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Abstract

Numerical simulations of internal waves that are generated from eddies within a mixed region
are described and are directly compared to laboratory observations. The mixed region is created
in the laboratory by an oscillating grid at the top of a uniformly salt-stratified region. A tank with
a length-to-width ratio of 5:1 is used in order to visualize the internal waves and, as such, large-
scale waves are produced from a mean circulation which develops in the mixed region. In addition,
smaller-scale waves are generated from the turbulent eddies. Fully non-linear numerical simulations in
two dimensions of a mixed region overlying a uniformly stratified region are performed to investigate
separately the large-scale and small-scale generation of waves from a mixed region, and the qualitative
results compare well with the experimental results. This suggests that the first order dynamics of the
laboratory experiments may be captured by the simulations of the two-dimensional model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Earth’s climate is significantly influenced by the meridional transport of heat by
the general circulations of both the atmosphere and oceans. It is currently believed that
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the ocean is responsible for 8% of the transport of heat in the southern hemisphere and
22% in the northern hemisphere(Trenberth and Caron, 2001). The vertical mixing of
heat across density surfaces in the ocean is a vital step in ocean circulation. Determin-
ing the vertical mixing rate is difficult because ocean models cannot resolve the scales
of turbulent motions and although ocean turbulent dissipation rates have been measured
for numerous years, it is impractical to measure the turbulent dissipation rates at all lo-
cations throughout the oceans. An understanding of the mechanisms of turbulent mix-
ing is necessary in order to parameterize the small-scale processes for use in large-scale
ocean models.

Until recently, it was assumed out of simplicity that diapycnal mixing occurred uni-
formly throughout the ocean interior. A clear contradiction of this assumption was re-
vealed by observations of enhanced mixing in the deep ocean during the Mid-Atlantic
Ridge Tracer Release Experiment,(Polzin et al., 1997; Ledwell et al., 2000)in which
large turbulent dissipation rates were found over the rough, steep slopes of the ridge.
Egbert and Ray (2000)used satellite altimetry data to estimate the dissipation of barotropic
tidal energy throughout the oceans and showed that between 25% and 30% of the to-
tal tidal dissipation takes place in the deep ocean, generally near areas of rough to-
pography.St.Laurent and Garrett (2002)calculate that almost all of the power in the
barotropic tide is converted to internal tides, which eventually dissipate, thereby mixing the
deep ocean.

The emphasis on the properties of the observed wave field generated by flow over bottom
topography vary with the observation time, as depicted in the schematic ofFig. 1. Over very
long times relative to the inertial period (tobs � Tinertial, whereTinertial ≡ 2π/f andf is the
Coriolis frequency) the long-term properties of the internal tides can be observed. Over
intermediate times, on the order of a day, the tidal flow can be viewed as uniform flow
over topography. On very fast time-scales, such as hours or minutes, the details of the
small-scale processes such as turbulence generated by flow over rough topography can be
observed.

Much attention has been devoted to the investigation of the conversion of power from
the barotropic tide to internal (baroclinic) tides by both supercritical and subcritical topog-

Fig. 1. Different time-scales for observations of wave fields. (a) Time-scales of observations longer than the inertial
period result in measurements of average statistics of internal tides. (b) On time-scales on the order of the inertial
period, the motion of the tides can be locally viewed as uniform flow over topography, with internal waves viewed
as lee waves. (c) On very short observation time-scales, the small-scale generation mechanisms can be considered.
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raphy (e.g. recently byLlewellyn Smith and Young (2002), Balmforth et al. (2002)and
St.Laurent and Garrett (2002)). Here, we discuss the possibility of the third generation sit-
uation depicted inFig. 1c, in which non-hydrostatic internal waves are generated from the
turbulent eddies.

Another potentially important source for turbulence-generated waves in the ocean is
the surface mixed layer.Munk and Wunsch (1998)estimated that wind-generated internal
waves may provide half of the energy needed for mixing the ocean interior. Although inertial
waves created by large motions such as severe storms are likely the main source of energy,
the role that the small-scale internal gravity waves play is unknown.

We have used oscillating grid experiments in the laboratory to study the wave field in a
uniformly stratified region generated from a turbulent layer(Dohan and Sutherland, 2003).
The emphasis of the majority of past oscillating-grid studies has been on the properties of
the turbulent region, such as examining the entrainment rate(Linden, 1975; E and Hopfin-
ger, 1986). There have been some theoretical(Fernando and Hunt, 1997), experimental
(McGrath et al., 1997)and numerical(Briggs et al., 1996)studies to examine the inter-
nal waves, although the waves were on the interface between the turbulent region and the
approximately quiescent region below.

The emphasis of our studies has been on the vertically propagating wave field within the
quiescent region, rather than on the turbulence or interfacial waves. We have been using
numerical simulations to simulate a mixed layer overlying a stratified region in order to ex-
amine further the generation of internal waves from a mixed region. Although we generate
downward-propagating waves from the base of a turbulent mixed region, we are in the pa-
rameter regime in which the Boussinesq approximation is applicable and the results are also
applicable to upward-propagating waves such as described above. In this paper, we quali-
tatively compare the wave field generated in the laboratory experiments with the numerical
simulations as a step to understanding the general properties of turbulence-generated waves.
We demonstrate that the features and trends of the laboratory wave field are reproduced in
the two-dimensional numerical model.

2. Set-up

2.1. Laboratory experiments

A series of oscillating grid experiments in a salt–water tank were performed in order to
examine the properties of the internal wave field generated from the turbulence in a mixed
region.

An oscillating grid was used to create a mixed region at the top of a tank filled with
uniformly stratified salt water. The tank was a transparent perspex tank with dimensions
L = 47.6 cm,W = 9.7 cm andH = 49 cm. The narrow width of tank, relative to the length,
was necessary in order to create an approximately two-dimensional wave field, which could
be viewed through the long side of the tank.

The metal grid of 0.6 cm bars spaced 3.2 cm apart, spanned the full horizontal cross-
section of the tank and was placed 5 cm below the free surface of the water. The frequency
of oscillation was fixed at 7 Hz, with a peak-to-peak stroke length of 2.6 cm.
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The strength of the stratification is typified by the squared buoyancy frequency,N2 =
− g
ρ0

dρ̄
dz , whereρ̄(z) is the background density profile,ρ0 is a reference density (1.0 g/cm3)

andg is the gravitational acceleration. The uniform stratification was varied between experi-
ments with constant values ofN2 ranging between 0.11 s−2 and 1.96 s−2. The corresponding
buoyancy periods,Tbuoy = 2π/N, were orders of magnitude larger than the stroke period
of the oscillating grid.

Both dye lines and synthetic schlieren(Sutherland et al., 1999)were used to visualize
the wave field. Dye lines marked the motions of isopycnal layers at three vertical positions,
while the schlieren technique indirectly measured the entire wave field, without the use of
dyes.

The experimental set-up and measurement techniques are described in more detail in
Dohan and Sutherland (2002, 2003).

2.2. Numerical model

The generation of internal waves from a mixed region is further examined by numeri-
cally simulating a uniformly stratified Boussinesq fluid underlying a homogeneous mixed
region. The model solves the fully non-linear, non-hydrostatic, Navier-Stokes and mass
conservation equations in two dimensions. A two-dimensional model is used both for the
simplest first comparison with the laboratory experiments and to decrease computational
time enough to allow for multiple simulations.

The equations for the basic-state fields of vorticity,ζ, and perturbation density,ρ, in
dimensional units are:

ux + wz = 0 (1)

Dζ

Dt
= g

ρ0

∂ρ

∂x
+ ν∇2ζ + Fζ (2)

Dρ

Dt
+ w

dρ̄

dz
= κ∇2ρ (3)

where subscripts denote partial derivatives, D/Dt = ∂/∂t + u · ∇, ρ0 is the density at a
reference level,ν the kinematic viscosity,κ the mass diffusivity, and the pressure and
density are expressed in terms of their background and perturbation values:

ρtotal = ρ̄(z) + ρ(x, z, t) (4)

ptotal = p̄(z) + p(x, z, t) (5)

dp̄

dz
= −ρ̄g. (6)

The vorticity field is forced with the termFζ, described in the sections below.
The streamfunction is related to the horizontal and vertical velocity components by

(u,w) = (−ψz,ψx), so that the velocities can be determined from the vorticity by inverting
the elliptic equation:

∇2ψ = −ζ. (7)
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Eqs.(2) and (3)are evolved using second order finite difference in the vertical, Fourier
spectral method in the horizontal and stepped forward in time using a leapfrog method with
an Euler backstep every 20 time intervals to minimize splitting errors. The details of the
numerical model are given inSutherland and Peltier (1994).

The domain is a horizontally periodic channel with free-slip upper and lower bound-
ary conditions. In the simulations reported upon here the domain extends from−20 ≤ x ≤
20 cm, and 0≤ z ≤ 80 cm with a resolution of 512× 1024 points and�t = 0.002 s. The do-
main is set to be of comparable width to the laboratory experiments, but approximately twice
as deep, in order to delay bottom reflection and to ensure observations of the downward-
propagating waves alone. The domain size is chosen as a compromise between extending
the wave region and computation time. For example, a simulation requires approximately
1 h using 16 CPUs on the WestGrid supercomputer cluster (http://www.westgrid.ca) to run
1 s of the simulation. Simulations are run typically for 60 s, requiring a total of 1000 CPU
hours.

The mixed layer is simulated by a homogeneous top layer that overlies a uniformly
stratified region. The initial stratification is given by:

N =
{
N2

0 0 ≤ z < 60

0 60≤ z ≤ 80.

The simulations are run with values ofN2
0 = 1 s−2, ν = 0.01 cm2/s, and Pr =ν/κ = 1.

The kinematic viscosity was chosen to be that of water, but the unphysically high value
for the mass diffusivity was chosen in order to damp out small-scale numerical noise for
numerical stability. The vorticity field in the mixed region is continuously forced by the
termFζ(x, z, t) in Eq.(2). We describe two types of simulations in which the mixed region
is forced first with a large circulation in Section3.1 and second with random vorticity at
high wavenumbers in Section3.2.

3. Observations

3.1. Large-scale waves

The tank was initially stratified throughout its depth. The experiments began by switch-
ing on the oscillating grid. The majority of the mixed layer depth was established within
the first 5 s and slowly deepened (on the order of 5 cm) throughout the duration of the
experiments. The observations were made within the first few minutes of an experiment,
well before the onset of non-linear interactions between downward-propagating waves and
reflected waves.

Due to the large horizontal aspect ratio of the tank, turbulent motions larger than the
width of the tank were constrained to the vertical plane and two counter-rotating vortices
consistently developed in the mixed region. The vortices filled the mixed region and had
the form shown in the schematicFig. 2a, with flow up the short sides of the tank. These
continuously excited waves on the scale of the tank. Along with the tank-scale waves,

http://www.westgrid.ca
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Fig. 2. Schematic views through the long side of the tank depicting the two scales of internal waves. (a) A mean
circulation in the mixed region excited tank-scale internal waves. Dye lines marking isopycnal layers highlighted
these large-scale motions. (b) Smaller-scale downward-propagating internal waves were generated on the scale of
the smaller eddies and jets in the turbulence.

smaller-scale downward-propagating waves were also continuously generated from the
eddies and jets in the turbulence, as depicted inFig. 2b.

A view through the front of the tank in a dye-line experiment for whichN = 0.79 s−1

is shown inFig. 3aat timet = 2.4Tbuoy. The turbulent region at the top is highlighted by
pearlescence (Mearlmaid Natural Pearl Essence AA) and the oscillating grid can be seen
near the top of the turbulent region. A fluorescent dye was used to mark three isopycnal
layers, which were lit from the right of the tank. The tank-scale waves are the dominant
waves visualized by the dye lines. These waves have an overall mode 2 in the horizontal
structure, with nodes atx = L/4,3L/4.

Motivated by the circulations in the laboratory experiments described above, numerical
simulations are performed in which two counter-rotating vortices are forced in the mixed

Fig. 3. (a) View through the front (long side) of a laboratory experiment. Three dye lines mark the vertical motions
of isopycnal layers and are illuminated from the right. The turbulent region extends fromz = 47 cm toz ≈ 27 cm.
(b) Vertical displacement field,ξ, and superimposed vorticity field,ζ, for a numerical simulation showing the same
field of view as in (a). The large-scale wave field structure is mode 2 in the horizontal.
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region:

Fζ = F0 exp

[
−1

2

(
(x+ 10)2 + (z− 70)2

σ2

)]

−F0 exp

[
−1

2

(
(x− 10)2 + (z− 70)2

σ2

)]
. (8)

In this simulation, the forcing amplitude isF0 = 0.1 s−2, the width of the Gaussian vortices
is σ = 2.0 cm, and the forcing to the vorticity is added at every time step. The spatial
structure of the generated internal waves is independent of the magnitude ofF0 andσ.
The vortices are symmetrically placed within the mixed region and the aspect ratio of the
mixed region is 1:1. Otherwise, the horizontal balance of vorticity is broken and a mean
flow develops in the mixed region.

A sample perturbation density field is shown inFig. 3b, for the same field of view as the
experiment, although the bottom of the simulation extends beyond the window toz = 0 cm.
The density field is scaled to correspond with vertical displacement for linear waves. The
mixed region in this simulation spans 60< x < 80 cm, and the vortices are symmetrically
placed in the centre of this region. The vorticity field is superimposed on the figure to show
the structure of the vortices. Below the mixed region, waves are generated by the motion
of the vortices and have the same mode 2 in the horizontal structure as observed in the
experiments.

In the analysis of the laboratory experiments, the spectrum of frequencies present in
the vertical motions of the isopycnal layers were complicated, with several peaks in the
spectrum that did not correspond to the simplest vertical modes of the tank. The advantage
to the simulations is that the evolution of the large-scale wave field can be seen throughout
the stratified region, as opposed to the laboratory observations which were limited to three
isopycnal layers.

The figure shows the dispersive nature of the waves, and explains the experimental
results: the vertical wavelengths vary with distance from the mixed region, and there is no
modal structure in the vertical. The largest vertical wavelengths in the figure are comparable
to the depth of the laboratory domain. The extended vertical domain in the simulations is
necessary in order to understand the vertical structure to the wave field prior to bottom
reflection.

As well, qualitatively, the simulations are exhibiting the same trend in decreasing wave
amplitudes with increasing stratification as measured in the experiments.

3.2. Small-scale waves

The mean circulations in the laboratory experiments generated tank-scale waves. In ad-
dition to these waves, smaller-scale downward-propagating waves were generated from
the turbulent jets and eddies. The dominant waves were on a smaller scale than the
modal waves described above, but on a larger scale than the smallest eddies in the
turbulence.

A sample experimental wave field is shown inFig. 4a. In this experiment,N = 1.06 s−1.
The field is shown 10 buoyancy periods into the experiment, at which point the mixed
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Fig. 4. Comparison of internal wave fields at time= 10Tbuoy for a laboratory experiment and a simulation. (a)
The schlieren field,∂

∂t
�N2, for a laboratory experiment. The mixed region is marked by the horizontal dashed

line. (b) Schlieren field of a numerical simulation. The field of view corresponds to (a). (c) Vertical displacement
field for the simulation in (b). The vorticity field is superimposed on the image. The aspect ratio of length to height
is 1:1 in all figures. All fields are normalized and colour contours represent non-dimensional values. The colour
map indicates regions of positive and negative fields.

region had deepened toz = 30 cm. The field shown,N2
t ≡ ∂

∂t
�N2, is the field directly

measured by the synthetic schlieren technique and is the time derivative of the change
to the background density. This field is sensitive to large local gradients to the back-
ground stratification, and due to the time derivative, filters out slower motions. There-
fore, the schlieren field is more sensitive to the smaller-scale propagating waves than
the modal waves. The displacement field can be directly related to theN2

t field for lin-
ear waves, so that the lines in the figure are parallel to the crests and troughs of the
waves.

Numerical simulations are performed in which the spectral components of the vorticity
field are forced at each time-step with white noise at the higher wavenumbers. The wavenum-
bers are continually forced with a Gaussian envelope centered at a peak wavenumber,kf ,
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and with a spread ofkσ :

F∗
ζ (kx, kz) = A∗

F exp

[
−1

2

(
(kx − kf )2 + (kz − kf )2

kσ2

)]
(9)

where∗ denotes the spectral component,A∗
F is a uniform random variable with−F0 ≤

A∗
F ≤ F0, and the amplitude of forcingF0 = 1000 s−2. The forcing wavenumber iskf =

13 cm−1 with a width in spectral space ofkσ = 2 cm−1. This corresponds to forcing at
scales centered around 0.5 cm.

In Fig. 4b is the schlieren field for a simulation in whichN = 1.0 s−1. The field of
view shown has the same dimensions as inFig. 4a, and is also at timet = 10Tbuoy. For
clarity, the corresponding basic state fields of vertical displacement and vorticity are super-
imposed in the same frame ofFig. 4cin order to show the relative length scales in the two
regions.

The wave field in the simulation shows many of the same properties as in the experiment.
The angle of propagation of the waves in both figures is centered aroundΘ = 45◦. As well,
the length scales of the waves are in the intermediate range between the largest scales in
the tank,L = 40 cm, and the forced scales in the mixed region,L < 1 mm. In particular,
the scales of theN2

t field at the base of the mixed region (z = 60 cm) can be seen inFig. 4b
to be at least an order of magnitude smaller than the scales of the waves propagating down
from the mixed region.

The dispersive nature of the wave field can be seen in both sets of images in that the
scales of the wave field increase with distance from the mixed region.

Vertical time series of the schlieren fields for the experiment and the simulation inFig.
4 are shown inFig. 5. The time series are taken for 10 buoyancy periods, and begin when
the oscillating grid is turned on and when the vorticity is first forced, respectively. In the
experimental image, the large-scale waves appear as the chevron-shaped structures in the
background. One advantage to the numerical simulation is the ability to separate the large-
scale forcing from the small-scale turbulent forcing.

The regular structure to the wave field is the most noticeable feature of both of these
time series. The same frequencies and the same length scales are present in both figures,
despite the very different forcings to the mixed region, and despite the two-dimensionality
of the simulations.

More pronounced in the simulation time series, although somewhat apparent in the exper-
iment time series, is the appearance of a second region to the wave field after approximately
3Tbuoy. The first, very regular, set of waves seems to be generated during the initial start-up
of the simulations.

The frequencies present in the time series ofFig. 5bare shown in the power spectrum
in Fig. 6. The power spectrum is calculated within the window 5Tbuoy ≤ t ≤ 15Tbuoy and
30 ≤ z ≤ 55 cm, in order to be well within the wave field. The regularity in the time series
is evident in the narrow range in spectral space, with the dominant peak corresponding to
the angle of propagationΘ = 46± 5◦ calculated through the dispersion relation for linear
internal waves:

ω = N cosΘ. (10)
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Fig. 5. Vertical time series of theN2
t fields corresponding to (a) the laboratory experiment inFig. 4 and (b) the

numerical simulation. In the experimental situation, the mixed region deepens fromz = 47 cm to 35 cm within
the the first 10 s, and then toz = 30 cm with the time frame of image.

In both simulations and laboratory experiments, the root-mean-square amplitudes of the
waves calculated across a window within the developed region of the timeseries follow the
same decrease with distance from the mixed region. Calculations of a linear wave field
forced by the spectrum of waves at the base of the mixed region from the simulations has
shown that this decrease in amplitude is not based solely on the dispersion of waves seen
in the instantaneous fields inFig. 4, and is likely due to diffusive effects.

Increasing the horizontal domain in the simulations results in the initial appearance
of larger scales and larger amplitudes, and there seems to be a resonant phenomenon
when the domain is doubled to−40 ≤ x ≤ 40 so that the tank-sized waves dominate the

Fig. 6. Power spectrum of the time series for the numerical simulation inFig 5(b). The largest peak corresponds
to downward-propagating internal waves with angles of propagation ofΘ = 46± 5◦. The maximum frequency
for internal waves is marked by the vertical dashed line atω = N.
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field and there is a shift in initial frequencies. When the domain is increased again to
−80 ≤ x ≤ 80, larger amplitudes and initial horizontal scales appear. These do not dom-
inate the field, although the amplitudes of the waves increase to the point of generating
a significant wave-induced mean flow. The horizontal length scales seem to be affected
by the width of the domain, but the vertical length scales are not set by the depth of
the domain. For example, inFig. 5, the vertical length scales are of the same order, al-
though the numerical simulation is twice as deep as the experiment. As well, forcing the
mixed region in a strip away from the base of the mixed region (as in the oscillating
grid) 70≤ z ≤ 75, also results in larger spatial scales. However, the angle of propaga-
tion of the waves after the initial generation remains centered on approximately 45◦ in
all cases.

4. Discussion

The spectrum inFig. 6 is typical of the spectra seen in the laboratory time series across
the full range of experiments with different stratifications. The dominant laboratory wave
frequencies calculated from the spectral peaks are shown inFig. 7. The frequencies are
plotted against the amplitudes of the waves as a fraction of their breaking amplitudes,Abreak.
The breaking amplitude is defined as the critical relative amplitude for wave breaking due to
self-acceleration(Sutherland, 2001), where relative amplitude is defined byArel = Aξ/λx,
andAξ is the vertical displacement amplitude. The wave amplitudes are a significant fraction
of their potential breaking amplitudes and their frequencies appear to be determined by the
stratification.

Fig. 7. The relative amplitudes,Arel = Aξ/λx, of the dominant laboratory waves, as a fraction of their breaking
amplitudes,Abreak, are plotted against their frequencies. The breaking amplitudes are defined as the critical relative
amplitudes at which waves may break due to self-acceleration. The vertical dotted line marks the frequency at
whichΘ = 45◦, the dashed at whichΘ = 35◦.
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The vertical dotted line inFig. 7corresponds to an angle of propagation ofΘ = 45◦ and
the dashed line corresponds toΘ = 35◦. The former angle is of interest because for a fixed
displacement amplitude, it is the angle at which waves carry the maximum vertical flux of
horizontal momentum away from the turbulent region:

ρ0〈uw〉 = 1

4
ρ0N

2A2
ξ sin(2Θ). (11)

The vertical flux of energy carried by the waves is given by:

Fz = 1

2

ρ0A
2
ξN

3

kx
sinΘ cos2Θ. (12)

If the horizontal scale of the waves is fixed in addition to the amplitude, the maximum
vertical flux of energy by the waves occurs for the maximum vertical group velocity, at
Θ ≈ 35◦.

If the waves experience a significant decay within a short distance from the gen-
eration region, one would expect to observe the waves with the fastest vertical group

Fig. 8. Time series for the laboratory experiment inFig. 5(a), started as the oscillating grid is turned off, to show
the decay of the wave field in time. The mixed region extends toz = 28 cm. A plot of the root-mean-square
amplitudes over the range 5≤ z ≤ 25 cm is provided below, normalized by the maximum amplitude in the wave
field.
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velocity below the mixed region because these can travel the furthest before the ef-
fects of dissipation and diffusion reduce their amplitude. However, this explanation for
our observations is unsatisfactory, as demonstrated byFig. 8. This shows a continua-
tion of the laboratory time series begun after the oscillating grid was stopped. At the
bottom of the figure is a plot of the root-mean-square wave field in time averaged
over 5≤ z ≤ 25 cm. The waves decay slowly, and require 30 buoyancy periods in or-
der to decay by 50 percent. Within 10 buoyancy periods, the wave field fills the tank,
which suggests that the spectrum of the wave field inFig. 6 would be much broader,
and the dominant frequencies inFig. 7 would lie closer to those corresponding toΘ =
35◦.

Rather, the dominant wave propagation angle lies close toΘ = 45◦, the angle at which
waves would carry the most horizontal momentum away from the turbulent region. This
suggests that there is an interaction between the wave field and the turbulent mixed region,
which excites waves within a narrow frequency band. Further analysis of this hypothesis is
the subject of ongoing research.

5. Conclusions

The numerical simulations in two-dimensions have the same qualitative results as the
experiments with both the large-scale turbulent forcing and the small-scale turbulent forcing:
large-scale, dominantly mode 2 waves are continuously generated by the mean circulation in
the mixed region and random forcing across a range of scales excites downward-propagating
waves with the same length-scales and frequencies as observed in experiments. This suggests
that the most significant dynamics of the generation of waves from the mixed region is
captured by the simulations.

The mixed region is kept turbulent in the laboratory experiments by an oscillating grid,
which provides approximately horizontally homogeneous three-dimensional turbulence at
scales less than the tank width. The simulations are in two-dimensions, and the mixed
region is forced by white noise at high wavenumbers in the vorticity field. The comparisons
between the laboratory experiments and the numerical simulations are encouraging, despite
these differences.

The ratio of frequency to buoyancy frequency of the dominant downward-propagating
waves consistently falls within a narrow band in both laboratory experiments and in numer-
ical simulations under a variety of conditions. This narrow frequency range corresponds to
waves with the maximum vertical transport of horizontal momentum, and appears to be a
result of a wave-turbulence interaction.
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