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Fall and break-up of viscous miscible drops in a Hele-Shaw cell
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We investigate the fall in a Hele-Shaw cell of viscous miscible drops in a more viscous
ambient fluid with negligible diffusivity compared to the kinematic viscosity of the fluids.
We measure the drop shape, thickness, and velocity for various viscosity and density ratios.
The elongation of the drops is found to increase quadratically with the ratio of the drop and
ambient fluid viscosity. The thickness of the drop is shown to be approximately half the
thickness of the gap of the Hele-Shaw cell. We develop a theoretical expression of the drop
falling velocity, taking into account the elongation and thickness of the drop. This agrees
well with observations after multiplying by an empirically determined constant. In some
circumstances the drops break up, either because of defects advected downwards within
the drop or by instability of the shape of the drop.
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I. INTRODUCTION

The dynamics of drops moving in a confined medium is a topic spanning diverse applications,
from large-scale industrial problematics such as enhanced oil recovery [1], commercial inkjet
printing [2], and the use of droplets in microfluidics [3]. The question of the miscibility of the
displacing fluid with the ambient fluid is especially relevant for enhanced oil recovery, where
miscible displacements are proven to be more efficient than immiscible ones [4].

Several laboratory experiments have examined the shape and motion of drops and bubbles in a
Hele-Shaw cell [5–13]. The Hele-Shaw cell has long been used as an analog of a porous medium
because of the similarity between the equations of fluid motion between two parallel plates that are
sufficiently close together and those of the fluid motion in a porous medium of the same permeability
(see the discussion by Saffman and Taylor [5]). In addition to these mathematical similarities,
Hele-Shaw cells allow the easy experimental observation of a variety of phenomena [6,14]. The
apparently simple problem of determining the falling velocity of an immiscible drop in a Hele-Shaw
cell proves to be nontrivial. The experimental investigation of immiscible drops by Eri and Okumura
[8] revealed the existence of two different regimes of energy dissipation, occurring either in the film
or within the drop. Yahashi et al. [10] later elaborated on this finding by building a scaling law for the
separation between the two regimes depending on the relative molecular viscosity of the drop (μd )
and ambient fluid (μa), the capillary length, and the cell gap width H . In a subsequent experimental
study, Keiser et al. [11] characterized the influence of the film on the drop velocity for different μd

and H , with μd > μa. Several studies also examined the film thickness for drops in an external flow
[9,12,15]. In particular, the experimental investigation by Shukla et al. [13] produced a complete
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film thickness map for falling immiscible drops in a Hele-Shaw cell. Their experimental results also
matched with the theoretical expression of the falling velocity obtained in previous work [16,17].
In particular, the thin liquid film present between the drop and the walls of the cell has been shown
to have a significant impact on the dynamics of the drop. In contrast, this film has no significant
influence on the motion of bubbles, with their rising velocity well predicted by theory [5,6].

The break-up of confined immiscible drops in a Hele-Shaw cell has been investigated in a series
of theoretical and numerical studies by Gupta et al. [18–20]. They carried out a linear stability
analysis of circular immiscible drops translating in a Hele-Shaw cell and found that initially circular
drops were stable for small perturbations, regardless of the Bond number (Bo), which compares
gravitational to interfacial capillary forces. They found that the initial drop deformation led to break-
up for Bo < 60. However, they found that initially deformed drops were more stable at higher Bond
number, even in the case of strong initial deformations. They were able to predict qualitatively the
evolution of the shape of stable and breaking up drops. They did not extend their study to drops with
negligible surface tension (Bo → ∞).

In all the studies discussed so far, capillary forces were shown to play an important role on both
the shape of the film and the dynamics of the immiscible drop. The dynamics of miscible drops is
less well understood. Lajeunesse et al. [21,22] and Petitjeans et al. [23] studied experimentally the
displacement of ambient fluid in a Hele-Shaw cell by a heavier, miscible one, injected from the top
across the entire width of the cell. But few studies have examined a miscible drop.

In an unconfined medium it is known that miscible drops are unstable, tending to break-up into
several smaller drops as they fall [24–28]. This break-up phenomenon is inhibited for immiscible
drops [18,19,29] due to surface tension. A miscible spherical drop falling into a lighter fluid expands
horizontally into a ring. This ring expands until it reaches a critical size, and breaks-up into smaller
drops. In turn, it is possible that these smaller drops break up as well. This phenomenon has been
observed for a long time [30] but is not yet fully understood. A series of experimental studies by
Arecchi et al. [25,26], Residori et al. [27], and Arecchi et al. [31] found that the break-up occurred
because of a competition between diffusive and viscous effects. More recent experimental and
numerical investigations by Shimokawa et al. [28] and Shimokawa and Sakaguchi [32] highlighted
the role of the Rayleigh-Taylor instability in the break-up of drops. In all these studies, the ring shape
of drops breaking-up in an unconfined medium is intrinsically three-dimensional. It is therefore
expected that the confinement will play an important role upon the drop stability. Garcimartín
et al. [7] performed experiments with weakly confined quasispherical miscible drops falling in a
Hele-Shaw cell for which the radius of the drop, R, was comparable to half the gap width, H . They
also observed the break-up of the drop. They found that ambient fluid penetrated inside the drop,
and that mixing ensued within the drop which triggered instability. Subsequently, they were able
to satisfactorily scale the break-up time of the drop with a characteristic time τi based on the drop
radius and internal fluid velocity vi, so that τi = R/vi.

Here we report upon experiments of highly confined, pancake-shaped drops (R � H). The shape
of the liquid film between the drop and the walls of the cell in our work is therefore very different
from that of the experiments of Garcimartín et al. [7]. To the knowledge of the authors, a study
of highly confined miscible drops has not previously been examined experimentally. Specifically,
our experiments examine a falling miscible drop having lower viscosity than the ambient fluid. We
focus on measurements of the falling velocity of the drop, and we use light absorption to measure
the thickness of the drop. Finally, we examine the parameters leading to the break-up of the drop.

The paper is organized as follows. After presenting some theoretical considerations in Sec. II, we
describe the experimental setup in Sec. III. We then present measurements of the shape, thickness,
falling velocity, and stability of the drop in Sec. IV. Discussion and conclusions are given in Sec. V.

II. THEORETICAL CONSIDERATIONS

In this section we present some theoretical considerations that will serve as a basis for the analysis
of the experimental results. We consider a vertically oriented Hele-Shaw cell, as shown in Fig. 1.
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FIG. 1. Schematic view of a drop with a tail of fluid falling into the experimental cell (a) (x, z) and (b) (y, z)
plane. (c) Sketch of the velocity profiles in the cross section of half the cell (in the (y, z) plane). We denote by
a circled 1 an area of the cell far from the drop, and by a circled 2 an area between the drops and the walls.

We denote by (x, z) the plane of the cell, where the x-axis is horizontal and the z-axis is vertical
downwards. The y-axis is orthogonal to the walls of the cell, and its origin is in the middle of
the gap. We consider a drop of width 2a (along the x-axis), height 2b (along the z-axis), density
ρd , and molecular viscosity μd , that falls within a Hele-Shaw cell filled with a fluid of density ρa

and molecular viscosity μa. The two fluids are miscible, hence there is no surface tension between
them. In addition, we consider that the diffusivity between the two fluid is low enough so that no
significant mixing takes place between them. The viscosity ratio is defined as λ ≡ μa/μd , and the
elongation ratio as α ≡ b/a. We denote by R the characteristic radius of the drop, i.e., the radius
of a circular disk with the same area as the drop. The distance between the two plates of the cell,
i.e., the gap width, is denoted H . The thickness of the drop within the gap (i.e., orthogonally to the
plane of the cell) is denoted by w(x, z, t ). We denote by w∗(t ) the characteristic thickness of the
drop. This is taken as the spatial average of w(x, z, t ) over an area excluding the interface around
the circumference of the drop [see Fig. 1(b)]. In the following, we obtain analytically an expression
of the falling velocity of an elliptical drop whose thickness w∗ is smaller than the gap width of the
cell: w∗ < H .

As discussed in the introduction, several studies [6,16,17,33] came up with predictions of the
falling velocity of a drop or a bubble in a Hele-Shaw cell, in the case where the drops span the entire
gap of the cell (w∗ = H). They predicted that the falling velocity of the drop did not depend on the
radius R and scaled with

U = U0 ≡ H2�ρg

12μa
, (1)
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where �ρ = ρd − ρa. Maxworthy [6] studied the influence of the aspect ratio of elliptical bubbles
and determined that the bubble velocity is equal to αU0. Bush [16] and Gallaire et al. [17]
investigated the case of drops of non-negligible viscosity, and came up with an expression of the
drop velocity. In the absence of Marangoni effects and at the leading order they found the scaling
velocity to scale with

U = U0
λ

λ + 1
. (2)

In the limit of λ � 1 (μa � μd ), this matches the prediction (1) for circular drops. Keiser et al. [11]
conducted a study of drops that were much more viscous than the ambient fluid (λ � 1), having
a thin lubrification film between the drop and the walls of the cell (w∗ � H). They proposed an
analytical expression of the falling velocity of a drop [Eq. (3.8) of [11]]: U = U0[3(1 − w∗/H ) + λ].
For λ � 1, they found that the only non-negligible source of energy dissipation was the friction
between the flat sides of the drop and the lubrification film. Therefore, they neglected all other
sources of energy dissipation, in particular that resulting from the flow in the bulk of the ambient
fluid. In the following, we propose a theory predicting the falling velocity of elliptical drops with a
lubrification film of any thickness (w∗ < H) and for all λ.

We consider an elliptical drop of half-width a and half-height b [see Fig. 1(a)], translating at a
constant velocity U = Uez in the z-direction. The acceleration of gravity g = gez is directed along
the z-axis. We set ourselves in a frame moving with the drop. In this frame, the walls of the cell are
moving upwards at a constant velocity of −Uez. We denote by ua(x, y, z) the velocity of the ambient
fluid, and by ud (x, y, z) that in the drop. The drop thickness w∗ and elongation ratio α are determined
empirically. At low Reynolds number, the equations governing the flow in the Hele-Shaw cell are
the 3D Stokes equations for an incompressible fluid:

μa
∂2ua

∂y2
= −∇Pa, (3)

in the ambient fluid, and

μd
∂2ud

∂y2
= −∇Pd − �ρg, (4)

in the drop, where Pa and Pd denote the pressure in the ambient fluid and in the drop, respectively,
and �ρ = ρd − ρa.

We solve Eqs. (3) and (4) in two different regions: far from the drop [region 1 in Fig. 1(c)], and
between the drop and the walls of the cell [region 2 in Fig. 1(c)]. Far from the drop, Eq. (3) gives,
using boundary conditions ua(y ± H/2) = −Uez:

ua,1 = ∇Pa

2μa

[(
H

2

)2

− y2

]
− U . (5)

between the drop and the walls [region 2 in Fig. 1(c)], we solve Eqs. (3) and (4) using no-slip bound-
ary conditions at y=H/2, continuity of velocity and tangential stress at y=w∗/2 and symmetry of
the flow across the y=0 plane (hence ∂ud/∂y|y=0 = 0). This gives

ud = ∇Pd

2μd

{
1

λ

[(
H

2

)2

−
(

w∗
2

)2]
+

[(
w∗
2

)2

− y2

]}

+ �ρgz

2μd

{
w∗
λ

(
H

2
− w∗

2

)
+

[(
w∗
2

)2

− y2

]}
− U .
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We define the y-averaged velocity fields, ũa(x, z) and ũd (x, z), as the average of ua and ud over
the thickness of the ambient and drop fluid, respectively:

ũa(x, z) = 1

H

∫ H/2

−H/2
ua,1(x, y, z) dy = − ∇Pa

12μa
H2 − U , (6)

ũd (x, z) = 1

w∗

∫ w∗/2

−w∗/2
ud (x, y, z) dy = − ∇Pd

12μd
w2

∗β − �ρg
12μd

w2
∗γ − U , (7)

with β = 1 + 3
2

1
λ

[( H
w∗

)2 − 1] and γ = 1 + 3
λ

( H
w∗

− 1).
In the (x, z) plane, the flow is inviscid, irrotational, and incompressible. We can therefore use

potential theory to describe the flow in the plane of the cell [5]. Defining velocity potentials ∇φa =
ũa and ∇φd = ũd , we can express the pressure as a function of the velocity potential using (6) and
(7):

Pa = 12μa

H2
(−φa + Uz), (8)

Pd = −12μd

w2∗

1

β
φd − γ

β
�ρgz + 12μd

w2∗

1

β
Uz. (9)

We obtain the expression of the velocity potential of the flow around an ellipse by using a
Joukowski transformation [34] and the well-known expression of the velocity potential of the flow
around a disk. This calculation is done in the Appendix and yields, at the interface,

φa|∂D = U

(
z + 1

α
z

)
, (10)

where α ≡ b/a is the aspect ratio of the drop.
Requiring continuity of pressure at the interface, we must have φd = 0 within the drop. The

velocity U of the drop is thus found to be

U = α
�ρgH2

12μa

1 + 3 1
λ

(
H
w∗

− 1
)

1 + 1
λ

[
H2

w2∗

(
α + 3

2

) − 3
2

] . (11)

This expression matches the analytic expression (2) obtained by [16,17] for the case of a circular
drop (α = 1) whose thickness is equal to the span of the cell. It also matches that of Keiser et al.
[11] for circular drops with λ � 1 and w∗ ∼ H .

III. EXPERIMENT SETUP AND ANALYSIS METHODS

A. Drop and ambient fluids

We injected drops made of a solution of glucose syrup and water into an ambient fluid made of
a solution of UCON oil and water. Both glucose syrup and UCON oil are fully miscible in water.
Across all experiments, the density, ρd , of the drop was larger than that of the ambient fluid ρa,
while its viscosity, μd , was lower than that of the ambient fluid μa. The density and viscosity of
the two fluids were adjusted by varying the concentrations of glucose syrup and UCON oil. A few
drops of food dye were mixed with the drop fluid to enhance their contrast with the ambient fluid
and make possible measurements of the drop thickness using light attenuation. Densities of the dyed
solutions were measured using an Anton Paar DMA35 densitometer, and viscosities were measured
with a Kinexus Malvern rheometer. Measured values are plotted in Fig. 2(a). The room temperature
was measured for each experiment, and the viscosity was corrected accordingly. The influence of
temperature on the density of the fluids was, however, found to be negligible. With these fluids, the
viscosity ratio λ = μa/μd varied between 5.50 and 270, and the density difference �ρ = ρd − ρa

varied between 3.8 kg m−3 222 kg m−3. In turn, the dimensionless density difference �ρ/ρa varied
between 3.5 × 10−3 and 0.21 [Fig. 2(b)].
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FIG. 2. (a) Plot of the density of the ambient and drop fluid vs their viscosity. The black dashed lines
correspond to fits ρa = 1075 + 30 log10 μa and ρd = 14000 + 125 log10 μd . (b) Parameters λ and �ρ/ρa of all
the experiments performed. The symbols indicate the width of the gap.

B. Experimental cell and optical measurements

We study the fall of drops into a more viscous ambient fluid, in a laterally confined vertical
Hele-Shaw cell. The cell was 20 cm × 30 cm, with a gap of H = 5 mm. To check the influence of
H , some experiments were also conducted in a cell with a gap of H= 2 mm. Fewer experiments
were done with H = 2 mm because it was challenging to create drops of the same radius as with
H= 5 mm without the drop becoming unstable. In total, 118 experiments were run with H = 5 mm,
and 6 with H = 2 mm. Analyses presented here are with H = 5 mm unless specified otherwise.
The drops were injected into the cell from the top using a syringe. The injection time of the drops
was kept short (on the order of 1 second), so that the injection was complete before the drop fell
significantly. We also wished to keep the drop size approximately the same across our experiments.
Hence special care was taken to inject the same volume of fluid each time. In all experiments, the
drop radius was larger than the gap width and much larger than the drop thickness. The average drop
radius was 1.05 ± 0.06 cm for experiments with H = 5 mm and 0.91 ± 0.15 cm for experiments
with H = 2 mm. No mixing was observed between the drop and ambient fluid across all of our
experiments.

An LED panel was placed behind the cell, and a sCMOS PCO Edge 4.2 camera with a Nikkon
Nikkor 24 mm f/2.8 lens recorded images of the fall of the plume from the front of the cell. An
example of a raw camera image, cropped around the drop, is shown in Fig. 3(a). As will be discussed
in more detail later, the drops exhibited a tear-drop shape and left behind them a thin tail.

An image-processing algorithm was used to separate pixels belonging to the moving drop from
those belonging to the tail using morphological operations. The successive snapshots were first
converted to binary, black and white images. Then they were morphologically opened using the
MATLAB function imopen, with a morphological element whose size (15 pixels) was slightly
bigger than the span of the tail (about eight pixels for all experiments), hence “erasing” the tail
from the image. The remaining pixels were attributed to the drop. An example of the output of the
image processing algorithm can be seen as the superimposed red contour in Fig. 3(a). Because the
span of the tail was nearly constant for all cases (approximately 1 mm), this method simply and
efficiently separated pixels belonging to the drop from those belonging to the tail. Once the drop
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FIG. 3. (a) Raw image and (b) measurement of fluid thickness w/H of a drop of (μd , ρd ) = (1.57 ×
10−2 Pas−1, 1186 kgm−3) falling in an ambient fluid of (μa, ρa ) = (1.44 Pas−1, 1078 kgm−3. On (c) the contour
(red line) and centroid (red cross) of the detected plume are highlighted. On (d), the colormap shows
measurements of w/H , the green cross highlights where the profiles of Fig. 5(a) are measured on the drop,
and the blue square shows where the average of the fluid thickness, w∗, is computed (see Sec. IV A).

pixels were known, we computed the position (xg, zg) of its center of gravity, its half-width a, its
half-height b, and its elongation ratio α = b/a. We also computed its equivalent radius R.

The vertical velocity of the drop vz was computed as the average of its instantaneous vertical
velocity over a time span that avoided the initial transient effects from the injection and the late-time
break-up of the drop, if this occurred. Drops traveled on average over 12 drop radii for cases with
no break-up, and seven for cases with break-up. The elongation ratio was not constant in time for a
given drop, but varied by about 10% in experiments with H=5 mm. As done for vz, we computed
an average value of the elongation ratio and of the drop thickness.

In addition to measuring the position of the drop in the plane of the cell, we also measured the
thickness of the drop w, as shown in Fig. 1(b). This was done by measuring the attenuation of light
that was absorbed by dye when passing through the plume. Pioneered by Obaton and Tritton [35],
and subsequently used by Lajeunesse et al. [22] to measure the thickness of fluid displacement in a
Hele-Shaw cell, measuring light absorption offers a nonintrusive way of determining the thickness
of thin liquid films. According to the Beer-Lambert law, the light intensity I that passes through a
drop where its thickness is w is

I = I∞ + (I0 − I∞)e−w/σh , (12)

where I∞ is the effective “black” light intensity, I0 is the background light intensity, measured
in the absence of drop fluid in the cell, and σh is the e-folding distance over which the intensity
difference decreases by a factor e. The background light intensity I0 is obtained for each experiment
by measuring the light intensity before the release of a drop. I∞ and σh are determined using
a wedge-shaped calibration cell in which there was a linear variation of the thickness of fluid.
The calibration tank was filled with the fluid used to make the drops. This gave a measure of
I (w) for a linear variation of w. We then fit I (w) to the exponential curve given by (12), thus
determining the remaining empirical parameters I∞ and σh. With the resulting calibration curve, it
was straightforward to deduce the drop thickness w from measurements of I .
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FIG. 4. Plot of the plume elongation ratio α vs the viscosity ratio λ. Symbols discriminate between different
values of �ρ/ρa. The black curve shows the quadratic fit α = 1.17 × 10−5λ2 − 6.40 × 10−4λ + 1.11. The
insets show the shape of drop for experiments on the left with (μa, μd ) = (1.10, 3.43 × 10−1) Pas−1, �ρ/ρa =
2.12 × 10−1 and on the right with (μa, μd ) = (1.10,2.40 × 10−3) Pas−1, �ρ/ρa = 5.50 × 10−3.

IV. DROP SHAPE, FALL VELOCITY, AND STABILITY

In the following section, we present experimental measurements of the drop shape and thickness,
and of the thickness of the tail left behind the drop. We then present measurements of the drop falling
velocity, and compare them with our theoretical expression. Finally, we present data on the stability
of the drop and document the break-up phenomenon.

A. Shape and thickness

In our experiments, the drops became slightly elongated in shape as they descended. Figure 4
plots the measured aspect ratio, α, of the drops versus the viscosity ratio λ = μa/μd of the ambient
to drop molecular viscosity. Across all of our experiments, we found an average elongation ratio of
1.2 ± 0.06, with most drops being close to a circular disk shape for λ � 100. As the viscosity ratio
increased, so did α, being as large as 1.8 for λ = 270. From experiments with H=5 mm, we found
an empirical quadratic fit for the relationship between the aspect ratio and the viscosity ratio of the
drops:

α = 1.17 × 10−5λ2 − 6.40 × 10−4λ + 1.11. (13)

We do not present the elongation ratio for drops with H=2 mm because the shape of the drop varied
significantly as it fell.

Using the light absorption technique described, we measured the drop thickness w(x, z, t ), as
illustrated in Fig. 3(b). The viscosity ratio, λ, did not have a significant impact on the value of w/H
in our space of parameters. Figure 5(a) shows two different profiles of w/H taken along horizontal
and vertical cross sections as indicated by the two blue lines shown in Fig. 3(b). In the horizontal
direction (x), the drop thickness is nearly constant in the bulk of the drop, then decreases sharply at
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FIG. 5. (a) Profiles of drop thickness versus the position x or z centered on the centroid of the drop. This is
the same drop as that shown in Fig. 3(b) [(μd , ρd ) = (1.57 × 10−2 Pas−1, 1186 kgm−3), (μa, ρa ) = (1.44 Pas−1,
1078 kgm−3)], and the profiles are taken along the blue lines. (b) Plot of the average drop thickness over gap
width w∗/H for different values of H .

the interface. In the vertical direction, the same behavior is observed, except that the drop thickness
tapers down near its tail. In both cases the thickness profiles form a plateau in the bulk of the
drop. We measured the characteristic thickness w∗ as a spatial average over this plateau region.
In order to do this, we averaged the values of w(x, z, t ) in an area [shown by a blue rectangle in
Fig. 3(b)], chosen to avoid the drop boundaries. This spatial average was averaged in time over
the same time span as vz and α, w∗ = w̄(x, z, t ). For all fluid combinations, and for H=5 mm or
2 mm, we found a constant ratio w∗/H of about 0.65 ± 0.03. Figure 3(b) also shows a distinctive
feature of our experiments, namely, the presence near the tail of the drop of a triangular-shaped
area containing blobs where light attenuation was reduced. These blobs, which are thought to be
inclusions of ambient fluid within the drop, conveniently revealed motion occurring within the drop
due to nonuniformity in composition and/or thickness.

Our measurements of the drop thickness can be compared with previous work. Shukla et al.
[13] performed experimental measurements of the thickness of highly confined (R/H ∈ [1, 2]),
immiscible drops with λ ∈ [1, 11] falling into a more viscous fluid in a Hele-Shaw cell with H
between 4.59 mm and 4.80 mm. Their values of w∗/H ranged from 0.72 to 0.90, decreasing with
decreasing capillary number (Ca going from 3 × 10−2 to 0.35 in which Ca measures viscous
drag relative to surface tension) and decreasing λ. Experiments and numerical simulations with
pressure-driven immiscible drops in microfluidic channels [9,12,15] showed that w∗/H was close to
unity for λ < 1. This stands in contrast to previous experimental results for miscible displacements
spanning the entire width of the Hele-Shaw cell [22,23,36,37], which found a constant value of
w∗/H ∼ 0.50 for 1 < λ < 1000 and negligible diffusivity between the two fluids. Petitjeans et al.
[23] predicted that the ratio of the thickness of a miscible displacement in a Hele-Shaw cell to that
of the gap of the cell reached a value of 2/3 if the flow in the cell was representative of a Poiseuille
flow across the entire width of the cell. Our experimental results are very close to this value.

In our experiments a thin tail of fluid extends behind the drop. A similar structure was observed,
but not discussed by Garcimartín et al. [7] in their study of drops in a Hele-Shaw cell with R ∼
H . For all of our experiments, the width of the tail atail [in the direction x; see Fig. 1(a)] was
constant with atail 
 1 mm, while the tail thickness wtail [in the direction y; see Fig. 1(b)] ranged
from 0.3 mm to 1 mm with a slight dependence on λ. In turn, the ratio wtail/H varied between 0.05
and 0.2. We present measurements of atail scaled by the width of the drop a and of the tail aspect
ratio atail/wtail, respectively, in Fig. 6.

We investigated whether this tail was created by residual fluid resulting from the injection that
then sinks in the wake of the drop, or whether the tail of fluid was released by the drop during its
fall. In a 3D medium with miscible drops, Shimokawa et al. [28] and Shimokawa and Sakaguchi
[32] observed a tail behind the drop, which seemed to be linked to the injection, because the drop
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FIG. 6. Plot of the tail (a) width (in the x direction) scaled by the width of the drop, with a typical error
bar showing error linked to a detection error of about one pixel from each side of the tail in the legend box
(b) aspect ratio vs the viscosity ratio λ, for H=5 mm (open symbols) and H=2 mm (filled symbols).

eventually detached from the tail. In our experiments, however, measurements of drop thickness
revealed that the volume of the drop shrank continuously as the drop fell. The total volume of fluid
in the cell (i.e., the sum of the drop and tail volume) remained nearly constant (variations of less
than 10% were observed, as seen in Fig. 7), this suggests that there is no flux of fluid coming from
the injection site, the tail results from fluid being extracted from the drop during its fall.

B. Fall velocity

The velocity of the drop ranged between 0.5 mms−1 and 11 mms−1 across our experiments with
H=5 mm, and between 0.3 mms−1 and 1.1 mms−1 for our experiments with H=2 mm. Using the
thickness of the gap H as a characteristic length, and the measured mean drop velocity vz as a
characteristic velocity, the Reynolds number Re = vzH/νa, ranged between 2.4 × 10−3 and 3.4 ×
10−1 for our experiments in H=5 mm, and between 4.7 × 10−4 and 5.6 × 10−3 for our experiments
in H=2 mm.

Figure 8(a) shows the drop velocity plotted versus the viscosity ratio λ. The drop velocity shows
no clear trend with λ. Figure 8(b) shows the drop velocity plotted versus the predicted velocity

FIG. 7. Plot of the variation of the total volume of drop fluid in the cell, scaled by that of the drop at t = 0,
(V + Vtail )/V (t = 0), as a function of the time scaled by the total falling time, tmax, t/tmax for 10 different drops.
The measurement error on the volume of the drop is of about 10%.
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FIG. 8. Plot of the drop falling velocity vz versus (a) the viscosity ratio, λ (b) U , given by (11). The mean
drop equivalent radius is R = 1.05 ± 0.1 cm for H = 5 mm (open symbols), and R = 0.91 ± 0.3 cm for H =
2 mm (filled symbols). The symbols discriminate the points based on their behavior. The black dashed curve
shows vz = 1.18U .

U given by (11). In our expression of U , we calculate α using the quadratic fit (13), for points
with H=5 mm. For points with H=2 mm we used the measured value of α, despite poor accuracy
because of the instability of the shape of the drop. For both values of H , we take w∗/H = 0.65.
Although the theory collapses the data onto a line, the slope is not equal to unity. Instead, a linear
best fit gives vz = CU with C = 1.18 ± 0.03. The fact that C is not equal to 1 is likely a consequence
of the drop thickness w(x, z, t ) not being uniform across the entire drop [see Fig. 3(b)], as assumed
in the theory. In particular, the drop thickness decreases significantly near the tail, and the drops
have a teardrop, not elliptical, shape. Nonetheless, Fig. 8 shows a good collapse of the experimental
data with the theory after being adjusted by an empirical coefficient.

C. Drop stability

Within the space of parameters studied [see Fig. 2(b)], drops are seen to adopt three main types of
stability behavior as they depend upon the relative viscosities and densities of the drop and ambient
fluids. The first is a quasisteady, stable drop, during which there is no significant horizontal deviation
of its trajectory or shape. The second features a break up of the drop due to instability of the drop
itself, which we refer to as Type I break-up. The third features a break up of the drop, triggered by
inclusions of ambient fluid, which we refer to as Type II break-up.

Snapshots of the fluid thickness for a quasisteady, stable drop are shown in Fig. 9(a). The
corresponding movies can be seen as Supplemental materials [38]. Near the tail of the drop there
are dark spots associated with inclusions of ambient fluid within the drop. Such inclusions were
observed for all the drops in our experiments. Although the shape of the drop oscillates during its
descent, no break-up of the drop occurred.

In the case of a Type I break-up, the interface near the bottom of the drop spontaneously flattened
and formed into a concave shape [Fig. 9(b)]. The drop then split and formed two daughter drops. In
some experiments, the flattening was sufficiently close to the bottom of the drop, that the break-up
generated two daughter drops of comparable size. In experiments where the flattening developed to
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FIG. 9. Successive snapshots of drops with (a) μd = 1.66 × 10−2 Pas−1, �ρ/ρa = 0.11, (b) μd = 5.20 ×
10−3 Pas−1, �ρ/ρa = 1.33 × 10−2, (c) μd = 2.53 × 10−1 Pas−1, �ρ/ρa = 0.21. μa = 0.53 Pas−1 for (a), μa =
0.51 Pas−1 for (b), and 1.41 Pas−1 for (c). The break-up type is Type I for (b) and Type II for (c). The time
interval between two snapshots is 0.8 s for (a), 5.0 s for (b), and 2.5 s for (c). The drop radius R is 1.04 cm
for (a), 0.99 cm for (b), and 1.07 cm for (c). The colormap shows w/H . The vertical and horizontal scales are
identical.
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FIG. 10. Map of the experiments performed on the space of parameters (μa, μd ). The isocontours show
values of �ρ/ρa. Symbols show the type of behavior observed. The green dashed line shows the separation
between λ < 18 (above the line) and λ > 18 (below the line).

one side of the drop [as in Fig. 9(b)], one of the daughter drops was significantly smaller than the
other. This smaller drop was then caught in the wake of the larger drop and merged back with it.

In the case of Type II break-up, spotlike defects near the tail of the drop move downward toward
the bottom interface of the drop [Fig. 9(c)]. When they came into contact with the interface, they
triggered the break-up. Their motion is thought to be caused by internal fluid motion within the
drop.

Figure 10 distinguishes these three behaviors as they depend on the viscosity of the drop and
ambient fluid. Type II break-up was only observed in experiments with λ � 18. The fact that the
viscosity of the ambient and drop fluids are close for Type II break-ups is thought to facilitate
the presence of inclusions of ambient fluid within the drop, in turn leading to break-up through
vertical advection of the inclusions. For λ � 18, both stable drops, and drops undergoing Type I
break-up are observed, sometimes with the same experimental parameters. This suggests that Type I
break-ups are caused by an instability of the shape of the drop, arising from small-scale perturbations
associated with the injection process.

V. DISCUSSION AND CONCLUSION

We presented experimental measurements of the shape, thickness and velocity of miscible
viscous drops falling in a Hele-Shaw cell for a large range of viscosity ratios (5.5 < λ < 270) and
corresponding density ratios (3.5 × 10−3 < �ρ/ρa < 0.21).

Our experiments showed that miscible drops could be significantly elongated, and were approxi-
mately half the thickness of the gap of the cell (w∗/H ∼ 0.65 ± 0.03). We also showed that miscible
drops could break-up in a fashion closely resembling that of immiscible drops [19]. We extended
existing predictions for the falling velocity of near-circular drops with thickness close to or equal
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to the thickness of the gap of the cell H [16,17] to account for drop thickness smaller than the gap,
elongation and viscosity ratios 5 < λ < 270. Our theory is supported by a good prediction of the
falling velocity. It collapses data for a wide range of parameters, regardless of the break-up of the
drops, although the observed speed is larger by an empirical constant of about 1.18.

Despite experimental observation of internal fluid motion in the drop, our theory predicts that
at the leading order, all the fluid inside the drop moves at the same velocity (i.e. the velocity of
the drop). The motion of fluid within the drop must therefore be an effect of higher order. This is
evident by the fact that neither the break-up of drops, nor the presence of internal fluid motion had
an impact on the falling velocity of the drops. Although no calculation of the magnitude of internal
fluid motion within the drop was undertaken, we found that fluid motion within the drop could
cause the break-up of the drop, when the viscosity ratio is low enough (λ < 18; Type II break-up).
In this case, we believe that the break-up time of the drop can be determined from the magnitude
of the downward flow within the drop and the buoyancy of the inclusion of ambient fluid. Type I
break-ups (with λ > 18) are likely caused by an instability of the shape of the drop resulting from
small perturbations upon injection. We observed several drops that underwent oscillations without
breaking up. It is possible that these drops would eventually undergo a Type I break-up that could
not be observed before they exited the observation area. Our findings on the dynamics of confined
miscible drops may prove insightful for several applications where immiscible droplets are normally
used.
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APPENDIX: TRANSFORMATION FROM THE FLOW AROUND A DISK TO THAT AROUND AN
ELLIPSE

The velocity potential of the flow around a circular cylinder in a uniform flow is well known.
We can use a Joukowski transformation [34], to transform this velocity potential into that around
an elliptical cylinder. Let us consider a disk ζ1 of radius R = (a + b)/2 in the (x1, z1) plane, and an
ellipse ζ2 of semiminor axis a and semimajor axis b in the (x2, z2) plane, so that ζ1 = x1 + iz1 and
ζ2 = x2 + iz2. The complex potential of the flow around the circle ζ1 in a uniform flow of far-field
velocity U = Uez is

� = U

(
ζ1 + R2

ζ1

)
. (A1)

The Joukowski transformation,

ζ2 = ζ1 +
(

a − b

4

)2 1

ζ1
, (A2)

transforms the circle ζ1 onto the ellipse ζ2.
In order to get the expression of the velocity potential around the ellipse ζ2, we solve the quadratic

equation (A2), taking the positive solution because it is the only relevant one:

ζ1 = ζ2 + [ζ 2
2 + (a2 − b2)]1/2

2
. (A3)

Substituting (A3) into (A1) gives the complex potential

� = U

a − b

{ − bζ2 + a
[
ζ 2

2 + (a2 − b2)
]1/2}

. (A4)
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The velocity potential is obtained by taking the real part of the complex potential: φ = ��.
Evaluating φ on the boundary of the ellipse gives

φ = Uz1

(
1 + a

b

)
. (A5)
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