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The Lagrangian theory developed for fountains in a stationary fluid is extended to
predict the path and breadth of a fountain in a one- and two-layer fluid with a
moderate crossflow. The predictions compare well with the results of laboratory
experiments of fountains in a one-layer fluid. The empirical spreading parameter
determined from the one-layer experiments is used in the theory for fountains in a two-
layer crossflow. Though qualitatively correct, the theory underpredicts the height and
radius of the fountains. Similar to the behaviour of fountains in two-layer stationary
ambients, the fountain in a two-layer crossflow is observed to exhibit three regimes
of flow: it may penetrate the interface, eventually returning to the level of the source
where it spreads as a propagating gravity current; upon descent, it may be trapped
at the interface where it spreads as a propagating intrusion; it may do both, partially
descending to the source and partially being trapped at the interface. These regimes
are classified theoretically and empirically. The theoretical classification compared the
buoyancy excess of the descending flow to the density difference between the two
layers. The regimes are also classified using empirically determined regime parameters
which govern the relative initial momentum of the fountain and the relative density
difference of the fountain and the ambient fluid.
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1. Introduction
Negatively buoyant plumes, or fountains, are formed either when dense fluid is

continuously discharged upward into a less dense fluid or when less dense fluid is
continuously discharged downward into a more dense environment (Morton 1959). In
either case, buoyancy opposes the momentum of the flow until the fountain reaches a
height where the vertical velocity goes to zero. The fountain then reverses direction
and, in the absence of any background horizontal flow, returns toward the source. In
the presence of a crossflow, the fountain returns some horizontal distance away from
the source. Depending upon the strength of the crossflow, the returning fluid may or
may not interact significantly with the fluid emanating from the source.

The release of fluid heavier than the environment with or without a crossflow
has wide applications in the atmosphere, oceans and industry. The dispersion in the
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atmosphere of noxious gases heavier than air has important consequences on health
(Britter & Griffiths 1982). Particularly disastrous cases include the release of dioxin
in Seveso, Italy in 1976 and the leak calamity in Bhopal, India in 1984 (Britter
1989). A review of the circumstances surrounding some accidents as a result of the
release of heavier-than-air gases has also been recorded by McQuaid (1989). Fountains
also result from the discharge of effluents into water bodies. In particular, sea water
desalination usually results in the upward discharge of concentrated salt solutions
below the sea surface (Roberts & Toms 1987).

In the case of upwardly directed fountains, the initially rising segment of the
fountain is often more stable (with density decreasing upward) while the later
descending return-flow is unstable in the sense that heavier fluid overlies lighter fluid.
This gravitational instability causes the upper extreme of the fountain to be well
defined while the descending flow is not due to fluid ‘leaking’ out of the main flow
(Lane-Serff, Linden & Hillel 1993; Lindberg 1994; Gungor & Roberts 2009). These
types of flows are sometimes referred to as dense jets, dense gas plumes, dense plumes
or heavy gas jets (Britter & Griffiths 1982; Fay & Zemba 1986; Shaver & Forney
1988; Schatzmann, Snyder & Lawson 1993; Gungor & Roberts 2009).

One of the first experimental studies of fountains in a crosswind was by Bodurtha
(1961), who conducted small-scale experiments to understand the environmental
impact of the release of heavier-than-air gases from tall stacks into the atmosphere.
Using dimensional analysis, they derived simple formulae to predict the maximum
height and downward acceleration of the descending plumes. Measurements of the
dilution of the plume at the ground were not made but estimates were obtained by
assuming that the plume had a circular cross-section when it hits the ground.

The applicability of their expression for the maximum rise height was questioned
by Hoot, Meroney & Peterka (1973). They conducted wind-tunnel studies of fountains
in a laminar crossflow and also derived semi-empirical relations following the theory
of positively buoyant plumes to match their results. They provided expressions for
the concentration at the point of maximum rise and at the point where the centreline
touched the ground. They also observed that the cross-section of the fountain at the
maximum height was semi-elliptical and, as the plume descended, the cross-section
became more nearly circular and the vertical distribution of concentration became
more symmetrical.

Chu (1975) extended the theory on buoyant forced plumes developed by Chu &
Goldberg (1974) to the case of fountains in a laminar crossflow. The theory made use
of a single entrainment parameter to close the system of equations and it also assumed
that the horizontal velocity component of the plume was approximately equal to the
crossflow speed. The latter assumption required the plume to be well bent-over for the
equations to be applicable (Roberts & Toms 1987). The resulting formulae predicted
the trajectory of the fountain, its maximum rise height and its dilution as a function of
downwind distance.

One of the most extensive experimental studies on vertical and inclined fountains
in a crossflow was by Roberts & Toms (1987). Most of their experiments considered
the case of a fountain inclined at an angle of 60◦ to the horizontal in a current
flowing at different angles to the nozzle. They analysed the results using dimensional
analyses and length scale arguments and presented the results in terms of the Froude
number Frb = (π/4)1/4 Ua/U0, in which Ua is the crossflow speed and U0 =M−1/4

0 F1/2
0

is a measure of the average vertical speed of the fountain from source to maximum
rise. Here F0 and M0 are the buoyancy and momentum fluxes, respectively, at the
source. The maximum rise of vertical fountains was found to be strongly dependent
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on Frb being nearly constant for 0.2 < Frb < 0.8 and decreasing with Frb & 0.8. For
Frb . 0.2 the fountain falls back upon the source flow.

Using three-dimensional laser-induced fluorescence (LIF) measurements to examine
the dynamics of a fountain in a crossflow, Gungor & Roberts (2009) additionally
measured the horizontal distance of the impingement point from the source. Their
study revealed that the nature of the flow is more complex than previously thought.
In particular, with Frb = 0.9 the descending flow was found to develop two counter-
rotating vortices like those in a line thermal. These caused the downflow to bifurcate
upon impinging the ground. Their results were similar to those presented in Roberts &
Toms (1987) in that the maximum rise heights were predicted by the same equations
but with larger empirical constants determining the dilution of the flow.

Shaver & Forney (1988) theoretically modelled dense gas plumes by altering the
positively buoyant plume model developed by Hoult, Fay & Forney (1969). The
theory is an extension of the pioneering Eulerian theory of Morton, Taylor & Turner
(1956) but closes the system of equations with two empirical entrainment parameters.
The properties of the fountain are then obtained along the centreline by numerically
integrating the system of equations. Shaver & Forney (1988) also obtained asymptotic
solutions of the equations for the maximum rise height, the impingement point and the
dilution at the impingement point as functions of the stack height and the downwind
distance.

In all these studies, the ambient fluid had uniform density. The work presented here
is the next stage of a research program motivated in part to understand the evolution
of dense pollutants that disperse in the presence of an atmospheric inversion. The
first stage reported upon the behaviour of fountains in a two-layer stagnant ambient
(Ansong, Kyba & Sutherland 2008). As in that work, a similar approach is followed
here but with the additional consideration of a crossflow.

Although the generic problem of a fountain impinging upon an interface in a two-
layer fluid with crossflow has a broad range of applications, our study is motivated
by the long-range goal of understanding the dispersion of pollutants from sour gas
flares in the presence of an atmospheric inversion. Sour gas flares contain high
concentrations of hydrogen sulphide (H2S), whose molecular mass is greater than that
of air and which is deadly in concentrations as low as hundreds of parts per million.
Flaring attempts to combust the gas, converting it into relatively benign sulphuric
acid and other compounds. But studies have shown that a crosswind can significantly
reduce combustion efficiency (Johnson & Kostiuk 2000). At present it is unknown in
what concentrations the unburned and cooled gas returns to the ground. Predictions
made using the dispersion codes such as AERMOD and CALPUFF do not account
for fountain dynamics and only heuristically include the influence of atmospheric
inversions.

Here we do not consider the thermodynamics of the heating and cooling of the gas.
Instead we focus on the fundamental problem of a fountain in a moving stratified
ambient. When a fountain impinges upward upon a two-layer fluid, the descending
flow may return to the level of the source, it may become trapped at the density
interface or it may do both. In any case, the descending flow then goes on to spread
horizontally outward as a propagating gravity current.

The dynamics of fountains in a two-layer crossflow are virtually absent in the
literature. Shiau, Yang & Tsai (2007) conducted two experiments of fountains in
a two-layer crossflow and concluded that the terminal rise height decreases when
the crossflow speed increases. Here we explore a broader parameter space in the
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examination of two-layer crossflows and we extend the theory for fountains in a
stationary two-layer fluid to include the effect of moderate crossflow speeds.

In § 2 we develop a simple theory for fountains in a uniform crossflow and we
then extend it to the case of fountains in a two-layer crossflow in § 3. In § 4 we
describe the set-up of the laboratory experiments and present qualitative results. In § 5
quantitative results from the experiments are presented. We analyse the classification
of the flow regimes theoretically and empirically and we compare the measured
quantities to the theoretical predictions. In § 6 we summarize the results.

2. Theory for fountains in a uniform ambient
Here we extend the Lagrangian theory for fountains in stationary environments (Lee

& Chu 2003; Ansong et al. 2008) to include the effects of a moderate uniform
crossflow. Although the Lagrangian and Eulerian integral method both give the
same result (but with different empirical parameters) when applied to plumes, the
Lagrangian method is simpler to compute and interpret applied to fountains (Lee &
Chu 2003). First we review the theory for fountains in a stationary environment and
then we extend it to include a uniform crossflow. Throughout, the theory is developed
for a Boussinesq fluid in which the source fluid is injected upward into an ambient
fluid of moderately smaller density.

2.1. Fountains in stationary environments
The Lagrangian approach tracks a rising slab of fluid that expands as a result of
entrainment of ambient fluid. Assuming a top-hat-shaped fountain of radius r and
mean vertical velocity w, we can write the volume, vertical momentum and buoyancy
fluxes, respectively, as

Q= πr2w, M = πr2w2 and F = F0 = πr2wg′ = πr2
0w0g0

′, (2.1)

in which g′ = (% − ρa)g/ρ0 is the reduced gravity within the fountain, g0
′ =

g(ρ0 − ρa)/ρ0 is the reduced gravity at the source, r0 is the source radius, w0 is
the average vertical velocity at the source, ρa is the ambient density, % ≡ %(t) is the
density of a slab within the fountain at time t and ρ0 = %(0) is the density of the fluid
emanating from the source.

In a uniform ambient the buoyancy flux F = F0 is constant. Conservation of
momentum implies that the momentum flux of the slab changes in time due to the
buoyancy flux:

dM

dt
=−F0. (2.2)

The Lagrangian approach further makes the ‘spreading hypothesis’ that the fountain
spreads linearly with height:

dr

dz
= β, (2.3)

in which z is the vertical coordinate and β is an empirically determined spreading
coefficient. In the case of a fountain in a still ambient, Lee & Chu (2003) found
β ≈ 0.17.

Because F0 is constant, equation (2.2) dictates that the momentum flux of a slab
changes linearly in time according to

M =M0 − F0t. (2.4)



258 J. K. Ansong, A. Anderson-Frey and B. R. Sutherland

Rewriting (2.3) as dr/dt = βw, using (2.1) to write w in terms of M and using (2.4)
gives a differential equation for r(t). Solving with the initial condition r(0)= r0 gives

r(t)=
{

r2
0 +

(
4β

3
√
π

)
M3/2

0

F0

[
1−

(
1− F0t

M0

)3/2
]}1/2

. (2.5)

This describes the change in the radius of the slab with time after leaving a source of
radius r0. Using (2.3), we find the height of the slab to be

z(t)=
{(

r0

β

)2

+
(

4
3β
√
π

)
M3/2

0

F0

[
1−

(
1− F0t

M0

)3/2
]}1/2

− r0

β
. (2.6)

The momentum flux is zero when the fountain reaches its maximum height. This
occurs at time T0 ≡M0/F0. Substituting this into (2.6), the maximum height is

Hm ≡ z(T0)=
{(

r0

β

)2

+ (C H0)
2

}1/2

− r0

β
, (2.7)

in which

H0 ≡M0
3/4F0

−1/2 (2.8)

is the characteristic fountain height based upon source parameters and

C =
[

4
3β
√
π

]1/2

. (2.9)

For a fountain emanating from a point source, (2.7) reduces to the form originally
obtained by Turner (1966) through dimensional analysis:

Hm ' C H0. (2.10)

Using β = 0.17 as in Lee & Chu (2003), the proportionality constant is C ' 2.1.

2.2. Fountains in a uniform crossflow
In the above discussion we have considered the rising fountain but have not gone on to
examine the descending plume, which would interact with rising fluid. However, if the
fountain rises in a sufficiently large horizontal crossflow, it can be bent over enough
that the descending plume does not fall significantly upon the fluid emanating from the
source, as illustrated in figure 1.

Here we classify the influence of the crossflow upon the fountain by the Froude
number Fr ≡ Ua/U0, which measures the ambient flow speed, Ua, relative to the
characteristic fountain speed U0 = H0/T0 = F1/2

0 M−1/4
0 . Our definition of Fr differs

from the Froude number of Roberts & Toms (1987) by a factor (π/4)1/4 ' 0.94.
For relatively large ambient flows (Fr � 1), the relative horizontal momentum

input at the source gives rise to counter-rotating vortices. Taking into account the
resulting entrainment of ambient fluid, Chu (1975) predicted that the maximum height
should scale as the Froude number according to Hm/H0 ' 1.60Fr−1/3. For moderate
ambient flow speeds, only experimentally determined empirical predictions exist (e.g.
Roberts & Toms 1987; Gungor & Roberts 2009). In particular, these authors found
Hm/H0 ' 2.97 for 0.21< Fr < 0.85 and Hm/H0 ' 2.82Fr−1/3 for Fr > 0.85.

Here we adapt the Lagrangian method to predict, among other quantities, the
maximum height of fountains in a moderate crossflow. In the moving frame of
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z

x

FIGURE 1. Schematic of a fountain in a uniform ambient with crossflow. At the maximum
height, Hm, the fountain has radius Rm indicated by the dotted arrow. Note that the illustrated
overshoot above Hm is not accounted for by the theory.

reference of the background crossflow for sufficiently small Froude numbers, the
momentum flux at the source is predominantly vertical so we can neglect the
development of streamwise vorticity. This assumption is corroborated by observations
made during laboratory experiments.

For a slab of fluid leaving the source at time t = 0, its downstream distance from the
source at time t as a result of being carried by the background crossflow is x = Uat.
Combining this with (2.6), the path of the ascending fluid is

z(x)=
{(

r0

β

)2

+ (C H0)
2

[
1−

(
1− x

L0

)3/2
]}1/2

− r0

β
, (2.11)

in which L0 ≡ UaT0 = FrH0.
As in a stationary ambient, the maximum height of the fountain is given by

(2.7). Explicitly, assuming the source has negligibly small radius, the height is
Hm ' C H0 ' 2.1H0. The last approximation, which assumes β ' 0.17 (Lee & Chu
2003), gives a proportionality constant, C , moderately smaller than the value of 2.97
determined empirically by Roberts & Toms (1987). We attribute the discrepancy to the
fact that the fluid leaving the source was not fully turbulent in their experiments.

In a crossflow the maximum height occurs downwind of the source at x = L0. From
(2.3), the corresponding radius at z= Hm is

Rm ≡
[
r0

2 + (βC H0)
2]1/2 = r0 + βHm ' βC H0, (2.12)

in which the last approximation assumes a point source.
After reaching its maximum height the fountain falls downward as a plume. If

the Froude number is sufficiently large that the plume does not fall back upon the
source, the downflow regime of the fountain may be treated as a positively buoyant
plume with initial conditions given by the parameters at the maximum height. Unlike
a stationary fountain, a fountain in a moderate crossflow maintains its initial maximum
height rather than reaching a smaller steady-state height, as a consequence of the
descending fluid falling back upon the rising fluid from the source.
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FIGURE 2. Plot of the centreline path (thick solid line) of a fountain in a uniform crossflow
with Fr = 1 as predicted by Lagrangian theory via (2.11) and (2.14). The solution sets
β ≡ βe = 0.23 (hence C ≡ Ce = 1.80, as indicated) to be the empirical spreading parameter
determined experimentally by (5.1). The grey-shaded region indicates the extent of the radial
spreading r(x) of the fountain.

Setting τ = t − T0 as the time governing the evolution of the descending plume
which has zero momentum at τ = 0, conservation of momentum requires dM/dτ = F0

and the change in radius of the descending plume is governed by dr/dz=−β.
As before, we manipulate these equations to get a differential equation for r(τ ).

Using r = Rm at τ = 0 and then writing the result in terms of the downstream distance
x= L0 + Uaτ , the radius of the descending plume is

r(x)=
{

Rm
2 + (βC H0)

2

(
x

L0
− 1
)3/2

}1/2

, (2.13)

defined for x > L0. The height of the descending centreline is

z(x)= Hm −
{(

Rm

β

)2

+ (C H0)
2

(
x

L0
− 1
)3/2

}1/2

+ Rm

β
. (2.14)

The path of the fountain predicted by the Lagrangian theory is shown in figure 2.
Note that the top of the fountain is flat and the radius (Rm) at the maximum height
(Hm) is obtained from the fountain’s horizontal extent at this height.

By putting z = 0 in (2.14), the horizontal distance, Xg, where the fountain impacts
the ground can be determined. Substituting this in (2.13) gives the radius, Rg, at the
point of impact. These quantities are simply expressed if we assume the source has
negligibly small radius (r0� βC H0):

Xg = (1+ 32/3)L0 ' 3.08Ua
M0

F0
and Rg =

√
2βC H0 = (8β/3

√
π)

1/2 M0
3/4

F0
1/2 . (2.15)

The condition that the spreading core of the descending fountain does not
significantly impact the source is Xg > Rg. For a point source, this condition imposes a
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FIGURE 3. Schematic of a fountain in a two-layer fluid with uniform crossflow speed Ua.
The regimes characterizing the fountain’s evolution are labelled 1, 2 and 3. The interface
between the upper and lower layers is indicated by the short-dashed line. The fountain is
assumed to penetrate into the upper layer up to height Hm2 where its radius is Rm2, indicated
by the dotted arrow. Note that the theory does not account for the overshoot of the fountain
above Hm2.

lower bound on the Froude number such that

Fr >
1

1+ 32/3

(
8β

3
√
π

)1/2

. (2.16)

Using β ' 0.17 (Lee & Chu 2003) in the right-hand side of (2.16), the critical Froude
number is 0.16. In § 5 we show that our experiments imply β ≡ βe ' 0.23, in which
case the critical Froude number is 0.19. (Note that here, as in the rest of the paper,
experimentally measured quantities are denoted with subscript ‘e’.) This lower bound
is comparable to the value 0.21 obtained empirically by Roberts & Toms (1987).

Finally, we compute momentum and volume fluxes of the return flow at the level of
the source to be

Mg = F0
Xg − L0

Ua
=M0

(
Xg

L0
− 1
)

and Qg = Rg

√
πMg. (2.17)

Note that Mg ' 32/3M0 if the fountain is treated as a point source. This is more than
double the momentum flux at the source due to the fact that the descent time of the
fountain is more than twice the time taken to rise to its maximum height.

3. Theory for fountains in a two-layer ambient
Here we extend the theory presented in § 2 to the case of a fountain in a two-layer

fluid with uniform crossflow. The lower layer has depth H and density ρ1 and the
upper layer is infinitely deep with density ρ2. The speed of both layers relative to
the source is Ua. To develop the theory, the path of the fountain is divided into three
different regimes, as shown in figure 3.

Following the approach of Ansong et al. (2008), the fountain in regime 1 is treated
like a fountain in a uniform ambient until it impinges on the density interface. We
assume that the fountain penetrates substantially into the upper layer so that the
fountain beyond the interface is treated like the one-layer case but with adjusted source
conditions set by the fountain properties at the interface. From the fountain properties
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in regime 1, the mean fluxes at the interface are calculated and these are used as
source conditions for the rising fountain and descending plume in regime 2. Finally,
we compute the fluxes associated with the descending plume impinging from above
upon the interface. These are used to assess whether the plume continues to descend
into regime 3 or whether the fluid remains trapped at the interface. Each of these steps
are described explicitly below.

3.1. Equations for regime 1
In this regime the path of the fountain emanating from a source of radius r0 is given
by (2.11), valid for 0 6 x 6 X1, in which X1 is the horizontal position where the
centreline of the fountain first impinges on the interface at z= H. Explicitly,

X1 = L0

1−
{

1− 1

(C H0)
2

[(
H + r0

β

)2

−
(

r0

β

)2
]}2/3

 . (3.1)

Its radius at this height is

R1 = r0 + βH. (3.2)

Using (2.1) and (2.4) with x = Uat, we determine the momentum and volume fluxes
at the interface to be

M1 =M0 − F0
X1

Ua
=M0

(
1− X1

L0

)
, (3.3)

Q1 = R1

√
πM1. (3.4)

The buoyancy flux is constant while the fountain traverses the lower layer. Hence we
determine the density of the fountain at the interface to be

%1 = ρ1 + ρ0
F0

gQ1
. (3.5)

3.2. Equations for regime 2
To track the movement of the fountain beyond the interface, we first calculate the
buoyancy flux F1 of the fountain above the interface. Using (3.5), this is given by

F1 = Q1g(%1 − ρ2)/ρ0. (3.6)

The path of the fountain above the interface is predicted by adapting (2.11) and
(2.14) with source conditions established by the fountain radius R1 and fluxes M1 and
F1 at the interface. Up to its maximum height (for X1 < x 6 Xm2), we find

z= H +
{(

R1

β

)2

+ (C H1)
2

[
1−

(
1− x− X1

L1

)3/2
]}1/2

− R1

β
, (3.7)

in which H1 =M1
3/4/F1

1/2, L1 = Ua M1/F1 and R1 is given by (3.2). During its descent
in the upper layer the path of the fountain is given by

z= Hm2 −
{(

Rm2

β

)2

+ (C H1)
2

(
x− X1

L1
− 1
)3/2

}1/2

+ Rm2

β
, (3.8)

which is valid for Xm2 6 x 6 X2.
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At x= Xm2 ≡ X1 + L1, the fountain reaches its maximum height

Hm2 = H +
{(

R1

β

)2

+ (C H1)
2

}1/2

− R1

β
' [H2 + (C H1)

2]1/2
, (3.9)

in which the last approximation assumes a point source. The radius at this height is

Rm2 ≡ R1 + β(Hm2 − H)= r0 + βHm2. (3.10)

The horizontal location where the descending branch of the fountain impacts the
interface is given by solving z = H for x in (3.8). If we assume r0 � βC H0, this
occurs at

X2 ' X1 + L1

[
1+

{
3+ 4δ2 + 4δ

√
1+ δ2

}2/3
]
, (3.11)

in which δ ≡ H/(C H1). This result shows that the fountain returns to the interface
further downwind as the lower-layer depth becomes larger relative to C H1.

The plume radius at the interface is

R2 ' R1 +
√

2β(Hm2 − H) (3.12)

and the corresponding momentum and volume fluxes are

M2 = F1
X2 − Xm

Ua
=M1

X2 − Xm

L1
and Q2 = R2

√
πM2. (3.13)

Finally, we compute the density of the fountain at the interface to be

%2 = ρ2 + ρ0
F1

gQ2
. (3.14)

Depending upon the buoyancy of the plume relative to the lower-layer fluid, the
fountain may fall to the ground, get trapped at the interface or exhibit both regimes.
Similar to the approach of Briggs (1969) (see also Briggs 1975; Manins 1979; Weil
1988), we expect the descending flow to propagate through the bottom layer if %2 > ρ1

and is trapped at the interface if %2 < ρ1. In reality, due to inhomogeneities in the
density across the slab of fluid at the interface in experiments we expect both regimes
will occur if %2 ' ρ1. The condition that %2 < ρ1 for interface-spreading also provides
a succinct expression relating the density ratios to the ratios of the volume fluxes
in the problem: [(ρ0 − ρ1)/(ρ1 − ρ2)] < (Q2/Q0)[1 − (Q1/Q2)]. These criteria will be
examined in § 5.

Another approach that may be used to classify the regimes of flow is the method
used in the case of fountains in two-layer stationary environments (Ansong et al.
2008). The most significant factors governing the flow regimes are the relative density
differences between the two layers and fountain and the potential maximum height that
would be reached passing through the lower layer relative to the actual depth, H, of
this layer. Explicitly, the relative maximum height is characterized by Hm/H, in which
Hm is given by (2.7). If the radius of the source is sufficiently small, the relative height
is just C H0/H. The relative density differences are characterized by

θ =
∣∣∣∣ρ1 − ρ2

ρ0 − ρ2

∣∣∣∣ . (3.15)

This is defined so that θ = 0 if ρ2 = ρ1, in which case the ambient is a one-layer fluid
and the fountain must return to the level of the source, and θ = 1 if ρ0 = ρ1, in which
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case the source has the same density as the lower-layer fluid and so emanates as a jet.
In the former case the fountain must return to the ground. In the latter case the jet
impinging above the interface entrains less dense fluid and so becomes lighter than the
ambient fluid at the source. Hence the descending flow will spread along the interface
instead of the ground.

3.3. Equations for regime 3
In considering the flow in this last regime we suppose the descending plume has
enough buoyancy to penetrate beyond the interface and reach the ground. Using %2

from (3.14), the buoyancy flux of the descending plume below the interface is

F2 = Q2g(%2 − ρ1)/ρ0. (3.16)

The source momentum and volume fluxes are given by (3.13) and the source radius is
given by (3.12).

The centreline of the plume follows the path given by

z(x)= H −
{(

R2

β

)2

+ (C H2)
2

[(
1+ x− X2

L2

)3/2

− 1

]}1/2

+
(

R2

β

)
, (3.17)

for X2 6 x 6 Xg. Here H2 =M3/4
2 /F1/2

2 and L2 = UaM2/F2.
The plume contacts the ground at

Xg = X2 + L2

[{
(H + R2/β)

2− (R2/β)
2

(C H2)
2 + 1

}2/3

− 1

]
. (3.18)

The radius at the ground is

Rg =
{

R2
2 + (βC H2)

2

([
x− X2

L2
+ 1
]3/2

− 1

)}1/2

(3.19)

and the momentum flux, Mg, and volume flux, Qg, at the point of impact are

Mg =M2 + F2
Xg − X2

Ua
=M2

(
1+ Xg − X2

L2

)
and Qg = Rg

√
πMg. (3.20)

In the absence of a crossflow, fountains are often classified as ‘forced’, ‘weak’ or ‘very
weak’ based upon the value of the source Froude number Fr0 = w0/

√
(r0g′0). The

particular regime of flow gives information on whether or not the steady-state height
of the fountain depends linearly upon the source Froude number. The study by Kaye
& Hunt (2006) concluded that the transition from highly forced to weak fountains
appears to occur at Fr0 ≈ 3, while the transition from weak to very weak fountains
depends on both the Froude number and Reynolds number of the flow. The model
above was applied to experiments in which the fountain was ‘forced’ at the source
(6 < Fr0 < 21) and moderately ‘forced’ at the interface (1.5 < Fr i < 7.6). Here Fr i

is the Froude number at the interface, defined like Fr0 but with source parameters
replaced by those at the interface.

4. Experimental set-up and analyses
4.1. Experimental set-up

Most experiments were performed in an acrylic tank with inner dimensions
50 cm × 50 cm × 50 cm, with some being conducted in a tank measuring 39.5 cm ×
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39.5 cm × 39.5 cm. Here we describe the experimental set-up and procedure for the
larger tank though a similar procedure was used for the smaller tank. A total of 74
experiments were conducted: 14 in uniform (one-layer) ambients and 60 in two-layer
ambients.

The total depth of fluid within the tank was HT = 48 cm. The variations in density
were created using sodium chloride solutions, and density samples were measured
using the Anton Paar DMA 4500 density meter. In two-layer experiments the upper
layer depth was either H = 3 or 5 cm with typical interface thicknesses of 0.5 cm.
All experiments were conducted by injecting fresh water downward into a more
dense saline ambient. Because the system is Boussinesq the results are dynamically
equivalent to injecting heavy fluid upward from the bottom.

A reservoir of blue-dyed fresh water of density ρ0 was injected into the tank by a
Monostat peristaltic pump. The flow rates for the experiments, recorded by measuring
the total volume released during an experiment, ranged from 0.95 to 2.73 cm3 s−1. The
flow was injected through a r0 = 0.2 cm radius nozzle fitted with a fine mesh having
openings of 0.05 cm to ensure the flow was turbulent at the source. The Reynolds
number of the experiments, defined as Re = w0D0/ν, ranged from 300 to 865, where ν
is the kinematic viscosity of water and D0 = 2r0.

A crossflow was simulated by connecting the nozzle to a horizontal traverse that
moved at speeds ranging between 0.11 and 0.85 cm s−1. To avoid downwash effects,
the nozzle was usually placed just a few millimetres (∼0.3 cm) into the top-layer fluid.
There was negligible disturbance to the top-layer fluid as a result of the horizontal
movement of the nozzle except for small capillary waves.

The experiments were recorded using a Sony DCR-TRV6 digital camera situated
300 cm from the front of the tank. The camera was situated at a level parallel
to the upper mid-depth of the tank and the entire tank was in its field of view.
Fluorescent lighting was placed 10 cm behind the tank to illuminate the set-up. In a
few experiments, a second camera was placed above the tank and looking down on the
tank surface at an angle of 45◦ from the horizontal.

The experiments were analysed using the Image Processing Toolbox in MATLAB.
These analysis methods are described below.

4.2. Qualitative analyses
Although the experiments were performed with source fluid being injected downwards,
for ease of comparison with theory and the atmospheric application in question we
present snapshots of experiments flipped upside-down so that it appears as if the fluid
is injected upwards. Correspondingly, we refer to the motion of the fluid from the
source as being ‘upward’ and of the return flow being ‘downward’. Also the fountain
source was towed through a stationary ambient. However, using the language of a
crossflow over a stationary source, we refer to the horizontal motion of the gravity
currents at the ‘ground’ moving toward the source as ‘upstream’ and moving away
from the source as ‘downstream’.

4.2.1. One-layer experiments
Figure 4 shows snapshots of a fountain in a one-layer crossflow at six different

times after the injection of dyed fluid started at t = 0. In these images, the initial
background image was subtracted to accentuate intensity differences due to the
dyed fountain. In the experiments fresh water was injected with a volume flux of
Q0 = 2.73 cm3 s−1 into a salt water ambient of density ρ1 = 1.0037 g cm−3. Dividing
by the area of the nozzle πr0

2 = 0.126 cm2, the initial velocity was w0 = 21.7 cm s−1.
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FIGURE 4. Snapshots with background subtracted of a fountain in a one-layer crossflow
at the six times indicated after the fluid is first injected at t = 0. Experimental parameters
are Q0 = 2.73 cm3 s−1, |ρ0 − ρ1| = 0.0055 g cm−3 and Ua = 0.85 cm s−1. The corresponding
Froude number is Fr = 0.61 and characteristic horizontal and vertical length scales are
L0 = 3.44 cm, and H0 = 5.58 cm: (a) t = 2 s; (b) t = 4 s; (c) t = 6 s; (d) t = 10 s; (e) t = 12 s;
(f ) t = 14 s.

From these parameters we compute the momentum flux at the source to be M0 =
59.2 cm4 s−2 and the buoyancy flux is F0 = 14.7 cm4 s−3. Hence the characteristic
height and time scales are H0 = M0

3/4/F0
1/2 = 5.6 cm and T0 = M0/F0 = 4.0 s,

respectively.
The source moved from right to left at a speed of Ua = 0.85 cm s−1. From this

we compute the characteristic horizontal length scale to be L0 = UaT0 = 3.4 cm. The
Froude number is Fr = Ua/(H0/T0)= 0.61.

Consistent with the moderate value of the Froude number, there was negligible
interaction between the ascending and descending flows. The snapshots show the
characteristic widening of the fountain as it entrained fluid from the surrounding
homogeneous ambient and travelled mainly upward due to its initial momentum
(figure 4a,b). The fountain reached its maximum height at t ∼ 6 s (figure 4c). The
fountain descended as a positively buoyant plume in the lee of the source at t ∼ 10 s
(figure 4d) and reached the ground at t ∼ 12 s (figure 4e). Afterward the dyed fluid at
the ground spread horizontally outward while the fountain itself could be considered to
evolve in a statistically steady state.

In this experiment, the fountain fell almost directly upon the original position of the
source. This is apparent as the ‘ghost-image’ of the original nozzle’s position which
whites out the plume after the initial image has been subtracted (figure 4f ). This
demonstrates that the horizontal momentum flux associated with the towed source is
negligible compared with the vertical momentum flux: except for horizontal motion
associated with mixing, injected fluid parcels effectively leave the source and move
vertically up then down, returning approximately to the location from which they were
injected. Consistent with theory and the observations of Gungor & Roberts (2009), the
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FIGURE 5. Horizontal time series taken at z = 0 and showing the downstream and upstream
advance of gravity currents that result from a fountain in a one-layer crossflow with
Ua = 0.64 cm s−1 (Fr = 0.48). The fluid emanating from the source is indicated with an
arrow.

ascending fountain followed a steep trajectory whereas the return flow descended with
a shallower slope.

Once the fountain impacted the ground, it spread in different directions. Unlike
fountains in stationary environments in which the descending flow spread radially
about the source (Ansong et al. 2008), these gravity currents were not axisymmetric
and showed more complicated behaviour.

To examine the advance of the gravity currents, we constructed horizontal time
series at the level of the source as shown in figure 5. The time series captured
the gravity currents propagating upstream and downstream as well as the horizontal
translation of the fluid emanating from the source. In this experiment, with
H0 = 2.0 cm and Fr = 0.48, the fountain first returned to the ground at t ∼ 3 s. The
upstream currents caught up with the source flow at t ∼ 7 s and thereafter advanced
in the laboratory frame at approximately the same speed as the towed source. In the
source frame, the upstream gravity current was nearly stationary. Gungor & Roberts
(2009) observed that the (source-relative) upstream flow ceased for values of Fr
between 0.25 and 0.39, a range moderately smaller than the Froude number of the
experiment shown in figure 5. The downstream currents propagated at almost constant
speed away from the source.

4.2.2. Two-layer experiments
In the presence of a two-layer environment, the descending flow of a fountain may

go back to the level of the source or it may mix sufficiently with the second layer
so that it returns just to the interface. In some circumstances, it may do both. In this
two-layer experiment the ratio of the source volume flux to the volume flux at the
interface (Q0/Q1) lies between 0.16 and 0.30.

Figure 6 shows snapshots of a fountain in a two-layer fluid taken at six
different times after the start of an experiment. At the interface, situated H = 5 cm
above the source, the density jumps by |ρ1 − ρ2| = 0.0018 g cm−3. The fluid is
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FIGURE 6. Snapshots at the times indicated of a fountain in a two-layer crossflow with
the fountain returning to the ground. The horizontal dashed line indicates the height of
the interface. Experimental parameters are Q0 = 2.7 cm3 s−1, |ρ0 − ρ1| = 0.0029 g cm−3,
|ρ0 − ρ2| = 0.0047 g cm−3, H = 5 cm and Ua = 0.85 cm s−1. Other related parameters are
Fr = 0.85, L0 = 6.4 cm and H0 = 8.2 cm: (a) t = 2 s; (b) t = 4 s; (c) t = 6 s; (d) t = 10 s; (e)
t = 12 s; (f ) t = 14 s.

injected at the source with momentum and buoyancy fluxes M0 = 60.8 cm4 s−2 and
F0 = 7.67 cm4 s−3, respectively. The corresponding characteristic height of the fountain
is H0 = 7.9 cm, implying that the fountain should penetrate into the upper layer.
Indeed this is evident in the images which show the fluid passing into the upper
layer without noticeable change in structure (figure 6a,b). The fountain reached the
maximum height at t ∼ 6 s (figure 6c) and then descended back through the interface,
returning ultimately to the ground (figure 6d–f ).

In contrast, figure 7 shows snapshots of a two-layer experiment in which the
returning flow became trapped at the interface. Although the tow speed, source volume
flux and lower-layer depth are the same as the experiment shown in figure 6, the
primary difference here is that the density jump between the lower- and upper-layer
fluids is greater. Here |ρ1 − ρ2| = 0.0038 g cm−3. In comparison with the previous
case, after penetrating into the upper layer the fountain entrains relatively less dense
fluid, making the fountain itself less dense. The dilution of the fountain is sufficient
to make it buoyant relative to the lower layer when it returns to the interface.
Figure 7(d) shows that the descending fluid reached the interface and overshot it
due to its momentum. At subsequent times (figure 7e,f ) the descending fluid continued
to overshoot the interface and rose back to spread horizontally around the interface.
This behaviour is similar to what was observed in fountains in two-layer stationary
environments, although in that case the spreading layer was symmetric about the
central core of the fountain (Ansong et al. 2008).

Similar to the one-layer experiments, horizontal time series (not shown) of gravity
currents intruding on the interface or propagating along the ground were observed to
spread initially at a constant speed.
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FIGURE 7. As in figure 6 but showing snapshots of a fountain in a two-layer crossflow with
the fountain returning to the interface alone. Experimental parameters are Q0 = 2.7 cm3 s−1,
|ρ0−ρ1| = 0.0025 g cm−3, |ρ0−ρ2| = 0.0062 g cm−3, H = 5 cm and Ua = 0.85 cm s−1. Other
related parameters are Fr = 0.91, L0 = 7.5 cm and H0 = 8.2 cm: (a) t = 2 s; (b) t = 4 s; (c)
t = 6 s; (d) t = 10 s; (e) t = 12 s; (f ) t = 14 s.

5. Results and comparison with theory
Here we present the experimental results and compare them with one-layer and two-

layer theory. The one-layer experiments are used to determine the empirical parameter
β, which denotes the relative spreading rate of the plume. As well as to quantify
the maximum penetration height of fountains in one- and two-layer crossflows and
characterize the various regimes of flow that occur when fountains evolve in two-layer
ambients.

5.1. One-layer experiments

To compare the path of the fountain with theory, we first constructed the average of a
sequence of snapshots, each shifted horizontally so that the source was situated at the
same location. Averaging was performed over 5 s beginning from the time when the
fountain first returned to the level of the source. Figure 8(a) shows the corresponding
averaged image for the experiment shown in figure 4. Superimposed on this image we
have overlaid the theoretical path given by (2.11) and (2.14). The theory satisfactorily
shows the steep rise to the maximum height and the gradual descent back to the
ground.

Constructing the theoretical curve first required the empirical determination of the
spreading parameter β. To do this we measured the maximum height of fountains
in a one-layer fluid with crossflow for a range of experiments with varying Q0,
|ρ0 − ρ1| and Ua. The results are shown in figure 9(a), which plots the measured
values of the maximum height Hme against the characteristic height H0 determined
from experimental parameters using (2.8). A best-fit line through the data gives a
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FIGURE 8. Shifted and averaged images with superimposed path predicted by theory for a
fountain in (a) a one-layer fluid and (b) a two-layer fluid. The experimental parameters for (a)
and (b) are the same as for those in figures 4 and 6, respectively.
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FIGURE 9. (a) The measured maximum height Hme plotted against the characteristic height
H0, and (b) the measured radius at the maximum height Rme versus the radius Rm predicted by
(2.12) for fountains in a one-layer crossflow. The typical errors in measurements are indicated
in the top-left corner of each plot.

relationship of the form

Hme = (1.80± 0.05)H0. (5.1)

Using (2.9) and the point-source approximation in (2.10), we thus determine the
spreading parameter to be β ≡ βe ' 0.23 ± 0.05. This is greater than the value 0.17
obtained in the case of stationary fountains (Lee & Chu 2003). The difference is
attributed in part to the turbulent nozzle we used and also to our indirect method of
finding β from Hm. Although our comparison assumed a point source of flow, it did
not significantly affect our results because the source radius was only a few per cent of
the typical maximum heights measured. Following Morton (1959), we calculated the
virtual origin from the source fluxes and found it to be around 1.0 cm.

The corresponding value of Hm0/H0 ' Hme/H0 ≡ Ce = 1.80 is lower than the value
2.97 obtained by Gungor & Roberts (2009). The discrepancy is attributed to the fact
that the nozzle in their experiments was not fitted with any mesh to trigger turbulence
at the source and so the fountain entrained less ambient fluid near the source (Morton
1959), retarding its spreading with height.
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FIGURE 10. (a) The measured horizontal distance of the impact point Xge versus the
theoretical value Xg, and (b) the measured radius at the impact point Rge versus the theoretical
value Rg, of fountains in one-layer crossflows. The typical error bars are indicated in the upper
left-hand corner of each plot.

The dilution of the fountain at the maximum height is determined by its radius,
Rm (Chu 1975; Middleton 1986). For a range of experiments we measured the radius
at the maximum height Rme. These are compared with the theoretical value given by
(2.12) in figure 9(b). The plot shows a relationship of the form

Rme = (2.12± 0.06)Rm. (5.2)

The measured values are consistently higher than predicted. We attribute the
discrepancy to interactions between the rising and descending branches of the fountain,
which overlap near its top. Although not apparently affecting the path of the fluid in
the fountain, the interaction causes the rising fluid to entrain into the descending flow,
resulting in a relatively larger width at the maximum height. Moreover, the vertical
position of the centreline at the maximum height is difficult to locate as a result of the
merging of the upward–downward flows.

Next we focus on the properties of the fountain where it impacted the ground.
The horizontal distance from the source, Xge, where the centreline of the fountain
reaches the ground, was measured as the central location where fluid from the fountain
contacted the ground and begins to spread out. Figure 10(a) compares this with the
theoretical value Xg given by (2.15). The best-fit line through data determined in a
range of experiments reveals a relationship of the form

Xge = (0.88± 0.03)Xg. (5.3)

That the theory moderately overestimates the measured value is attributed to the fact
that the theory neglects interactions between the upward and downward branches of
the fountain near its maximum height. By entraining part of the rising fluid, the
descending plume is moderately more dense than theory predicts.

The relationship between the measured average radius of the fountain, Rge, at the
impingement point and the theoretical relation in (2.15) is shown in figure 10(b). In
these one-layer experiments, the measured radii at the point of impact are the averages
of two independent measurements, one from the side-view camera and the other from
a second camera looking down on the tank surface at an angle of 45◦. The data show a
relation of the form

Rge = (0.87± 0.13)Rg. (5.4)

The scatter in this plot is due, in part, to the difficulty in accurately measuring
the width of the fountain after impact: once the fountain impacts the ground, it
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immediately begins to spread outward in all directions. A second reason is the shape
of the fountain at the point of impact. The shape is not completely circular as the
theory assumes.

In most experiments horizontal time series show that the currents spread at a
constant speed in the downstream direction after the fountain impacted the ground.
This result is consistent with the theory first proposed by Kotsovinos (2000), and
with observations by Ansong et al. (2008) of fountains in stationary ambients and by
Ansong & Sutherland (2010) of buoyant plumes in a uniformly stratified environment.
Upstream currents were not measured because of difficulty in distinguishing their
fronts from the upward flow of the fountain.

Although we measured the speed of these currents, unlike the results of a stationary
fountain (Ansong et al. 2008) we found no correlation between the measured speeds
and the characteristic speed based upon the fluxes Mg and Qg at the ground. Likewise
there was no obvious correlation between the measured speeds and Ua.

5.2. Two-layer experiments

Figure 8(b) shows the shifted and averaged image of snapshots taken from the
experiment shown in figure 6. Upon this image, we have overlaid the theoretical
path in the three regions described in § 3 given by (2.11), (3.7), (3.8) and (3.17). In
applying this theory, we used the value β = βe = 0.23, determined from the one-layer
experiments. The comparison shows that the theory satisfactorily describes the path of
the fountain.

5.2.1. Return-flow spreading characterization
Three types of spreading flow were observed in the experiments: ‘ground-spreading’,

‘interface-spreading’ and ‘dual-spreading’. The first refers to the case in which the
descending flow penetrates the interface and returns to the level of the source. The
second refers to the case in which the return flow is trapped at the interface. In the last
case, both circumstances occur. Cases in which the rising fountain impacts the density
interface without penetration were not investigated in this study.

To predict the type of spreading, we compared %2, given by (3.14) to the lower
layer density, ρ1. The descending flow is expected to penetrate the interface if
%2 > ρ1, in which case the fountain should become ground-spreading. If %2 < ρ2, the
fountain should be interface-spreading. (Of course, these theoretical criteria are posed
for a fountain initially injected upward; in our experiments, for which the fountain
is injected downward, the conditions are reversed. In the discussion that follows,
however, we continue to use the language appropriate for upward-injected fountains.)
Dual-spreading is expected if %2 ' ρ1.

In the case of ground-spreading fountains, the prediction of theory is good if
(%2 − ρ1)/ρ0 & 0.0001 while interface trapping is well predicted if (%2 − ρ1)/ρ0 .
0.0002. However in experiments in which dual-spreading was observed, there were
large variations in the relative density difference within the range |%2 − ρ1|/ρ0 . 0.002.
In many of the dual-spreading experiments the spreading flow was observed to
be primarily interface-spreading but with some fluid raining out of the intrusion
eventually spreading at the ground. Typically this results because the horizontal density
profile across the descending plume is not in fact uniform: the outer part of the
descending flow is less dense than the core. For dual-spreading currents the extremities
of the plume become trapped at the interface while the fluid near the core eventually
descends to the ground.
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FIGURE 11. Regime diagram showing the circumstances under which the return flow of a
fountain spreads at the level of the source (open circles), at the interface (open squares), or
both. The dashed line represents an empirical formula that separates the two regimes and is
given by (5.5).

We found that the distinction between ground-spreading and interface-spreading
regimes, though less rigorous on physical grounds, could conveniently be characterized
by two parameters: the relative density difference θ ≡ (ρ1 − ρ2)/(ρ0 − ρ2) (see (3.15)
and the discussion below), and the predicted maximum height relative to the lower
layer depth, Hm/H, in which Hm is given by (2.10). Both parameters are readily
determined from the source conditions. The corresponding spreading-regime diagram
is plotted in figure 11. The diagram clearly shows separation in parameter space
between the ground-spreading and interface-spreading flows. The boundary separating
the regimes is given approximately by the empirical function

θ = 0.1+ 1

(Hm/H − 1.1)3
, (5.5)

and is plotted as the dashed line in figure 11. If θ > 0.1, we find intrusions form if
Hm & 2H to 3H. In this case, the fountain penetrates sufficiently deep into the upper
layer that the rising and descending fluid entrains the sufficiently less dense fluid to be
buoyant when the fountain returns to the interface. If Hm . 2H the descending flow is
found to return to the ground irrespective of the value of θ .

For any value of Hm/H, the fountain returned to the ground if θ < 0.1. This
occurred either because the fountain did not penetrate significantly into the upper layer,
in which case there was little mixing with this less dense fluid, or because the density
difference between the two layers was so small, in which case the ambient acted
effectively as a one-layer fluid.

Qualitatively similar behaviour was observed in the case of a two-layer fountain
with no crossflow (Ansong et al. 2008). In that study the fountain returned to the
ground for any Hm/H if θ < 0.15. By reducing mixing between the rising and falling
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FIGURE 12. (a) The measured maximum height Hme plotted against the predicted height Hm2,
and (b) the measured radius at the maximum height Rm2e versus the radius Rm2 predicted
by (3.10) for fountains in a two-layer crossflow. The best-fit line through each data set is
indicated by the dashed line.

fluid in a fountain, a moderate crossflow acts to lower this threshold, though not
significantly. Due to the development of streamwise vorticity and consequent enhanced
entrainment in a strong crossflow, the threshold is expected to lower further, though
this has not been examined in our experiments.

5.2.2. Maximum height
As in the one-layer experiments, we measured the maximum height, Hme, as the

top of the fountain determined from averaged and shifted snapshots of the experiment
as shown in figure 8(b). In figure 12(a), these are plotted against the height, Hm2,
predicted by (3.9) using the values β = βe and C = Ce determined from our one-layer
experiments. The best-fit line through the data gives the relationship

Hme = (1.24± 0.04)Hm2. (5.6)

The two-layer theory underpredicts the maximum height by about 25 %, which is some
indication of the errors associated with determining βe through the maximum height of
a one-layer fountain.

Figure 12(b) plots the radius at the maximum height against the radius, Rm2,
predicted by (3.10). The best-fit line through the data gives

Rm2e = (1.57± 0.13)Rm2, (5.7)

and shows, similar to the one-layer case, that the theory underestimates the radius at
the maximum height. Note that figure 12(b) and all other figures in the rest of the
paper were plotted for experiments in which the lower edge of the fountain at the
maximum height clearly penetrated the interface.

5.2.3. Impact position and radius
We measured the horizontal position where the downflow impinged on the density

interface (for fountains that exhibited interface and dual regimes) or the ground.
Measurements were taken only from experiments in which there was substantial
penetration into the upper layer. Figure 13 compares the result with theoretical
predictions given by (3.11) and (3.18). The best-fit line through the data gives

X2e = (1.07± 0.11)X2, (5.8)
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FIGURE 13. Experiments of two-layer fountains showing (a) the measured horizontal
position of the point where the fountain impacts the interface, X2e, versus the theoretical
value, X2 (3.11), for fountains trapped at the interface or exhibiting both regimes, and
(b) the measured horizontal position where the fountain impacts the ground, Xge, versus
the theoretical value, X2g (3.18). The best-fit line through the data is indicated by the dashed
line.
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FIGURE 14. Experiments of fountains in a two-layer crossflow showing (a) the measured
radius at the point where the fountain impacts the interface, R2e, versus the theoretical value,
R2 (3.12), for fountains trapped at the interface or exhibiting both regimes, and (b) the
measured radius at the point where the fountain impacts the ground, Rge, versus the theoretical
value, Rg (3.19).

Xge = (1.02± 0.03)Xg. (5.9)

The radius of the downflow at the density interface (for fountains that exhibited
interface and dual regimes) or the ground were also measured. Figure 14 plots these
results. The predicted relations given by (3.12) and (3.19) are compared respectively to
the observed values, R2e and Rge, to get

R2e = (0.75± 0.16)R2, (5.10)

Rge = (0.89± 0.01)R2g. (5.11)



276 J. K. Ansong, A. Anderson-Frey and B. R. Sutherland

6. Summary and conclusions
We have extended the Lagrangian theory for fountains in stagnant environments to

the case of fountains in one and two layers with moderate crossflows characterized
by Froude numbers between 0.4 and 0.8. Unlike stationary fountains in a one-layer
fluid, because a fountain in a moderate crossflow falls negligibly back upon itself
the steady-state height equals the initial maximum height. This measured height is
consistent with measurements of the maximum height of stationary fountains (Turner
1966, e.g.).

From experiments on turbulent fountains in one-layer crossflows, we determined
the value of the empirical spreading constant β ' 0.23. In general, there was
good agreement between theory and experiment for these one-layer experiments. In
particular, the path and the horizontal position of the point of impact were well
determined.

The model could easily be refined by incorporating a different spreading coefficient
for the returning plume. However, because the values of β for plumes in a crossflow
range widely (between 0.34 and 0.62: Lee & Chu 2003), we chose a single spreading
coefficient to keep the interpretation of our results conceptually easier.

Using the value of β determined from the one-layer experiments in the theory
for two-layer fountains in a crossflow, we found that the maximum height was
underpredicted by 25 %. Good agreement was found for the horizontal position where
the fountain impinged upon the interface or the ground, though the radius at the point
of impact moderately underpredicted what was observed.

We used two methods to classify the spreading-regimes of flow that result when
a fountain in a two-layer fluid returns to the interface through which it initially
passed. The theoretical classification compared the density of the return flow at
the interface to the density of the lower layer, predicting that the fountain should
return to the ground if it was more dense. The agreement between theory and
experiment was fairly good considering the simplifying assumptions of the theory.
The empirical classification determined whether the fountain was interface-spreading
or ground-spreading through two non-dimensional parameters that could be readily
computed from source conditions: θ = (ρ2 − ρ1)/(ρ2 − ρ0) and Hm/H. We formulated
the empirical function θ(Hm/H) that well separated the regimes. The results were
similar to those of fountains in stationary ambients (Ansong et al. 2008): if Hm . 2H,
the descending flow returned to the level of the source irrespective of θ , but if
Hm & 2.5H, the return flow spread at the interface if θ & 0.1.

In both the one- and two-layer experiments, we observed that the initial downstream
spreading speeds of currents, whether at the ground or interface, moved at
approximately constant speed. However, there was no obvious relationship between
this speed and the parameters of the experiment as was found for fountains and
plumes in stationary environments (Ansong et al. 2008; Ansong & Sutherland 2010).
The propagation of gravity currents arising from fountains in both one- and two-
layer environments requires further investigation, particularly as these are relevant to
the motivating problem of understanding pollutant dispersion in the presence of an
atmospheric inversion.
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