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Abstract

In the past few years, time-lapse seismic technology has been a rapid developing area

in the oil exploration industry. It helps us to understand fluid movements within the

reservoir and optimize the production of oil fields.

Time-lapse inversion is a two-stage inversion. First stage is to estimate seismic at-

tributes, for example impedance, velocity etc., from the seismic data. The second stage is

to estimate the reservoir physical parameters such as porosity and saturation . In this the-

sis, we focus on the first stage. The research is divided into two categories: regularization

techniques and inversion work-flows for time-lapse data.

We review the rock physical basis for the time-lapse technologies. To attenuate the

noise effects, which are caused by non-repeatability, in the inversion, a structural con-

straint is introduced. This constraint is combined with sparseness and impedance con-

straints and applied to time-lapse data. Finally, we investigate the three inversion schemes

for time-lapse data.
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Chapter 1

Introduction

1.1 Defining the Problem

The study of a physical system can be stated as a three-step process (Tarantola, 1987):

first, parameterize the system to obtain discrete model parameters; second, apply the

physical laws in order to predict the measured data (forward modeling); third, use the

measured data to estimate the model parameters (the inverse modeling or inversion). We

can treat a seismic problem as the following mathematical problem,

d = Lm + n, (1.1)

where d denotes the observed data such as post-stack seismic data, m denotes the model

parameters such as the reflectivity series and L denotes the forward modeling opera-

tor such as the convolution operator and n means the noise such as random noise or

multiples. The conventional seismic inversion is to estimate the reflectivity m from the

recorded seismogram d where L represents the convolution of a source wavelet with the

reflectivity m. This is the standard linear convolution model which is often used in ap-

plied seismology to process and invert data (Robinson, 1967). It is clear that when the

parametrization of the earth model is made in terms of quantities such as impedance or

velocity perturbations, L symbolizes a modeling operator like a de-migration operator

(Santos et al., 2000) or an AVO forward modeling operator (Castagna, 1993). In other

words, according to the type of parametrization and the data used to solve the problem

L, m and d will have different meanings. It is important to stress that in our particu-

lar study L.m symbolizes convolution of the source wavelet with the earth reflectivity.

1



1.2. REVIEW OF TIME-LAPSE INVERSION

Therefore, our inversion will attempt to retrieve reflectivity estimates of the subsurface.

As the development of reservoir characterization and monitoring, the potential of re-

peated seismic acquisition in the same location at different calendar times, which is called

time-lapse seismic, attracts more and more interests in the seismic industry. This time-

lapse seismic problem is different from other seismic problems: two or more data sets are

observed, the goal is not the model parameters but the model parameters difference. For

simplicity, we assume that two data sets are acquired. This time-lapse seismic problem

can be stated as,

d1 = L1m1 + n1,

d2 = L2m2 + n2, (1.2)

where the subscripts denote the different calendar time and d, m, L and n follows the

definitions in equation 1.1. The time-lapse inversion is to estimate m1 −m2 from d1 and

d2.

From the comparison of the equation 1.1 and 1.2, it may look like there is nothing

new in the time-lapse inversion. However, since the seismic inversion cannot achieve

an unique result, the inversion of different data sets may introduce unwanted model

differences due to inconsistences of the inversion procedure. Therefore, it is important to

investigate the time-lapse inversion problem separately.

1.2 Review of Time-lapse Inversion

From equation 1.2, we can find that theoretically the time-lapse inversion can be inves-

tigated from the following views: first, what kind of seismic attributes, that is m, are

inverted ; second, what kind of data, that is d, have we inverted; third, is the approxima-

tion of the forward operator linear or nonlinear and finally how to integrate the two data

sets in the inversion, that is the inversion scheme.

Many seismic attributes have been used in time-lapse research (Lines, 2002), seis-

mic reflectivity (Winthaegen and Verschuur, 2001), seismic traveltimes, seismic acoustic

impedance, AVO and Vp

Vs
ratio changes. Chambers (2002) reviewed the selection and

use of seismic attributes in reservoir characterization. Kalkomey (1997) discussed the

2



1.2. REVIEW OF TIME-LAPSE INVERSION

potential risks of using seismic attributes and suggested using those seismic attributes

that have a justifiable physical relationship with the reservoir properties. Cooke (1999)

investigated post-stack attributes and concluded that absolute impedance is the best at-

tribute but relative impedance is more practical for reservoir characterization. Lewis

(1997) proposed a workflow for modeling and analyzing seismic attributes for reservoir

monitoring. Galikeev (2004) proposed the use of the reservoir-based seismic attributes

such as volume frequency decomposition to delineate the time-lapse changes and dis-

cussed whether the a difference of attributes or an attributes of a difference should be

studied.

In the time-lapse case, the most often used forward operators are: Born operator

(Rickett et al., 1996; Biondi et al., 1998; Abubakar et al., 2001), Kirchhoff operator (Lumley

and Beydoun, 1994) and convolution operator (Sarkar et al., 2003). Common approaches

to time-lapse inversion are sparse spike inversion (Herawati, 2002; Malaver, 2004) and

model-based inversion (Herawati, 2002). Galikeev (2004) proposed a method called

Peseduo-Geostatistical Cascaded Inversion to increase the resolution of the estimated

impedance. Abubakar (2003) described the use of Multiplicative Regularized Contrast

Source Inversion (MR-CSI) method for time-lapse inversion. Tennebo (1998) proposed

an inversion algorithm based on a technique called Best Feasible Approximation. Sarkar

(2003) compared three time-lapse inversion schemes which he called uncoupled inver-

sion, coupled inversion and inversion of difference and concluded the inversion of dif-

ference is often more stable. In his thesis, the difference of the uncoupled inversion and

coupled inversion is the latter one use the estimated model of the base survey as the

initial model for the estimation of the monitor inversion which is similar to the scheme

proposed by Tennebo (1998). However, Abubakar (2001) concluded that the inversion of

difference has a serious limitation and inverting the base and monitor survey separately

is more preferred.

Besides the research mentioned above, much research have been done to estimate the

reservoir parameters such as porosity, pressure and saturation from seismic properties

such as impedance, reflectivity. We omit the review of this part because the main focus

of this thesis is on the first stage of the time-lapse inversion.

3



1.3. SCOPE OF THE THESIS

1.3 Scope of the Thesis

This thesis discusses the rock physics basis for the time-lapse seismic technology and the

inversion methods for time-lapse data. The scope of the thesis is the study of the forward

modeling of time-lapse data and the corresponding inversion scheme. Structural, sparse-

ness and impedance constraint are combined to regularize the inversion. The inversion

scheme is tested with the synthetic data to get a better control of this method.

1.4 Thesis Outline

The structure of the thesis is as follows:

• In chapter 1 I first define the time-lapse inversion problem and provide the motiva-

tion to investigate this problem. Then I briefly review other people’s work. Finally,

the scope of this thesis is provided.

• In chapter 2 rock physics basis for the time-lapse research is reviewed. The methods

which relate the rock parameters to the seismic data are presented in detail.

• In chapter 3 I review the basics of geophysical inverse theory. Regularization tech-

niques and several commonly used numerical methods for inversion are the main

contents.

• In chapter 4 sparseness constraints, impedance constraint and structural constraints

for time-lapse inversion are investigated.

• In chapter 5 I focus on the three inversion schemes and their comparison. The

advantages and possible limitations are discussed.

• In chapter 6 I summarize my research and provide a discussion of the most rele-

vant findings. I will also discuss possible future research directions. Finally, I will

discuss the advantages and weaknesses of the simultaneous inversion scheme.
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Chapter 2

Rock Physics

Travel-time and reflection amplitudes of seismic data provide information about subsur-

face. Seismic data is often used to image these structure that might trap hydrocarbons.

In recent years, the potential of seismic data to get lithology information of the reservoirs

have been explored. The basis for this advancement is the rock physics which relates

seismic data, reservoir parameters and properties.

This chapter consists of three parts: reservoir parameters, fluid substitution and rock

physics for time-lapse case.

2.1 Reservoir Parameters

Many factors such as pressure, temperature, saturation, fluid type, porosity, porosity

type, mineralogical composition, permeability and effective stress can affect seismic prop-

erties such as velocity and density. These factors are usually called reservoir parameters.

The effects of these factors are very complex and often not independent.

To relate the seismic properties to the reservoir parameters, several steps are needed:

first, the properties of various constituent minerals and pore fluids are calculated through

the empirical equations provided, for instance by Batzle (1992); second, the elastic prop-

erties of composite fluid and composite rock are calculated by effective media theory

and empirical methods; third, the elastic properties of the saturated porous medium are

calculated by fluid substitution theory; and finally, we calculate the P-wave and S-wave

velocity from the elastic properties of the composite material (Lay and Wallace, 1995). In

this section, we will focus on the first two steps.
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2.1.1 Pore Fluid and Rock Properties

To estimate the elastic properties of the saturated rock, we need to know the following

concepts which are summarized by Mavko et al. (1998): the volume fractions of the

various phases, the elastic properties of each phase and the geometric details of how the

phases are arranged to each other. The various phases refer to the rock components which

consist of the minerals and the pore fluids. The volume fractions mean the porosity of

the rock and fluids and the saturation of each phase of the fluids. The geometric details

are usually unknown. Therefore, only upper and lower bounds of the elastic properties

of the composite are estimated. The properties of the minerals, which make up the rock,

and the pore fluid are usually measured in laboratory and are related to the reservoir

parameters by empirical equations. Usually, people measure the density, P-wave velocity

and S-wave velocity, which are often called seismic properties, instead of measuring the

elastic properties directly. Batzle (1992) summarized seismic properties of the common

pore fluids: hydrocarbon gases, oil, brine. As we can see from the empirical equations,

the most important parameters involved in the calculation of the seismic properties of

pore fluids are temperature, pressure, porosity and saturation. Once we have the seismic

properties of the various phases of the saturated rock, we can calculate the elastic moduli

by the following formula,

K = ρ(V 2
P −

4
3
V 2

S ), (2.1)

µ = ρV 2
S . (2.2)

2.1.2 Elastic properties of the Composite Material

The density of the composite material ρ is determined by the weighted average sum,

ρ = (1− φ)ρs + φρf , (2.3)
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where φ denotes the porosity and ρf and ρs are calculated by

ρf =
∑

i

Siρi,

ρs =
∑

j

fjρj , (2.4)

where Si denotes the saturation of the ith phase of the fluids and ρi denotes the corre-

sponding density. fj is the volume fraction of the ith component of the solid rock and ρj

is its density.

The bulk modulus of the mixture of the fluids are calculated by Wood’s formula,

1
Kf

=
∑

i

Si

Kfi

, (2.5)

here Si is the saturation of the ith fluid component and Kfi
is its bulk modulus.

Several theoretical models exist to predict the bounds of the saturated rocks. The

Voigt (1910) and Reuss (1929) models are the simplest ones. The Hashin-Shtrikman (1963)

model provides the best bounds. The Voigt model provides the upper bound of the elastic

modulus M :

M =
N∑

i

fiMi (2.6)

where fi is the volume fraction of the ith component, which can be mineral or pore fluid,

of the saturated rock. The parameter Mi is its elastic modulus which can be bulk modulus

K or shear modulus µ. The parameter N means the number of the components of the

saturated rock. This bound is referred to as the isostrain average. The Reuss model

provides the lower bound of the elastic modulus,

1
M

=
N∑

i

fi

Mi
, (2.7)

this bound is referred to as the isostress average. The mathematical average of the Voigt

and Reuss bounds is called Voigt-Reuss-Hill model (1952). This average which has no

physical meaning is useful when we want to estimate the elastic moduli instead of a

range. This idea can be extended to the Hashin-Shtrikman model and get an estimated

elastic moduli. The Hashin-Shtrikman bound is the narrowest possible range without

knowing any geometric details of the saturated rock,
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KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4
3µ1)−1

,

µHS± = µ1 +
f2

(µ2 − µ1)−1 + 2f1(K1+2µ1)

5µ1(K1+ 4
3
µ1)

, (2.8)

where K, µ denote the bulk and shear modulus respectively. The parameter f means the

volume fraction. Number 1, 2 denote 1st and 2nd phase of the material. The upper and

lower bounds are calculated by interchanging the phase 1 and 2. The + means the upper

bound and − means the lower bound.

2.2 Fluid Substitution

When various fluids scenarios are provided, the seismic attributes may be quite different.

The approach which relates the fluid scenario to the seismic attributes is called fluid

substitution . In this sense, fluid substitution is part of the seismic attribute work.

A variety models and theories exist for fluid substitutions. However the most com-

monly used approach is Gassmann’s equation (Gassmann, 1951). In this section, we will

focus on the Gassmann’s equation after reviewing the various existing models and theo-

ries.

2.2.1 Review of Fluid Substitutions

The work on fluid substitutions can be categorized as two groups: the empirical ap-

proaches and the theoretical approaches.

The common empirical approaches are Wyllie’s (1956) time average equation and

Raymer-Hunt-Gardner (1980) relations . Other empirical approaches are: Geertsma’s

(1961) empirical relations; Nur’s modified Voigt average (Nur et al., 1991; Nur et al.,

1995). The disadvantages of these approaches are: first, only porosity are taken into

consideration; second, they cannot be justified theoretically.

The main theoretical approaches are: Biot theory (Biot, 1956b; Biot, 1956a), Gassmann’s

(1951) equation, Brown and Korringa’s (1975) relations, Mavko-Jizba (1991) Squirt theory

and Biot-squirt model (Dvorkin and Nur, 1993; Dvorkin et al., 1994). These theoretical

approaches are designed for various scenarios, for example considering the anisotropy of
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2.2. FLUID SUBSTITUTION

the rocks. However, the Gassmann’s equation is most often used because of its simplicity

and accuracy for the seismic frequency bandwidth.

Other factors which affect the elastic moduli are: porosity geometry (Johansen et al.,

2002) and pore fluid distributions (Packwood, 1997), clay content, overburden pressure

and textures of rocks, etc. (Wang, 2001). These effects can be important, therefore, the

relations between seismic attributes and reservoir parameters are complicated in practice.

For theoretical studies, we can mainly focus on the most commonly used approach —

Gassmann’s equation.

2.2.2 Gassmann Fluid Substitution

Gassmann’s equation relates the bulk modulus of the saturated rock ,Ksat, to the bulk

modulus of the rock matrix frame, Kd, the bulk modulus of the solid material, KS , the

bulk modulus of the fluid, Kf , and the porosity, φ. It assumes the shear modulus of the

saturated rock does not depend on the pore fluids,

Ksat = Kd +
(1−Kd/Ks)2

(1−Kd/Ks − φ)/Ks + φ/Kf
,

µsat = µd, (2.9)

where µsat is the shear modulus of the saturated rock and µd denotes the shear mod-

ulus of the rock matrix frame. Comparing to the empirical models such as Voigt and

Reuss models, Gassmann’s equation considers the effect of the stiffness of the rock frame

besides the effect of the porosity. Wang (2001) summarized the assumptions for the

Gassmann’s equation. The most important requirements implied in these assumptions

are: source wave function should be low-frequency and the pore connectivity should be

high.

From equation 2.9, the input parameters for the Gassmann’s equation are: porosity of

the rock; elastic properties of the pore fluids and solid material; and elastic properties of

the rock matrix frame. The porosity can be calculated from core samples or log data. The

process to calculate the elastic moduli of the pore fluids and solid are described in the first

section of this chapter. The elastic moduli of the various phases are usually obtained from

the core sample, log data and laboratory measurements. Other approaches to get pore

fluids properties include: measuring the pore fluids directly (at the temperatures and
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2.3. ROCK PHYSICS FOR TIME-LAPSE CASE

pressures of the reservoir from which the pore fluids are obtained ) and calculating the

properties from the equations of the state. The elastic moduli of the rock matrix frame are

hard to measure directly. There are three indirect approaches: first, measure the velocity

of the dry rock (the dry rock for the laboratory measurements should be slightly wet or

moist instead of too dry) and then use the equation 2.1 and 2.2 to calculate the elastic

moduli of the rock matrix frame; second, apply the empirical relationships or effective

medium theory; and third, calculated from log data. The last approach contains mainly

two steps: the first step is to get saturated bulk modulus of the rock, Ksat using the

equation 2.1 and Ks, Kf and φ using the process shown above. Second step is to rewrite

the Gassmann’s equation in the following form,

Kd =
Ksat(φKS/Kf + 1− φ)−KS

φKs/Kf + Ksat/KS − 1− φ
, (2.10)

then we substitute the output parameters of the first step into the right side of the equa-

tion 2.10 and calculate the bulk modulus of the rock matrix frame. This equation also

shows that the bulk modulus of the rock matrix frame partly depends on porosity. There-

fore, it is incorrect to use Gassmann’s equation without adjusting the value of the Kd for

different porosity. After that, we can estimate the P-wave and S-wave velocity using the

following equations, which are the backward form of the equations 2.1 and 2.2 ,

VP =

√
Ksat + 4/3µsat

ρ
,

Vs =
√

µsat

ρ
, (2.11)

where ρ is calculated using the equation 2.3.

2.3 Rock Physics for Time-lapse Case

In time-lapse case, the volume fractions of the fluids, the temperatures and pressures

in a reservoir are changed due to the reservoir production. For example, for a field us-

ing steam-assisted gravity drainage (Butler, 1994), hot steam is injected into the reservoir

from a horizontal injection well. After a chamber of hot steam is formed in the reservoir,

the temperature of the material adjacent to this chamber increases due to the conduction
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of heat. With the production of oil, the hot steam replaces the oil in the space and grad-

ually cools down. On the other hand, we assume that the background lithology does

not change during the time-lapse acquisition process. Therefore, pressure, temperature

and fluid saturation are the main changing factors in time-lapse seismics if we assume

constant porosity.

From the viewpoint of Gassmann’s equation, the seismic properties of the reservoir

changes in time-lapse case are mainly determined by stiffness of the rock matrix frame,

pore fluids properties and fluid saturation. In this sense, we can treat the effects of tem-

perature, pore pressure on seismic properties by considering their effects on the rock

matrix frame and pore fluid properties.

2.3.1 Pressure, Temperature and Saturation

There are two kinds of pressure in a reservoir: overburden pressure Pc (also called con-

fining pressure) and pore pressure Pp (also called fluid pressure or reservoir pressure).

The overburden pressure is the pressure due to the overburden rock. This pressure is

usually assumed constant in time-lapse case. The reservoir pressure is the pressure due

to the fluid mass. This pressure is changed during the time-lapse acquisition process. The

difference between the two pressures Pd is called net overburden pressure or differential

pressure. The net overburden pressure is sometimes called effective pressure Pe, but the

two pressures are different in the strict definition (Wang, 2001). The definitions for Pd

and Pe are,

Pd = Pc − Pp,

Pe = Pc − nPp, (2.12)

where n is less than 1. The net overburden pressure affects the stiffness of the rock matrix

frame and thus controls the seismic properties of the reservoir instead of the overburden

or pore pressure alone. However, since the overburden pressure is assumed constant in

time-lapse case, we can consider only pore pressure effects in time-lapse case. According

to the definition of the net overburden pressure, we can find that the change of the pore

pressure will cause the opposite change of the net overburden pressure. The effects of

the pressure on the rock matrix frame is illustrated in Figure 2.1.
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Figure 2.1: The effects of effective pressure on: (a) the bulk modulus of the rock matrix
frame, (b) the shear modulus of the rock matrix frame, (c) the P wave velocity of the
saturated rock and (d) the S wave velocity of the saturated rock. [Data Coutersy of Tiewei
He and Dr. Doug Schmitt]

Besides the pressure effects on the rock matrix frame, the pressure also affect the den-

sities and bulk moduli of the pore fluids. The equations relating the pore pressure and

the elastic properties of the pore fluids are given by Batzle (1992). Since the compressibil-

ity of the gas is more easily affected by the pressure, we can know the pressure effects on

pore fluids are mainly determined by the amount of gas existing in the reservoir.

Generally, the seismic properties such as velocity increase in a nonlinear way with

the increase of the net overburden pressure: for low net overburden pressure regions, the

seismic properties change faster (Wang, 2001). As a result, we need to know the pressure

regime besides the pressure change in time-lapse seismic.
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The effects of temperatures are mainly due to changes of bulk modulus and density

of the pore fluids (Bell and Shirley, 1980). The equations relating the temperature and

elastic properties of pore fluids have been given by Batzle (1992). For gas or water satu-

rated rocks, the seismic velocities slightly decrease when the temperature increases. For

oil saturated rocks, the seismic P-wave velocity decrease greatly when the temperature

increases (Wang and Nur, 1988). But the S-wave velocity only slightly depends on the

temperature. This dependence is caused by the pore pressure changes due to the thermal

expansion.

Saturation mainly changes the densities and bulk modulus and thus affect the ve-

locity. S-wave velocity changes caused saturation effects are mainly due to the density

changes (Domenico, 1977). P-wave velocity changes caused by saturation effects are the

combination effects of the density and bulk modulus changes. Packwood (1997) dis-

cussed the effect of patchy saturation distribution and claimed this effect cannot be ig-

nored for seismic monitoring (i.e. time-lapse seismic) study.

Since the change of pore pressure results in the changes of stiffness of the rock ma-

trix frame, pore fluids and the temperature affects the pore fluids, we can see from the

Gassmann’s equation that the resulting seismic property changes are the combined ef-

fects of pore pressure, temperature and saturation.

2.3.2 Application

Rock physics plays two roles in time-lapse seismic. First, it helps us forward model the

seismic data difference due to reservoir changes. This is part of the feasibility study of

time-lapse seismic. Second, it aids the interpretation of the measured time-lapse data.

According to current rock physical studies: first, not only the reservoir changes but

also the properties of the experimental reservoir itself are important for the feasibility of

the time-lapse seismic (Theune, 2004); second, the time-lapse seismic difference are the

combined effects of saturation, pore pressure and temperature. Therefore, we need to de-

couple these factors according to their characteristics in the process of the interpretation

of time-lapse data.

For the step of inverting the seismic attributes from the time-lapse seismic data, the

rock physical forward modeling is one of the most important tools for determining which
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seismic attributes and type of seismic data are most appropriate for a certain reservoir.

2.4 An Example

This section contains an illustrative example of what kinds of changes might occur in

a very simple “reservoir” due to injection of water and the subsequent decrease in the

effective pressure with distance from the well.

2.4.1 Defining the Model

The model here is very simple and essentially consists of layer of sandstone bounded

above by a shale and below a carbonate. This model is loosely based on the geologic

structure encountered in the Western Canada Sedimentary Basin although the sandstone

thickness here is much thicker than is usually encountered in order to produce a substan-

tial signal. The compressional wave velocities and densities of this material are assumed

to be those of the weak sandstone encountered above. The velocities will be varied by

changing the effective pressure on the material. That is, injection of water to this reservoir

will lower the effective pressure and consequently the P and S wave velocities.

Typical velocities of the upper and lower layers are taken from well logs in the Senlac

area of western Saskatchewan as provided in Theune (2004). The physical properties of

the materials for this simple layered model are provided in Table 2.1.

The sandstone is assumed to be a clean sand with a high porosity of 30% and with

complete water saturation. Again, to assist the simulation, the overburden pressure is

assumed to be 80MPa and the pore pressure is assumed to be zero, that is, the initial

effective pressure is 80MPa. It must be noted that this value is quite high and would

correspond in a sedimentary basin to depths of about 4000m . However, the purpose

here is not to simulate an actual situation but to illustrate the kind of changes that might

be possible due to changing pressures in a reservoir. One should not take this model to

be realistic as the changes provided will be large relative to those that can occur during

the substitution of gas for liquid.

The changes in the effective pressure is assumed to range from 80MPa to 5MPa

with the variations of the velocity being described by that from the lab experiment of He
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and Schmitt (2004) which is shown in Figure 2.1. This variation in effective pressure is

produced by changing the pore fluid pressure from zero to 75MPa. Again, this is not a

realistic change but the purpose of this exercise is to provide a model data set for testing

the inversion parameters.

2.4.2 Determination of the Pore Fluids’ Elastic Parameters

In this example, we assume the reservoir only contains water and the elastic properties

of water are given. The bulk modulus of water is 2.2× 109N/m2(Pa) and the density of

water is 1000kg/m2. These values are not exact but are appropriate for the illustration

purposes. In a real study, one would have to include the pressure and temperature varia-

tions of the water’s compressibility and density. The concentration and type of dissolved

solids within water will also be important.

2.4.3 Determination of the Other Elastic Parameters

The effects of the effective pressure on the bulk modulus of the rock matrix frame are

given by the experimental data which is shown in Figure 2.1(a) (assumed to be quartz

grains) and provided in detail in Table 2.2. The bulk modulus of the solid is given as

36.5GPa and the density is 2670kg/m3.

The shear modulus of the rock matrix frame is determined from the shear sonic and

density logs by equation 2.2.

2.4.4 Calculation of Seismic Velocity

The bulk modulus of the rock matrix frame, solid material, pore fluids and porosity are

substituted into the Gassmann’s equation 2.9 in order to obtain the bulk modulus of

the saturated rock. The shear modulus of the saturated rock is obtained from the shear

modulus of the rock matrix frame by equation 2.9. The density of the saturated rock

is obtained by substituting the density of pore fluids, solid material and porosity into

equation 2.3.

Finally, P-wave and S-wave Velocities are calculated using equation 2.11.
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2.4.5 Synthetic time-lapse seismic data

After getting the seismic velocity and density of the reservoir, we can calculate the syn-

thetic seismogram by seismic forward modeling techniques. The properties of the base

survey model is given in the following table 2.1.

Layer Thickness (m) Interval Velocity(m/s) Density(kg/m3)
First 100 3000 2400

Second 100 3033 2169
Third 100 5000 2600

Table 2.1: Model Parameters for the Base Survey

Pp (MPa) Pd (MPa) Kd(GPa) µd (GPa) Vp (m/s) Vs (m/s)
75 5 2.279 3.0915 2363.4 1193.9
70 10 3.1734 3.7321 2503.4 1311.7
65 15 3.6282 4.0951 2576.3 1374.1
55 25 4.5843 4.8243 2719.7 1491.4
50 30 5.0465 5.0599 2773.7 1527.4
45 35 5.3423 5.3113 2818.7 1564.8
40 40 5.632 5.502 2856.2 1592.7
35 45 5.8973 5.6755 2890.1 1617.6
30 50 6.1248 5.8411 2920.6 1641
25 55 6.308 5.914 2938.6 1651.2
20 60 6.4176 6.0253 2956.4 1666.7
15 65 6.5329 6.1595 2976.8 1685.2
10 70 6.7485 6.2248 2995.6 1694.1
5 75 6.9352 6.3188 3015.6 1706.8
0 80 7.0739 6.4128 3032.8 1719.5

Table 2.2: Elastic Parameters for Different Effective Pressure

The model for the monitor survey only changes the properties of the second layer

which has been calculated by the above process. We assume the source wavelet is a

Berlage wavelet (Aldridge, 1990). This analytical form of this wavelet is defined as:

w(t) = AH(t)tne−αtcos(2πf0t + φ0), (2.13)

where H(t) is the Heaviside unit step function, φ0 is the initial phase angle, A is the max-

imum amplitude of this wavelet, α is the exponential decay factor and the time exponent
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is n.

This wavelet and its amplitude spectrum are shown in Figure 2.2. This wavelet is a

minimum phase wavelet which possesses a certain degree of differentiability. It is suit-

able for the accurate simulation of many physical wave propagation phenomena. The

forward modeling results are shown in the following figures 2.3, 2.4, 2.5. No amplitude

scaling is applied to these figures. The velocity model of the base survey (left panel of

Figure 2.3) contains three horizontal layers whose elastic properties are provided in table

2.1. The pore pressure in the second layer of the monitor survey is decreased from the

center trace to the near and far trace which follows the values in table 2.1. This gives us

the velocity model of the monitor survey (right panel of Figure 2.3). Figure 2.4 shows

the noise free synthetic results for the two surveys. After adding some random noise, we

obtain the noisy synthetic seismograms (Figure 2.5). The two figures show that the syn-

thetic seismogram for the monitor survey have a pull down effect. This can be explained

by the results shown in Figure 2.1(c). The overburden pressure is fixed, so the decrease in

pore pressure will increase the effective pressure and thus increase the reservoir P-wave

velocities. Since we assume the thickness of the reservoir is constant, the increase of the

velocities will cause the decrease of the travel-time.

2.5 Summary

This chapter can be divided into two parts. In the first part, the concept of reservoir

parameters and the calculation of pore fluids and rock properties are first introduced.

Then I give the equations for the estimation of the composite material. After that, the

fluid substitution theory is reviewed and the Gassmann’s equation is described in detail.

In the second part, I discussed the most common reservoir parameters which can affect

the time-lapse seismic data. The effects of effective pressure on the reservoir velocities are

given by experimental data. Based on these experimental data, a simple synthetic time-

lapse seismic data set is generated by assuming only the effective pressure is changed

during the time-lapse acquisition.

In this thesis, we follow the most-often used rock physical knowledge for time-lapse

research. However, in the real world, many factors we ignored are important and cannot
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Figure 2.2: Left panel: a berlage wavelet with constants A = 106mm/s4, n = 3, α =
188.5rad/s, f0 = 30Hz, φ0 = −π/2. Right panel: the amplitude spectrum of this Berlage
wavelet.

be neglected. Thus for a better result, more factors such as porosity geometry, pore fluid

distributions, clay content, overburden pressure and textures of rocks should be taken

into consideration and other fluid substitution theory should be applied.
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Figure 2.4: Left panel: noise free seismic data of the base survey. Right panel: noise free
seismic data of the monitor survey.
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Figure 2.5: Left panel: noisy seismic data of the base survey. Right panel: noisy seismic
data of the monitor survey.
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Chapter 3

Fundamentals of Inversion

3.1 Ill-posed and Well-posed Problems

The concept of ill-posed and well-posed problems are introduced by Hadamard (1923).

He claims that a problem is ill-posed if the solution does not exist or is not unique or

stable. On the contrary, a problem is well-posed if the solution exists and is unique and

stable. Hadamard believed the ill-posed problems were not physically or mathematically

meaningful. However, this idea is mistaken. Today, many applications in science and

engineering lead to ill-posed problems in the form of inverse problems. The solutions to

these ill-posed problems have well-defined physical meaning.

An inverse problem and its corresponding forward problem is a pair. In general, we

call the problem which is well-posed as the forward problem and the one which is ill-

posed as the inverse problem. Therefore, inverse problems in this thesis is equivalent to

ill-posed problems. Mathematically, ideal (noise free) forward and inverse problems can

be written as,

d = Lm,

m = L−1d, (3.1)

where L is the forward operator, L−1 is the inverse of the forward operator or called

inverse operator. The vector m denotes the solution or model parameters, d means the

data. If L is a linear operator, the inverse problem is called a linear inverse problem.

In practice, the data, model parameters and operators are discretized. The data d are

assumed known while m is unknown. If we have same number of known and unknown,
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a problem is an even-determined problem. If we have more observations than unknowns,

this problem is a over-determined problem. If we have more unknowns than known, this

problem is under-determined problem. An under-determined problem does not have an

unique solution, thus it is an ill-posed problem. Practical ill-posed problems are not

purely under-determined or over-determined. They may have more known than un-

knowns but the known data are not independent (Menke, 1984). Therefore, some model

parameters are over-determined but some model parameters are under-determined.

The most important property of an inverse problem is the stability. If a problem is not

stable, it means any small perturbation of the data can cause large perturbation on the

solution. Since the data of a problem are always perturbed by noise and computation er-

rors always exist, the computed solution will be far from the true solution if the problem

lacks stability. In a mathematical viewpoint, a problem is unstable if the forward opera-

tor L has a large condition number or the kernel matrix is singular (Golub and Van Loan,

1996).

The seismic exploration problem, which often infers the subsurface structures or lithol-

ogy from the data measured at the surface of the earth, should have certain solutions

because the underlying models exist in the real world. However, there are no unique

answers since the observed data are finite while the real earth is a continuous distribu-

tion of physical property (Scales and Smith, 1994). Meanwhile, the measured data are

always contaminated by random and systematic noise (Jackson, 1972). If the noise level

is larger than the data responses due to the model parameters, it is impossible to get a

stable solution.

3.2 Regularization

The fundamental difficulty of the inverse problems is the lack of information. The non-

uniqueness of the solution is because of the lack of the information of the solution (Franklin,

1970; Jackson, 1979). The stability problem of the solution is due to the lack of informa-

tion (Gray and Symes, 1985). This important idea is stated by Lanczos (1961) :“A lack of

information cannot be remedied by any mathematical trickery! ”

In 1960s, Tikhonov developed the theoretical foundations of the solution of ill-posed
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problems. He introduced the technique called regularization. The idea of regularization

is to incorporate additional information about the inverse problems to obtain a meaning-

ful and stable solution. Mathematically, regularization technique is equivalent to con-

straining the model null space to a desired pattern.

3.2.1 Definition of the Null Space

A linear seismic inversion problem is to seek a solution to a problem in the following

form,

d = Lm,

where L is a linear operator that maps a model m to the data d. The definition of the null

space of L is given by

0 = Lm0, (3.2)

where m0 is a vector which belongs to a space N. This space N is the null space in which

any vector satisfies the above equation (Menke, 1984; Nichols, 1994).

It is obvious that the null space is not empty if a problem is under-determined or

mixed-determined and a vector in the null space does not change the data misfit. There-

fore infinite solutions can be obtained by adding some amount of the null space to a valid

solution because the additional null space vector does not harm the data misfit.

3.2.2 Model and Data Regularization

In real world, two different sources of information are needed to constrain the null space:

first, the noise information of the data; second, the characteristics of the desired model.

Mathematically, for a practical forward problem d ≈ Lm, the inverse problem which

incorporates additional noise and model information, can be formulated as a problem to

minimize the cost function,

J = F(d− Lm) + εR(m), (3.3)

where, F is a functional of data residual d − Lm and R is a functional of model m. The

first part of the right-hand side of this equation is called data term and the second part of

the right-hand side of this equation is called model term, ε is the trade-off (regularization)

parameter which adjusts the weights of data term and model term (Zhou et al., 2002).
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The most common functionals F is the lp norm (where 1 ≤ p ≤ 2). The typical

functionals R try to damp, smooth the model parameters or make them sparse. The

typical methods to choose ε are: discrepancy principle; L-curve criterion and generalized

cross-validation (GCV) (Hansen, 1998; Trad, 2003).

It is obvious that we can obtain a high-fidelity inversion result if good forms for F ,

R and a suitable value of ε are selected. Generally, the choice of data and model terms

depend on a priori knowledge of the model and data noise. The choice of ε depends on

the noise level.

3.2.3 Model-Space and Data-Space Regularization

Model and data regularization design the functionals of the model and data residual in

a cost function for an inverse problem. After obtaining this cost function, we can adjust

the form of the cost function in an equivalent way. Depending on the way adjusting the

cost function, the formulation of the regularized inverse problem can be called model-

space or data-space regularization (Fomel, 1997). For simplicity, we just consider a linear

inverse problem here.

Suppose we have a linear inverse problem d = Lm, model-space regularization in-

corporates a priori information about the model into this problem. One possible cost

function for this linear inverse problem can be written as,

J = ||d− Lm||22 + ε||Dm||22, (3.4)

D acts like a filter which pass the undesired components of a estimated model. The linear

system of this cost function can be formulated as,
[

L√
εD

]
m =

[
d
0

]
. (3.5)

In this equation, the forward operator are augmented by adding more columns and the

data vector are augmented by adding a zero vector. The analytical solution to this prob-

lem is,

m̂ = (LTL + εDTD)−1LTd, (3.6)

where m̂ means the estimated solution.
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If we use data-space regularization, the trial case (that is D is an identity operator) of

the cost function 3.5 can be reformulated as,

J = ||d− L̃m̃||22, (3.7)

where

L̃ =
[

L
√

εId
]

m̃ =
[

m
r

]

εr = d− Lm, (3.8)

where Id denotes the data-space identity operator. For “non-trivial” case, a precondition-

ing operator D is used to make an equality

x = Dm. (3.9)

Now, the problem becomes non-trivial. Data-space regularization can formulate the fol-

lowing linear system,
[

LD−1 √
εId

] [
x
r

]
= d, (3.10)

where r follows equation 3.8. The analytical solution to this problem is

m = D−1x̂ = (DTD)−1LT (L(DTD)−1LT + εId)−1d. (3.11)

Comparing the solutions shown in the equations 3.11 and 3.6, we can find the two solu-

tions are identical. It means that the model-space and data-space regularization give the

same final result. However, the effect of preconditioning will generates different results

when we use semi-iterative methods such as conjugate gradient (CG) method. We will

discuss this later in this chapter.

3.2.4 Bayesian Framework for Inversion

As we have said before, the regularization technique is to incorporate a priori informa-

tion into the inverse problem in order to obtain a stable and meaningful solution. An

important tool to incorporate the priori information is Bayes’ theorem which originates
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from probability theory (Box and Tiao, 1973; Jackson, 1985; Sivia, 1996; Tarantola, 1987).

Bayes’ rule can be put in the following form,

P (m|d) =
P (d|m)P (m)

P (d)
. (3.12)

The left-hand side of the above equation is called a posteriori probability density function

(pdf) which is a conditional pdf of model parameters m given a data vector d. P (d|m)

is the likelihood function which gives the probability of the data given the model pa-

rameters. It contains information about the noise and relations between the data and the

model, m is a priori information about the model parameters. This information was pro-

vided by general knowledge of the model or information given by other source of data.

The denominator P (d) does not depend on the model parameters so that it can regarded

as a constant scaling factor. Once we obtain the posteriori pdf, all the information about

the model , which is actually the solution to the inverse problem, given by the data is

known.

Bayes’ theorem allows more emphasis on scientific interests instead of mathematical

convenience. The difficulty of the Bayesian framework is that there is no good way to

obtain the exact priori information about the model and likelihood information about

the noise. However, Bayesian framework for inversion is still valuable if we can use it

diligently (Ulrych et al., 2001).

3.3 Numerical Techniques for Inversion

Since the practical inverse problems are dealing with discrete numbers containing the

noise, it is important to investigate the numerical techniques for inversion. In this sec-

tion, we will discuss the most common ones: adjoint operator, Iteratively Re-weighted

Least Squares (IRLS) method (Scales, 1987) and conjugate gradient method (Hestenes

and Steifel, 1952).

3.3.1 Forward and Adjoint Operator

An operator LT is called the adjoint operator to the operator L, when the two operators

satisfy the following equation,

(Lm,d) = (m,LTd), (3.13)
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where (, ) means dot product. Theoretically, the inverse operator L−1 will provide a bet-

ter solution than the adjoint operator. However, the adjoint operator tolerates the noise

and lack of information better than the inverse operators (Claerbout, 1992). Therefore the

adjoint operator works better than the inverse operator in practice. An adjoint operator

can be done by a matrix transpose operation. Two common approaches to find the ad-

joint operator are: formulate a continuous forward operator, obtain the adjoint operator

to this forward operator, then discretize the adjoint operator; formulate a continuous op-

erator, discretize the forward operator and take the Hermitian adjoint of this discretized

forward operator (Ji, 1994). The distinct feature of the first approach is that it has a Ja-

cobian weighting factor whose effects are still not clear. The adjoint operator does not

adequately approximate the inverse operator in many situations. Therefore, we usually

iteratively use the forward operator and adjoint operator to optimize the cost function

for the inverse problem.

In real world applications, the size and complexity of an operator make a matrix

operator not practical. Thus forward and adjoint operators are often done by a subroutine

instead of a big matrix (Claerbout, 1992; Claerbout, 2004). To test if two subroutines are

forward and adjoint pairs, the equation 3.13 is suitable and usually used. This test using

the equation 3.13 is called a dot product test.

In practice, an adjoint operator is often scaled to obtain a better solution and many

empirical scaling factors have been studied by researchers (Claerbout, 1997a; Claerbout,

1997b). However, there is no straight forward theory for the scaling of an adjoint opera-

tor.

3.3.2 Iteratively Re-weighted Least Squares

A data or model weighting matrix is often designed to keep the cost function of a problem

in quadratic form when a different norm for the data residual or model is desired (i.e. the

case of model or data regularization). The reason is that a quadratic form cost function is

simple to solve by methods like conjugate gradient. However, after adding a weighting

matrix, this problem becomes nonlinear. Iteratively Re-weighted Least Squares (IRLS)

method is often applied to this type nonlinear optimization. Given a simple example

cost function J = ||Wd(d− Lm)||22 + ||Wmm||22, it does not need IRLS method if Wd
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and Wm are known. If Wd is a function of the data d or Wm is a function of the model

m, the algorithm of IRLS for this cost function is:

1. Fixing the weighting matrix Wd and Wm so that the nonlinear problem turns out

to be a linear problem, and using a direct inversion method or conjugate gradient

method for solving this linear problem. This process is called an inner iteration.

2. Using the result from the previous iteration to update the weighting matrix Wd

and Wm.

3. Solving the linear problem using the new weighting matrix Wd and Wm. The

iteration which is from step one to step three is called an external iteration.

The number of inner iterations is determined by an automatic stopping criterion and

the number of external iterations is determined by trial and error method.

3.3.3 Conjugate Gradient Method

Conjugate gradient (CG) method (Hestenes and Steifel, 1952) is widely used in optimiza-

tion problems. It does not require any explicit matrix operation. This property is crucial

for seismic inversion because the operators in seismic inverse problems are coded as sub-

routines instead of matrices.

Given a simple example problem Lm ≈ d, we can obtain the solution m by minimiz-

ing the l2 norm the data residual. If the forward operator L is equivalent to a symmetric

positive definite (SPD) matrix (Golub and Van Loan, 1996), the conjugate gradient (CG)

method can be applied. If L is not equivalent to a SPD matrix, the CG method can be

applied to a modified form of this equation LTLm = LTd. Here, LT is the adjoint oper-

ator. One CG algorithm called conjugate gradient least squares (CGLS) for solving this

equation can avoid the explicit calculation of LTL. When data or model regularization

is applied, the operator L and model and data vectors are augmented in the form similar

to the equations 3.5 and 3.10. In this case, we should substitute augmented data vector,

model vectors and operator L into the simple form CGLS algorithm. The simple form

CGLS (Scales, 1987) algorithm can be stated as follows: Choose the starting model m0 to
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be zero. Put s0 = d− Lm0, r0 = p0 = LT s0 and q0 = Lp0. Then for k = 0, 1, 2, . . .

αk+1 =
(rk, rk)
(qk,qk)

,

mk+1 = mk − αk+1pk,

sk+1 = sk − αk+1qk,

rk+1 = LT sk+1,

βk+1 =
(rk+1, rk+1)

(qk,qk)
,

pk+1 = rk+1 + βk+1pk,

qk+1 = Lpk+1,

(3.14)

where L and LT are the forward and adjoint operator, respectively. Operator (, ) denotes

the dot product. Each iteration of this algorithm create an approximation to the solution.

Therefore, we can stop or resume the algorithm at any stage before completion (Hanke

and Hansen, 1993; Hansen, 1998). Theoretically, we can obtain an accurate solution after

N , where N is the number of data points, iteration. If we stop the iteration before it reach

the final solution, we say the optimization is not completed. However, this intermediate

solution is still useful.

3.4 Example

In this section, we will illustrate the effects of regularization and compare the model-

space and data-space regularization by some simple examples.

Suppose that data point dj and the model m are related by the following equation,

dj =

L∫

0

e−α(x−rj)
2
m(x)dx, (3.15)

where rj is the position of the jth observation. We can discretize the above equation as,

dj =
∑M−1

k=0 4x e−α(rj−xk)2m(xk) j = 0, 1, 2, . . . N − 1, (3.16)

where N indicates the number of observation, M denotes the number of model parame-

ters and xk is the position of kth model parameter. For simplicity, we assume rj is given
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by

rj = jL/(N − 1). (3.17)

In our examples, we assume α = 150, L = 1, N = 10, M = 60, noise is Gaussian noise

and the noise level is one percent. Figure 3.1 shows the minimum norm solution to this

problem. The model regularization for this case is a damping regularization term. As we
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Figure 3.1: a) Model. b) Observed data and noise free data. c) Minimum norm solution.
d) Predicted data and observed data. The circle in b) and d) denotes the observed data. x
denotes the model parameter position and r means the observation position. The trade-
off parameter is selected by χ2 test.

can see from this figure, the predicted data does not fit the noise due to the effects of the

damping regularization term. The trade-off parameter µ is determined by χ2 test (Press

et al., 1986) since the noise is Gaussian noise. The χ2 test for this minimum norm solu-
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tion is shown in the following Figure 3.2. Other model regularization terms include the
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Figure 3.2: a) Model norm as a function of the logarithm of the trade-off parameter log10µ.
b) The χ2 test for the minimum norm solution. c) The trade-off curve for the misfit and
model norm. The dashed line in b) and c) indicates the desired χ2 value.

first and second derivative of the model parameters. The solution using the first deriva-

tive regularization term D1 is shown in Figure 3.3. Figure 3.4 illustrates the solution

using the second derivative regularization term D2. These figures illustrate that damp-

ing regularization term forces the solution has the smallest magnitude, D2 regularization

term make the solution smoothly varying and D1 regularization term make the solution

tends to be flat. This is because the D2 term minimizes variation of the model parameters

changes and the D1 term minimizes variation of the adjacent model parameters. The

χ2 test for the two regularization terms D1, D2 are shown in Figure 3.5 and 3.6 respec-
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Figure 3.3: a) Model. b) Observed data and noise free data. c) Minimum weighted norm
solution D1. d) Predicted data and observed data. The circle in b) and d) denotes the
observed data. x denotes the model parameter position and r means the observation
position. The trade-off parameter is selected by the χ2 test.

tively. It is observed that the trade-off parameter is different for different regularization

term. This indicates that we should determine the trade-off parameter by χ2 test or other

methods individually for different regularization terms.

The above examples show the effects of the regularization terms and one method of

choosing the trade-off parameters. In the following part, we will compare the model-

space and data-space regularization. The first example use a damping regularization

term in model-space and data-space respectively. The results is shown in Figure 3.7. As

we can see from Figure 3.7, the model-space regularization and data-space regularization
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Figure 3.4: a) Model. b) Observed data and noise free data. c) Minimum weighted norm
solution D2. d) Predicted data and observed data. The circle in b) and d) denotes the
observed data. x denotes the model parameter position and r means the observation
position. The trade-off parameter is selected by the χ2 test.

give the same results even when the optimization is not completed. If we regularized the

solution by D1, we need to introduce a preconditioning operator to solve the data-space

regularization case. Figure 3.8 shows the results after different iteration numbers. It is

obvious data-space and model-space regularization give us different solutions after 5

iterations. Results in 3.8 (c) shows that the two regularization methods give us the same

results after 20 iterations. The results when we use D1 regularization terms indicate that

the final results of the model-space and data-space regularization are identical but the

results when the optimization is no completed is different. Comparing to the results
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Figure 3.5: a) Model norm as a function of the logarithm of the trade-off parameter log10µ,
b) the χ2 test for the minimum weighted norm solution D1, c) the trade-off curve for the
misfit and model norm. The dashed line in b) and c) indicates the desired χ2 value.

shown in Figure 3.7 and 3.8, we can find the difference between the data-space and

model-space regularization is due to the effects of preconditioning.

All these simple examples support the discussions on the regularization, model-space

and data-space regularization in the above sections.

3.5 Summary

In this chapter, I reviewed the basics of inverse theory in three parts. The concepts of ill-

posed and well-posed problem are introduced in the first part. The second part reviewed

the regularization techniques: the definition of regularization, the concept of null space,
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Figure 3.6: a) Model norm as a function of the logarithm of the trade-off parameter log10µ,
b) the χ2 test for the minimum weighted norm solution (D2), c) the trade-off curve for
the misfit and model norm. The dashed line in b) and c) indicates the desired χ2 value.

the model and data regularization, the model-space and data-space regularization and

then the Bayesian framework for inversion. In the third part, I briefly introduced the most

common numerical techniques for inversion: forward and adjoint operators, IRLS and

CGLS method and the Conjugate Gradient algorithm. Finally, we test the regularization

techniques on some toy examples.
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Figure 3.7: In each figure, the top curve is the solution by model-regularization (damping
regularization term), the middle curve is the one by data-regularization and the bottom
one is the true model. (a) Results after 5 iterations. (b) Results after 10 iterations. (c)
Results after 20 iterations.
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Figure 3.8: In each figure, the top curve is the solution by model-regularization (first
derivative D1 regularization term), the middle curve is the one by data-regularization
and the bottom one is the true model. (a) Results after 5 iterations. (b) Results after 10
iterations. (c) Results after 20 iterations.
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Chapter 4

Constraints for Time-lapse Inversion

4.1 Limitations of Seismic Data

The advantages of an inversion framework is that inversion methods can obtain a bet-

ter solution by integrating all information in the form of constraints. Therefore, it is

necessary to investigate the limitations of seismic data in order to impose proper con-

straints. In practice, constraints are often given in a matrix form and coded as subroutines

(Youzwishen, 2001; Claerbout, 1992; Claerbout, 2004) .

The first limitation of seismic data is that the observed data is finite while the real

earth should be described as a continuous distribution of physical parameters (Scales and

Smith, 1994). This limitation is fundamental because it means that the solution is always

non-unique. In practice, we overcome this problem by assuming the model parameters

are discrete which is equivalent to multiply the real earth model by a comb function.

However, some errors are introduced and can be regarded as systematic errors.

The second limitation is that the seismic data is band-limited (Ghosh, 2000). This

limitation can be explained by the convolution model. Following the convolution model,

the discrete seismogram sk can be formulated as,

sk = rk ∗ wk, (4.1)

where rk represents kth component of the primary reflectivity, wk is kth component of

the seismic wavelet and ∗ denotes the convolution operator. The band-limited nature is

best illustrated in frequency domain. By forward Fourier transform, the above equation
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is re-written as,

S(ωk) = R(ωk)W (ωk). (4.2)

From the above equation, it is very clear that S(ωk) will equal to zero when R(ωk) or

W (ωk) is zero. Usually reflectivity series are broad-band, but source wavelet is band-

limited. Thus, seismic data is band-limited. This band-limited nature is illustrated in Fig

4.1, where the source wavelet is a Berlage wavelet (Aldridge, 1990). It is clear that at least

the zero frequency component of the data is lost. And the resolution of the data is limited

because the highest frequency of the data is a finite number. Therefore, additional infor-
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Figure 4.1: Band-limited nature of seismic data: (a) Berlage source wavelet, (c) a ran-
dom sparse reflectivity series, (e) the corresponding seismogram, (b), (d) and (f) are the
amplitude spectrum of (a), (c) and (e), respectively.

mation about the lost frequency component is needed. One approach is to assume some
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characteristics of the model (i.e. model regularization methods) so that the lost frequency

component can be recovered (Sacchi, 1997). One typical method for this approach is im-

posing a sparseness constraint. The sparseness constraint can be designed in two ways:

first way is that we apply Bayes’ theorem after assuming some probability distribution of

the model parameters; second way is that we apply some norm to the model parameters

directly.

The third limitation is that the seismic data are contaminated by noise. And the equa-

tion 4.1 can be rewritten as,

sk = rk ∗ wk + nk, (4.3)

where nk is the noise. In the frequency domain, the equation 4.3 can be written as,

S(ω) = R(ω)W (ω) + N(ω). (4.4)

From the equation 4.4, it is obvious that only dividing both sides by W (ω) will intro-

duce noise component into the estimated model. The noise effect is shown in Fig. 4.2.

Illustrated in this figure, it is clear that even a little noise will make the estimated solution

unstable. The constraints imposed on the model parameters can stablize the solution.

However, due to the noise, the value of the model parameters may be distorted. There-

fore, an impedance constraint is often applied. Besides these methods, we can apply

different norm of the data residual (i.e. the data regularization methods) by assuming

the characteristics of the noise. The norm of the data residual can be given directly or

derived in a Bayesian framework by assuming the probability distribution of the noise.

4.2 Sparseness Constraints

Different regularization strategies can be applied to improve the inversion (e.g. deconvo-

lution) of seismic data. For simplicity, we only discuss the model regularization methods

here. As we have said in the above section, there are two ways to design a sparseness

constraint: first one is from a Bayes’ viewpoint (Ulrych et al., 2001) and another one is

from robust statistics’ viewpoint (Sacchi, 1997). In this section, we will show the two

ways and discuss the applications of sparseness constraint.
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Figure 4.2: Noise effects on the inversion of seismic data: (a) a Berlage source wavelet; (b)
a random sparse reflectivity series; (c) the corresponding noise free seismogram; (e) the
corresponding seismogram with one percent Gaussian noise; (d) and (f) is the estimated
reflectivity from the data shown in (c) and (e) , respectively.

4.2.1 Design of Sparseness Constraints

Bayes’ Viewpoint

Recalling the Bayes’ theorem 3.12 , we often use the form without the normalization

factor. It can be written as,

P (m|d) ∝ P (m)P (d|m). (4.5)
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For a noisy data set,

dobs = d + n

= Lm + n, (4.6)

where n is the noise vector. It is obvious the likelihood function P (d|m) follows the

distribution of noise. This relationship can be stated as the following equation,

P (dobs|m) = P (n). (4.7)

Many assumptions can be applied to the noise vector. The most common one is that the

noise has a Gaussian distribution. The probability function for this case is

P (ni) =
1√
2πσ2

i

e
−(ni−µn)2

2σ2
i , (4.8)

where i denotes the ith component of the noise vector. The parameter µn is the mean

value of the noise vector (we assume zero-mean noise, therefore µn = 0 ) and σ2 is the

variance. Suppose the noise vector has N components which are uncorrelated, we can

write the likelihood function in the following form,

P (n) = P (n1)P (n2)P (n3) . . . P (nN )

=




N∏

i=1

1√
2πσ2

i


 e

∑N
i=1−

(ni−µn)2

2σ2
i

=
(
(2π)N detCd

)− 1
2 e−

1
2
(d−Lm)T Cd

−1(d−Lm), (4.9)

where Cd is the data covariance operator. If the noise is uncorrelated, the covariance

operator is given by

Cd =




σ2
1 0 . . . . . . . . . 0
0 σ2

2 0 . . . . . . 0
...

...
. . .

...
...

...
0 0 . . . σ2

i . . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . σ2

N .




(4.10)

The model vector m has M components. If we assume the model parameters are uncor-

related and follow a Gaussian distribution, we can follow the derivation shown above
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and obtain the probability function of the model vector. This priori probability can be

written as,

P (m) = P (m1)P (m2)P (m3) . . . P (mM )

=




M∏

i=1

1√
2πσ2

mi


 e

∑M
i=1−

(mi−µm)2

2σ2
mi ,

=
(
(2π)M detCm

)− 1
2 e−

1
2
mT Cm

−1m, (4.11)

where, µm is the mean value of the model vector (we assume that µn is zero) and σ2
mi

is

the variance. The matrix Cm is the model covariance operator and given by the following

equation

Cm =




σ2
m1

0 . . . . . . . . . 0
0 σ2

m2
0 . . . . . . 0

...
...

. . .
...

...
...

0 0 . . . σ2
mi

. . . 0
...

...
...

...
. . .

...
0 0 . . . . . . . . . σ2

mM
.




(4.12)

According to Bayes’ theorem, the posterior distribution will follow the equation shown

below,

P (m|d) ∝
(
(2π)M+N detCd detCm

)− 1
2 e−

1
2((d−Lm)T Cd

−1(d−Lm)+mT Cm
−1m). (4.13)

The common way to choose a solution is to find a model vector which maximize the pos-

terior probability P (m|d). This solution is called maximum a posterior(MAP) solution.

To obtain MAP solution, we first take natural logarithm on both sides of the equation

4.13,

− ln (P (m|d)) ∝ 1
2

(
(d− Lm)TCd

−1(d− Lm) + mTCm
−1m

)

+
1
2

ln
(
(2π)M+N detCd detCm

)
. (4.14)

When Cd and Cm are given, the second term in the equation 4.14 is constant. Therefore,

maximizing P (m|d) is equivalent to minimizing

J = (d− Lm)TCd
−1(d− Lm) + mTCm

−1m. (4.15)
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This equation can be reformulated in the form of the following cost function,

J(m) = (d− Lm)TCd
−1(d− Lm) + mTCm

−1m. (4.16)

For simplicity, we assume, for any i, σi = σn and σmi = σm. Therefore, we can rewrite

the above equation as,

J(m) = (d− Lm)T (d− Lm) + λmTm, (4.17)

where λ = σ2
n

σ2
m

. This cost function is the same one for the common l2 norm solution.

From the above derivation, we can see that the l2 norm solution is the one obtained by

assuming the noise vector and model vector are the Gaussian distribution function whose

mean value is zero and the variance is σn and σm respectively.

4.2.2 Sparse Solution

To obtain a sparse solution, two common prior distributions, which are exponential dis-

tribution and Cauchy distribution (Youzwishen, 2001), are used. The differences between

the two distributions and the Gaussian distribution is shown in Figure 4.3. It is clear

that exponential and Cauchy distributions have narrower peak than the Gaussian dis-

tribution and decline to zero more slowly. This kind of distribution is called long-tailed

distribution (Lupton, 1993). Due to the narrower peak, most of the solution following the

long-tailed distribution will be zero value. Meanwhile, in this case, the non-zero value

will have bigger range of values than the Gaussian distribution. Therefore, comparing

to Gaussian distribution, a long-tailed distribution such as the exponential and Cauchy

distributions will force a solution in which most values are zeros and a few are large

non-zero values (i.e. the sparse solution).

To derive the sparseness constraints for exponential and Cauchy distribution cases,

we just follow the same procedure for the Gaussian distribution case (Zhang and Schmitt,

2004). For simplicity, the likelihood function P (dobs|m) is always given by the equation

4.9.

First, let us suppose the model parameters follow the Cauchy distribution (Sacchi,

1997),

P (mi) =
1

πσi

1
1 + (mi − µ)2/σ2

i

, (4.18)
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Figure 4.3: Gaussian, Exponential and Cauchy Distributions: mean value is 0 and the
variance is 4

where µ is the mean value (we assume it to be zero here) and σ2
i is the variance for the

ith component of the model vector mi. Then we can derive the prior function P (m),

P (m) =

(
πM

N∏

i=1

σi

)−1 N∏

i=1

(
1

1 + m2
i /σ2

i

)
. (4.19)
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The posteriori distribution then is

P (m|d) ∝
(

πM
N∏

i=1

σi

)−1 N∏

i=1

(
1

1 + m2
i /σ2

i

)

× (
(2π)N detCd

)− 1
2 e−

1
2
(d−Lm)T Cd

−1(d−Lm)

∝
(

πM
N∏

i=1

σi

)−1 (
(2π)N detCd

)− 1
2

e(−
1
2
(d−Lm)T Cd

−1(d−Lm)+
∑N

i=1(− ln(1+m2
i /σ2

i ))). (4.20)

For simplicity, we assume the components of diagonal matrix Cd are constant value and

σi = σm for all the components of the model vector. Therefore, by taking the negative

natural log of the both sides, the MAP solution is to find the minimum of the following

cost function (Youzwishen, 2001; Tarantola, 1987)

J = (Lm− d)T (Lm− d) + λR(m), (4.21)

where λ is the trade-off parameter and the regularization term R(m) is

R(m) =
M∑

i=1

ln(1 + m2
i /σ2

m). (4.22)

Take the derivative of the cost function to each component of the model vector, we can

obtain

∇J = LTLm− LTd + λ∇R(m), (4.23)

where ∇R(m) is given by

∇R(m) =




∂R(m)
∂m1

∂R(m)
∂m2

∂R(m)
∂m3
....




, (4.24)

and we know that ith component of the above matrix is given by

∂

∂mi
R(m) =

2
σ2

m

mi
1

1 + m2
i /σ2

m

. (4.25)

If we put the constant term 1/σ2
m into the trade-off parameter λ, equation 4.24 can be
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reformulated as

∇R(m) =




2m1
1

1+m2
1/σ2

m

2m2
1

1+m2
2/σ2

m

2m3
1

1+m2
3/σ2

m

....




(4.26)

We can rewrite the above equation into the following matrix form

∇R(m) = 2 Q m, (4.27)

where m is the model vector and Q is a diagonal matrix whose ith diagonal element is

given by

Qii =
1

1 + m2
i /σ2

m

. (4.28)

If we let∇J = 0 and thus the cost function is minimized, the solution would be the MAP

solution . Therefore, it turns out to solve the following equation

LTLm− LTd + λQm = 0. (4.29)

Solving this equation, it is clear the estimated solution is

m̂ =
(
LTL + λQ

)−1
LTd, (4.30)

where m̂ denotes the estimated solution and Q is the diagonal matrix whose diagonal

elements is defined by the equation 4.28. This sparse solution corresponds to the as-

sumption that the prior distribution of the model parameters is Cauchy distribution.

Another common sparseness constraint is l1 norm (O’Brien et al., 1994; Taylor et al.,

1979). This constraint can be derived by assuming the model vector follows a double

exponential distribution. This distribution can be described mathematically as,

P (mi) =
1

2σi
e−|mi−µ|/σi , (4.31)

where µ is the mean value and σ2
i is the variance of the ith component of the model

vector. For simplicity, we assume the mean value is zero and the variance is a constant

σm. Then the priori function P (m) is

P (m) = P (m1)P (m2)P (m3) . . . P (mM )

=
1

(2σm)M
e

(
− 1

σm

∑M
i=1 |mi|1

)
. (4.32)
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If we assume the noise follows a Gaussian distribution with a mean value of zero and the

variance is a constant σ2
n, then the posterior distribution will be defined as

P (m|d) ∝ 1
(2πσ2

N )N/2

1
(2σm)M

e
− 1

2σ2
n

(Lm−d)T (Lm−d)− 1
σm

∑M
i=1 |mi|1

. (4.33)

The MAP solution maximizes this posterior function. This maximization is equivalent to

find the minimum of − lnP (m|d), for given σn and σm, which is given by

− lnP (m|d) =
1

2σ2
n

(Lm− d)T (Lm− d) +
1

σm

M∑

i=1

|mi|1. (4.34)

This equation can also be written in the form of a cost function

J = (Lm− d)T (Lm− d) + λR(m), (4.35)

where λ is the trade-off parameter. The regularization term R(m) is

R(m) =
M∑

i=1

|mi|1. (4.36)

Minimizing this cost function is equivalent to find the solution to ∇J = 0. We know the

derivative of the regularization term is

∂

∂mi
R(m) =

mi

|mi| . (4.37)

Thus

∇R(m) =




m1
|m1|
m2
|m2|
m3
|m3|

...




. (4.38)

This gradient term can also be expressed in a matrix form

∇R(m) = Q m, (4.39)

where Q is a diagonal matrix whose diagonal element is defined by

Qii =
1
|mi| . (4.40)

Considering the stability of Q, this matrix is modified to

Qii =
{ |mi|−1 if |mi| > ε

ε−1 if |mi| ≤ ε
(4.41)
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where ε is a small, positive number. So when mi is very small, the corresponding element

of Qii is a certain number which approximate the exact number good enough instead of

an unstable number. Solving this cost function, the solution m̂ is

m̂ =
(
LTL + λQ

)−1
LTd, (4.42)

where Q is defined by the equation 4.41. We find this equation 4.42 and 4.30 is the same

except the matrix Q is different. Therefore, both cost functions can be solved using the

IRLS algorithm discussed in the chapter 3.

Robust Statistics’ Viewpoint

Considering the problem d ≈ Lm, the cost function, in the least square sense, can be

rewritten as (Sacchi, 1997)

Jr =
N∑

i=1

ρ1

(
ri

σi

)
, (4.43)

where ri is the ith component of the residual vector r which is defined as

r = d− Lm, (4.44)

and the function ρ1(u) is

ρ1(u) =
1
2
u2, (4.45)

where u is the weighted residual ri/σi. For simplicity we assume that σi is equal to a

constant σm for i = 1, 2, . . . , N . To minimize this cost function, we solve the following

equation,

∇Jr =
N∑

i=1

ψ(ri/σn) = 0, (4.46)

where ψ(u) = ∂ρ1(u)/∂u. This function measure the influence of the residuals on the

model estimation. In robust statistics, it is called influence function. In practice, another

regularization term Jm is needed besides the cost function Jr to stabilize the solution.

J =
N∑

i=1

ρ1

(
ri

σi

)
+ Jm, (4.47)

where Jm is defined as

Jm =
M∑

i=1

ρ(mi/σmi), (4.48)
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where σ2
mi

is the variance of the ith component of the model vector. If we assume the

function ρ(u) = ρ1(u), then the solution to this cost function is the common l2 norm

solution.

In robust statistics, a common approach to re-evaluate the influence of the outlier is to

redesign the function Jr. A similar approach can be used to redesign the regularization

term Jm. To enforce a sparse solution, four regularization functions are often used: lp

norm, Sech norm, Cauchy norm and Huber norm (Sacchi et al., 2003). The four functions

are defined as,

ρp(u) = |u|p, (4.49)

ρSech(u) = ln (cosh(u)) , (4.50)

ρCauchy(u) = ln
(
1 + u2/2

)
, (4.51)

ρHuber(u) =
{

u2/2 if |u| ≤ a
a|u| − a2/2 if |u| > a,

(4.52)

where cosh(u) = eu+e−u

2 and a is a given positive number. The influence functions for

the four norm are,

ψp(u) = p u/|u|(2−p), (4.53)

ψSech(u) =
eu − e−u

eu + e−u
, (4.54)

ψCauchy(u) =
u

(u2/2) + 1
, (4.55)

ψHuber(u) =
{

u if |u| ≤ a
asign(u) if |u| > a.

(4.56)

The new system of equations after regularization can be written in the following form,

(LTL + λQ)m = LTd. (4.57)

The diagonal matrix Q is different for different regularization functions. For simplicity,

we try to let the constant value such as p, σm and σn absorbed in the trade-off parameter
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λ. The diagonal elements of Q are

Qpii = 1/|mi|(2−p), (4.58)

QSechii
=

emi/σm + e−mi/σm

mi(emi/σm + e−mi/σm)
, (4.59)

QCauchyii
=

1
m2

i + ε
, (4.60)

QHuberii
=

{
1 if |mi

σm
| ≤ a

a
|mi| if |mi

σm
| > a

(4.61)

where a and ε are given positive number. If we compare the Cauchy norm and lp norm(

here p = 1) to the results derived above by assuming priori distribution is Cauchy or dou-

ble exponential distribution, we can find both viewpoints give the same result. Therefore,

Bayesian viewpoint and robust statistics viewpoint are the two different ways of present-

ing the same problem.

4.2.3 Example of Sparseness Constraints

As we have discussed in the above subsection, an inverse problem constrained by a

sparseness constraint can be formulated in the form of the equation 4.57 and its solu-

tion is given by the equation 4.42. This equation can be solved using IRLS algorithm.

However, there are two problems: first, the selection of the trade-off parameter λ; and

second, the selection of the regularization functions.

Figure 4.4 (a) shows a sparse reflectivity series, its corresponding noisy synthetic

trace and the source wavelet. The noise is Gaussian noise and the signal to noise ratio

(snr) is ten. First, we do the deconvolution using damping (also named as zero-order)

regularization. The result is shown in Figure 4.4 (b). Then we applied the Cauchy norm

and l1 norm to estimate the reflectivity. Figure 4.4 (c)and (d) illustrates the results for

the two regularization terms respectively. As shown in the above figure, sparseness con-

straints such as Cauchy norm and l1 norm give better results than that by means of zero-

order regularization. This shows that a sparseness constraint will improve the result if

the model follow the sparseness assumption. On the other hand, the estimated result

using Cauchy norm looks a little better than that using l1 norm. This shows different

sparseness constraints will give different results. Therefore, it is necessary to consider
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Figure 4.4: (a) A sparse reflectivity (left), synthetic trace (center) and a Berlage source
wavelet (right). (b) The estimated reflectivity series using zero-order regularization (left),
predicted trace (center) and residuals (noisy synthetic trace minus the predicted trace).
(c) Results using the Cauchy norm regularization and (d) results using the l1 norm.

the selection of the sparseness constraint for different data sets. From Figure 4.4, we can

also find that the estimated reflectivity series by means of sparseness constraints do not

give us correct relative amplitude for these reflectivities. This can be partially explained

by the design of the sparseness constraint. For example, we know the diagonal element

of weighting matrix QCauchy is 1
m2

i +ε
. Theoretically, the weights for the two spiking el-

ements, for example mk, mj , 1
m2

j+ε
and 1

m2
k+ε

should be equal in the sense of physical

meaning because the two model parameters are the exact solutions. However, it is obvi-

ous that for the two spike model parameter mk, mj , the corresponding weights for the

two elements 1
m2

j+ε
and 1

m2
k+ε

will not be equal unless |mj | = |mk|.
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An advantage of the sparseness constraint is that it can recover the lost high and low

frequency component of the original model. This effect is best illustrated in Figure 4.5.
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Figure 4.5: (a) True reflectivity series, (b) the power spectrum of the true model, (c) esti-
mated reflectivity series using zero-order regularization, (e) and (f) show the estimated
reflectivity series using the Cauchy norm and the l1 norm respectively. (d), (f) and (h) are
corresponding power spectrum to (b), (e) and (g) respectively.

4.3 Impedance Constraints

Well-log data is an important source of subsurface information. The impedance derived

from the well-log data can be used to constrain the estimated subsurface seismic proper-

ties. In this section, we will first relate the impedance obtained from well-log to the re-

flectivity and construct the impedance constraint. Then we will show that an impedance
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constraint can improve the inversion (Oldenburg et al., 1983; Zhang and Schmitt, 2004).

4.3.1 Derivation of Impedance Constraints

For simplicity, we assume the earth is consisted of k parallel layers and each layer’s prop-

erties are constant as shown in the Figure 4.6. The acoustic impedance ξk (Telford et al.,

1990) is defined as

ξk = ρkvk. (4.62)

Thus we can calculate the acoustic impedance from the sonic and density well-log data.
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Figure 4.6: The layered earth model. rk denotes the reflection coefficient of the bottom of
the kth layer. ρk, vk and ξk represents the density, velocity and acoustic impedance of the
the kth layer respectively.

By a convolution model s = Wr (where s which represents the seismic data d is a

seismic trace, W which denotes the forward operator L is a convolution matrix and r

which denotes the model m is a reflectivity series.), we can relate the seismic data to the

reflectivity coefficient. Meanwhile, for normal incidence case, the reflection coefficient rk
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(Telford et al., 1990) is given by

rk =
ξk+1 − ξk

ξk+1 + ξk
. (4.63)

Rearranging the above equation, we get

ξk+1 = ξk

(
1 + rk

1− rk

)
= ξ1

k∏

i=1

(
1 + ri

1− ri

)
. (4.64)

By this equation, we can relate the acoustic impedance to the reflectivity coefficients. In

practice, the reflection coefficients and the acoustic impedance are related by an approx-

imation (Peterson et al., 1955),

r(t) =
1
2

d[ln ξ(t)]
dt

. (4.65)

The equation 4.65 is valid if the impedance ξ(t) is continuous. However, the error can be

neglected if the discrete jumps (reflection coefficients) in ξ(t) are less than 0.3 (Oldenburg

et al., 1983). The equation 4.65 can be rewritten as

ln[ξ(t)/ξ(0)] = 2

t∫

0

r(u)du, (4.66)

where ξ(0) = ξ1 is the impedance of the first layer and r is the reflectivity. In real world,

r is replaced by the estimated r̂ and a summation is used instead of the integral. The

equation 4.66 is reformulated as

k∑

i=1

ri =
1
2

ln[ξi/ξ1], (4.67)

where ξi is the acoustic impedance of the ith layer. We can rewrite this equation in a

matrix form

Cr = β, (4.68)

where C is a summation matrix and β is a column vector whose element is given by the

right-hand side of equation 4.67. In other words, equation 4.67 represents one row of

equation 4.68. The information provided by equation 4.68 is imposed into the inverse

problem as the impedance constraint. If we assume the variance of the well-log derived

impedance is a constant, the impedance constraint in the form of a cost function is

Jξ = ||Cr− β||22, (4.69)
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and the final cost function becomes

J = Jr + λJξ (4.70)

= ||s−Wr||22 + λ||Cr− β||22. (4.71)

In this cost function 4.71, other constraints such a sparseness constraint are not included.

4.3.2 Example of Impedance Constraints

As we discussed in the above section, a sparseness constraint cannot ensure a correct

relative amplitude of the solution. Therefore, an impedance constraint is often applied to

force a correct relative magnitude of the solution.

The comparison between the results by means of a Cauchy norm constraint and a

combination of Cauchy norm and an impedance constraint is illustrated in the follow-

ing Figure 4.7. It is obvious that the impedance constraint greatly improve the accuracy

of the estimated impedance. The comparison between the power spectrum of the esti-

mated model is shown in Figure 4.8. We can easily find that the impedance constraints

improved the results.

4.4 Structural Constraint

One of the most important characteristics of the time-lapse data is that the underlying

model background does not change outside the reservoir. Therefore, a structural con-

straint can be designed for the time-lapse data to constrain the model difference caused

by the reservoir changes. In this section, we will discuss the design of structural con-

straint and then the difficulties related to this structural constraint.

4.4.1 Derivation of Structural Constraint

For simplicity we assume the time-lapse seismic data have two data sets which are

db = Lbmb + nb

ds = Lsms + ns, (4.72)

where subscript b means the base survey and s denotes the second survey. d, L, m, n,

represents the seismic data, forward operator, model parameters and noise respectively.
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In time-lapse seismic inversion case, we need to clarify two things: first, each data set of

time-lapse data is not different from ordinary seismic data set; second, the objective of

time-lapse inversion is to find the model changes due to the reservoir changes instead

of the model parameters. The first thing implies that we can use all the existing seismic

inversion methods for time-lapse data. The second thing tells us that extra efforts are

needed to attenuate the unwanted model changes which can be caused by inconsistent

inversion of time-lapse data and non-repeatability of the time-lapse data sets. To attenu-

ate the none-repeatability effects, people usually apply cross-equalization techniques. It

must be emphasised the importance of the uniform processing for time-lapse data. The

basic idea of the cross-equalization technique is: the matching of the data above the reser-

voir will force the forward operators to be the same because the corresponding models

do not change during time-lapse acquisition process. The problems of cross-equalization

are: first, the matching the high resolution data to the low resolution data and thus high

frequency information is lost; second, the noise in the two data sets are different so that

the cross-equalization might match the noise. Since seismic processing can be regarded

as the first iteration of an seismic inversion, one idea is to construct some constraint

which acts like the cross-equalization technique. This constraint is called the structural

constraint which constraints the model differences. The advantages of the structural con-

straint are: first, it does not require the same forward operator for the time-lapse data

sets; second, it is more flexible to handle the inconsistent noise of the data sets.

The structural constraint can be designed in a Bayesian framework. For simplicity, we

assume the noise and the model for the two time-lapse data sets both follow a Gaussian

distribution whose mean value is zero and the variance is σn and σm respectively. From

a Bayes’ viewpoint, one approach of the time-lapse inversion is try to find the probability

function P (mb,ms|db,ds).

P (mb,ms|db,ds) ∝ P (db,ds|mb,ms)P (mb,ms), (4.73)

where P (, ) means the joint probability. Since we know the likelihood function is equiva-

lent to the probability function of the noise and the noise of the two time-lapse data sets
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are independent, P (db,ds|mb,ms) can be given by

P (db,ds|mb,ms) = P (db|mb,ms)P (ds|mb,ms)

= P (db|mb)P (ds|ms). (4.74)

However, the models for the two data sets are related by

ms = mb + δm, (4.75)

where δm follows some distribution. For simplicity, we assume it is a Gaussian distribu-

tion with a mean value zero and the variance is σδmi for the ith component of δm. We

can know easily that the condition probability P (mb|ms) or P (ms|mb) is equivalent to

the probability function P (δm). After defining the relationship between the two models,

the joint probability P (mb,ms) is

P (mb,ms) = P (mb)P (ms|mb) = P (ms)P (mb|ms). (4.76)

The equation 4.76 shows two expressions for P (mb,ms). Thus, the posterior probability

distribution can be written in two ways

P (db,ds|mb,ms) ∝ P (db|mb)P (ds|ms)P (mb)P (ms|mb), (4.77)

P (db,ds|mb,ms) ∝ P (db|mb)P (ds|ms)P (ms)P (mb|ms). (4.78)

The MAP solution is the solution that maximizes P (mb,ms|db,ds), that is, minimizes

− ln(P (mb,ms|db,ds)). Following the derivation process for the sparseness constraint,

we can obtain the two cost functions for the time-lapse inversion,

Jb = ||db − Lbmb||22 + ||ds − Lsms||22
+ λ1||mb||22 + λ2||Wc(mb −ms)||22, (4.79)

Js = ||db − Lbmb||22 + ||ds − Lsms||22
+ λ3||ms||22 + λ4||Wc(mb −ms)||22, (4.80)

where λ1, λ2, λ3 and λ4 are trade-off parameters. The term ||Wc(mb − ms)||22 is the

structural constraint for time-lapse seismic inversion. The matrix Wc is a diagonal matrix

whose diagonal elements is

Wcii =
1

σδmi
. (4.81)
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It is clear that this matrix Wc determines how the structural constraint works. Therefore

the most important part of the design of the structural constraints is to design the matrix

Wc. One simple Wc can be designed as

diag(Wcii) =
{

β Area of no change.
1 Area of changes.

, (4.82)

where β is a positive big number. Depending on the matrix Wc, the final cost function

can be Jb, Js or Jb + Js.

Similar to the design of the sparseness constraint, different structural constraint can

be constructed by assuming different distribution of model differences or directly chang-

ing the norm of the model difference. However, the weighting matrix Wc is the most

critical part for all kinds of structural constraint. Therefore, it is important to investigate

the characteristics of the model difference, which depends on the domain in which the

inversion applied and the processing of the data before the inversion, to design a suitable

Wc.

4.4.2 The Difficulties of the Structural Constraint

The weighting matrix Wc in the structural constraint tells us which model parameter is

most probably changed. Therefore a very accurate Wc will give us a better result. The

difficulties of the structural constraint mainly comes from the design of this weighting

matrix.

The first and fundamental difficulty is that there is no theoretical approach to calcu-

late the weighting matrix. The good thing of time-lapse case is that we know a blur range

of the area where the model does not change. Therefore, the advantage of the time-lapse

case is that at least we know a blur picture of where the variance should be higher. How-

ever, we do not know the variance for each component of the wanted model difference

and thus this difficulty still exists.

After we know the first difficulty, we may have an idea whether we can design the

weighting matrix in such a way that the variance of the wanted model difference can be

iteratively improved by the estimated result after attenuating the unwanted model dif-

ference. However, it is hard to design the weighting matrix so that the attenuation of

unwanted model difference can effectively improve the inversion of the model parame-
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ters which do changed. This difficulty means that the predictability of this constraint is

pretty weak and thus greatly limit the usefulness of the structural constraint.

The third difficulty comes from the fact that the model parameters below the reser-

voir will have a time-shift due to the reservoir change in time domain (Pepper et al.,

1997; Watson, 2004). Generally the reservoir changes have two influences on the time-

lapse data: amplitude changes and time-shift. The amplitude changes are caused by

the impedance (which includes the effects of the velocity and density) changes. The

time-shift of the model parameters below the reservoir is caused by the velocity change

of the above layers. Theoretically both quantities can be used to estimate the reservoir

changes. This time-shift effects is illustrated in Figure 4.4.2. From this figure, we can

find that even a small time-shift will cause a normalized root mean square amplitude

(NRMS) difference (Kragh and Christie, 2002) which is bigger than common time-lapse

NRMS change. Therefore, it is important to know the exact time-shift to remove the data

difference caused by the time-shift. However, it is very difficult to obtain an accurate

estimation of the time-shift because many factors can affect the time-shift. Therefore, in

time domain, we use mb(i)−ms(i) instead of mb(i)−ms(i+τi) (where τi is the time-shift

for the ith component of the model, mi) for the structural constraint. This cause another

problem: the constraint will affect the result less because all the model parameters below

the reservoir have a time-shift and there is no way to obtain accurate weights for those

model parameters.

If we do the inversion in depth domain, we will find that the uncertainty of the input

velocity model will limit the usage of this structural constraint. The example shown in

Figure 4.4.2 and Figure 4.4.2 illustrates that how the design of the structural constraint

affects the final inversion results. In Figure 4.4.2, the data difference and the real reflec-

tivity difference are given. The inversion results illustrated in Figure 4.4.2 demonstrate

that the more accurate structural constraint the better the results.

4.5 Constraints for the Time-lapse Case

For the time-lapse data, there are two problems to consider when we apply constraints.

First, should we apply the constraints to separate data sets or data differences? Second,
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will the constraint be different for different inversion schemes?

We can apply sparseness constraint and impedance constraint to the case of sepa-

rate data sets and the data difference case. The difference between the two cases for the

sparseness is that whether we assume the model or the model differences follow some

probability distribution or some characteristic. For impedance constraint, there is no dif-

ference between the two cases. As to the structural constraint, it is always applied to the

data difference.

In the following chapter, we will discuss three time-lapse inversion schemes: first, in-

vert the data sets separately and then subtract them to obtain the model differences; sec-

ond, invert the data differences to obtain the model difference and third, simultaneously

invert the data sets to obtain the model differences. For each scheme, the sparseness con-

straint and impedance constraint is designed according to whether the data sets or data

differences are inverted and the form of the two constraints will be the same. If we apply

the structural constraint for the three inversion schemes, the structural constraint will be

given in the following cost function form

Jstr =




||Wc(mb −ms)||22 The scheme that simultaneous invert the data sets
||Wc(ms − m̂b)||22 The scheme that invert the data sets separately
||Wcδm||22 The scheme that invert the data differences

,

(4.83)

where m̂b is the estimated base model without using a structural constraint and δm is

the model differences. From the above equation, it is clear the key point of the structural

constraint is the weighting matrix Wc. Figure 4.5 illustrates the results using these con-

straints under different schemes. We can find the structural constraint can attenuate the

unwanted model difference where the prior information tells us that no wanted model

difference should exist. The impedance constraint can give a better relative magnitude

of the model parameters.

4.6 Summary

In this chapter, I first reviewed the limitations of the seismic data: the data is finite while

the earth reflectivity is continuously distributed, the data is band-limited and the data

contain noise. Then I provide most common constraints to improve the inversion of
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the seismic data: sparseness constraints and impedance constraints. In time-lapse case,

another constraint called the structural constraint is introduced.

Two ways to derive the sparseness constraints are provided: the Bayesian framework

and the robust statistics theory. Both ways give us the same regularization terms for

the same priori information. However, the sparseness constraints cause amplitude scale

problems and thus the impedance constraint is introduced. Based on the relationship be-

tween the reflectivity series and the impedance log, the impedance constraint is derived.

Then the structural constraint is derived in the Bayesain framework for time-lapse data.

The simple examples show that the design of the structural constraint is an important

problem unsolved. Finally, I test the constraints and their combination on simple time-

lapse data example and the results show that the combination of the three constraints

provide the best result comparing to other combination.

Discussions in this chapter imply that a good time-lapse inversion requires more re-

search on the constraints applied to the time-lapse seismic data. On the one hand, the

three constraints still have many things to investigate to improve their performance in

the time-lapse case.
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Figure 4.7: (a) A sparse reflectivity (left), true impedance (centre), noisy synthetic trace
(snr= 10, right). (b) The estimated reflectivity series using Cauchy norm regularization
(left), estimated impedance (centre) and predicted data. (c) The estimated reflectivity
series using Cauchy norm regularization and an impedance constraint (left), estimated
impedance (centre) and predicted data. The dashed line in (b) and (c) indicates the true
impedance.
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Figure 4.8: (a) A sparse reflectivity . (b) The power spectrum of the true reflectivity (c)
The estimated reflectivity series using Cauchy norm regularization and (d) is its corre-
sponding power spectrum, (e) the estimated reflectivity series using Cauchy norm regu-
larization and an impedance constraint, (f) the power spectrum of the reflectivity series
in (e).
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Figure 4.9: Left column are different source wavelets and right column are the corre-
sponding difference curves as a function of time-shift. The NRMS is defined in Appendix
A.
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Figure 4.10: Left: time-lapse data difference. Right: the real reflectivity difference due to
the reservoir change.
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Figure 4.11: Left: inversion results using a wider structural constraint. Right: inversion
results using an accurate structural constraint.
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Figure 4.12: Comparison between the inversion results: (a) base seismogram, (b) mon-
itoring seismogram, (c) data difference between the monitor and base survey, (d) the
real model difference, from (e) to (f) are all estimated model difference using different
schemes. (e) is invert survey by survey without impedance constraint, (f) is invert sur-
vey by survey with impedance constraint, (g) is structurally constrained simultaneous
inversion without impedance constraint and (h) is structurally constrained simultaneous
inversion with impedance constraint.
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Chapter 5

Three Inversion Schemes

Time-lapse seismic data contains two or more seismic data sets. Thus there exists differ-

ent schemes for inverting time-lapse seismic data which is different from conventional

seismic inversion. From a mathematical point view, it is natural to divide the schemes

into three category: first, invert the data sets separately and then subtract the estimated

models to obtain the model difference; second, subtract the data and then invert the data

difference for the model difference and third, simultaneously invert the data sets and

then obtain the model difference by subtracting the estimated models.

In this chapter, we will first state the three schemes in a mathematical form and derive

the cost function for them. Then, we will compare the three schemes and discuss their

advantages and disadvantages by some simple examples. Finally, the resolution limit of

the time-lapse inversion is discussed.

5.1 Mathematical Formulation

For simplicity, we assume the time-lapse data only have two data sets. Assume we have

two data sets which satisfy the convolution model

sb = Wbrb + nb

ss = Wsrs + ns (5.1)

where s is the data, W is the convolution operator, r denotes the reflectivity, n means the

noise and the subscript b, s mean the base survey and monitoring survey respectively.
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The first time-lapse inversion scheme is to invert the two data sets separately and

then estimate the model difference. In this case, we need to solve the following two cost

functions:

Jb = ||sb −Wbrb||22 + λ1R(rb) + λ2||C1rb − βb||22
Js = ||ss −Wsrs||22 + λ3R(rs) + λ4||C2rs − βs||22 (5.2)

where λ denotes the trade-off parameter, C means the impedance constraint matrix, beta

are the impedance constraints and R(m) denotes a sparseness constraint. If we take the

structural constraint into the consideration, the second equation in the 5.2 needs an extra

term ||Wc(rs − r̂b)||22, where Wc is the weighting matrix in the structural constraint.

Another time-lapse inversion scheme is to invert the data differences. This scheme

require the forward operators in the equation 5.1 to be the same, that is Wb = Ws = W.

If this requirement is satisfied, this scheme turns out to solve the cost function:

J = ||(sb − ss)−W(rb − rs)||22 + λ1R(rb, rs) + λ2||C(rb − rs)− (βb − βs)||22 (5.3)

where the sparseness constraint R can be applied to the two model rb, rs separately or

the model difference rb − rs. The form of this cost function is similar to the cost function

for one data set shown in the equation 5.2. We can add a term ||Wc(rb − rs)||22 into the

above equation 5.3 to absorb the structural prior information.

The last time-lapse inversion scheme is to invert the two data sets simultaneously and

then obtain the model difference. The cost function for this scheme is:

J = ||sb −Wbrb||22 + ||ss −Wsrs||22 + λ1||rb||22 + λ2||Wc(rb − rs)||22
+ λ3||rs||22 + λ4||C1rb − βb||22 + λ5||C2rs − βs||22 (5.4)

If we assume the model parameters are sparse, then this cost function can be changed to

J = ||sb −Wbrb||22 + ||ss −Wsrs||22 + λ1R(rb) + λ2||Wc(rb − rs)||22
+ λ3R(rs) + λ4||C1rb − βb||22 + λ5||C2rs − βs||22 (5.5)

In practice, we can invert the time-lapse seismic data by any of the three schemes.

However, the three schemes will give different inversion results. The comparison among

the three schemes is shown in the following section.
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5.2 Comparison of Three Inversion Schemes

In this section, we applied the three scheme to synthetic 2D post-stack time-lapse data

sets. The synthetic data is generated by the methods shown in the chapter 2. The model

parameters are the same as the one used in the chapter 2 except that the thickness of

the reservoir are given three different values in this chapter. The elastic properties of the

reservoir is given by the table 2.2. In Figure 5.1, the thickness of the reservoir is 100m.

In Figure 5.2, the thickness of the reservoir is 25m. The thickness of the reservoir is 10m

in Figure 5.3. All the data sets contains three percent Gaussian noise. The corresponding

reflectivity difference for the three examples are shown in Figure 5.4 (a), (b) and (c)

respectively. In the following part, we will invert the three different time-lapse seismic

data by different inversion schemes. The impedance constraint, sparseness constraint

and structural constraint are applied to achieve a better result.

5.2.1 Comparing the three schemes

The inversion results in the case that the reservoir is 100m thick are illustrated in Figure

5.5. Figure 5.6 shows the results in the case that the reservior thickness is 25m and the

results when the reservoir thickness is 10m is shown in Figure 5.7.

As we can see from these figures, the second scheme provides very bad results. The

possible reasons are: the noise level of the data difference is not the same one of the sepa-

rate data and thus the χ2 criterion is not satisfied; the reservoir changes is not so big and

thus the data differences generate a problem similar to the inversion of a thin layer. The

comparison among Figures 5.5, 5.6 and 5.7 demonstrates that the results become worse

as the thickness of the reservoir decreases for all the three inversion schemes. While, the

comparison between the results of inverting data separately and simultaneous inversion

shows that the simulatenous inversion scheme performs better when the thickness of the

reservoir decreases.

5.3 Summary

In this chapter, I provided the formulation of the three inversion schemes for time-lapse

seismic data. Then I generated three synthetic examples based on the rock physics and

72



5.3. SUMMARY

0 50 100 150

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Offset (m)

Tr
av

el
 T

im
e 

(s
ec

)

0 50 100 150

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Offset (m)

Tr
av

el
 T

im
e 

(s
ec

)

Figure 5.1: Left: base survey data; Right: monitor survey data. The thickness of the
reservoir is 100m.

experimental data provided in the chapter 2. The three schemes are tested on these toy

examples. These examples indicate the following things: (a) as the thickness of the reser-

voir decrease, the results of all the three inversion schemes become worse, (b) since the

reservoir change is not large, the scheme that inverts the data difference give the worst

results, (c) when the reservoir is very thin, the simultaneous inversion scheme performs

better than other schemes.

In the real world, the reservoir is usually thin and the noise factors are more compli-

cated than the synthetic examples. Therefore, it’s necessary to consider how to design

a better scheme for the thin layer case and how to improve the performance of the con-

straints in these schemes.
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Figure 5.2: Left: base survey data; Right: monitor survey data. The thickness of the
reservoir is 25m.
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Figure 5.3: Left: base survey data; Right: monitor survey data. The thickness of the
reservoir is 10m.
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Figure 5.4: The reflectivity difference between the base survey and the monitor survey:
(a) the case that the thickness of the reservoir is 100m, (b) the case that the thickness of
the reservoir is 25m and (c) the case that the thickness of the reservoir is 10m.
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Figure 5.5: The thickness of the reservoir is 100m: (a) The true reflectivity difference be-
tween the base survey and the monitor survey. (b) The estimated reflectivity difference
between the base survey and the monitor survey by inverting the time-lapse data sepa-
rately. (c)The estimated reflectivity difference between the base survey and the monitor
survey by inverting the data difference. (d) The estimated reflectivity difference between
the base survey and the monitor survey using the simultaneous inverson scheme.

77



5.3. SUMMARY

0 50 100 150

0

0.05

0.1

0.15

0.2

Offset (m)

Tr
av

el
 T

im
e 

(s
ec

)

(a)

0 50 100 150

0

0.05

0.1

0.15

0.2

Offset (m)
Tr

av
el

 T
im

e 
(s

ec
)

(b)

0 50 100 150

0

0.05

0.1

0.15

0.2

Offset (m)

Tr
av

el
 T

im
e 

(s
ec

)

(c)

0 50 100 150

0

0.05

0.1

0.15

0.2

Offset (m)

Tr
av

el
 T

im
e 

(s
ec

)

(d)

Figure 5.6: The thickness of the reservoir is 25m: (a) The true reflectivity difference be-
tween the base survey and the monitor survey. (b) The estimated reflectivity difference
between the base survey and the monitor survey by inverting the time-lapse data sepa-
rately. (c)The estimated reflectivity difference between the base survey and the monitor
survey by inverting the data difference. (d) The estimated reflectivity difference between
the base survey and the monitor survey using the simultaneous inverson scheme.
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Figure 5.7: The thickness of the reservoir is 10m: (a) The true reflectivity difference be-
tween the base survey and the monitor survey. (b) The estimated reflectivity difference
between the base survey and the monitor survey by inverting the time-lapse data sepa-
rately. (c)The estimated reflectivity difference between the base survey and the monitor
survey by inverting the data difference. (d) The estimated reflectivity difference between
the base survey and the monitor survey using the simultaneous inverson scheme.
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Chapter 6

Conclusions and Discussions

This thesis explores the inverse problem for time-lapse seismic data. I have also reviewed

the rock physics basis for time-lapse seismic research.

I have discussed the sparse, impedance and structural constraints and their appli-

cability in time-lapse case. How to attenuate the model changes due to non-repeatable

noise is an important issue in time-lapse inversion. This thesis investigates the possi-

bility of three inversion schemes which also applied sparse, impedance and structural

constraints for time-lapse inversion.

In chapter 2, I have reviewed the rock physics basis for the forward modeling of the

time-lapse seismic data. I first introduced the concept of reservoir parameters and the

calculation of pore fluids and rock properties. Then I discussed the estimation of the

composite material’s elastic properties. After that, I reviewed the fluid substitution the-

ory, especially the Gassmann’s equation. Finally I discussed the most common reservoir

parameters which can affect time-lapse seismic data.

In order to understand the time-lapse inverse problems, I reviewed the concepts of

ill-posed and well-posed problem and reviewed the regularization techniques. The defi-

nition of regularization, the concept of null space, the model and data regularization, the

model-space and data-space regularization and then the Bayesian framework which is

used to design the regularization terms are discussed in details. Then the most common

numerical techniques for inversion which are forward and adjoint operators, IRLS and

CGLS method and the Conjugate Gradient algorithm are mainly discussed. The exam-

ples illustrate that regularization terms implies the restriction by the priori information
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and the difference between data-space regularization and the model-space regularization

is mainly due to the introduction of a pre-conditioner.

The seismic data has its own limitations. It is band-limited, always noisy and the

data points are finite while the earth model parameters are continuously distributed.

Three constraints which are sparseness constraints, impedance constraints and structural

constraints are derived. Bayesian theory plays an important roll for the design of the

sparseness and structural constraints. The impedance constraint helps to maintain right

amplitude scale. The sparseness constraint is to recover the lost low and high frequency

components of the seismic data. The structural constraints are designed especially for

time-lapse case and attenuate the model changes outside the reservoir area.

In chapter 5, three inversion schemes for time-lapse seismic data are mathematically

formulated. The three schemes are tested on three synthetic examples. These examples

indicate the following things: (a) as the thickness of the reservoir decrease, the results of

all the three inversion schemes become worse, (b) since the reservoir change is not large,

the scheme that inverts the data difference give the worst results, (c) when the reservoir

is very thin, the simultaneous inversion scheme performs better than other schemes.

Potential future directions are: (a) the design of a better structural constraint, (b) the

resolution limit of time-lapse inversion, (c) other methods to recover the lost frequency

information, (d) improve the inversion schemes for coherent noise case, (e) methods to

identify whether the estimated changes are the real reservoir changes.
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Appendix A

RMS Value for time-lapse case

Suppose we have a time window (start from t1 to t2) on two traces, and a(t) and b(t) are

the data in this window for the two traces respectively. For the general case, a(t) and b(t)

can be written as:

a(t) = ra(1)wa(t) + ra(2)wa(t− τa) + na(t) (A.1)

b(t) = rb(1)wb(t) + rb(2)wb(t− τb) + nb(t), (A.2)

where, number 1 and 2 in the bracket means the upper and lower bound respectively, a

and b means trace a and b respectively, w means the source wavelet, r means the reflec-

tivity, n means the noise and τ is the time delay caused by the thickness of the reservoir.

The RMS value of the (a(t)− b(t)) is defined as:

RMS(a(t)− b(t)) =

√∑t2
t=t1

(a(t)− b(t))2

N
, (A.3)

substitute a(t), b(t) into the above equation, we can get

RMS2(a(t)− b(t))×N =
N∑

k=1

(ra(1) ∗ wa(k) + ra(2) ∗ wa(k − τa) + na(k)

−rb(1) ∗ wb(k)− rb(2) ∗ wb(k − τb)− nb(k))2. (A.4)

For simplicity, we will assume wa(t) = wb(t) = w(t) in the following part of the appendix.

First, let us consider a simple case: only energy from the upper bound are contained

in the time-window, which means the reservoir is thick. So the terms which contain τ can
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be neglected. This equation is turned out to be:

RMS2(a(t)− b(t))×N =
N∑

k=1

(4r(1)w(k) +4n(k))2

RMS(a(t)− b(t)) =

√∑N
k=1(4r(1)w(k) +4n(k))2

N
. (A.5)

Here, 4r(1) = ra(1) − rb(1) and 4n(k) = na(k) − nb(k). If 4r(1) = 0,which means no

reservoir change, we will know

RMS(a(t)− b(t)) =

√∑N
k=142n(k)

N
. (A.6)

If |4r(1) ∗ w(k)| À |4n(k)|, which means we can observe the reservoir change, it is

reasonable to use the following approximate equation

RMS(a(t)− b(t)) ≈ |4r(1)|
√∑N

k=1 w2(k)
N

. (A.7)

In this case, the normalized RMS (NRMS) value can be written as:

NRMS =
200×RMS(a(t)− b(t))
RMS(a(t)) + RMS(b(t))

= 100× |4r(1)
r(1)

|. (A.8)

Here,

r(1) =
ra(1) + rb(1)

2
,

and NRMS is expressed in percentage. Equation(10) means that, in this scenario, the

normalized RMS will give us the relative change in reflectivity.

Now, suppose the reservoir is thin. In this case, energy from the lower bound can

not be neglected, and we have to consider the terms which contain τ . We can obtain the

following equation:

RMS2(a(t)− b(t))×N =
N∑

k=1

((4r(1)w(k) +4n(k)) + ra(2)w(k − τa)− rb(2)w(k − τb))2.

(A.9)

If we can observe the reservoir change, the above equation can be rewritten as:

RMS2(a(t)− b(t))×N ≈
N∑

k=1

(4r(1)w(k) + ra(2)w(k − τa)− rb(2)w(k − τb))2. (A.10)
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Since the reservoir is very thin, we can assume τa = τb = τ for simplicity, then we can get

RMS2(a(t)− b(t))×N ≈ 42r(1)
N∑

k=1

w2(k) +42r(2)
N∑

k=1

(w2(k − τ))

+24r(1)4r(2)
N∑

k=1

(w(k)w(k − τ)). (A.11)

This equation show that the RMS value is a function of the autocorrelation of the wavelet

and the time-lagged wavelet plus a term which is the cross-correlation of the two wavelets.

The latter term shows the interference or tuning effects of a thin reservoir.

To make the RMS more realistic, we may let τa 6= τb and wa(t) 6= wb(t). The equations

shown above will become more complicated. But we will find the numerical value of

RMS will change but the qualitative characteristics of the RMS value will not change.
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Appendix B

Resolution Limitation of Time-lapse
Inversion

When we consider the problem of resolution of time-lapse inversion , we need to answer

following questions:

• How big the time-lapse amplitude changes needed to be observed?

• In what circumstances, our inversion scheme will work?

Basically, there are two ways to measure the time-lapse amplitude differences. One

the absolute the amplitude difference. Another is the relative amplitude changes. To

make the results stable, we usually compare the difference in one time window instead

of just one point.

Kragh and Christie (2002) proposed a normalized root mean squares (NRMS) differ-

ence as a measure of amplitude difference between two traces, at and bt, within a given

time window t1− t2. The formula to calculate the difference is expressed as a percentage:

NRMS =
200×RMS(a(t)− b(t))
RMS(a(t)) + RMS(b(t))

, (B.1)

where the RMS operator is defined as

RMS(xi) =

√∑t2
t1

(xi)2

N
, (B.2)

and N is the number of samples in the interval t1 − t2.
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In time domain, the lower bound of the reservoir may change its position while the

upper bound is always fixed. For simplicity, we will only compare the time-lapse am-

plitude change of the upper bound.If we assume the two data sets have the same source

wavelet w(t) and let the length of the source wavelet be the window length,which is the

ideal case, we will get the following results:

a(t) = ra × w(t)

b(t) = rb × w(t)

RMS(a(t)) = ra ×
√∑t2

t1
w2(t)
N

RMS(b(t)) = rb ×
√∑t2

t1
w2(t)
N

RMS(a(t)− b(t)) = (ra − rb)×
√

w2(t)
N

NRMS =
200×RMS(a(t)− b(t))
RMS(a(t)) + RMS(b(t))

= 100× |ra − rb
ra+rb

2

|, (B.3)

where, a(t) and b(t) are the traces obtained at t1, t2 respectively, and ra,rb are the reflection

coefficients corresponding to the a(t) and b(t) respectively.

Relative difference can help us understand how big the time-lapse change,but it may

mislead us when the noise level is low. In other words, we may get high percentage

difference when there is no reservoir change. So, we also need absolute amplitude differ-

ence. For convenience, I use the value of RMS(a(t)− b(t)).

We have tested the two measures on a simple three layer model: the velocity of first

layer is 3000m/s, the second layer is 2800m/s and the third layer is 5000m/s. We change

the velocity of the second layer to 2720m/s and 2640m/s respectively. The source wavelet

is Ricker wavelet. The time interval of sample is 2ms. Then we make the dominant

frequency of the source wavelet to be 20, 30, 40Hertz respectively.

First, we assume two traces which have no reservoir change, signal to noise ratio

is 10. Then we calculate the NRMS and RMS difference using the source wavelet with

different central frequency. The results is shown in figure B.1. From this figure, we find,

if there is no reservoir change, the relative amplitude difference will be affected by the
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Figure B.1: Relative amplitude difference (NRMS) and absolution amplitude difference
(RMS) (no reservoir change).

thickness of the reservoir while the relative amplitude difference will not. The reason

for this difference is because of the interference of the reflections from upper bound and

lower bound of the reservoir. Since the length of our time window is the same as the

length of the source wavelet, this interference is only affected by the thickness of the

reservoir and the frequency content of the source wavelet. In this case, the formula B.3

we have derived is not valid because some part of the reflections from the lower bound

is also in the time window we use. So, the formula need to be modified as:

a(t) = ra × w(t) + na b(t) = rb × w(t) + nb,
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where na and nb are the energy from the lower bound. Since there is no reservoir change,

na will equal to nb. So it is easy to know the value of RMS(a(t) − b(t)) will not change

but the value of RMS(a(t)) and RMS(b(t)) will change and thus the value NRMS will

be different (see Appendix for more details). For different frequency, the energy from

lower bound may be different and thus it will only change the value of NRMS. So, if

we use wavelets with different central frequency, our conclusion will be the same except

the numerical value will be different. Since the most common central frequency of the

seismic source wavelet is around 30Hz, we will only use the source wavelet whose central

frequency is 30Hz in the following example. We should notice that the tuning effects

show in the right panel of the figure B.1 is not guaranteed to increase the change, the exact

value should be predicted using equations in the appendix A. Theoretically, it shows that

the tuning effect may decrease the amplitude change cause by production. But I cannot

find a good example shown in figures by now because this decrease is pretty small. More

work is needed to find when this tuning effect will increase or decrease the amplitude

change caused by production.

Now, we decrease the velocity and calculate the NRMS and RMS value. We can see

these results in figure B.2. From figure B.2, we can know the following things:a. for

thick reservoir, the amplitude change is stable and proportional to the reservoir change

(see appendix A for more details); b. if the reservoir change is small, it is difficult to

identify the change in both NRMS and RMS curve; c. when the reservoir is thin, the RMS

and NRMS value is oscillating, but it is easier to identify the change by comparing the

RMS value than NRMS value; d. for thin reservoir, if the reservoir change is big enough,

the amplitude change can be observed in most cases, except very thin reservoir and the

thickness of the reservoir is in the transition zone (from thin to thick zone).

By now, we can get a preliminary answer to our first question in the introduction sec-

tion: to observe a time-lapse change, the reservoir change must be bigger than a certain

value and the thickness of the reservoir cannot be some value.

The resolution limit in time-lapse case is different from other cases because it is the

limit to find the difference between the two data sets. From the discussion above, we

can get two interesting results. First, a thin layer is easier to detect in time-lapse data.

The only requirement is the reservoir change is big enough. Second, the resolution limit
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Figure B.2: Comparison of NRMS and RMS of different reservoir change: the red line
means the velocity change is 80m/s, the dark line means the velocity change is 160m/s,
the blue line is for the case without reservoir change and signal to noise ration (SNR) is
10.

to time-lapse inversion may be smaller than the usual limit. This may be because of

the non-uniqueness introduced by tuning effects of thin layers and the effects caused by

small time-shift. We should notice if the source wavelet is different, for thin layers, things

will be more unpredictable. More analytical work needs to be done for the time-lapse

inversion of thin layers.
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