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Abstract Unilateral training involving voluntary con-

tractions, neuromuscular electrical stimulation (NMES), or

a combination of the two can increase the excitability of

neural circuits bilaterally within the CNS. Many rehabili-

tation programs are designed to promote such ‘‘neuro-

plasticity’’ to improve voluntary movement following CNS

damage. While much is known about this type of activity-

dependent plasticity for the muscles that dorsi-flex the

ankle, similar information is not available for the plantar-

flexors. Presently, we assessed the excitability of cortico-

spinal (CS) and spinal circuits for both soleus (SOL)

muscles before and after voluntary contractions of the right

plantar-flexors (VOL; 5 s on–5 s off, 40 min), NMES of

the right tibial nerve (tnNMES; 5 s on–5 s off, 40 min), or

both together (V ? tnNMES). CS excitability for the right

(rSOL) and left SOL (lSOL) muscles was assessed by

quantifying motor evoked potentials elicited by transcra-

nial magnetic stimulation. Spinal excitability was assessed

using measures from the ascending limb of the M-wave

versus H-reflex recruitment curve. CS excitability did not

change for rSOL (the activated muscle) or lSOL following

any condition. In contrast, there was a marked increase in

spinal excitability for rSOL, but only following V ? tnN-

MES; the slope of the M-wave versus H-reflex recruitment

curve increased approximately twofold (pre = 7.9; post =

16.2) and H-reflexes collected when the M-wave

was *5 % of the maximal M-wave (Mmax) increased

by *1.59 (pre = 19 % Mmax, post = 29 % Mmax).

Spinal excitability for lSOL did not change following any

condition. Thus, only voluntary contractions that were

coupled with NMES increased CNS excitability, and this

occurred only in the ipsilateral spinal circuitry. These

results are in marked contrast to previous studies showing

NMES-induced changes in CS excitability for every other

muscle studied and suggest that the mechanisms that reg-

ulate activity-dependent neuroplasticity are different for

SOL than other muscles. Further, while rehabilitation

strategies involving voluntary training and/or NMES of the

plantar-flexors may be beneficial for producing movement

and reducing atrophy, a single session of low-intensity

NMES and voluntary training may not be effective for

strengthening CS pathways to the SOL muscle.

Keywords Neuromuscular electrical stimulation � Motor

cortex � H-reflex � Neuroplasticity � Human � Rehabilitation

Introduction

Transmission across synapses and through neural circuits

that control human movement changes throughout one’s

life in an activity-dependent manner, an effect known as

‘‘neuroplasticity.’’ This neuroplasticity is driven by vol-

untary activation of the cortex in conjunction with feed-

back from sensory receptors activated by the movement

(Pascual-Leone et al. 2005). In a similar way, the sensory
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volley generated during neuromuscular electrical stimu-

lation (NMES) can also induce activity-dependent plas-

ticity in neural circuits. Such neuroplasticity generally

manifests as an increase in the excitability of corticospinal

(CS) circuits which, over time, strengthens the connec-

tivity of the CS pathways. This strengthening of CS

pathways is associated with improved motor learning

(McDonnell and Ridding 2006), as well as improved

motor function following stroke (Powell et al. 1999;

Conforto et al. 2002), spinal cord injury (Hoffman and

Field-Fote 2007), and other CNS damage (Everaert et al.

2010). Thus, promoting activity-dependent neuroplasticity

has become a goal of many rehabilitation programs

designed to help individuals relearn motor skills following

CNS damage (Kleim 2011).

Plasticity in CS circuits induced by voluntary contrac-

tions or NMES has been demonstrated for almost every

muscle tested thus far. CS excitability increases after vol-

untary contractions of muscles of the fingers and hand

(Pascual-Leone et al. 1995) Caramia et al. 2000, Muellb-

acher et al. 2001), thumb (Rogasch et al. 2009), wrist

extensors (Hauptmann et al. 1997), elbow flexors (Ziemann

et al. 2001), and ankle flexors (Perez et al. 2004;

Khaslavskaia and Sinkjaer 2005). Likewise, after a session

of NMES, CS excitability increases for muscles associated

with swallowing (Hamdy et al. 1998) and for muscles

of the hand (Ridding et al. 2000; Charlton et al. 2003;

Beekhuizen and Field-Fote 2005; Barsi et al. 2008) and leg

(Khaslavskaia et al. 2002; Knash et al. 2003; Kido-

Thompson and Stein 2004). Most of the evidence indicates

that this plasticity is limited to cortical circuits (Ridding

et al. 2000; Stefan et al. 2000; Charlton et al. 2003);

however, for the muscles of the ankle, Khaslavskaia et al.

(2002) reported increases in both cortical and spinal

excitability when NMES was applied over the dorsi-flex-

ors, and Kitago et al. (2004) found an increase in spinal

excitability when NMES was applied over the plantar-

flexors. Kitago et al. (2004) also tested CS excitability for

the plantar-flexors and showed that after NMES, motor

evoked potentials (MEPS) were 133 % of those evoked

before the stimulation; however, these experiments were

performed on only 3 participants and t tests identified no

significant effect of the NMES on CS excitability. We

suggest that these CS excitability experiments of Kitago

et al. (2004) were markedly underpowered with inconclu-

sive results; thus, whether NMES alters CS excitability for

the ankle plantar-flexors remains to be determined. The

goal of the present experiments was to provide a compre-

hensive evaluation of activity-dependent changes in CNS

excitability for SOL by assessing CNS excitability on both

the left and right legs, before and after a period of repetitive

voluntary contractions, NMES, or a combination of the

two.

While both voluntary training and NMES alone can

increase CS excitability, their combination increases CS

excitability even further for the ankle dorsi-flexors

(Thompson and Stein 2004; Khaslavskaia and Sinkjaer

2005) and finger flexors/extensors (Barsi et al. 2008).

Interestingly, for the upper limb, voluntary training and/or

NMES interventions do not alter only the circuitry of the

activated muscle, but changes also occur in circuits con-

trolling homologous muscles on the contralateral side of the

body. Studies utilizing imaging techniques (Kristeva et al.

1991), electroencephalography (Cramer et al. 1999), and

transcranial magnetic stimulation (TMS; Stedman et al.

1998; Muellbacher et al. 2000) indicate that both left and

right motor cortices are simultaneously activated during

unilateral muscle activity. Accordingly, 5-s wrist flexion

contractions generated voluntarily and/or by NMES altered

the excitability of spinal and supraspinal circuits controlling

the ipsilateral and contralateral limbs (Hortobagyi et al.

2003). Such changes in neural circuits are thought to

underlie the strength gains that occur in the uninvolved limb

following unilateral training (Hortobagyi et al. 2003;

Hortobagyi 2005; Lee et al. 2010). A 5-week training pro-

gram involving unilateral voluntary plantar-flexion of the

ankle enhanced the strength of the ipsilateral and contra-

lateral plantar-flexors; however, spinal excitability

increased only for the ipsilateral plantar-flexors and cortical

excitability was not evaluated (Lagerquist et al. 2006a).

Activity-dependent plasticity is well documented for the

muscles that dorsi-flex the ankle; however, much less

information is available for the plantar-flexors. The dorsi-

flexors are commonly stimulated to assist in toe clearance

during the swing phase of gait for people with ‘‘foot-drop’’

resulting from a stroke or incomplete spinal cord injury

(Liberson et al. 1961; Thompson and Stein 2004; Sabut

et al. 2010a, b; Thompson et al. 2011). Although NMES is

not as commonly applied to the plantar-flexors during

rehabilitation programs, NMES has been used to activate

these muscles to increase step clearance (Bajd et al. 1997)

and the plantar-flexors are important postural muscles that

contribute considerably to balance and propulsion during

gait (Winter 1983, Neptune et al. 2001). Thus, there is

increasing interest in including these muscles in future

NMES programs (Bajd et al. 1999; Nadeau et al. 1999;

Kesar et al. 2009). The present study is the first designed to

investigate the influence of voluntary plantar-flexion con-

tractions and/or NMES of the tibial nerve on one side of the

body on the excitability of CS and spinal circuits bilater-

ally. The contractions were intermittent (5 s on–5 s off for

40 min) and were designed to represent a protocol that

could be used in a rehabilitation program. Given that

NMES (Khaslavskaia et al. 2002; Kitago et al. 2004) or

voluntary contractions (Lagerquist et al. 2006a) increase

spinal excitability for the ankle dorsi-flexors and plantar-
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flexors, respectively, we predicted that they would increase

spinal excitability when delivered separately or together in

the present study. Similarly, since voluntary training and

NMES increase CS excitability when applied separately,

and have an additive effect when applied together for other

muscles (Khaslavskaia and Sinkjaer 2005; Barsi et al.

2008), we predicted that the same would be true for the

plantar-flexors. Specifically, we hypothesized that spinal

and CS excitability for the right soleus muscle (rSOL)

would be enhanced following voluntary contractions of the

right plantar-flexors (VOL) and NMES of the right tibial

nerve (tnNMES) alone, and would be enhanced to an even

greater extent by the combination of the two (V ? tnN-

MES). CS excitability and spinal excitability were also

evaluated for circuits controlling the contralateral SOL

muscle (lSOL) before and after each condition to determine

whether acute crossed effects on CNS excitability were

evoked by any of the conditions, as occurs for muscles of

the arms (Hortobagyi et al. 2003; Lee et al. 2010). The

results of these experiments provide novel information

about activity-dependent plasticity in circuits that control

the SOL muscles and have implications for the develop-

ment of rehabilitation protocols for these muscles.

Materials and methods

Ten persons with no known neuromuscular disorder

(22–44 years old; 7 males) participated with written

informed consent. This study was approved by the Health

Research Ethics Board at the University of Alberta.

Experimental procedure

All subjects were right foot dominant as determined by

asking subjects which leg they preferred to use to kick a

soccer ball. Subjects were seated in the chair of a Biodex

System 3 Dynamometer (Biodex Medical Systems, Shirley,

NY, USA) with the hip, knee, and ankle at 90�, 120�, and

90�, respectively. The ankle and foot were tightly secured to

the footplate of the Biodex to measure isometric plantar-

flexion torque. Subjects were asked to abstain from caffeine

consumption for 12 h prior to and for the duration of each

experimental session to eliminate the possible effects of

caffeine on CNS excitability (Walton et al. 2003). Each

subject participated in 4 experimental sessions (*3–4 h per

session). Data were collected before and after one of the

following four conditions in each session. In three of the

four sessions, contractions were intermittent (5 s on, 5 s off)

for 40 min. The four conditions were as follows: (1) vol-

untary isometric contractions (*20 % MVC) of the right

plantar-flexors (VOL); (2) NMES (1-ms pulse widths,

100 Hz) of the right tibial nerve (tnNMES); (3) VOL in

conjunction with tnNMES (V ? tnNMES); and (4) a con-

trol condition (CON) involving no contraction and no

stimulation. The intensity of tnNMES was set to generate

approximately 2–3 % of each subject’s maximal, voluntary,

isometric plantar-flexion torque (MVC). If necessary,

stimulation intensity was adjusted in order to stay within

this range. Thus, the net torque produced during

V ? tnNMES trials was *22–23 % MVC. To ensure that

tnNMES elicited contractions of 2–3 % MVC during

V ? tnNMES trials, subjects were asked to remain relaxed

and not generate any volitional torque for 1–2 cycles of

stimulation every 5 min. Subjects were provided with

feedback via a monitor that displayed their plantar-flexion

torque. All experimental sessions were separated by a

minimum of three days and were collected at the same time

of day for each subject to account for diurnal variations in

CNS excitability (Lagerquist et al. 2006b; Tamm et al.

2009). The order of data collection trials during an experi-

mental session was randomized on the first day of testing for

every subject and kept constant for each individual during

subsequent experimental sessions. An example of the order

of trials for one subject is illustrated in Fig. 1. MVCs of the

right and left plantar-flexors were always performed first

because those data were used to set the target electromy-

ography (EMG) levels for background contractions during

subsequent TMS and H-reflex testing. The time at which CS

excitability and spinal excitability were assessed after each

40-min condition varied between subjects but was the same

for a given subject across the four conditions. SOL MEPs

were collected for both legs using TMS applied over the

right and left motor cortices to assess CS excitability. SOL

H-reflexes were collected for both legs using electrical

stimulation over the right and left tibial nerves at the pop-

liteal fossa to assess spinal excitability.

Electromyography

Surface EMG was recorded from the rSOL and lSOL

muscles using bipolar (2.25 cm2) recording electrodes

(Vermed Medical, Bellows Falls, Vermont). EMG signals

were pre-amplified (500–2,0009) and band-pass filtered

at 30–3,000 Hz (NeuroLog system; Digitimer, Welwyn

Garden City, Hertfordshire, England). All data were sam-

pled at 2,000 Hz using a 12-bit A/D converter (National

Instruments, Austin, TX, USA).

Peripheral nerve stimulation

The right tibial nerve was stimulated using bipolar (2.25 cm2)

surface electrodes (Vermed Medical Inc.) placed over the

popliteal fossa at the site that evoked a response (M-wave or

H-reflex) at the lowest stimulation intensity. Rectangular

pulses of 1 ms were delivered from a Digitimer (DS7A)
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constant current stimulator. Stimulation current was mea-

sured using a current probe (mA-2000 Non-contact Mil-

liammeter, Bell Technologies) to confirm that M-wave

amplitudes plateaued with increasing levels of stimulation.

Maximum voluntary isometric contractions

Subjects performed between 2 and 5 MVCs of the right and

left plantar-flexors at the beginning of each testing session

and upon completion of each 40-min condition. Subjects

performed MVCs until consistent maximal contractions were

achieved (less than 5 % variability on two successive trials).

Each MVC lasted approximately 3 s and was separated from

the previous maximal effort by at least 3 min. Subjects were

provided with visual feedback of their torque production and

received verbal encouragement to perform maximally. MVC

torque and the root mean square of the SOL EMG were cal-

culated over a 500-ms interval centered around the region of

maximal torque produced during each MVC.

Measures of CS excitability

MEPs were elicited using a magnetic stimulator (Magpro

R30; Medtronic Inc., Minneapolis, Minnesota) with a fig-

ure-of-eight coil (Medtronic MC-B70, Minneapolis,

Minnesota). The position and orientation of the coil was

adjusted over the left and right motor cortices to find the

two locations at which clear rSOL and lSOL MEPs were

generated at the lowest stimulus intensity, respectively.

The coil position and orientation was guided and recorded

using a magnetic resonance imaging–guided TMS system

(Brainsight; Rogue Research, Montreal, QC, Canada). The

same stimulation site for each subject was stimulated

during all experimental sessions, and we placed the TMS

coil to within 3 mm of its optimal position for each of the

four conditions. To maintain similar levels of motoneuron

excitability during TMS trials, subjects held a background

contraction of 5 % maximal SOL EMG output using visual

feedback of SOL EMG low-pass filtered at 3 Hz. SOL

EMG output was standardized for each of the four sessions

for every participant. Two measures of CS excitability

were evaluated: (1) TMS intensity at active MEP threshold

(AMT) for SOL and (2) SOL MEP amplitude at

1.2 9 AMT. AMT was determined by manually adjusting

stimulator output in 1 % intervals of TMS output to find

the lowest intensity at which clearly discernible MEP

responses ([50 lV) were evoked in at least four out of

eight responses. The average time after each condition that

data were collected for this measure of CS excitability was

43 ± 17 min (mean ± SD; range 13–80) for the right leg

Fig. 1 Example of randomized

testing order for one subject.

MVC is maximum voluntary

isometric contraction, and TMS/

MEP is transcranial magnetic

stimulation used for collecting

motor evoked potentials. MVC

trials were always pseudo-

randomized first since subjects

were required to hold a 5 % of

maximum SOL EMG

background contraction during

H-reflex and TMS testing. The

identical testing order was used

before and after each 40-min

condition

44 Exp Brain Res (2012) 222:41–53
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and 53 ± 14 min (range 22–78) for the left leg (averaged

across the four conditions and all subjects).

Measures of spinal excitability

M versus H (M/H) SOL recruitment curves were con-

structed from responses to 60 stimuli delivered to the tibial

nerve at the popliteal fossa. The stimulation was delivered

randomly every 3–5 s at intensities ranging from below

M-wave and H-reflex threshold to 2–3 times the minimum

current required to evoke Mmax. Subjects held a back-

ground SOL contraction as described above for the TMS

trials when collecting M/H recruitment curves. Three

measures of spinal excitability were evaluated.

1. H-reflex recruitmentt gain. A linear regression using

the least sum of squares method was fitted to the

middle portion of the ascending limb of the M/H

recruitment curve when H-reflexes were 25–75 % of

the maximal H-reflex (Hmax). The slope of this

regression was used as an indication of H-reflex

recruitment gain (Lagerquist et al. 2006b).

2. H-reflex recruitment relative to M-wave recruitment.

The size of the H-reflex on the ascending limb of the

M/H recruitment curve (HA) was calculated using

responses evoked with an M-wave of approximately

5 ± 2 percent of Mmax. Between 9 to 18 H-reflexes fell

within this range for a given subject and were included

in the average. This method allows the facilitation or

inhibition of the H-reflex to be measured while using

the M-wave as a measure of stimulus consistency.

3. Hmax:Mmax ratio. The Hmax:Mmax ratio was calculated

using the average of the three largest H-reflexes (Hmax)

and the single largest M-wave (Mmax) from each M/H

recruitment curve.

Statistics

All data were tested for normality using the Kolmogorov–

Smirnov–Lilliefors test. To test for significant effects of

Time or Condition, separate 2 9 4 repeated-measures

ANOVA tests were used to analyze 5 of our 6 dependent

variables (MVC, MEPs at 1.2 9 AMT; Hmax:Mmax ratio,

M/H recruitment curve slope, and HA values). Similar

ANOVAs were used to test for significant differences in the

background SOL EMG during MEP and H-reflex acquisi-

tion and for torque and EMG recorded during the MVICs

over time and between the four conditions. These variables

were evaluated using 2 levels of ‘‘Time’’ (before and after

each 40-min condition) and 4 levels of ‘‘Condition’’

(tnNMES, VOL, V ? tnNMES, and CON). In the event of

a significant main effect or interaction, post hoc analysis

was performed using the Tukey honestly significant

differences test. There were, however, no significant main

effects of Time or Condition for any variable; thus, only

results from interactions are described in detail in the

results section. Friedman tests were used to evaluate the

AMT data because it was not normally distributed. All data

are presented as means ± standard errors. The alpha level

for all tests was set at p \ 0.05.

Results

There was no change in AMT or MEP amplitude at

1.2 9 AMT for rSOL or lSOL following any of the con-

ditions. In contrast, the slope of the M/H recruitment curve

increased approximately twofold and H-reflexes collected

when the M-wave was *5 % of Mmax (HA) increased

by *1.5-fold for rSOL following V ? tnNMES only.

There were no changes in spinal measures of excitability

for lSOL following any condition.

SOL Mmax did not change during our experiments. Mmax

data showed no Time 9 Condition interaction for rSOL

[F(3,27) = 1.4; p = 0.3] or lSOL [F(3,27) = 0.4; p = 0.7].

Averaged Mmax values for rSOL were 8.5 ± 4.1 and

8.1 ± 3.8 mV before and after all four conditions,

respectively. Equivalent values for lSOL were 8.3 ± 4.9

and 8.9 ± 5.4 mV, respectively.

Plantar-flexor MVCs

The amount of torque generated during plantar-flexion

MVCs was unaffected by any of the four conditions in the

present study. There was no significant Time 9 Condition

interaction (right leg: [F(3,27) = 0.41; p = 0.75]; left leg:

[F(3,27) = 1.1; p = 0.4]) for MVC torque. For the group,

MVC torque averaged across the four conditions and both

legs was 275 ± 114 Nm at the beginning of the experiment

and was 279 ± 116 Nm after the intervention. Similarly,

there was no significant Time 9 Condition interaction

(right leg: [F(3,27) = 0.29; p = 0.83]; left leg:

[F(3,27) = 0.40; p = 0.75]) for EMG recorded during the

MVCs. For the group, the EMG recorded during the MVCs

averaged across the four conditions and both legs was

314 ± 163 lV at the beginning of the experiment and was

304 ± 167 lV after the intervention.

Background EMG

The magnitude of the EMG activity generated during the

voluntary contractions that subjects held during MEP and

H-reflex acquisition was not different between conditions

or across time. There was no Time 9 Condition interaction

for rSOL or lSOL background EMG during MEP (rSOL:

[F(3,27) = 1.2; p = 0.3]; lSOL: [F(3,27) = 1.1; p = 0.4]) or

Exp Brain Res (2012) 222:41–53 45
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H-reflex acquisition (rSOL: [F(3,27) = 1.6; p = 0.2]; lSOL:

[F(3,27) = 0.6; p = 0.6]). During collection of the MEPs,

the EMG values measured before and after all conditions

were 5.1 ± 0.9 and 4.9 ± 0.8 % maximal EMG for rSOL,

respectively, and 4.9 ± 0.8 and 4.8 ± 0.6 % for lSOL,

respectively. Equivalent values obtained during H-reflex

acquisition were 5.0 ± 0.8 and 5.1 ± 0.7 % maximal

EMG for rSOL and 4.8 ± 0.8 and 4.8 ± 0.7 % for lSOL.

CS excitability

There were no changes in the excitability of CS circuits

following any of the four conditions in the present study.

The 2 two-way repeated-measures ANOVAs and 2

Friedman tests used to analyze the SOL MEP data

showed that all interaction effects had p-values equal to

or greater than 0.2. Averaged across participants, AMT

before and after all conditions was 61 ± 12 and

60 ± 11 % for rSOL and 60 ± 11 and 60 ± 12 % for

lSOL, expressed as a percentage of maximal TMS output.

The amplitude of MEPs evoked at 1.2 9 AMT for rSOL

and lSOL did not change following any condition and is

shown in Fig. 2.

Spinal excitability

Spinal excitability for rSOL changed following the

V ? tnNMES condition only. M/H recruitment curves

recorded from a single subject before and after 40 min of

V ? tnNMES are shown in Fig. 3. Panel A shows the entire

range of the recruitment curve (from 0 to 100 % Mmax), and

panel B shows the portion between 1 % and 8 % M-wave

on an expanded scale. The slope of the ascending limb of

the recruitment curve (when H-reflexes were between 25

and 75 % Hmax) was *39 greater after V ? tnNMES

compared to before (pre = 13; post = 40), and HA values

(H-reflex amplitude when the M-wave was *5 % Mmax)

increased 1.69 (from 50 % to 80 % Mmax; panel C). The

Hmax:Mmax ratio for this subject was *80 % Mmax before

and after the V ? tnNMES condition.

Analysis of the slopes from the rSOL M/H recruitment

curves across the group showed a significant Time 9

Condition interaction [F(3,27) = 3.5; p = 0.03]. Post hoc

analysis revealed that only the V ? tnNMES condition

resulted in a significant slope increase for rSOL (approxi-

mately twofold increase; p = 0.03, see Fig. 4a) from

7.9 ± 0.6 before to 16.2 ± 1.8 after the V ? tnNMES.

Fig. 2 Individual (a, c) and

group SOL MEP data (b,

d) recorded from the right (a,

b) and left leg (c, d). Data

collected before and after

conditioning trials are shown in

gray and black, respectively.

Values have been normalized to

each person’s respective SOL

Mmax. Error bars represent one

standard error

46 Exp Brain Res (2012) 222:41–53
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There was no significant Time 9 Condition interaction for

the slope of the recruitment curve collected from lSOL

[F(3,27) = 0.5; p = 0.7].

There was a significant increase in the size of the rSOL

H-reflex when the M-wave was *5 % Mmax (HA) after the

V ? tnNMES condition only (see Fig. 5a). HA data from

rSOL showed a significant Time 9 Condition interaction

[F(3,27) = 6.1; p = 0.02]. Post hoc analysis revealed that

only the V ? tnNMES condition resulted in a significant

increase in *1.5-fold in HA (p = 0.02) for rSOL from 19 %

Mmax before to 29 % Mmax after V ? tnNMES. There was no

change in HA for lSOL after any condition (Time 9 Condi-

tion interaction: [F(3,27) = 0.6; p = 0.7]).

Hmax:Mmax ratios from rSOL and lSOL were unaffected

by any of the four conditions. There was no Time 9

Condition interaction for rSOL [F(3,27) = 1.3; p = 0.3] or

lSOL [F (3,27) = 1.2; p = 0.3]. When group values were

averaged, Hmax:Mmax ratios before and after all four con-

ditions were 51 ± 19 and 50 ± 17 for rSOL, respectively,

and 55 ± 21 and 53 ± 20 for lSOL, respectively.

Discussion

The present experiments were designed to determine

whether a single 40-min session of VOL, tnNMES, or

V ? tnNMES of the right plantar-flexors increased the

excitability of CS or spinal circuits that control rSOL and

lSOL. Two main findings are reported: (1) CS excitability

was not affected by any of the conditions; (2) spinal

excitability increased only on the stimulated side (rSOL)

and only following the condition which paired voluntary

contractions with electrical stimulation (V ? tnNMES).

These findings suggest that the mechanisms responsible for

activity-dependent plasticity in the CNS are different for

SOL compared to other muscle groups previously studied

in this manner. This has implications for understanding

activity-dependent plasticity in the CNS and for the

development of rehabilitation strategies for the plantar-

flexors following CNS injury.

Lack of change in CS excitability for rSOL

In previous studies, CS excitability increased for the active

muscles following 12 min of intermittent index finger

abduction (Lee et al. 2010) and 30 min of intermittent

isometric dorsi-flexion of the ankle (Khaslavskaia and

Sinkjaer 2005). Similar to repeated voluntary movement

training, repeated muscle contractions evoked by a single

session of NMES increased CS excitability for muscles

of the throat (Hamdy et al. 1998), hand (Ridding et al.

2000; Charlton et al. 2003; Barsi et al. 2008), and leg

(Khaslavskaia et al. 2002; Knash et al. 2003; Khaslavskaia

and Sinkjaer 2005; Mang et al. 2010, 2011). Furthermore,

Fig. 3 H versus M SOL

recruitment curves collected

from a single subject before

(gray) and after (black) 40 min

of tibial nerve stimulation and

concurrent isometric voluntary

activation of the plantar-flexors.

a Data collected over the full

range of stimulus intensities.

b Data selected from the

ascending limb of the same

recruitment curves shown in

a when the H-reflex was

between 1 and 8 % Mmax. The

linear regressions of pre- and

post-data are indicated by gray
and black lines, respectively in

b. c The mean M-wave and

H-reflex wave forms for a single

subject when the M-wave

was *5 % Mmax
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combining voluntary contractions with NMES to activate

the finger flexors/extensors (Barsi et al. 2008) and TA

(Kido-Thompson and Stein 2004; Khaslavskaia and

Sinkjaer 2005) enhanced CS excitability more than vol-

untary contractions or NMES alone. Contrary to our

hypotheses, none of the conditions in the present study

(VOL, NMES, or V ? tnNMES) increased the excitability

of CS pathways controlling the active muscle, rSOL. Thus,

not only did neither the VOL nor the tnNMES conditions

increase CS excitability for SOL when applied separately,

even their combination, which increases CS excitability

more than either VOL or NMES alone for other muscles,

did not increase CS excitability. These results, combined

with the wealth of evidence showing activity-dependent

changes in CS excitability for every other muscle tested

thus far, suggest that mechanisms regulating activity-

dependent CNS plasticity are different for SOL than other

muscles.

The lack of an increase in CS excitability for SOL fol-

lowing voluntary contractions and tnNMES may reflect the

fact that SOL is under less cortical control than other

muscles studied previously. Compared to TA, SOL has

relatively smaller MEPs in stationary subjects (Maertens de

Noordhout et al. 1999; Bawa et al. 2002) and during

walking (Capaday et al. 1999), and reflexes in TA have a

stronger transcortical component than in SOL (Christensen

et al. 2000). Further, voluntary isometric dorsi-flexion

contractions of the ankle are associated with the activation

of a significantly larger cortical area than similar plantar-

flexion contractions (Trinastic et al. 2010). Interestingly,

NMES of the common peroneal nerve, which innervates

TA (the antagonist to the muscle presently studied),

enhanced CS excitability for both TA and SOL (Kido-

Thompson and Stein 2004; Mang et al. 2011). Taken

together with the results of the present study, this suggests

that afferent drive from a heteronymous nerve, but not the

homonymous tibial nerve, enhances CS excitability for

SOL. Multiple cortical regions are activated during

Fig. 4 Group SOL H-reflex slope data from the right (a) and left leg

(b). Data collected before and after conditioning trials are shown in

gray and black, respectively. Values have been normalized to each

person’s respective SOL Mmax. Asterisks indicate significant differ-

ences (p \ 0.05) between pre- and post-values. Error bars represent

one standard error

Fig. 5 Group SOL HA data from the right (a) and left leg (b). Data

collected before and after conditioning trials are shown in gray and

black, respectively. Values have been normalized to each person’s

respective SOL Mmax. Asterisks indicate significant differences

(p \ 0.05) between pre- and post-values. Error bars represent one

standard error
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electrical stimulation of the common peroneal (Francis

et al. 2009) and tibial nerves (Ferretti et al. 2004; Arienzo

et al. 2006), and stimulation of both nerves activates the

motor cortex at latencies consistent with direct pathways

from the thalamus (Hauck et al. 2006). Thus, it is presently

not clear why stimulation of the antagonist nerve (Kido-

Thompson and Stein 2004; Mang et al. 2011), but not the

homonymous nerve (present study), increases CS excit-

ability for SOL, and these putative differences require

confirmation by stimulating both nerves in the same group

of participants.

Alternatively, the lack of a significant increase in CS

excitability for SOL and the increased CS excitability for

other muscles in similar studies might reflect differences in

protocols between studies. However, the intensity, dura-

tion, and patterns used in the present study fall within the

range of parameters that have previously enhanced CS

excitability for other muscles. For example, other studies

that have shown NMES-induced increases in CS excit-

ability have used intensities ranging from below motor

threshold (Hoffman and Field-Fote 2007) to 50 % Mmax

(Kido-Thompson and Stein 2004) and contraction patterns

ranging from 500 ms on, 500 ms off (Ridding et al. 2000)

to 20 s on, 20 s off (Mang et al. 2010, 2011). Moreover, the

intensity of NMES (2–3 % MVC), level of contraction

(20 % MVC), and duration of stimulation (40 min) in the

present study are very similar to the parameters used by

Khaslavskaia and Sinkjaer (2005) when they demonstrated

that CP nerve stimulation delivered at twice motor

threshold, combined with voluntary dorsi-flexion of 30 %

MVC in a 1-s on, 2-s off pattern for 30-min enhanced CS

excitability for TA. Thus, we believe that the lack of

change in CS excitability for SOL in the present study is

due to differences in neural circuits that control SOL

compared to other muscles previously studied, rather than a

difference in protocols between studies.

Change in spinal excitability for rSOL following

V ? tnNMES

Presently, spinal excitability increased when voluntary

contractions were paired with NMES, but not when either

condition was applied alone. This ‘‘combined’’ protocol

has been shown previously to be the most effective for

increasing CS excitability, and it is thought that the com-

bination of voluntary drive and sensory feedback has an

additive effect on CNS excitability (Khaslavskaia and

Sinkjaer 2005; Barsi et al. 2008). While SOL may have

relatively weak cortical control, it has uniquely strong

spinal reflex connections, particularly from Ia afferents.

Compared to TA, for which Ia connections to the TA

motoneuron pool are relatively weak and H-reflexes are

typically small and difficult to evaluate (Jusic et al. 1995;

Brooke et al. 1997), H-reflexes in SOL are 50 % Mmax on

average, suggestive of relatively strong afferent projections

to the SOL motoneuron pool (Taborikova and Sax 1968).

Potentially, relatively stronger cortical connectivity

(Capaday et al. 1999; Maertens de Noordhout et al. 1999;

Bawa et al. 2002) and weaker spinal connectivity to the TA

(Taborikova and Sax 1968) compared to SOL may account

for the fact that common peroneal nerve stimulation

increased CS excitability with no change in spinal excit-

ability for TA (Knash et al. 2003; Mang et al. 2010), while

we presently showed enhanced spinal, but not CS, excit-

ability for rSOL following the V ? tnNMES condition.

Contrary to our findings, voluntary training alone enhanced

SOL H-reflexes in the trained limb in a previous study

(Lagerquist et al. 2006a), but this was after 5 weeks of

training rather than after just 40 min as in the present

study.

The enhanced H-reflexes for rSOL following

V ? tnNMES, with no change in MEPs, may provide a

clue about the mechanism responsible for the increased

spinal excitability. MEPs are influenced by the excitability

of cortical neurons and the motoneuron pool (Rothwell

et al. 1991). No change in MEP amplitude is strong evi-

dence that excitability did not change at either location, at

least for those neurons recruited by the stimulation. Had

the excitability of the whole motor pool increased, the

amplitude of both H-reflexes and MEPs would have been

expected to increase accordingly. Hence, our data suggest

that if the mechanism responsible for the increased

H-reflexes was distributed evenly across the motor pool, its

effect must be pre-synaptic to the SOL motor pool. Post-

tetanic potentiation of neurotransmitter release (Hagbarth

1962) and reduced pre-synaptic inhibition (PSI) of afferent

terminals are two potential candidates. However, it is

important to note that while both CS (Bawa and Lemon

1993) and afferent (Henneman et al. 1965) inputs recruit

motoneurons according to Hennemann’s size principle,

there is evidence from the upper limb for subtle differences

in the population of motoneurons that are recruited by these

different inputs (Morita et al. 1999). Thus, caution should

be exercised when making mechanistic conclusions based

on different responses in H-reflexes and MEPs (Nielsen

et al. 1999). If, in the present study, markedly different

motor units were recruited by the H-reflexes and MEPs, the

mechanism responsible for the increased H-reflexes may

have involved increased motoneuronal excitability rather

than a pre-synaptic mechanism. Differentiating between a

pre- and post-synaptic mechanism was not part of the

present study, and additional experiments will be required

to identify the mechanism responsible for the presently

observed increased spinal excitability.
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Lack of crossed effects

The cross-education response to chronic training is well

documented to influence both the upper and lower body

musculature. However, acute experiments examining more

immediate crossed effects for CS excitability have been

completed in the upper body, but not in the lower body.

Chronic unilateral voluntary training increases the strength

and motor performance of homologous muscles on the

opposite side of the body for upper and lower limb muscles

(for review, see Carroll et al. 2006). The mechanism

underlying this phenomenon is not fully understood, but is

likely neural, rather than muscular, in nature (Carroll et al.

2006). For example, CS excitability is enhanced for the

homologous muscles of the contralateral limb during uni-

lateral rhythmic movements (Carson et al. 2004) and fol-

lowing unilateral ballistic movements (Lee et al. 2010) of

the upper limb. It has been shown that chronic unilateral

strength training of the plantar-flexors does not affect

spinal excitability for the contralateral limb (Lagerquist

et al. 2006a; Dragert and Zehr 2011) and that chronic

unilateral leg strengthening decreases corticospinal inhi-

bition associated with both the trained and untrained leg

(Latella et al. 2011). However, to our knowledge, acute

crossed effects on CS excitability for leg muscles have not

been investigated. Interestingly, contractions produced by

NMES appear to induce greater cross-education effects

than voluntary contractions. NMES-evoked contractions

increased muscle strength by 40 % in the contralateral limb

(Cabric and Appell 1987) compared to the 10–20 %

increase usually observed with voluntary contractions

(Enoka 1988). In the one study that investigated acute crossed

effects of voluntary and electrically evoked contractions on

the CNS, Hortobagyi et al. (2003) found that 5 s of vol-

untary wrist flexion enhanced MEPs and depressed

H-reflexes in the contralateral wrist flexors for up to 1 min

and that similar electrically evoked contractions facilitated

both MEPs and H-reflexes. The combination of voluntary

drive and NMES enhanced MEPs but depressed H-reflexes.

These data suggest that in the arm, unilateral muscular

contractions generated by voluntary drive, NMES, or both

together, have acute crossed effects at both cortical and

spinal levels.

Presently, we found no evidence of a crossed effect at a

cortical or spinal level for SOL following 40 min of

repeated unilateral muscle contractions generated volun-

tarily, electrically, or by a combination of both. However,

there are key differences in the methodology of the present

work and the study by Hortobagyi et al. (2003), which may

explain the contrasting results of the two studies. We tested

the SOL muscle in the leg, while Hortobagyi et al. (2003)

tested the wrist flexors. We also tested for more enduring

acute crossed effects (up to 1 h post) compared to

measurements taken immediately (B1 min post) following

muscular contractions (Hortobagyi et al. 2003). In addition,

the contractions generated in the present study during VOL

and V ? tnNMES were approximately 20–23 % MVC

compared to contractions of *75 % MVC (Hortobagyi

et al. 2003). Furthermore, Hortobagyi et al. (2003) found

that unlike high-intensity NMES (50 % MVC), NMES

delivered at a low intensity to produce only a radiating

paresthesia did not have crossed effects on H-reflexes or

MEPs. Thus, NMES delivered at a higher intensity than the

present study (2–3 % MVC) may have induced crossed

effects. Also in contrast to our findings, unilateral tnNMES

was recently reported to increase bilateral MEPs in both the

upper and lower body (Hayashi et al. 2008). However,

Hayashi et al. (2008) tested patients undergoing spinal

surgery under anesthetic and delivered 5 s of tnNMES at

the lateral malleolus. The present experiments used heal-

thy, awake subjects and applied 40 min of intermittent

tnNMES at the popliteal fossa.

Technical considerations

A limitation of the present study is that the relatively long

time course of data collection after each intervention

(*60 min) may have reduced our ability to detect changes

in CS excitability. Specifically, the CS excitability mea-

sures were taken on average 43 min post-intervention for

the right leg and 53 min post-intervention for the left leg.

Previous work investigating the persistence of increased

CS excitability following a single session of electrical

stimulation alone or in combination with voluntary move-

ment has demonstrated that increased CS excitability per-

sists for at least 30 min and as long as 150 min (Fraser

et al. 2002; Khaslavskaia et al. 2002; Charlton et al. 2003;

Knash et al. 2003; Kido-Thompson and Stein 2004; Kha-

slavskaia and Sinkjaer 2005). Low-intensity NMES applied

to activate muscles of the hand for 120 min enhanced CS

excitability for 120 min following the stimulation (Charl-

ton et al. 2003). Likewise, similar studies that used motor

cortical mapping procedures to evaluate CS excitability,

which typically require *60 min, detected significant

increases in CS excitability for muscles of the hand (Rid-

ding et al. 2000, 2001), and 30 min of CP nerve stimulation

increased CS excitability for TA for *30–60 min fol-

lowing the NMES (Khaslavskaia et al. 2002; Khaslavskaia

and Sinkjaer 2005; Knash et al. 2003; Kido-Thompson and

Stein 2004). In addition, Fraser et al. (2002) found that just

10 min of pharyngeal nerve stimulation enhanced CS

excitability of swallowing musculature for 150 min and

that maximum enhancement of CS excitability did not

occur until 60–90 min following the stimulation, suggest-

ing that CS excitability increased over time following the

stimulation before returning to baseline excitability levels.
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Thus, while we cannot determine from our data whether CS

excitability increased immediately after the interventions,

our data do indicate that CS excitability is not increased

after a single session of NMES in the same way as it is for

other muscles that have been tested previously.

In the present study, MEPs were collected while subjects

maintained a background voluntary contraction within a

narrow range. Although past work suggested that CS

plasticity cannot be measured during voluntary activity

(Ridding and Rothwell 1995), more recent studies suggest

that changes in CS excitability are still evident during

voluntary activity (Khaslavskaia et al. 2002; Knash et al.

2003; Kido-Thompson and Stein 2004); thus, we do not

believe that the background contraction negated our ability

to measure changes in CS excitability. Finally, the number

of subjects in the present study is comparable to similar

experiments (Ridding et al. 2000; Charlton et al. 2003;

Khaslavskaia and Sinkjaer 2005; Mang et al. 2010, 2011),

and the NMES protocol used was similar to that used in

previous experiments in our laboratory that resulted in

enhanced CS excitability for leg muscles (Mang et al.

2010, 2011). Therefore, we believe that our results dem-

onstrate a true difference in activity-dependent plasticity

between the plantar-flexors and other muscle groups.

Conclusions

To our knowledge, this is the first study to demonstrate that

a single session of voluntary effort in conjunction with

NMES increases spinal excitability in the absence of cor-

tical changes, suggesting that the mechanisms affecting

CNS plasticity are different for SOL compared to other

muscle groups that have been studied in this manner. We

found no evidence of crossed effects on CNS excitability.

These results suggest that while voluntary training and

NMES of the plantar-flexors can be beneficial for pro-

ducing movement and reducing atrophy, a single session

may not be effective for strengthening CS pathways for the

SOL muscle.
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