. For comparison with experiments,
we wish to �nd the solution for �N2(x; z). Using linear theory, we see that

�N2 =
�{
!
N2 @

2 

@x@z
: (3.7)

Hence

�N2 = �WRN2

2! e{�
�Z 1

0

�
�1
2
(�2k4R4 + 1)k2 sin 2� + {�k4R2 cos 2�

�

J1(Rk)

k
exp(�R2k3�r � {k�) dk

�
; (3.8)

where we have de�ned k = K=R. For �xed values of r, this integral is solved using a
discrete fast Fourier transform algorithm (Presset al. (1993) x12.2).
The approximations leading to (3.4) are applicable for describing internal waves far

from the source. If, as is true in the case of the experiments presented here, the boundary
layer surrounding the cylinder has non-negligible thickness, then near the source the
amplitude of the internal waves may be su�ciently large that linear theory does not
apply. It is well known, for example, that for inviscid waves (� = 0) the streamfunction is
singular along tangents to the cylinder oriented at an angle � to the vertical. The inviscid
theory therefore predicts unphysically large velocities along these tangents (although the
width of this region is in�nitesimally thin). If viscous e�ects are not neglected, the
Hurley & Keady (1997) theory nonetheless predicts unphysically large velocities close to
the source, speci�cally for j�j ' R and r � R 1

�(2�)3
. For typical experiments reported

here, this occurs if r � 0:5R, which is su�ciently large compared with the cylinder
diameter that we expect the theory does not accurately model the coupling between
waves and the cylinder. The range of validity of the boundary layer approximation was
studied in detail both numerically and analytically by Hurley & Keady (1997).
In reality, a viscous boundary encompasses the cylinder as it oscillates and the bound-

ary layer approximation (i.e. @=@r � @=@�) breaks down close to the cylinder surface.
For small amplitude oscillations (A� R) and neglecting the e�ects of density variations
across the diameter of the cylinder, it can be shown that the boundary thickness is (e.g.
see Batchelor (1967) x5.13)

� '
p
2�=!; (3.9)

which is independent of the amplitude and size of the cylinder. Close to points where the
characteristics of waves tangentially contact the cylinder, Hurley & Keady (1997) showed
that the motion within this small region is described by r4 = 0, and that this equation
should hold for r � R

p
� =

p
�=2! tan�. This is also of the same order of magnitude

as the above estimate for the boundary layer thickness if the waves propagate at angles
su�ciently far from the horizontal and vertical (i.e. 0o � � � 90o). For experiments
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presented here, 0:22 s�1 � ! � 0:55 s�1, and 0:30 cm � � � 0:19 cm. Thus we expect
the boundary layer thickness to be approximately 10%� 20% the radius of the cylinder,
and we anticipate discrepancies on this order between the theoretically predicted beam
width and the experimentally determined width.
Because the upward and downward propagating internal wave beams are of relatively

large amplitude where they intersect, we anticipate nonlinear e�ects due to wave-wave
interactions may not be negligible. We evaluate the relative importance of these e�ects
in the following section.

4. Results

A wide range of experiments have been performed in which we examine the structure
of a beam of internal waves generated by an oscillating circular cylinder. We compare
with theory the viscous decay of the beam, examining how the structure and amplitude
of the waves vary with the amplitude and frequency of the cylinder motion.

4.1. Basic State Fields

Figure 3 shows the �N2 (�gure 3a) and (N2)t (�gure 3b) �elds for a beam of internal
waves propagating upwards and to the right of an oscillating cylinder. The �elds are
shown as the cylinder is moving downwards through its equilibrium position after six
oscillations have been completed. Superimposed in white on both images are end views
of the cylinder and its supporting rod. In this case, the cylinder oscillates at a frequency
of ! = 0:46 s�1 with an amplitude A ' 0:32cm, and the background strati�cation has
buoyancy frequency N ' 1:0� 0:05 s�1. The (N2)t �eld is calculated by comparing two
images taken one second apart, this time di�erence being chosen as a value su�ciently
small compared with the cylinder period (in this case 13:6 s) but not so small that noise
dominates the signal. A comparison of �gures 3a and 3b shows that the (N2)t �eld leads
the �N2 �eld in phase by approximately �=2. As will be shown below, this behaviour
is consistent with the transport of momentum upwards and to the right of the cylinder.
Linear theory predicts the internal wave beam propagates at an angle � = cos�1(!=N ) '

62:8� to the vertical. This may be seen by comparison with the dashed lines superim-
posed on �gure 3. The structure of the internal wave beams that propagate away from
the cylinder in the other three quadrants can be inferred by symmetry, as discussed in
Appendix A. Therein it is shown that  and w = @ =@x exhibit even re
ection symme-
try about the x-axis, and u = �@ =@z, �N2 and (N2)t exhibit odd re
ection symmetry
about the x-axis.
The 
ow around the cylinder is observed to be laminar with a Reynolds number of

Re = 10 based on the maximum velocity and displacement of the cylinder. The viscous
scale for internal waves in this experiment is, from (1.3), `� ' 1:3R. Because `� is
comparable to the cylinder radius R, we might expect to see a bimodal structure close to
the cylinder. Recall that where the beam is bimodal the envelope of the wave beam has
maxima along lines approximately tangential to the cylinder at an angle � to the vertical.
Where the beam is unimodal the envelope is largest along a line through the centre of
the cylinder oriented at the same angle �. Figure 3 demonstrates the transition from a
bimodal to a unimodal wave beam structure. In both diagrams of �gure 3 the amplitude
of the beams is largest close to the tangential lines within approximately 8 radii of the
cylinder. Beyond this distance the peak amplitude occurs along a line through the centre
of the cylinder. According to Makarov, Neklyudov & Chashechkin (1990), the maximum
distance from the cylinder centre over which the wave beam structure is expected to be
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Figure 3: a) �N2 and b) (N2)t �elds of internal waves generated by a vertically oscillating
circular cylinder (superimposed in white) with center initially at x = z = 0 cm. The barrier,
inserted to block bottom re
ections, is superimposed in white below z = 0cm near x = 10 cm.
The �elds are shown for �3 � x � 25 cm and �2 � z � 20 cm with j�N2j � 0:15 s�2 and
j(N2)tj � 0:05 s�3. Both �elds are shown as the cylinder moves downward through its equilib-
rium position.

bimodal is, from (1.4), R� ' 279R. We see that this greatly over-predicts the observed
transition distance.
The broadening of the beams where they are unimodal should, in theory, obey the

r1=3 power law found by Thomas & Stevenson (1972). However, the recorded along-
beam extent of the viscously governed regime in these experiments is not su�ciently
large to test this assertion.
By integrating the �N2 and (N2)t �elds according to (2.12), (2.13), (2.14) and (2.15),

the density, vertical displacement, and velocity �elds are calculated assuming the average
perturbation is zero over each cross-section. These �elds, corresponding to the waves
shown in �gure 3, are shown in �gure 4. In each diagram, the �elds are shown between
2 and 25 cm to the right of the cylinder and between 2 and 20 cm above the cylinder.
Figure 4a shows that the perturbations in the density �eld are of the order 10�4 g=cm3

for r > 2R. This corresponds to vertical displacements (see �gure 4b) of approximately
�0:1 cm, about 6% of the cylinder radius and about 30% of the amplitude of oscillation.
The horizontal and vertical velocity �elds are shown in �gures 4c and d, respectively, both
scales ranging from �0:08 to 0:08 cm/s. The error associated with the measured velocity
�elds close to the cylinder (r < 6R) can be as large as 50%. This occurs because errors
accumulate when integrating according to (2.14) and (2.15). Far from the cylinder the
errors are less pronounced, and we estimate errors to be smaller than 20% for r > 10R.
As expected, the velocity �elds are out of phase with the perturbation density �eld by
approximately a quarter cycle, which is consistent with there being no net mass 
ux
due to linear internal waves. Similarly, the two velocity �elds are in phase, and the
vertical 
ux of horizontal momentum �0 hu0w0i is positive. By averaging the product
of the horizontal and vertical velocity components across the width of the beam, we
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Figure 4: a) Fluctuation density (�0), b) vertical displacement (� 0), c) horizontal velocity (u0),
and d) vertical velocity (w0) �elds shown at the same time as the �elds shown in �gure 3. All four
�elds are shown for 2 � x � 25 cm and 2 � z � 20 cm with j�0j � 0:0002 g/cm3, j� 0j � 0:2 cm,
and ju0j; jw0j � 0:08 cm/s.

estimate its associated momentum 
ux per unit mass near r � 10R to be approximately
0:0005cm2=s2. Therefore, the total of the magnitude of the 
ux from all four wave beams
is approximately 0:002cm2=s2. Although beyond the scope of this paper, a more accurate
measure of the momentum
ux can be made by examining time-series of horizontal cross-
sections of the 
ow (Sutherland & Linden (1998)).
In addition to the spatial structure of the waves shown in Figures 3 and 4, a space{time

plot is constructed to show the evolution of the waves. Such a time-series may be con-
structed by extracting a vertical cross-section from numerous video images, separated by
intervals as short as 0:04s. This method is particularly useful for determining the (N2)t
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�eld, such as that in �gure 3b, since signal noise and thermal noise in the laboratory,
which occur on a faster time-scale than the waves, may be �ltered e�ciently.
Figure 5a shows the displacement of the cylinder from its equilibrium position between

t = 51:6 and 81:6 s, as determined using video images of the same experiment from which
the �N2 and (N2)t �elds in �gure 3 were calculated. (The �elds in �gure 3 are shown at
time t = 81:6s). Figure 5b shows a space{time plot of the (N2)t �eld for a vertical cross-
section 5 cm to the right of the cylinder during the same period as the plot in �gure 5a,
and for a vertical section between �2 cm and +10cm relative to the centre of the cylinder.
The �eld, which is shown for values ranging from �0:1 to 0:1 s�3, clearly illustrates that
the overlapping waves have maximum amplitude near z = �1 cm and that the waves
along the right, upward propagating beam have maximum amplitude near z = 4 cm.
The frequency of the waves is the same as that of the cylinder (! = 0:46s�1), and the
vertical phase speed, which is estimated from the slope of the phase lines at z = 4 cm,
is approximately cpz ' �0:28 cm/s. This value may be used together with linear theory
for plane internal waves to characterise the spatial structure of the wave-�eld. Using
kx = (!=cpz) cot� ' 0:84 cm�1 and kz = !=cpz ' 1:64 cm�1, the horizontal and vertical
wavelengths are approximately 7:4 cm and 3:8cm, respectively, which is consistent with
the structure of the waves shown in �gure 3 near x = 5cm and z = 4 cm.
The upward and downward propagating beams on either side of the cylinder are ob-

served to overlap. If �, de�ned by (3.5), and the wave amplitude are small then, as
shown in Appendix A, the theory of Hurley & Keady (1997) predicts that the �N2 and
(N2)t �elds should vanish along the x-axis. However, �gure 5b shows that (N2)t is not
identically zero where z = 0, but 
uctuates periodically between positive and negative
values. It is believed that this discrepancy occurs because in the experiments either the
wave amplitude or � ' 0:002 is not su�ciently small for the theory to hold. It seems
likely that large amplitude e�ects are primarily responsible because the 
uctuations are
larger closer to the cylinder, and we have observed that the 
uctuations increase with
increasing amplitude of oscillation. Interestingly, the fundamental period of the 
uctua-
tions at z = 0 is half the cylinder oscillation period. Indeed, if the oscillation period is
su�ciently long (! < N=2), this region can act as a source of internal waves with a fre-
quency double that of the cylinder frequency. The frequency doubling excitation, which
preliminary study suggests may occur due in part to nonlinear wave{wave interactions,
is currently under investigation.

4.2. E�ect of Forcing Amplitude

By suspending the cylinder at di�erent positions along the oscillating arm, the ampli-
tude of the oscillating cylinder is varied, allowing us to examine how the amplitude and
structure of the internal waves varies with the forcing amplitude.
Figure 6 shows the �N2 �eld from the same experiment examined in �gures 3, 4,

and 5: the amplitude is 0:32 cm, the cylinder oscillates with frequency 0:46 s�1, and
the background buoyancy frequency is N ' 1:0 s�1. Here, the waves are shown at four
di�erent times during one period of oscillation: T=2 (as the cylinder moves upward
through its equilibrium position), 5T=8, 3T=4, and 7T=8. Each �eld is shown over a
15 � 15 cm2 region, with the cylinder in its equilibrium position at the origin. The
scale is the same in each diagram with j�N2j � 0:18s�2. The successive �elds show
the downward propagation of phase lines in time, as expected for internal waves that
propagate energy upward.
Figure 7 shows the �N2 �eld for a beam of internal waves generated by a cylinder

oscillating with amplitude 0:213 cm, two-thirds the amplitude used to generate the waves
shown in �gure 6. The frequency of oscillation is the same as before and each diagram



Visualisation and Measurement of Internal Waves : : : 19

Figure 5: a) Vertical displacement of cylinder, determined from video images, as it oscillates for
30 s, and over the same time b) a space-time diagram of the (N2)t �eld shown for a vertical cross
section 5 cm to the right of the cylinder, the cross section extending from 2 cm below the centre
of the cylinder to 8 cm above it. The curve does not appear to be a perfect sinusoid because its
displacement is measured at coarse resolution from video: the true displacement is a smooth,
continuous variation. The scale shown in b) ranges for values of j(N2)tj � 0:1 s�3. Note, the
�elds shown in �gures 3 and 4, occur at time t = 81:6 s.

shows the �eld corresponding to the same approximate phase of oscillation as in �gure 6.
The scale for �N2 has been adjusted by a factor of two-thirds to match the relative
forcing amplitude of the case with A = 0:32cm. Thus, if changing the cylinder amplitude
results in a linear change in the internal wave amplitude, the corresponding diagrams of
both �gures would be appear to be approximately the same. In general, however, the
normalised wave amplitudes are moderately larger (by approximately 5%) for smaller
amplitude forcing.
We compare with theory the waves generated by the two forcing amplitudes by looking

at across-beam sections 3 and 9 radii from the cylinder. The positions of these cross-
sections are shown by the superimposed dashed lines on each diagram of �gures 6 and
7. Considering that no calibration or adjustment of data beyond noise �ltering has been
performed, the agreement between experiment and theory is, in general, remarkably
good.
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Figure 6: The structure of internal waves generated by a cylinder (shown superimposed in white)
oscillating vertically with large amplitude (A = 0:32 cm) at four times during one period (T ):
a) T=2, b) 5T=8, c) 3T=4, and d) 7T=8. The �rst of these corresponds to the cylinder moving
upward through its equilibrium position. All four �elds are shown for 0 � x � 15 and 0 � z � 15
with scale ranging for values of j�N2j � 0:18 s�2. The superimposed diagonal dashes indicate
where cross-sections are taken for the plots shown in �gures 8 and 9.

The cross-sections taken at a distance r = 3R from the cylinder are shown in �gure 8
with each diagram corresponding respectively to the same phase of oscillation as in
�gures 6 and 7. As in x3, the co-ordinate � is perpendicular to the beam, with � = 0
corresponding to the centre of the beam and oriented such that � increases in a direction
upward and to the left. In both �gures �N2 is normalised by the cylinder amplitude
A. The solid line shows the prediction using the Hurley & Keady (1997) theory, the
long-dashed line shows values for the larger amplitude oscillations (A = 0:32cm) while
the short-dashed line shows values for the smaller amplitude oscillations (A = 0:213 cm).
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Figure 7: As in �gure 6, except for internal waves generated by a cylinder oscillating at a smaller
amplitude (A = 0:213 cm). For comparison the �elds are shown with a scale ranging for values
of j�N2j � 0:12 s�2.

The theoretical solution is calculated for the superposition of the right, upward and
downward propagating wave beams. The theory agrees well for � > �R. The greatest
discrepancies occur in the region where the two beams overlap (� < �R). In part, this
is the result of weakly nonlinear e�ects, which are not captured by linear theory.
In each diagram of �gures 6 and 7 the phase is slightly di�erent between the exper-

iments and theory due to the manual synchronisation used to grab frames from video:
the exact time at which the frame is acquired can di�er from the desired time by up
to 0:5 s. For these experiments, therefore, the error in the phase shift can be as large
as 5%. Nonetheless, the plots for large and small amplitude forcing exhibit the same
structure for the four phase angles shown. As expected for upward propagating internal
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Figure 8: Comparison of theory (solid line) and non-dimensional amplitude �N2=A of internal
waves generated by a cylinder oscillating vertically at large amplitude (A = 0:32 cm; long-dashed
line) and smaller amplitude (A = 0:213 cm; short-dashed line) along a cross-section �5 � � � 5
perpendicular to the beam 3 cylinder radii (5:03 cm) from the cylinder centre. Large values of �
correspond to the position on the upper 
ank of the upward- and rightward-propagating beam
of internal waves. The diagrams show �N2=A at four times during one period (T ): a) T=2,
b) 5T=8, c) 3T=4, and d) 7T=8. The vertical dashed lines on each diagram indicate the extent
of the cylinder diameter. The full spatial structure of the �N2 �elds at each time is shown in
�gures 6 and 7, where the superimposed diagonal lines closest to the cylinder correspond to the
cross-sections taken in the current �gure.

waves (with negative vertical phase speed), the phase lines shift to smaller values of � as
time advances. As well as the co-ordinate axes, the vertical dashed lines on each diagram
indicate where tangents to the cylinder (in its equilibrium position) parallel to the beam
intersect the cross-section. These indicate that the separation between the two largest
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peaks of the wave amplitude is somewhat larger than the separation of the two tangents
and that this separation is larger for smaller amplitude waves.
The theory consistently under-predicts the experimentally measured amplitude and

width of the wave beams. The width is under-predicted because the theory neglects the
development of a viscous boundary layer surrounding the cylinder. According to (3.9),
the width of this layer is expected to be on the order of � ' 0:2 cm in approximate
agreement with the observed discrepancy between theory and experiment. Although the
predicted boundary layer thickness is independent of oscillation amplitude, experiments
show that the width of the beam is larger (by approximately 5%) for experiments with
A = 0:21 cm compared with those with A = 0:32 cm. The theory used to derive (3.9)
is independent of the amplitude of oscillation of the cylinder because it assumes that
A is small compared with �, which is not the case here. Therefore, a second order
correction to (3.9) is required. Neglecting the e�ects of density variations over the extent
of the cylinder, we estimate the correction is the result of a steady streaming motion in
the form of a standing wave within the boundary layer surrounding the cylinder (e.g.
Batchelor (1967) x5.13). The boundary layer 
uctuates in thickness by approximately
�2(A) = (3=2)A2=R about nodal points of the 
ow, which is a function of the oscillation
amplitude A. Thus j�2(0:32)� �2(0:213)j ' 0:05 cm represents the expected di�erence in
boundary layer thickness for the two amplitudes considered here. Nonetheless, it is not
understood why the boundary layer width is smaller for larger amplitude forcing.
The e�ect of the change in boundary layer thickness upon the normalised wave am-

plitude can be seen in �gure 8. Despite the experimental noise in the �N2 �elds, which
leads to some spurious 
uctuations, the plots show consistent di�erences between cases
with large and small amplitude forcing. When normalised by the forcing amplitude A,
the peak values of �N2=A on the lower 
ank of the beam are generally smaller for larger
A because larger shear is generated which leads to enhanced viscous dissipation. In addi-
tion, the di�erence between large and small amplitude forcing on the motion in the lower

ank of the beam increases due to the interference between the upward and downward
propagating beams that emanate from the cylinder. Where the two beams cross, two
weakly nonlinear e�ects may occur. First, large amplitude structures on small scales
may dissipate viscously at a more rapid rate than predicted by linear theory. Second, if
the waves are of su�ciently low frequency (! < N=2) then, as discussed earlier, addi-
tional energy can be radiated away from the overlapping region by waves of double the
frequency of the primary wave beams.
Further from the cylinder the asymmetric behaviour is less pronounced because the

wave beams widen due to viscous attenuation and the maximum amplitude is reached
along a line through the cylinder centre rather than at the tangents. This is evident
in �gure 9 where plots of �N2=A along cross-sections 9 radii from the cylinder centre
are compared for large and small amplitude forcing. However, at this distance from the
cylinder centre the amplitude envelope is broader and the peaks themselves not as large.
This makes di�erences between the �N2=A pro�les for large and small amplitude forcing
more di�cult to distinguish over the signal noise.

4.3. E�ect of Forcing Frequency

A series of experiments were conducted to determine how the structure of the internal
wave beams varies with the forcing frequency !. For comparison with the results in
�gures 3 to 6, the buoyancy frequency and oscillation amplitude were maintained at the
same values, N ' 1 s�1 and A = 0:32 cm, respectively.
Figure 10 shows the �N2 �eld with the internal wave beam in a co-ordinate system

(r; �). Note that a spatially anisotropic scaling of these images has been used to empha-
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Figure 9: As in �gure 8, except for cross sections taken perpendicular to the beam 9 cylinder
radii (15:08 cm) from the cylinder centre. The full spatial structure of the �N2 �elds at each
time is shown in �gures 6 and 7, with the cross section taken along the further diagonal line to
the cylinder superimposed the �gures.

sise the structure of the 
ow. Because N2 varies by �5% with height, the beam tilts
slightly upward in the (r; �) co-ordinate system which has been rotated from the (x; z)
co-ordinate system by an angle � = cos�1(!=N ). Four experiments are shown with forc-
ing frequencies of ! = 0:26, 0:36, 0:46 and 0:55 rad=s in �gures 10a to 10d, respectively.
Taking N = 1 s�1 exactly, internal wave beams are generated at angles to the vertical
� of 74:9�, 69:9�, 62:8� and 56:9�, respectively. Each �eld is shown for 0 � r � 20 cm
and �5 � � � 5 cm. The phase of oscillation of the cylinder is approximately the same
in all four cases. Experiments were performed with larger forcing frequencies, but waves
re
ected from the bottom of the tank interfered with the primary beam. For clarity those
results are not presented here.
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Figure 10: The structure of internal waves generated by a cylinder (shown superimposed in
white) oscillating vertically with large amplitude (A = 0:32 cm) at four oscillation frequencies
corresponding to internal wave beams propagating at an angle to the vertical of a) 74:9�, b)
69:9�, c) 62:8�, and d) 56:9�. The barrier, inserted in the tank to block bottom re
ections, is
apparent in diagram a) near � = �3 cm, r = 10 cm. The waves are each shown at the same
phase, when the cylinder moves downward through its equilibrium position. All four �elds are
shown in a rotated frame of reference with 0 � r � 20 cm in the along beam direction and
�5 � � � 5 cm in the cross beam direction such that positive � corresponds to the upper
side of the beam. The �eld is shown with the scale ranging for values of j�N2j � 0:18 s�2.
The superimposed vertical dashes indicate where cross-sections are taken for the plot shown in
�gure 11.
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We observe that the shallower wave beams (i.e. � large) are of moderately smaller
amplitude. The normalised peak to peak amplitude is approximately 15% smaller for � =
76:9o compared with the amplitude for � = 56:9o. This behaviour is anticipated because
energy is transported away from the source more e�ciently by horizontally oriented
waves, and therefore, the energy density close to the source is expected to be smaller.
From linear theory, the magnitude of the group velocity of inviscid, monochromatic
internal waves is

j~cg j = Nkx

kx
2 + kz

2 =
N

k�
sin�; (4.1)

in which kx, kz and k� are the horizontal, vertical and across-beam wavenumbers, re-
spectively. For waves generated by a cylinder of radius R, the dominant across-beam
wavenumber k�, is approximately independent of !, and therefore the magnitude of the
group velocity is largest when � = 90o.
Corresponding to the diagrams of Figure 10, Figure 11 plots across-beam cross-sections

of �N2=A at a distance r = 9R from the centre of the cylinder. The positions of these
cross-sections are shown by the dashed lines superimposed on each diagram of �gure 10.
The structure of the waves is approximately the same in all four cases, although the am-

plitude is somewhat smaller for shallower wave beams. However, the Hurley & Keady (1997)
theory (indicated by solid lines) signi�cantly under-predicts the peak to peak amplitude
of shallow beams (e.g. by 25% for � = 74:9o), and moderately over-predicts the peak to
peak amplitude of higher frequency waves (e.g. by 10% for � = 56:9o).
We also compare the experimental results with the theoretical predictions made by

Makarov, Neklyudov & Chashechkin (1990). For the vertically oscillating cylinder, their
solution di�ers moderately from that of Hurley & Keady (1997) in amplitude and phase,
with the factor exp({�) before the integral in (3.6) being replaced by { sin(�). As pointed
out by Hurley (1997) and Hurley & Keady (1997), although the Makarov et al result
is a solution of (3.4), in the limit of zero viscosity it does not correspond with the
exact inviscid solution given by Appleby & Crighton (1986), and the solution is therefore
unsatisfactory. The theoretical solutions by Makarov, Neklyudov & Chashechkin (1990)
are shown by the dotted lines in Figure 11. In all four diagrams, these solutions are found
to agree less well with experimental results than the solutions by Hurley & Keady (1997).
As expected, although the di�erence in amplitude between the two theoretical solutions
is small in each case, the phase di�erence is larger for shallower waves.
In Table 1 we compare quantitatively the normalised beam width and amplitude of

the �N2 �eld with the values predicted theoretically by Hurley & Keady (1997). The
nondimensional beam width for both theory and experiment is estimated as �=2R in
which � is the distance between the largest positive peaks on either 
ank of the beam.
The normalised amplitude is estimated to be half the di�erence between the maximum
and minimum value of �N2=(AN2=R2). The table shows that the theoretically pre-
dicted beam width is consistently smaller than experiments by approximately 15%. This
discrepancy is consistent with the scaling estimate for the cylinder boundary layer thick-
ness given by (3.9). The theoretically determined amplitude under-predicts experimental
values if the cylinder oscillates slowly and the wave beams are shallow. For waves that
propagate more vertically, however, theory over-predicts the experimental results.

4.4. E�ect of Nonlinear Wave-Wave Interactions

We also expect there to be enhanced attenuation of shallow waves due to nonlinear
wave-wave interactions because the upward and downward propagating beams are su-
perimposed over a larger area. To highlight the asymmetry between the upper and lower
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Figure 11: Comparison with Hurley and Keady (1997) theory (solid line), Makarov et al (1990)
theory (dotted line) and experiment (dashed line) of �N2=A of internal waves generated by a
cylinder oscillating vertically at large amplitude (A = 0:32 cm) along a cross section �5 � � � 5
perpendicular to the beam 9 cylinder radii (15:08 cm) from the cylinder centre. Large values
of � correspond to the position on the upper 
ank of the upward- and rightward-propagating
beam of internal waves. The diagrams are shown for the cylinder oscillating at four frequencies
corresponding to a wave beam propagating a) 74:9�, b) 69:9�, c) 62:8�, and d) 56:9�. The
vertical dashed lines on each diagram indicate the extent of the cylinder diameter. The full
spatial structure of the �N2 �eld at each oscillation frequency is shown in �gure 10.


ank of one of the four internal wave beams, a time-series of vertical cross-sections from
the �N2 �eld is constructed over two periods of the cylinder motion for large amplitude
oscillations at di�erent frequencies. From these, a vertical pro�le of the root-mean-square
amplitude of (N2)t is calculated. By repeatedly performing this calculation for a series of
horizontally spaced vertical cross-sections, it is possible to construct the rms amplitude
of the wave beam everywhere in space. Figure 12 shows the results of this calculation
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Theory Experiment Ratio of Thy/Expt
� width amplitude width amplitude width amplitude

74:9 1.29 0.41 1.51 0.56 0.85 0.73
69:9 1.30 0.54 1.47 0.56 0.88 0.96
62:8 1.30 0.63 1.57 0.66 0.83 0.96
56:9 1.31 0.69 1.52 0.62 0.86 1.12

Table 1. Theoretically predicted normalised wave beam widths and amplitudes
of the �N2 �eld are compared with those determined from experiments of inter-
nal waves generated by a cylinder oscillating with amplitude A = 0:32 at four dif-
ferent frequencies, each beam forming an angle � with the vertical. Widths are
normalised by the cylinder radius R = 1:67 cm and the amplitudes are normalised
by AN2=R2. The corresponding predicted and observed across-beam structures of
the waves determined 9 cylinder radii from the source are shown in Figure 11.

for two experiments in which a cylinder oscillates at a low frequency of 0:26 s�1 and at
a higher frequency of 0:55 s�1. The background buoyancy frequency in both cases is
N ' 1:0 s�1. In the sequence of vertical pro�les of rms amplitude shown in �gure 12a
for the low frequency case, the decay of the primary wave beam from a double-peaked
structure to a broad single-peaked structure is apparent. Also visible in these plots is
a smaller amplitude secondary wave beam oriented closer to the vertical. This beam is
composed of waves that evolve with double the frequency of the primary wave beam. As
such, the secondary wave beam can exist only if the frequency of the primary wave beam
is less than N=2.
Analysis of the power spectrum of the time evolution of the cylinder displacement (not

shown) indicates that the cylinder moves almost sinusoidally and that the secondary
wave beam is not excited by the �rst harmonic of this motion. It is possible that the
secondary wave beam is excited by a harmonic response of the strati�ed 
uid to the os-
cillating source, such as that studied by Bell (1975). However, preliminary work suggests
that the amplitude of the secondary wave beam increases approximately as the square of
the amplitude of the primary wave beam. Furthermore, examination shows that the inter-
ference of the upward and downward propagating wave beam along the horizontal x-axis
is not perfectly destructive, as predicted by the linear theory of Hurley & Keady (1997).
Indeed, as shown for example by Figure 5, the waves interfere along the x-axis in a way
that creates a disturbance of twice the frequency of the source. These observations lead
us to believe that the secondary beam results, at least in part, from nonlinear wave{wave
interactions of the upward and downward propagating wave beams. A detailed examina-
tion of this phenomenon is currently under progress. Figure 12b shows values of the rms
amplitude along a radial line through the centre of the cylinder (solid line), tangential to
the top of the cylinder (small dashed line) and tangential to the bottom of the cylinder
(large dashed line), the three lines being oriented parallel to the beam at an angle � to
the vertical. The plots show that the amplitude in the lower 
ank of the beam is larger
than in the upper 
ank between four and seven cylinder radii from the cylinder centre,
where the upward and downward propagating beams overlap. Beyond this, the beam has
approximately the same amplitude for �R < � < R up to 15 cylinder radii away. The
single-peaked structure develops approximately 8 cylinder radii away from the cylinder.
Figure 12c is similar to �gure 12a but is shown for an experiment with a cylinder
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Figure 12: For a cylinder oscillating with frequency 0:26 rad/s, a) 19 vertical pro�les of the
root-mean-square time averages of (N2)t, taken 2, 3, : : : , 20 cm horizontally from the cylinder
centre (each pro�le is shifted horizontally and shown ranging from 0 to 0:025 s�3. The missing
segments in the pro�les correspond to values of (N2)t > 0:025s�3 which could not be resolved,
and b) plots of these averages along sections at an angle � = cos�1(!=N) with the vertical and
passing through the cylinder center (solid line), tangential to the lower side of the cylinder (long
dashed line), and tangential to the upper side of the cylinder (short dashed line). The plots in
c) and d) are similar to those in a) and b), respectively, except they are shown for a cylinder
oscillating with frequency 0:55 rad/s. The missing segments in the pro�les for c) correspond to
values of (N2)t > 0:05s�3.

oscillating at a higher frequency of 0:55 rad/s. In comparison, the amplitude of the
waves is much larger (the curves being shown on a scale from 0 to 0:05 s�3) and the
transition from a double-peaked to a single-peaked structure is more pronounced. The
plots of the amplitude along radial and tangential lines shown in �gures 12d and 12b
illustrate that motion in the lower 
ank is of large amplitude in the overlapping region,
but further from the cylinder, motion in the upper 
ank is of larger amplitude. As in the
low frequency case, the single-peaked structure develops approximately 8 cylinder radii
away from the cylinder, but in this case is more pronounced.
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5. Conclusions

We have presented details of a new technique, we call \synthetic schlieren", in which
the amplitude of nominally two-dimensional internal gravity waves can be quantitatively
and non-intrusively measured. The technique has been applied to the classical experiment
in which internal gravity waves are generated by a vertically oscillating circular cylinder,
focusing in particular on how the amplitude and structure of the waves are a�ected by
di�erent amplitudes and frequencies of forcing.

The overall agreement between theory and experiments was very good as is demon-
strated by Figure 11 which compares theoretical and experimental cross-sections of a
wave beam at a distance 9R from the cylinder. The close agreement demonstrated that
the synthetic schlieren technique is capable of making accurate measurements and also
lends support to the theories.

However, in the experiment the displacement thickness of the oscillatory boundary
layer that surrounds the cylinder is not negligible compared to the radius of the cylinder
(as is assumed in the theory) so that the theoretically predicted beam-widths are smaller
than those observed. E�ectively, the viscous boundary layers surrounding the cylinder
act to increase the size of the source.

In general, we observe that the amplitude of the waves is proportional to the ampli-
tude of the forcing. However, the relative amplitude is moderately smaller if the cylinder
oscillates at larger amplitude. This occurs because the viscous boundary layer surround-
ing the cylinder is thinner and, therefore, relatively more energy is dissipated near the
source.

For the typical parameters of our experiments, current theories predict unphysically
large tangential velocities within half a cylinder radius of the source. This is a conse-
quence of the \boundary layer approximation" used to simplify the equations of motion
into a form with analytic solutions, but which neglects some aspects of the coupling be-
tween waves and the source. Experiments show that the Hurley & Keady (1997) theory
under-predicts the amplitude of the smaller frequency (shallower) waves by as much as
15% at a distance 9R from the source.

Where the upward and downward wave beams overlap the agreement between theory
and experiment is not so close. The theory predicts that N2

t is odd about the x-axis and,
in particular, should vanish on the axis itself. However, the experimental value of N2

t

on the x-axis, shown in Figure 5, 
uctuates non-negligibly between positive and negative
values. The e�ect is most pronounced for large amplitude forcing and, therefore, it is
believed that the 
uctuations occur because the waves generated in this case are of too
large an amplitude for the theory to apply.

The transverse structure of the wave beam is generally well predicted by linear theory.
However, whereas the envelope of the beam is predicted to be symmetric about its axis, we
observe that the envelope is asymmetric. This discrepancy is due to the interaction close
to the cylinder of the two wave beams that propagate upward and downward from the
cylinder. As a result, enhanced viscous dissipation and nonlinear wave{wave interactions
locally attenuate motion in the 
ank of the beam where it crosses the horizontal axis. At
smaller forcing frequencies when the horizontal extent of the interaction region is larger,
the overall attenuation is in fact less. This is because the wave motion is of smaller
amplitude and the nonlinear interaction is weaker.

In future work we will examine the e�ect that a di�erent source shape and excitation
motion has on the wave-�eld. The wave-�eld will be examined using a related optical
method in which the displacement of a random array of dots is determined through
pattern matching and the density gradient �eld is calculated accordingly. This method
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has the advantage of measuring horizontal as well as vertical 
uid displacements due to
the passage of internal waves.
If the 
ow is not two-dimensional, synthetic schlieren can yield useful qualitative in-

formation about the 
ow structure without the use of dyes or particles. If the 
ow
is nominally two-dimensional across the span of the tank, quantitative measurements
may be made. In particular, the technique should prove to be a powerful new tool
with which to measure the momentum and energy 
ux of spanwise uniform internal
waves. For example, synthetic schlieren has been successfully employed in a study by
Sutherland & Linden (1998) to measure the momentumextracted by internal waves from
a sheared mixing region in the wake of 
ow over a thin barrier. It is hoped that the
method should prove equally useful in measuring the impact of an internal wave �eld
incident upon and re
ecting from a turbulent patch.

The authors would like to thank B. Voisin and G. Keady for useful discussions con-
cerning the linear theory of internal waves generated by vibrating bodies. The authors
would also like to thank one of the anonymous reviewers for comments which helped to
illustrate better the comparisons between theory and experiment. This work has been
supported in part by NERC under grant number GR3/09399.

Appendix A. Symmetry and superposition of wave beams

Here we demonstrate the symmetry between the four wave beams emanating from
a vertically oscillating cylinder, and we examine analytically the superposition of the
upward and downward propagating wave beams in order to demonstrate that the �N2

and (N2)t �elds interfere destructively along the horizontal axis through the cylinder
centre.
First, we show that the streamfunction of the upward and downward propagating wave

beams to the right of the cylinder exhibits a re
ection symmetry across the x-axis.
The equation for the streamfunction of the right and upward propagating wave beam

is given by (3.6). For the discussion below, this streamfunction is denoted by  R+. The
streamfunction of the right and downward propagating wave beam is denoted by  R�.
Similarly the streamfunctions of the left, upward and downward propagating wave beams
are denoted by  L+ and  L�, respectively.
Explicit formulae for each of these four streamfunctions are given by Hurley & Keady (1997).

In particular, the rightward propagating beams are given explicitly by

 R�(r; �) = � {WR

2
e{�

Z 1

0

J1(K)

K
exp

�
�K3�

r

R
� {K �

R

�
dK; (A 1)

where r > 0 and � are the along-beam and across-beam co-ordinates, respectively, ori-
ented so that r increases with distance from the cylinder and positive values of � corre-
spond to the upper 
ank of each wave beam. (Note that Hurley & Keady (1997) used
along-beam and across-beam co-ordinates (s�; ��) de�ned with an orientation di�erent
to that used here.) The angle � is measured clockwise from the vertical.
The formulae for the leftward propagating beams were also found by Hurley & Keady (1997),

and may be simply expressed in terms of the rightward propagating beams from the re-
lations:

 L�(r; �) = � R�(r;��) (A 2)

To compare the symmetry of the wave beams in a �xed, Cartesian (x; z) co-ordinate
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system, we note that for the upward propagating beams

(r; �) = (x sin� + z cos�;�x cos� + z sin�); (A 3)

and for the downward propagating beams

(r; �) = (x sin� � z cos �; x cos� + z sin�): (A 4)

Substituting (A 3) and (A 4) for the upward and downward propagating beams, respec-
tively, in (A 1), it is a simple matter to show that

 R+(x; z) =  R�(x;�z); (A 5)

from which it follows that their superposition,  R(x; z) = ( R+ +  R�)(x; z), is even
about the positive x-axis.
In particular, at z = 0 the superposition evaluates to

 R(x; 0) = �{WRe{�
Z 1

0

J1(K)

K
exp

�
�K3�

x sin�

R
+ {K

x cos �

R

�
dK x > 0:

(A 6)

Likewise, it follows from (A2) and (A 5) that the superposition,  L, of the two leftward
propagating beams exhibit an even symmetry about the negative x-axis. Furthermore,
(A 2) shows that the wave beams exhibit an odd inversion symmetry through the origin,
so that in the �xed Cartesian co-ordinate system

 L(�x;�z) = � R(x; z) ; x > 0: (A 7)

A consequence of this relation is that the superposition of the streamfunction of all four
beams exhibits an odd symmetry about the z-axis.
Hereafter, the superposition of the four beams will be denoted by

	 =  R +  L (A 8)

From the discussion above 	(x; z) = 	(x;�z), and 	(�x; z) = �	(x; z), for all x and
z.
Because 	 is a continuous function that is even about the x-axis it follows immediately

that its partial z-derivative is an odd function and its partial x-derivative is an even
function about the x-axis. The horizontal and vertical velocity �elds for the superposition
of the two beams are given by u = �@	=@z and w = @	=@x), respectively. Therefore u
is an odd function about the x-axis and, in particular, u is identically zero on the x-axis.
In other words, the horizontal velocity �elds of the upward and downward propagating
waves interfere destructively along this axis. The vertical velocity �eld, on the other hand,
is an even function, indicating that the vertical velocity of the upward and downward
propagating beams interfere constructively along this axis.
Symmetry arguments and linear theory may likewise be employed to show that the per-

turbation density �eld and the vertical displacement �eld constructively interfere along
the x-axis.
Of particular interest in this paper is the structure and symmetry of the �N2 and (N2)t

�elds. From linear theory it can be shown that the �N2 �eld for the superposition of
the four waves is related to 	 by

�N2 =
�{
!
N2 @

2	

@x@z
: (A 9)

(This relationship was used in (3.7) to �nd �N2 corresponding to the right and upward
propagating wave beam.)
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Applying the symmetry arguments above, it is apparent that by taking the partial
derivatives of 	 with respect to both x and z yields a function that is odd about the
x-axis. Thus �N2 is an odd function about the x-axis. In particular, one expects in
theory that �N2(x; 0) = 0, for all x.
Because the waves are harmonic with frequency ! (for example, as (3.1) shows explic-

itly for the horizontal and vertical velocity �elds), the (N2)t �eld can be found in terms
of 	 by multiplying (A 9) by a factor �{!. Thus

(N2)t = �N2 @
2	

@x@z
: (A 10)

Thus, like �N2, (N2)t is odd about the x-axis and (N2)t(x; 0) = 0, for all x.
On the basis of linear theory, we therefore predict that the (N2)t �eld formed by the

superposition of the upward and downward propagating wave beams (shown, for example,
in �gure 5) should be exactly zero where z = 0. As discussed in the text, experiments
show that this is not the case presumably because the amplitude of the waves is so large
that linear theory does not apply.
We conclude this appendix by giving details of the co-ordinate transformations from

which integral solutions of �elds such as �N2 (e.g. see (3.8)) can be determined from
x and z derivatives of the streamfunction. For simplicity, we focus on the the right and
upward propagating wave beam.
From the linear transformation (A 3), horizontal (x) and vertical (z) derivatives of any

function f(x; z)! f(r; �) can be written in (r; �) co-ordinates by

@f

@x
= � cos �

@f

@�
+ sin�

@f

@r
: (A 11)

and

@f

@z
= sin�

@f

@�
+ cos �

@f

@r
: (A 12)

Thus, for the right and upward propagating wave beam (using  =  R+ to be consistent
with (3.6)) the horizontal velocity �eld is

u = �@ 
@z

= � sin�
@ 

@�
� cos �

@ 

@r
: (A 13)

Indeed, unless � is in�nitesimally small, the boundary layer approximation can be applied
(Thomas & Stevenson (1972)) to give u ' � sin�@ 

@� . Similarly, the vertical velocity �eld
is

w = � cos�
@ 

@�
+ sin�

@ 

@r
' � cos�

@ 

@�
: (A 14)

Using (3.7), the �N2 �eld for the right and upward propagating wave beam is

�N2 = �{
! N

2

�
@2 

@r2
cos� sin� +

@2 

@r@�
sin2�

� @2 

@�@r
cos2�� @2 

@�2
sin� cos �

�
(A 15)

which, in the boundary layer approximation, is

�N2 ' {

!
sin� cos �N2 @

2 

@�2
: (A 16)

In practise, we apply (A 15) to equation (3.6) to get (3.8). The approximation (A 16)
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amounts to setting � = 0 everywhere in (3.8) except where it appears in the exponential.
The computational savings in this approximation are negligible however.
Nonetheless, it is worth commenting that in our experiments � ' 0:002. Thus, discard-

ing � is equivalent to neglecting structures in the integrand of (3.8) with a length-scale
smaller than ` = 2�=k ' 2�R

p
� ' 0:02 cm. This is below the resolution of the experi-

ments reported here.
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