Highly Variable Drugs: Experience with Propafenone

Yu Chung Tsang, Ph.D, Radu Pop, Ph.D and Michael Spino, Pharm. D

Apotex Inc., 150 Signet Dr., Weston, Ontario, Canada, M9L 1T9

Highly Variable Drugs

- Drugs that exhibit variable disposition kinetics in the body
- Intra-subject cv >30% in bioavailability parameters
- Challenge have long been a problematic group of drugs for bioequivalence assessment

What Is Bioequivalence?

- Bioequivalence is a means of comparing two formulations or products
 - ➤ It determines if they deliver the same amount of drug into the body at the same rate
 - > Brand vs itself or generic vs brand

Criteria For Bioequivalence

- The test should be within 80 to 125% of the reference
- Employ confidence interval testing (eg. 90%) of the ratios for greater assurance
- Works well with most drugs
 - ➤ Difficult to meet for highly variable drugs
 - ➤ eg. PROPAFENONE

Propafenone

- Is an antiarrhythmic agent used for ventricular arrhythmias
- Is nearly completely absorbed following oral administration
- Undergoes extensive first-pass hepatic metabolism
- \blacksquare Has a wide range of $t_{1/2}$
 - ➤ eg. 2 32 hrs

Bioequivalence Of Propafenone Tablets

- Comparative bioavailability study
 - ➤ Apotex vs Rythmol
- Study design
 - > Standard randomized 2-way crossover
 - Single dose: 1 x 300 mg tablet given after a 10-hour fast
 - > 18 healthy male volunteers
 - ➤ Washout period: 1 week

Cont'd

- Serial blood samples were collected for 48 hours
- Plasma propafenone levels measured by a validated HPLC/UV method
 - ➤ Limit of quantitation = 5.0 ng/mL
 - ➤ Precision: 2.5 9.5 % cv

Mean Plasma Concentrations

Results

<u>Parameter</u>	Mean (cv)		<u>ANOVA</u>
	<u>Apotex</u>	<u>Rythmol</u>	
$AUC_T (ng*hr/mL)$	1377 (139)	1398 (144)	p=0.32
C_{max} (ng/mL)	223 (84)	219 (92)	p=0.45
T _{max} (hr)	2.94 (34)	3.08 (31)	p=0.66
t _{1/2} (hr)	2.92 (63)	3.31 (68)	p=0.58

Note: Log-transformation for AUC_T and C_{max}

Plasma Profiles From Two Subjects

Results - Cont'd

<u>Parameter</u>	Test/Ref	<u>90%</u>	CI Within
	<u>(%)</u>	<u>CI</u>	80-125%
$AUC_T (ng*hr/mL)$	117	84-162	No
C _{max} (ng/mL)	113	81-156	No

Reasons For Failure

- In-vitro dissolution profiles were similar
 - >>95% dissolved by 30 min in 0.1 N HCl
 - ➤ Bioavailability is absorption-rate limited
- Believe that the formulation is OK!
- Inter-subject cv: >100% for AUC_T
- Intra-subject cv (sqrt(MSE)) = 46%
 - > A highly variable drug
 - Apparent lack of BE was probably due to highly variable disposition

Inter-subject Variability

Sources Of Variability

- Metabolism (hydroxylation) of propafenone is genetically determined
 - Fast $(t_{1/2}$: 2-10 hr) vs slow $(t_{1/2}$: 10-32 hr) metabolizers
 - 5x higher drug levels in slow metabolizers
 - ➤ Ultra-fast metabolizer?
 - High first-pass metabolism
 - Lower levels, closer to LOQ of the assay, less precise

Sources Of Variability - Cont'd

- Hydroxylation of propafenone is saturable
 - Nonlinear increase in BA as dose increases in fast metabolizers
 - > Kinetics is linear in slow metabolizers
- Higher variability with fast metabolizers
- Problem is magnified after logtransformation
 - ➤ For a given difference, the smaller the values, the larger the difference between the logs

Re-analysis Of BE Data

- Analyze the "slow" metabolizers only
 - > No criteria found in the literature
 - ➤ Use the median across subjects as cut-off
 - > 8 subjects were selected
 - had AUC_T >median for both products

	Intra-subject cv	90% CI
AUC_T	11%	82-101
C_{max}	20%	75-112

Proof Of High Variability

- Part of a large study
- Rythmol was given to the same subject on two occasions separated by 1 week
- \blacksquare n = 16
- Inter-period ratio: 0.37-2.09 for AUC_T and 0.39-2.25 for C_{max}
- Intra-subject cv = 29% for both parameters

What is n for demonstrating BE With CV = 29%?

- Assuming no difference (brand vs brand) and 90% probability of acceptance, n=40 subjects
- With a 5% difference due to chance (generic vs brand), n=52 subjects
- In Canada, propafenone is classified as a drug with a narrow therapeutic range
 - > 95% CI
 - ➤ A fasting and a food challenge study
- Even higher n!

Bioequivalence Standards: Do We Have The Right Balance?

- For most drugs, current "Report A" and "B" standards of TPD are appropriate
- For HVD, they are inappropriately austere
 - ➤ The tighter standards for propafenone are clearly unjustified
 - ➤ The current goalposts are too narrow when biological variability is so high
 - ➤ It is unethical and costly to require a large number of subjects

What Is The Right Balance?

- Standards should be reasonable
 - ➤ When the brand has trouble passing against itself, it indicates the criteria are unrealistically austere
 - ➤ In such cases new criteria should be established and such criteria should not be more onerous than the current one
- Regulatory authority should be responsive in accepting new criteria

Acknowledgement

■ David Dawod