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We study numerically the two dimensional linear instabilities of an incompressible, inviscid, density 
stratified, symmetric jet as a function of a width parameter, D. In the limit of infinite D, the maximum 
growth rate of temporal instability exponentially approaches that of the shear flow on either flank of 
the jet. The growth rate need not approach this limit monotonically, however. For some stratified flows 
it is possible that the odd (varicose) mode of a jet with sufficiently large width may grow more rapidly 
than the even (sinuous) mode. We also examine spatiotemporal instabilities of the Bickley profile, focusing 
specifically upon the identification of the regime of parameter space in which the flow is absolutely or 
convectively unstable. Finally, our methods of spatiotemporal linear stability analysis are applied to a 
more realistic asymmetric jet which mimics the internal wave related flow that develops in the lee of a 
topographic obstacle when “breaking” occurs. This analysis appears to bear strongly upon the interaction 
that occurs subsequent to wave breaking that leads to intense wave, mean-flow interaction. 
KEY WORDS: Jets, stability, stratification. 

1. INTRODUCTION 

Significantly increased understanding of the complex dynamics of interacting vortices 
has been forthcoming recently through the application of large eddy resolving 
numerical integration techniques. Such phenomenology is observed experimentally 
in mixing layers (Overman and Zabusky, 1982; Flier1 et al., 1983) and of course 
occurs naturally in the large scale jet-like flows of the Earth’s atmosphere and, perhaps 
most notably, in the zonal shear bands that dominate the atmospheres of Jupiter 
and Saturn. Recent numerical analyses of the dynamics of vortex interaction have 
revealed a wide range of interesting processes including vortex merging and stability 
of vortices in surrounding turbulence (Marcus, 1990) of which the Red Spot of Jupiter 
is a classical example. 

Because the stability and evolution of interacting vortices depends sensitively on 
their extent and separation, and because the symmetric jet with width as parameter 
provides an ideal setting for the examination of such effects, we have initiated a 
detailed program of study of such flows. In this initial paper, we focus upon the linear 
stability of small scale inviscid stratified flow. Our work on symmetric jets builds 
upon the foundations laid by Drazin and Howard (1966) who found analytic solutions 
for temporal instability of various jet profiles. In flows that are unstratified and have 
a piecewise-linear horizontal velocity profile, analytic solutions can be found for 
linearly unstable modes of any wavenumber. Although in general such flows are not 
physically realizable, analysis of them and particularly of the symmetric trapezoidal 
jet, may provide useful indications of the basic structure of jet instabilities. We 
comment briefly on the stability of the trapezoidal jet in the beginning of Section 3. 
We examine in detail, thereafter, a flow whose basic state velocity profile has the 
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102 B. R. SUTHERLAND AND W. R. PELTIER 

Bickley [sech2(z)] form (Bickley, 1937). This particular flow has the advantage that 
it adequately approximates realizable experimental jet profiles more accurately (Sato, 
1960; Sato and Kuriki, 1961), and that numerical results can be compared with 
analytic solutions which are known for the curve of marginally stability (Drazin and 
Howard, 1966). 

It is well known that symmetric jets support the development of two modes of 
instability: even (sinuous) modes give rise to a streamline pattern in which the 
propagating modes developing in each shear zone of the jet travel in phase; odd 
(varicose) modes, on the other hand, are characterized by a streamline pattern that 
periodically pinches and broadens since the propagating modes in adjacent shear 
zones are 180" out of phase. For the Bickley profile, unstable even modes exist only 
when J < J," 1: 0.127 and unstable odd modes exist only when J < J," N 0.109, where 
J is the Bulk Richardson Number that provides a dimensionless measure of the ratio 
of the stabilizing effect of the density stratification to the destabilizing effect of the 
shear (Drazin and Howard, 1966). The constraints on J cited above are in accordance 
with the Miles-Howard Theorem (Miles, 1961) which asserts that no instabilities can 
exist in a stratified shear flow if J > 1/4 everywhere in the flow domain. 

The first comprehensive numerical analysis of the linear temporal instability of 
inviscid stratified flows was performed by Hazel (1972), who, in his study of the 
Bickley profile, calculated the growth rates of the most unstable even temporal modes 
(MTE) and of the most unstable odd temporal modes (MTO) for various degrees 
of stratification. He found that, in any stratified fluid, MTE modes always develop 
more rapidly than MTO modes, the former having a greater wavenumber and smaller 
phase speed. Generally, it is not always true that the MTE mode is the dominant 
mode of instability. As we report below, our analyses of the symmetric jet demonstrate 
that the MTO mode may grow more quickly in stratified jets that are sufficiently 
wide. Some insight into the mechanism involved is provided through an investigation 
of the Reynolds stress and vertical density flux profiles that characterize the two 
modes of instability. Briefly, we find that the MTO mode extracts kinetic energy 
more efficiently from the mean flow of a wide jet than from the mean flow of a jet 
of smaller width. The corresponding efficiency of the MTE mode does not vary greatly 
with the jet width. 

A modern theoretical analysis of the stability of jet flows would not be complete 
without some effort to understand the nature of spatiotemporal disturbances. Such 
modes, characterized generally by a complex valued wavenumber, arise naturally in 
experiments which are inherently spatially non-uniform (such as those that employ 
a plate to enforce a wake in the inflow), and they can dominate the unstable behaviour 
observed in jets and wakes. Experiments that attempt to simulate the dynamics of 
jets such as the laterally homogeneous zonal flows in planetary atmospheres (for 
example, the work by Sommeria et al. 1988) may not adequately represent the 
spatiotemporal disturbances that occur in the natural system of interest. For this 
reason, we will also include in this paper an analysis of the time asymptotic evolution 
of a wavepacket with fixed (real) group velocity, C .  Special cases of such disturbances 
are wavepackets centered about the mode of maximum temporal growth and 
wavepackets centered about the mode of maximum spatial growth. The evolution of 
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THE STABILITY OF STRATIFIED JETS 103 

the wavepacket as observed in a frame of reference moving with velocity C (so that 
the wavepacket has zero group velocity in this frame) determines the 
absolute/convective instability of the flow. For a flow that is convectively unstable 
in this frame, spatial disturbances that arise will be “convected” downstream away 
from the observer. Conversely, flows which are absolutely unstable amplify the 
wavepacket so that eventually it will perturb all points of the flow. 

The theory of the development of spatiotemporal instability has been successfully 
applied to the interpretation of simple experiments such as those performed by Sato 
and Kuriki (1961) who observed the amplification of spatially growing modes in a 
background flow whose velocity profile they described in theory by a gaussian curve. 
The first detailed study of spatiotemporal instabilities of a jet was performed by 
Betchov and Criminale ( 1966) who numerically computed growth rates for the 
unstratified Bickley jet and wake. A surprising result of their analysis was the presence 
of hyperbolic singularities in the wavenumber as a function of phase speed. They 
suggested that interesting dynamics may arise in flows with spatially growing modes 
that pass through one of these singularities. In the unstratified Bickley jet, the neutral 
modes that travel with phase speed 1.06 may exhibit such peculiar behaviour. A 
detailed numerical analysis of spatiotemporal disturbances was performed by Zabusky 
and Deem ( 197 1 ) who integrated the incompressible Navier Stokes equations directly. 
They were able to simulate the spatial growth of instabilities of a Bickley jet and of 
a flow with a gaussian velocity profile. Their studies of the first stages of instability 
agree well with the results of linear stability analysis. 

The distinction between absolute and convective instability in fluids was clearly 
identified by Briggs (1964) and Bers (1973) in work directed towards the 
understanding of the spatiotemporal growth of wavepackets with zero group velocity 
that arise in plasma physics. Only recently have their ideas been applied to classical 
fluid motion, however. Absolute/convective instability of an unstratified hyperbolic 
tangent shear layer has been analyzed by Heurre and Monkewitz (1985) and of the 
stratified shear layer by Lin and Pierrehumbert (1987)’. Because of the symmetric 
nature of the velocity profile employed, both analyses demonstrated the flow to be 
absolutely unstable when monitored by an observer travelling within a range of 
velocities about zero relative to the velocity of the vertical mid-point of the flow. 
This range was shown to decrease as stratification increases, emphasizing the 
stabilizing nature of the stratification. No corresponding analysis has been performed 
for the stratified (or unstratified) jet. 

In Section 2, we review a number of theorems concerning the linear instability of 
a stratified, inviscid, incompressible flow. The numerical techniques employed to solve 
the Taylor-Goldstein equation for the temporal and spatiotemporal problem are 
discussed with special attention to the accuracy of the solutions. We are able to test 
some of our results by comparing them with analytic solutions and with quantities 
previously computed numerically, such as the maximum growth rates calculated by 
Hazel and the spatiotemporal amplification rates calculated by Betchov and 

Note, the bulk Richardson number in Figure 2 of Lin and Pierrehumbert should be J = 0.05 instead of 
J = 0.20. 
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104 B. R. SUTHERLAND AND W. R. PELTIER 

Criminale. In Section 3, we examine how the maximum growth rates modify as a 
function ofjet width. In this way, the effect of interference between linearly developing, 
oppositely oriented vortices can be studied as they separate. We find that the growth 
rate is not necessarily a monotonic function of the jet width. Such behaviour we 
attempt to understand by comparing the variations in Reynolds stress and vertical 
density flux profiles and by involving the ideas of over-reflection theory. We briefly 
discuss the theory of absolute and convective instability in Section 4. We show that 
wavepackets centered about the mode of maximum temporal growth (MT) and the 
mode of maximum spatial growth (MS) have a real valued group velocity and, 
therefore, frames of reference exist in which these modes may give rise to absolute 
instability. In particular, the wavepacket centered about the MT mode has the largest 
growth rate of all wavepackets with respect to a moving frame of reference. Thus we 
explain how this mode is the one frequently observed in experiments. In our 
examination of symmetric jets, we study the absolute/convective instability of the 
Bickley jet with varying degrees of stratification, specifying for even and odd modes 
the range of reference frame speeds over which the flow is absolutely unstable. 

The techniques we use to study the spatiotemporal instability of symmetric jets 
are easily extended to more general flows. In Section 5, we perform a linear stability 
analysis of a jet whose non-linear evolution was studied by Scinocca and Peltier 
(1991). The jet, which they used to study the origins of downslope windstorm 
pulsations, is asymmetric in the vertical profiles of horizontal velocity and Brunt 
Vaisala frequency. The lower boundary of the jet is fixed and the upper boundary 
radiates energy outward. Our analysis of the temporal instability of the jet shows 
that the MT mode has the same wavelength and group velocity as observed in the 
initial stages of instability of the non-linear numerical simulation of Scinocca and 
Peltier. The jet gives rise to eddies of opposite vorticity which, as it turns out, are 
qualitatively similar to the odd mode of instability that develops in the symmetric 
jet. Unlike the instabilities of the symmetric jet, however, the instability that develops 
in this jet is not localized to the shear zone, but the kinetic energy which it extracts 
from the mean flow is continuously radiated upwards. Studying spatial modes of 
instability, we find that the MS mode has a wavelength which is greater than twice 
the wavelength of the MT mode. Therefore, Gaster’s relationship (Gaster, 1962) 
between the spatial and temporal growth rates of disturbances with the same 
wavelength is not applicable. Like the MT mode, the MS mode is non-local and the 
magnitude of the perturbation decreases vertically upward less quickly than the 
temporal mode. Finally, we determine the absolute/convective instability of the jet 
when observed in a frame moving with a constant horizontal velocity, C. We discover 
that the flow is absolutely unstable for small positive values of C and we confirm 
empirically that the MT mode corresponds to the wavepacket with the largest growth 
rate. 

2. THEORETICAL PRELIMINARIES 

A flow with velocity profile U = U( z )  and density p = p( z )  = exp[ - ofl( z ) ]  may 
give rise to the growth of unstable fluctuations. In the Boussinesq limit, linear 
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THE STABILITY OF STRATIFIED JETS 105 

instability analysis of stratified, incompressible, inviscid fluid defines fluctuations of 
velocity, pressure, and density by perturbations, denoted by 2, p‘, and p‘ respectively, 
which are superimposed on the background flow. By Squire’s Theorem, any instability 
initially grows as a two dimensional disturbance (for example, see Smyth and Peltier, 
1989). Hence it is possible, through a change of variables, to express the x and z 
component of the perturbed velocity in terms of derivatives of a stream function 
$(x,z). The disturbance is assumed to be periodic in the direction of flow allowing $ 
to be resolved into Fourier components with horizontal wavenumber GI and phase 
speed c and with amplitude that varies with z. Explicitly, $(x, z )  = 4(z)  exp[ia(x - ct)] .  
Substituting these quantities into the basic equations of motion and keeping only 
lowest order terms, we find that the amplitude, $(z), must satisfy the classical 
Taylor-Goldstein equation: 

where 

+ a2. 
- N 2  U” $ = +- 

( U - C ) Z  ( U - c )  

N is the Brunt-Vaisala frequency, defined by N 2  = go/?’(z). In our study of symmetric 
jets we consider the case where N 2  is constant, corresponding to exponentially density 
stratified fluid. However, N 2  is generally a function of z as is the case in our 
examination of a non-symmetric jet in Section 5. The local (gradient) Richardson 
number is Ri(z) = N2/[U‘(z)I2. If z, is an inflexion point of background flow 
[ U”(zs )  = 01, the bulk Richardson number is defined by J = Ri(z,). For the Bickley 
jet, J = 3fiN2/4. 

Given a specific value of GI, the Taylor-Goldstein equation poses an eigenvalue 
problem in which the eigenfunction is 4 and the eigenvalue is c. Both a and c are 
generally complex variables (GI = a, + ia, and c = c, + ici) and the product o = ac is 
defined to be the complex frequency whose real part (w,)  is the frequency of the 
instability and whose imaginary part (mi) is the exponential growth rate. 

It is usual to assume that c is an analytic function of a. For the unstratified Bickley 
jet this has been previously verified numerically by Betchov and Criminale (1966). 
In Figure 1 we show the values of the complex wavenumber as a function of phase 
speed for even modes of stratified flow with N 2  = 0.025. The lines correspond to 
constant values of a, and GI? From top to bottom a, ranges from 0.6 to 2.0 in steps 
of 0.1 and from left to right a, ranges from -0.9 to 2.0. In particular, the bold line 
corresponds to temporal modes, for which a, = 0. Because these lines intersect at 
right angles we see that c (and hence o) is an analytic function of a. It is interesting 
to observe in Figure 1 the presence of a hyperbolic singularity in the complex plane 
near c = 0.38 + i0.15. As noted by Betchov and Criminale, a singularity of this kind 
may give rise to interesting dynamics for unstable modes with wavenumbers in its 
proximity. 
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106 B. R. SUTHERLAND AND W. R. PELTIER 
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Figure 1 Complex wavenumber as a function ofphase speed for the stratified Bickley jet with NZ = 0.025. 

There are three different modes of instability which are of interest. Modes for which 
CI = CI, is real and wi is positive, are temporally unstable and grow exponentially in 
time. Modes for which o = w, is real and mi is negative, are spatially unstable and 
grow exponentially in space though no growth occurs in time at a fixed position. 
Finally, in the context of absolute/convective instability, we are interested in modes 
corresponding to wavepackets with real-valued group velocity. Details of the theory 
of such instability are presented in Section 4. 

Modes with the largest growth rate are examined in detail since these will dominate 
the non-linear dynamics of the flow that ensues. We define the MT mode as the 
temporal mode with the largest growth rate, mi, as a function of CI,. (In our 
consideration of symmetric jets, there are two such modes, denoted by the MTE and 
MTO modes, which correspond to the fastest growing even and odd modes, 
respectively.) The spatial mode with the largest growth rate, --mi, as a function of w, 
we refer to as the MS mode. For a wavepacket with (real) group velocity C,  we refer 
to the MC mode as the wavepacket with the largest growth rate, wic as a function 
of C. This last definition, as we will show in Section 4, is superfluous since the MC 
mode corresponds exactly with the MT mode. 

All of the results to be described here are based upon calculations performed on 
an IBM RISC 6000 computer. The Taylor-Goldstein equation is integrated using a 
shooting method similar to that described by Hazel (1972) with the following 
differences. The integration proceeds using a fourth order Runga-Kutta-Nystrom 
method, an algorithm based on an ODE solver, ERNY (Sharp and Fine, 1987), which 
is optimized to efficiently integrate equations of the form 6" = A$. Boundary 
conditions are imposed by assuming that 4 ( z )  2: exp( -yz) at a small value of 
z = -z,,,, where y is the complex square root (uniquely defined as the branch with 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
5:

29
 3

1 
Ja

nu
ar

y 
20

13
 



THE STABILITY OF STRATIFIED JETS 107 

positive real part) of the coefficient of 4 in the Taylor-Goldstein equation, defined 
by equation (2). The Taylor-Goldstein equation is integrated from - z,,, to z,,, and 
the value of W ( c )  = 4‘ + r,$ evaluated at z = z,,, is made to converge to zero by 
the successive choices of c. When the flow is symmetric, even modes are found by 
ensuring that 4 has the same sign at z = -z,,, and z = z,,,; odd modes are found 
by ensuring that 4 has the opposite sign at each boundary. Each guess to determine 
the correct eigenvalues is improved quadratically by using a complex inverse parabolic 
zero-finding method: three values of [c, W ( c ) ]  are used to find the coefficients of the 
equation c = a, W 2  + a, W + a,, and so the next best guess to the zero of W is c = a,. 
In tests, this approach was generally faster and more reliable than Muller’s (parabolic) 
method (Muller, 1956). 

The value of z,,, requires some attention. If it is too large then +(zmaX) may be 
so close to zero that integration will give only the zero solution. Conversely, if z,,, 
is too small, the assumption that is approximately constant may be invalid. Keeping 
the largest exponential terms in the asymptotic expansion of 1’ for the Bickley jet, 
we find 

When z,,, N 5 and if c is of order 0.1, the assumption that y~ is constant is accurate 
to 7 digits. It may be necessary to increase the value of z,,, if CI and N 2  are small. 
However, unavoidable numerical errors arise when LY is too close to zero. This problem 
turns out to be of little concern since we are interested primarily in the wavenumbers 
which give maximium growth, where LY is significantly large. 

In practice, it is sufficient to assume convergence has been achieved when the norm 
of W is less than a small number, E.  Typically, for E = lop8, six digit accuracy of the 
eigenvalues is assured. The accuracy of the eigensolution is tested by checking its 
sensitivity to the values of z,,,, the integration step size, and E .  

3. TEMPORAL INSTABILITIES OF SYMMETRIC JETS 

The majority of our work on linear temporal instabilities focuses on a density stratified 
jet whose basic state has the Bickley profile, which hereafter we refer to as a “smooth 
jet”. In order to increase our understanding of the instabilities in a smooth jet, we 
begin by presenting analytic results for a symmetric trapezoidal jet in unstratified 
fluid. 

The trapezoidal velocity profile of width D has the form, 
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108 B. R. SUTHERLAND AND W. R. PELTIER 

Because the trapezoid is piecewise-linear, the solutions of the Taylor-Goldstein 
equation when N 2  = 0 are of the form #(z) = K exp( -az) + %+ exp(az) over each 
linear segment of the velocity profile. Vanishing boundary conditions are imposed 
at z = f co and matching conditions at points where the derivative of U ,  is 
discontinuous are defined so that the pressure, ( U ,  - c)& - U,'& and the normal 
velocity, #/( U ,  - c), are continuous (see Drazin and Reid, 1981, p. 144). Thus we 
obtain the eigenvalue relation: 

where the upper (lower) sign corresponds to the even (odd) mode. From this equation, 
it is a simple matter to find numerically the growth rates of temporal modes of 
instability. 

The limit of infinite D corresponds to the left-hand shear2: 

z >  1, 
%,(z) = z, 0 < z  < 1, i:: z < 0. 

Instabilities of the shear obey the eigenvalue relation that is the infinite D limit of 
(4). The equation solved for c is 

The shear is unstable to modes with wavenumbers 0 < a < a,,, where a,,, N 1.2785 
is the solution of a - 1 - exp( - a )  = 0. The most unstable mode has wavenumber 
a, such that the maximum growth rate, 

mimaX = aoci = $[ - (a, - 1 - e -an) (a ,  - 1 + e-an) ]1 '2 ,  

is largest for 0 < a. d amax. Explicitly, a. N 0.7968 and mimaX N 0.2012. Hereafter, the 
value of the maximum growth rate of unstable modes that develop in the shear will 
be referred to as the "shear limit". 

The maximum growth rate of even and odd modes of instability are plotted as a 
functon of jet width in Figure 2. Both rates are within one percent of the shear limit 
when D > 2.5. No odd modes of instability exist when D < 0.247, but when D is 
greater than this value, the maximum growth rate increases monotonically to the 
shear limit. Conversely, the maximum growth rate of the even mode decreases 
monotonically to the shear limit but, unlike the curve for the growth rate of the odd 
mode, there is an inflexion point at D 2: 0.05. As we will demonstrate in our analysis 

By symmetry, the right-hand shear gives instabilities with the same phase speeds as the left-hand shear, 
and eigenfunctions of one type of shear will be reflections of the other. 
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Figure 2 Temporal instability growth rates for a trapezoidal jet. The solid line corresponds to the even 
mode of instability and the dashed line corresponds to the odd mode. 

of the smooth jet, an inflexion point is apparent in the curves of mimax corresponding 
to the even mode in stratified as well as unstratified fluid. The existence of an inflexion 
point is a subtle indication of the complex interactions that occur between the wave 
perturbation and the mean flow. 

In our consideration of stratified symmetric jets, we assume the density to be 
exponentially decreasing with increasing z ,  uiz: p(z) = poexp( -opoz), where oBo is 
constant. We define a smooth jet of width D by cleaving the Bickley profile in two 
and separating each section. Explicitly the velocity profile of the jet is represented by: 

sech2(z + D), Z <  -D, 

- D > z < D ,  (7) 
sech2( z - D), z > D. 

In our analysis, we define a length scale so that D is measured in units of the half 
width at half maximum, 1 = cosh-’(fi). The shear profile on either side of the jet 
does not change as D increases, so the bulk Richardson number, which depends on 
the value of U,’ at the inflexion point, is independent of D. 

As the jet becomes infinitely wide, the fluid motion is equivalent to two independent 
shear flows. Arbitrarily, we study the left-hand shear defined by 

sech’z, z d 0, 
z > 0, U,(Z) = 

which we will call a “Bickley shear”. The temporal instability curves for various degrees 
of stratification of the shear flow are shown in Figure 3. Because, as discussed in 
Section 2, inaccuracies in the calculation of the growth rate arise for small c(, such 
values are not shown. 
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110 B. R. SUTHERLAND AND W. R. PELTIER 

a 

Figure 3 Temporal instability growth rates for a Bickley shear. The solid curve corresponds to unstratified 
flow. The other curves correspond to N 2  = 0.025 (large dash), NZ = 0.050 (dash-dot), N 2  = 0.075 (small 
dash), and N 2  = 0.1 (dot). 

Table 1 Maximum temporal instability growth rates for a Bickley shear 

N 2  0.0 0.025 0.05 0.075 0.1 0.125 
~ 

W,max 0.1429 0.1165 0.0896 0.0630 0.0375 0.0136 

As the stratification increases, the maximum growth rate mimax decreases which 
reflects the stabilizing influence of stratified fluid. No unstable modes exist when 
N 2  > 0.140. Values of the maximum growth rates for increasing N 2  are listed in Table 
1. 

As D increases, the maximum growth rates of the even and odd modes 
asymptotically approach the corresponding growth rates of the shear limit. In Figure 
4(a) and (b), we plot the difference of the maximum growth rate from the limit for 
both even and odd modes as a function of D. The five curves in each figure correspond 
to stratified fluid with N 2  = 0.0, 0.025, 0.05, 0.075, 0.1. 

First we consider the MT modes of the unstratified jet. In this case, the growth 
rate of the MTO mode is a monotonically increasing function of D. Conversely, the 
growth rate of the MTE mode is not monotonic, rather it increases initially as D 
increases above zero and then decreases monotonically to the shear limit. Like the 
MTE mode of the trapezoidal jet, the curve has an inflexion point near D = 0.3 and 
for all D the even mode grows more quickly than the odd mode. 

We begin our analysis of the instabilities in stratified jets by examining the variation 
in the growth rate of the MTE mode. When the Bickley jet (D = 0) is weakly stratified 
and N 2  < 0.076, the growth rate of the MTE mode is larger than the shear limit. 
When 0.076 < N 2  < 0.140, the growth rate is smaller. In weakly stratified jets, 
therefore, the instability grows more rapidly when vortices that develop from one 
flank of the jet are strongly coupled to vortices from the other flank. The opposite 
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THE STABILITY OF STRATIFIED JETS 111 

Even Mode 
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D 

Figure 4 Difference from the shear limit of even and odd mode growth rates for a smooth jet of width 
D. In both figures, the solid curve corresponds to unstratified fluid. The other curves correspond to 
N2 = 0.025 (dot), NZ = 0.050 (small dash), NZ = 0.075 (dash-dot), and NZ = 0.1 (large dash). 

is true in flows with a large degree of stratification: the instability is more unstable 
when the width of the jet is large and the vortices from each flank are weakly coupled. 
The curves are not monotonic; there is a tendency in all cases for the growth rate to 
increase initially as D increases. 

We turn next to the study of the MTO mode which, as we have discussed, gives 
rise to the development of cores of opposite vorticity that grow adjacent to each 
other, For flows with any degree of stratification, the growth rate when D = 0 is 
smaller than the shear limit. In jets of larger width, for which there is a weaker 
interaction between adjacent vortex pairs, the mode becomes more unstable. With 
respect to the shear limit, the MTO modes are more unstable in highly stratified 
fluid than in fluid which is weakly stratified. A surprising result of our study is that, 
unless the jet is unstratified, mimaX becomes greater than the shear limit in a jet of 
large width. In particular, the MTO mode can actually grow faster than the MTE 
mode. 

Though we have not performed a detailed investigation of the non-monotonicity 
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112 B. R. SUTHERLAND AND W. R. PELTIER 

of the maximum growth rate, we believe this behaviour can be explained by 
over-reflection of neutrally propagating modes. A recent review of the over-reflection 
concept and an example of its application are provided in Smyth and Peltier ( 1989). 

In order to gain some understanding of the underlying mechanism involved as the 
instabilities grow, we have studied the Reynolds stress and, in stratified fluid, the 
vertical density flux profiles for the MTE and MTO modes in the jet with widths 
D = 0 and D = 0.5. Each study is performed for unstratified fluid and for stratified 
fluid such that N 2  = 0.05. The wave parameters for these cases are given in Table 2. 
The Reynolds stress is defined by the product po(u ’w’ )  where the angle brackets 
indicate an average over one period in the horizontal direction and u’ and w‘ are the 
horizontal and vertical components of the velocity perturbation, which can be 
calculated from derivatives of the streamfunction. This quantity is a measure of the 
transfer of horizontal momentum in the vertical direction. In particular, if T ( Z )  is the 
Reynolds stress, then the derivative z’(z) is proportional to the rate at which the 
background flow will be accelerated by the growth of the instability. In a stratified 
jet, the vertical density flux, ( p ’ w ’ ) ,  gives a measure of the mass transport by the 
mode; the z-derivative of (p’w’  ) is proportional to the rate at which heavier fluid is 
convected upwards or downwards by the instability. 

The eigenfunction 4, which is used to calculate the Reynolds stress and vertical 
density flux, is normalized so that the magnitude of z(z) equals unity at maximum. 
We define z,, to be the vertical position of the maximum. (For the symmetric jet, 
another extremum of ~ ( z )  occurs when z = -zo.) In unstratified fluid, the extrema 
of T(Z) coincide with the inflexion points of the jet. Generally, z(z) is greatest when 
z,, is a zero of the imaginary part of q2 ,  defined in (2). Explicitly, zo satisfies 

2 N 2 [ U ( z 0 )  - c,] = U”(zo){[U(~o) - c , ] ~  + ci’}. 
When N 2  is small, this equation can be approximated by 

2 N 2  = U”(Z,)[ U(zO) - c,]. ( 9 )  

Table 2 
D = 0.5 in unstratified fluid and stratified fluid with N Z  = 0.05 

Wave parameters of the MTE and MTO modes of a symmetric jet with width D = 0.0 and 

Eoen mode: D = 0.0 D = 0.5 

N 2  = 0.0 N Z  = 0.05 N Z  = 0.0 N 2  = 0.05 

3“ 0.9023 1.0311 0.7670 0.9330 
cr 0.4512 0.4788 0.4944 0.5255 
oi 0.1608 0.0953 0.1579 0.0947 

Odd mode: 

% 0.5179 0.5248 0.6789 0.6977 
C“ 0.7154 0.7566 0.6529 0.6698 
w, 0.0461 0.0268 0.1027 0.0718 
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THE STABILITY OF STRATIFIED JETS 113 

In Figure 5a we show the Reynolds stress for unstratified flow. In all cases, we see 
that the momentum transfer decreases the strength of the shear. Therefore, the 
perturbation tends to stabilize the background flow and, in so doing, extracts kinetic 
energy from the background. The peaks in the profiles of the MTE and MTO modes 
in the unstratified jet coincide at the same vertical position as the inflexion points 
of the jet, specifically at z, 1: 0.66 for the jet of width D = 0. However, the form of 
the peaks of the MTE mode is markedly different from that of the MTO mode: 
whereas the stress profile of the MTE mode is large over an extended scale, that of 
the MTO mode is relatively localized. For a jet of width D, the profile of the Reynolds 
stress for each mode evolves to two distinct peaks which are separated by a domain 
of low stress whose extent equals D. 

The stress profiles of the MT modes of the stratified jet with N2 = 0.05 are shown 
in Figure 5b. The most notable effect of increasing the stratification is that the peaks 
of the Reynolds stress profile of the MTE and MTO mode no longer coincide with 
the inflexion points of the jet. For the jet of width D = 0, the peaks of the MTE 
mode occur further from the jet center at zo N 0.84 and the peaks of the MTO mode 
occur closer to the jet center at zo = 0.56. Both these results agree with equation (8) 

Even Mode Odd Mode 
( a ) N 2 = 0 . 0 0  5 h y ~ p 5  ~ = e  

2 
0 

- 5  
- I  0 1 - 1  0 I - I  0 I - I  0 I 

po<ul w l >  po<ulw'> 

( b )  N2=0.05 z; F;I- K-l D.0.5 F-l.- D=O.O k, D = O  5 

-5 
- 1  0 1 - 1  0 I - I  0 1 - 1  0 I 

p 0 4  w'>  po<ul w'> 

( C )  N2=0.05 zl 1 [=:,O 1 [+=O,.5 

5 
-0.5 0.0 0.5 -0.5 0.0 0.5 

D=O.O k D= 0.5  k 
-0.5 0.0 0.5 -0.5 0.0 0.5 

<p'& <p'w'> 

Figure 5 Profiles of Reynolds stress and vertical density flux for the MTE and MTO modes of a symmetric 
jet of width D = 0 and D = 0.5: (a)  Reynolds stress for the unstratified jet, (b) Reynolds stress for the 
stratified jet with N 2  = 0.05, and (c) vertical density flux for the stratified jet with N 2  = 0.05. 
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114 B. R. SUTHERLAND AND W. R. PELTIER 

for which the values of c are given in Table 2. The width of the peaks of the MTE 
mode does not change significantly when the jet is stratified, however, the peaks of 
the MTO mode tend to narrow. Hence the stress in the MTO mode becomes more 
localized. 

The vertical density flux profiles of the MT modes of the stratified jet with N 2  = 0.05 
are shown in Figure 5c. These are positive for all z which demonstrates that the 
instability tends to move dense fluid upward and so reduce the degree of stratification 
of the jet. The peaks of the MTO mode are narrower and more intense than those 
of the MTE mode and, in the MTO mode, there is no density flux at the center of 
the jet. Unlike the Reynolds stress profiles, the peaks of the MTO mode broaden as 
the jet width increases. 

In summary, the MTE mode transfers momentum to reduce the strength of the 
shear in the jet more effectively than the MTO mode. The transport of momentum 
and mass by the MTO mode occurs over a smaller vertical scale. The greatest transport 
of momentum and mass in the MTE mode occurs farther from the center of the jet 
in stratified fluid than in unstratified fluid. In the MTO mode, this occurs closer to 
the center of the jet. 

It remains to understand how the odd mode of instability can grow more quickly 
than the even mode in a sufficiently wide jet of stratified fluid. The solution may be 
found by an energy budget analysis in which we consider the temporal growth of 
perturbation energy as it changes due to the extraction of kinetic energy from the 
mean flow by the action of the Reynolds stress and the extraction of potential energy 
from the mean flow through the action of the perturbation vertical density flux. The 
relative contributions to the energy change by each is given by: 

where the brackets, (), and OZ, indicate horizontal and vertical averages, 
respectively, and 

1 
2 

E‘ = - p 0 ( d 2  + w ’ ~ ) .  

If the first term on the right hand side of (10) is dominant then the instability is 
dynamic, otherwise the instability is static. In Figure 6, we show the relative 
contributions of the extraction of kinetic energy and deposition of potential energy 
from/to the stratified mean flow with N 2  = 0.05 as a function of the jet width D. 
Both energy transfer terms are expressed as a fraction of twice the total kinetic energy 
of the instability. In this way we make use of the relationship, 
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0 0 5 1  i 

W D 
I Odd Mode 
a 

W -: N 0"5: 

. . . . . . . . . . . . . . . . . . . . . . . . . 1 ' W 0 . l O t -  // 

*..*....**'.. Y I /  

t 1 
D 

Figure 6 Energy analysis of the MTE and MTO modes in a symmetric jet of width D. The solid (dashed) 
line corresponds to the extracted kinetic (potential) energy. The dotted line is the sum of the two 
contributions which equals the growth rate w,. For comparison with the growth rate, values are normalized 
by twice the total kinetic energy of the instability. 

so that the growth rate of the instability is expressed as the sum of contributions 
from kinetic energy extraction and potential energy deposition. 

For both modes, but most notably for the MTO mode, we see that the maximum 
growth rate is larger in a jet of larger width primarily because the instability extracts 
kinetic energy from the mean flow more efficiently. The decrease of potential energy 
deposited to the mean flow by instabilities in jets of larger width is marginal in 
comparison. 

For a stratified jet with NZ = 0.05, the growth rate of the MTO mode becomes 
greater than the growth rate of the MTE mode when the jet width is approximately 
D = 1.6. At this width, the kinetic energy extracted by the MTO mode is comparable 
to the kinetic energy extracted by the MTE mode, however, because the perturbation 
is more localized about the shear zone, the deposited potential energy is smaller for 
the MTO mode than for the MTE mode. We conclude, therefore, that the MTO 
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116 B. R. SUTHERLAND AND W. R. PELTIER 

mode grows more quickly than the even mode in a jet of large width because it 
extracts as much kinetic energy from the mean flow without depositing so much 
potential energy. 

4. ABSOLUTE/CONVECTIVE INSTABILITY OF THE BICKLEY JET 

In reality, not only does the mode of maximum growth rate dominate the initial 
stages of linear instability, but it is also affected by those modes with comparable 
wavenumber and growth rate. Together, the sum of these modes forms a wavepacket 
which travels with a real valued group velocity C. The analysis of the evolution of 
the wavepacket is closely connected with the theory of absolute/convective instability 
which we review below. 

To fix ideas, it is sufficient to consider a one-dimensional wavepacket expressed 
as a composition of linear waves satisfying the dispersion relation w = o ( a ) :  

f ( x , t )  = F(a)exp{i[ax - o ( a ) t ] } d a .  sp, 
The long time evolution of the wavepacket observed from a frame of reference moving 
with speed C = x/t, is dominated by the growth of the mode with group velocity C .  
This can be demonstrated rigorously by application of the saddle point method such 
as that discussed in Copson (1965). Explicitly, as t ---* co, 

t ” 2  ’ 

where a* is the, generally complex, wavenumber which corresponds to modes that 
move with group velocity 

The stability of the wavepacket travelling at this velocity is determined by the sign 
of its growth rate, Im[w(a*) - Ca*]. 

The issue of absolute versus convective instability can be determined by considering 
the case where x is fixed as t + co, so C = x/t = 0. The condition (14) therefore 
implies that there is a unique wavenumber a, corresponding to modes with zero 
group velocity; that is pI,, = 0. The stability of this mode is dictated simply by the 
sign of wi(cto): if o i (ao )  is positive, the mode grows exponentially, eventually perturbing 
the entire flow, if wi(cto) is negative, the mode is damped so that any wavepacket 
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THE STABILITY OF STRATIFIED JETS 117 

with zero group velocity is extinguished. The first kind of flow is said to be absolutely 
unstable. In flows of the second kind, all unstable modes have non-zero group velocity 
and so are ultimately swept away by the flow. Such flows are said to be convectively 
unstable. 

From the Cauchy-Riemann relations, since w is an analytic function of a, the 
complex derivative is 

So the application of the condition that the group velocity is zero is equivalent to 
searching for what is typically a saddle-node of the function wi(a) .  Note that the 
application of the saddle point method assumes that the saddle node, if not unique, 
has the largest value of Im[w(a*) - Ca*]  compared with other saddle-nodes. The 
complex dispersion relationship, like that shown in Figure 1, implies that a 
saddle-node, if it exists, is unique. 

To ensure that the eigenvalue corresponding to a0 lies on the manifold containing 
the known phase speeds for real a, a continuation method is used. In this method, 
the search for a.  in the complex a plane begins with a real value of CI for which the 
eigenvalue is well known. In each stage of the search, the value of a is incremented 
by small real and imaginary parts and the eigenvalue computed in one step is used 
as a first guess for the eigenvalue in the next step. In this way, if the increments are 
small enough, proper convergence is ensured by continuity of the eigenvalues. 
Provided the analytic function w( a )  is slowly varying, the approximate position of 
the saddle node can be estimated by an extrapolation scheme such as the inverse 
parabolic method discussed in Section 2. 

In general, we may consider the case where for all time x / t  = C is the speed of a 
moving frame of reference. Hence, we may examine the absolute/convective instability 
of the jet with respect to this frame, or equivalently, we may examine the stability 
characteristics of the mode which has group velocity C with respect to the rest frame. 
We say that the flow is absolutely unstable with respect to a moving reference frame 
of velocity C if the wavepacket which has group velocity C with respect to the 
stationary frame has positive growth rate, mi. Instabilities of a flow observed with 
respect to a reference frame moving at a speed C can be found by solving the 
Taylor-Goldstein equation in which the background velocity profile U (  z )  is replaced 
by U ( z )  - C. However, the eigenvalue problem can be solved without integrating 
the equation with this replacement: if c is the phase speed of the instability in the 
stationary frame, then by taking advantage of the Galilean invariance of the 
Taylor-Goldstein equaton, the eigenvalue of the instability in the moving frame is 
given by c - C, and the corresponding frequency is wc = a ( c  - C) = w - aC, where 
w is the complex frequency observed in the stationary frame of the mode with the 
same wavenumber. Therefore, in this formalism, the mode that has group velocity C 
in the stationary frame has a wavenumber a. which corresponds to the saddle-node 
of wc(a).  This approach has the advantage that the continuation method can be used 
to scan the complex a-plane for the saddle node of wc as C varies. 
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118 B. R. SUTHERLAND AND W. R. PELTIER 

In order to gain a better understanding of the evolution of a wavepacket composed 
of spatiotemporal modes of instability, we consider the evolution of a one dimensional 
gaussian pulse in a non-dispersive and a strongly dispersive flow. The amplitude of 
a gaussian pulse is given by the real part of 

where, in a non-dispersive flow, w satisfies the linear dispersion relation: 

w = C(a - a,) + a,. (17) 

The (real) group velocity of the pulse in this flow is C. The Fourier transform of 
the space co-ordinate of the amplitude function gives 

F ( ~ , ~ )  = 2 - 1 / 2 e - ! a 2 + i w t .  (18) 

Substituting equation (17) into (18) and transforming back to real space, gives the 
time evolution of the wavepacket: 

Therefore the wavepacket propagates uniformly with no dispersion. As it propagates, 
however, it oscillates with frequency Re[o, - Ca,] and grows as Im[Ca, - oO]. 

It is more realistic to examine wavepackets in a dispersive flow, a simple example 
of which satisfies the dispersion relation 

Following the same procedure as before, we find that the real space time evolution 
of a gaussian wavepacket is given by 

f (x , t )  = Refaexp[i( -$rao2 - Ca, + o,)t]exp[-a2(x - ( C  - rao)t)21), (21) 

where 
a = [ 1 + 2irt]-'I2. 

A gaussian pulse with group velocity C which is damped exponentially in time is 
shown in Figure 7a. The wavepacket is shown at times t = 0.0, 10.0, and 20.0. The 
parameters of the non-linear dispersion relation are oo = 0.01 + i0.05, 01, = 1.0, and 
Y = 0.1 + iO.l. In Figure 7b, we show the evolution of an unstable wavepacket with 
the same parameters but here wo = 0.01 - i0.05. Although this pulse grows 
exponentially, it does not disturb the entire flow since its group velocity is positive. 
If we consider the evolution of the pulse as viewed from a reference frame moving 
with the same speed as the group velocity, we find that the wavepacket is given by 

f ( x , t )  = Re{aexp[i(+co2 - Ca, + wo)tlexp[-a2(x + (22) 
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THE STABILITY OF STRATIFIED JETS 119 

Growing pulse 
c =o.o 

-10 0 10 
X 

Figure 7 Evolution of gaussian wavepacket in a flow with quadratic dispersion relation at times t = 0 
(solid line), 10 (dashed line), and 20 (dotted line): (a)  exponentially damped wavepacket, (b) unstable, 
exponentially growing wavepacket, and (c) same unstable wavepacket as (b) viewed with respect to a 
frame of reference in which it has zero group velocity. 

The evolution of the unstable gaussian pulse in a non-linear dispersive flow with the 
same parameters as above but viewed in the moving reference frame is shown in 
Figure 7c. In this frame, we see that the mode, whose relative group velocity is zero, 
eventually perturbs the entire flow. 

We now prove that the wavenumber of the MC mode corresponds exactly with 
the wavenumber of the MT mode. First we show that the imaginary part of the 
wavenumber of the MC mode equals zero. If C is the group velocity of a pulse with 
respect to the stationary frame, then the growth rate of the pulse in the frame moving 
with speed C is w: = wi - a,C. From the Cauchy-Riemann relations, since C is real 
valued, 
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For a given C, this pair of equations can be solved for a unique value of o! (and hence 
w). Therefore, a,, a ,  w,, and wi can be thought of as functions of C. 

Now, the condition that the growth rate as a function of C is a maximum for 
the MC mode at C = Co is 

gic0 = 0. 

However, 

dwic dw, dai 
dC dC dC 

- C--U,  

where (23) and (24) have been used to eliminate the terms involving partial derivatives. 
This result, combined with the condition of (25) shows that a is real-valued. 

Next we show that the growth rate of the MC mode is maximum with respect to 
a,. This follows from (24) and the result that a, = 0, since 

aw: am, ac 
a@, aar 'aa, 

a.- = 0. - 

Because the MC mode and MT mode must satisfy the same conditions to be extrema, 
they must correspond to modes with the same wavenumber. 

It is also a simple matter to prove that the group velocity of the most unstable 
spatial mode (MS) is real-valued. The MS mode corresponds to an absolute mode 
of instability with growth rate -tliCS in a frame moving with velocity 

Despite the growth in space of spatiotemporal modes, the temporal mode always 
dominates the initial stages of development of the non-linear dynamics of the flow. 
Consider, for example, the growth of a spatiotemporal mode which has wavenumber 
a = a, + icii and frequency w = w, + iw,  and which travels with group velocity C. 
In the time t during which a wavepacket centered about this mode travels a distance 
x, the pulse is amplified by exp( -a,x + wit). But x = Ct so the amplification is 
exp[(wi - a iC) t ]  = exp(w:t). Therefore, the maximum growth rate of all 

c, = (aw,/aur) = (aa,/aw,.)-l. 
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Figure 8 Growth rates of even and odd modes of instability with group velocity C. In  both figures, the 
solid curve corresponds to unstratified fluid. The other curves correspond to N 2  = 0.025 (large dash), 
N 2  = 0.050 (dash-dot), N 2  = 0.075 (small dash), and N Z  = 0.1 (dot). 

spatiotemporal modes is given by the largest value of w:, which, as we have shown, 
is the MC, or equivalently, the MT mode. 

We have analyzed the absolute/convective instability of the Bickley jet by 
considering the growth rate of wavepackets as a function of the group velocity, C. 
The growth rate in flows with different degrees of stratification is plotted for even 
and odd modes in Figure 8. We have found, in accordance with Betchov and Criminale 
(1966), that the flow of an unstratified Bickley jet or wake is convectively unstable 
with respect to a stationary frame of reference. In this case, no saddle node of the 
function mi exists. Near the boundary between absolute and convective instability in 
weakly stratified fluid with low values of C,  the determination of a, is difficult since 
the curvature of wi at the saddle node becomes infinite in one direction of the a-plane. 
Where convergence cannot be obtained, the growth rate is approximated by quadratic 
extrapolation of rates within the absolutely unstable region where the saddle-node 
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122 B. R. SUTHERLAND AND W. R. PELTIER 

is well defined. Considering odd modes of instability in stratified flow for large values 
of C, it is possible that the imaginary part of the phase speed, ci, may equal zero 
even when wj(ao) is positive and the flow is absolutely unstable. The boundary of 
marginal stability is indicated by the heavy line in Figure 8. We have verified that 
the maximum growth rates as a function of C of the even and odd modes correspond 
exactly to the growth rates of the MTE and MTO modes of the Bickley jet. 

The boundary between absolute and convective instability regions for even and 
odd modes of the stratified Bickley jet is shown in Figure 9. This graph clearly shows 
the stabilization of the flow by stratification. Increasing the stratification decreases 
the range of C over which the flow is absolutely unstable. The odd modes are 
necessarily absolutely unstable when the even modes are unstable, though the converse 
is not true. The largest degree of stratification that allows absolute instability 
corresponds to the largest degree of stratification that allows temporal instability. 
This observation is a direct consequence of the equivalence of the MC and MT modes. 

5. INSTABILITY O F  A JET IN THE LEE OF TOPOGRAPHY 

To provide an explanation for the origin of the severe downslope windstorm pulsations 
that are observed in association with the chinook of North America and the foehn 
of Switzerland, Scinocca and Peltier (1989) [see also Peltier and Scinocca (1990)l 
have studied non-linear computer simulations of inviscid, compressible, stratified flow 
over an idealized topographic obstacle. In the first cited paper, they were able to 
reproduce low altitude, high velocity wind pulsations from initial vertical profiles of 
horizontal velocity and potential temperature which were profiles recorded during 
the 11 January 1972 Boulder windstorm (which they denoted by “Jll”). Simulations 

C 

Figure 9 Regions of absolute and convective instability for even and odd modes of the Bickley jet. Solid 
(dashed) line corresponds to the boundary for even (odd) modes. Dotted lines indicate points of the curve 
derived by extrapolation. The area enclosed by each boundary indicates values of NZ and C where the 
flow is absolutely unstable. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
5:

29
 3

1 
Ja

nu
ar

y 
20

13
 



THE STABILITY OF STRATIFIED JETS 123 

initialized with constant upstream velocity and Brunt-Vaisala frequency produced 
downstream behaviour which was remarkably similar to the 11 1 results, and so they 
concluded that the mechanism which gives rise to downstream pulsations does not 
depend sensitively on the details of the jet that develops in the lee of the topographic 
maximum. In order to further refine an understanding of the essential mechanism 
involved, an extensive study has recently been performed of the instabilities that 
develop from the flow described by the analytic solutions of Long’s steady state, 
non-linear equations (Long, 1953). Details of the construction of Long’s solution for 
flow over topography are provided by Laprise and Peltier (1989a) (see also Laprise 
and Peltier, 1989b; Laprise and Peltier, 1989c; Scinocca and Peltier, 1991). 

Recent further work by Scinocca and Peltier (1991) has examined the non-linear 
evolution of the horizontal jet flow whose vertical profiles of velocity and potential 
temperature are defined by a vertical profile consisting of one wavelength of Long’s 
solution above a critical position in the lee of the obstacle. Above this height, the 
velocity and Brunt-Vaisala frequency are defined to be constant so that the flow is 
rectified toward the far upstream ambient conditions. It has been verified by Scinocca 
and Peltier (1991) that such modifications do not strongly effect the dynamics of the 
instability in the shear zone of the jet. The profiles for the velocity and Brunt-Vaisala 
frequency squared extracted in this way from Long’s solution are shown in Figure 
10. The length and velocity scale are specified in dimensionless units so that the 
vertical extent of the domain is L = 1.0 and the maximum horizontal velocity is 
V = 1.0. In standard units, for comparison with the results of simulations by Scinocca 
and Peltier, the vertical extent of the domain is L, = 2048.5m and the maximum 
horizontal velocity is u* = 6.7475 m/s. 

In our analysis of the temporal stability, we found modes of instability for 
wavenumbers in the range 0.0 6 ct, < 7.75 (in dimensionless units) as shown in Figure 
11. The MT mode has a wavenumber of 6.546 in dimensionless units, which in 
standard units corresponds to a wavelength of 2.00 km. This value agrees well with 
the wavelength of instabilities observed in the non-linear simulations. 

The wave parameters of the MT mode are given in Table 4. This mode is particularly 
interesting since it is not localized to the region about the shear zone of the jet, rather 
it is a radiating mode. In particular, for large values of z the Reynolds stress profile 
of the mode, shown in Figure 12, is positive and decreases gradually. Therefore, 
kinetic energy which is extracted from the mean flow is propagated upward. This 
effect occurs because the Brunt-Vaisala frequency is large compared to the 
wavenumber of the disturbance, and so, according to equations (1) and (2), as z 
increases the streamfunction is not strongly damped but is of the form of weakly 
damped oscillations with damping of order c,. 

Also in Figure 12, we compare the Reynolds stress and vertical density flux profiles 
of the MT mode with the temporal modes whose growth rates are half as large 
(denoted by LT and HT for the modes with lower and higher wavenumber 
respectively). We see in the Reynolds stress profiles that less kinetic energy is 
propagated upward in disturbances of large wavenumber. Focusing on the Reynolds 
stress profile for the MT mode in the shear zone of the jet, we see that it is characterized 
by two strong negative peaks indicating that this mode acts strongly to reduce the 
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0 50 I00 

0.0 - 
0 50 I00 

Figure 10 
jet formed by a topographic obstacle. 

Profiles of (a) horizontal velocity and (b) Brunt-Vaisala frequency squared for a lee-averaged 

shear on each flank of the jet. The LT and HT modes reduce the shear on one flank 
of the jet while the shear on the other flank is only weakly reduced. The vertical 
density flux profiles show that there is negligible mass transport outside the shear 
zone of the jet. The MT mode transports denser fluid upward from below and above 
the jet, and in the center of the jet, where N 2  is negative, denser fluid is transported 
downward. 

We perform an energy budget analysis using equation (10). However, an extra 
term, ( p’w’)*Jzmax, representing the positive energy flux through the upper boundary 
is subtracted from the right hand side. In this way we found that the growth rate 
agreed to within 0.1 percent of the growth rate determined by the eigenvalue. By 
comparing values of the energy contributions of the Reynolds stress, vertical density 
flux, and the flux of energy out of the upper boundary as in Table 3, we see that the 
dominant factor in the growth of the MT mode is a combination of the relatively 
large amount of kinetic energy which is extracted by reducing the shear on each flank 
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0.06 
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wi 

0.02 

0 .oo 
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Figure 11 Growth rates versus wavenumber of temporal mode of instability for jet in lee of a topographic 
obstacle. Indicated are the wavenumbers corresponding to the MT mode and to the modes with half its 
growth rate. 

T LT mode HT mode LL MT mode 

-I 0 I - I  0 I - I  0 I 
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Po< u' w t  > 
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Figure 12 (a)  Reynolds stress and (b) vertical density flux profiles for the MT mode and for modes LT 
and HT, which grow at half its rate. 
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Table 3 Energy contributions to the growth rate of the LT, MT, and HT modes normalized by twice 
the total perturbation energy of the mode 

Mode Reynold's stress Vertical density j u x  (P'w') lrmar oi 

LT 
MT 
HT 

0.144 
0.139 
0.091 

-0.010 -0.109 0.026 
- 0.044 - 0.043 0.052 
-0.031 -0.034 0.026 

Table 4 Wave parameters for the MT, MS, and CO modes with respect to a stationary frame of reference 

Wave parameters M T mode MS mode CO mode 

6.546 

0.0439 
0.0521 
0.0067 1 
0.05364 

3.130 

0.0093 
- 3.235 

0.00144 
0.00265 

0.468 

0.0057 

0.00088 
0.00037 

-4.219 

-0.0016 

of the jet and the relatively small amount of energy which is radiated outward in 
this mode. In the table, energy is normalized by a factor 2 ( E ' )  so that each column 
is expressed as a contribution to the growth rate oi of each mode. 

In Figure 13 we show the streamlines I) + &I)' of the flow due to the instability 
I)' = Re{ 4(z)exp(iax)) of the MT mode. In the figure, the perturbation parameter 
E = 0.1 and $' is normalized to have a maximum value of 1. Consistent with 
observations by Scinocca and Peltier we observe a mode with structure qualitatively 
similar to the odd mode of a symmetric jet. That is, eddies with opposite vorticity 
develop so that they are situated almost adjacent to each other. In a symmetric jet, 
the growth of an odd mode would be observed though its domination over the even 
mode would not depend on the jet width as discussed in Section 3, rather, the even 
mode would be suppressed entirely in any case due to the fixed lower boundary 
condition. 

A linear stability analysis of the (spatial) growth rates of spatial modes of instability 
shows that there is a mode with a well defined maximum growth rate and for which 
the wavenumber is significantly different from the MT mode. The frequency of the 
MS mode is indicated in Figure 15 which shows the growth rate cti of spatial modes 
as a function of 0,. The MS spatial growth rate is large, nonetheless the mode grows 
slowly compared to the MT mode since, as we show below, the group velocity of 
the wavepacket centered about the MS mode is small. 

We look more closely now at wavepackets which evolve in the jet. In Figure 16 
we show the growth rates of modes with zero group velocity observed in a frame 
moving with velocity C. The MS and MT modes are indicated by the modes with 
group velocity C, and C,  respectively. When C is larger than the small critical value 
Co N 0.000374, the flow is absolutely unstable. Due to the sensitivity of the numerical 
analysis, the upper bound of the absolutely unstable region could not be determined. 
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Figure 13 The streamfunction of the jet perturbed by the MT mode (perturbation parameter is E = 0.1). 
Note that the eddies of opposite vorticity are positioned almost adjacent to each other. 

^ ^ I  

141 
Figure 14 The norm of the streamfunction amplitude for the MT (solid line) and MS (dashed 1ine)modes. 
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Figure 15 
frequency of the MS mode is indicated. 

The growth rate of spatial modes of instability of the jet as a function of frequency. The 

0.04 -- 

wi 

0.02 -- 

I 
0.00 0.02 0.04 0.06 0.08 

C 

Figure 16 The growth rate of modes with zero group velocity observed in a moving frame of speed C 
with the flow. 
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Values of the MS wave parameters are compared with the MT mode in Table 4. For 
completeness, we also include in the table the wave parameters corresponding to the 
mode with group velocity C,, which we call the CO mode. All values, including those 
for the CO mode, are given with respect to the stationary reference frame. We determine 
relative growth rates of the spatial and temporal modes by comparing 
up = -Csq 2: 0.0086 of the MS mode with w? = wi N 0.052 of the MT mode. 
Since the growth rate of the MS mode is an order of magnitude smaller than the 
temporal mode, it should not be seen directly in observations. Nonetheless, it may 
be possible to observe some dynamics in the spatial mode since the magnitude of 
the perturbation in the MS mode is two to three times greater than the MT mode 
at high altitudes. The magnitude of the stream function amplitude for both MT and 
MS modes are shown in Figure 14. For both modes, the stream function is normalized 
so that 141 = 1 at maximum. The group velocity of the MT mode, C, 1: 0.0536, is 
consistent with the unstable mode observed in the non-linear simulations of Scinocca 
and Peltier (1991). 

6. CONCLUSION 

We have shown that even and odd modes of instability in a symmetric jet undergo 
non-trivial modifications as the jet widens. The maximum growth rate of the even 
modes is larger than the growth rate of odd modes when D = 0 since it extracts much 
more kinetic energy from the mean flow than the kinetic energy extracted by the odd 
mode. At larger jet widths the kinetic energy extracted by both modes becomes 
comparable; however, the potential energy deposited by the odd mode is smaller 
than that deposited by the even mode since the odd mode is more localized about 
the shear maxima. Since the mode of maximum growth determines the ensuing 
non-linear dynamics, it is crucial to have a good understanding, not only of the 
wavelength and phase speed, but of the parity of the mode involved. In order to 
present an accurate description of the full non-linear development of vortices in each 
mode, an analysis of the instabilities of viscous flow should be performed. We have 
initiated such a program of analysis. 

We have shown, for a stratified flow, which relative velocities will admit absolutely 
unstable behaviour in the Bickley jet. The range of relative velocities decreases as 
the degree of stratification increases. By understanding under which conditions a 
flow is convectively or absolutely unstable, experimentalists may be able to interpret 
their results more effectively. Presently, the issue of absolute versus convective 
instability in a jet flow is relevant to many analyses that concern the growth of linear 
modes and their effect upon the ensuing non-linear behaviour. We have given a 
practical example of such an analysis by studying the linear instabilities that develop 
in the shear zone of an idealized asymmetric stratified jet that is created by a 
topographic obstacle. In non-linear simulations where instabilities are excited by 
noise over a small horizontal range, one might expect to observe the growth only of 
spatial modes. This is not the case, however, as we confirm by a linear stability 
analysis; the downstream evolution of the MS mode is obscured by the development 
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of a faster growing wavepacket. In agreement with non-linear simulations, we have 
shown that the fastest growing mode of instability is the temporal mode. The 
wavelength and group velocity of the MT mode predicted by our linear stabilijy 
analysis correspond well with the simulations. Furthermore, the structure of this 
mode, which is qualitatively similar to the odd mode of instability in a symmetric 
jet, is consistent with simulations, and has the surprising feature that it radiates energy 
upward, well away from the shear zones of the jet. If downslope windstorms do 
indeed radiate energy upward in this manner, indirect experimental observations may 
be made many kilometers above their surface manifestation. 
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