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Abstract

In this dissertation the elasticity of intrinsically anisotropic rocks is investigated by both

the analysis of experimental measurements on rock samples and forward modelling of

elasticity through specially derived averaging techniques. Three different types of rocks

that display intrinsic anisotropy of elastic waves are considered separately in each Chap-

ter.

In Chapter 2 the results of extensive laboratory measurements of P- and S-wave veloc-

ities and shear-wave splitting of metasediments, metavolcanics and plutonic rocks from

the Flin Flon Belt (FFB) of Trans-Hudson Orogen (THO) are analyzed. Metamorphosed

rocks exhibit strong P-wave anisotropy (up to 24%) and shear-wave splitting. The effect

of sample scale heterogeneities is estimated and compared to anisotropy. Despite three

distinctive elastic symmetries present in the investigated rocks, the overall symmetry of

the collection appeared to be transversely isotropic.

In Chapter 3 intrinsic elastic properties of upper mantle olivine aggregates are inves-

tigated by developing an averaging technique that incorporates the orientation distribu-

tion function (ODF) of orthotropic-orthorhombic symmetry. In addition to conventional

Voigt and the Reuss averages, the Geometric Mean Average (GMA) is derived for this

symmetry to provide a unique solution that is independent of the averaging domain.

Even though textural properties significantly affect the elasticity of the olivine aggregate,

all three averages (derived on the basis of different assumptions) provide comparable

results for the olivine aggregate.

In Chapter 4 intrinsic elasticity of a muscovite aggregate is investigated as a func-

tion of its texture, from a single crystal to an isotropic aggregate. Main implementation



of this study is to explain intrinsic anisotropy of sedimentary shales. Limits of seismic

anisotropy of muscovite aggregates are estimated by calculating anisotropic parameters

as a function of texture. Despite the strong dependence of the values of elastic constants

on the averaging technique used, anisotropic elastic parameters, especially anellipticity,

are practically independent of the averaging assumptions.

The averaging techniques aimed to determine the elasticity of an aggregate as a func-

tion of its texture are derived in the thesis for specific symmetries that are displayed by

naturally deformed rocks. The effect of their application to different types of intrinsically

anisotropic rocks differs and discussed in detail in the thesis.
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Preface

In the discipline of Geophysics, researchers deal with a wide spectrum of physical prop-

erties of Earth materials that includes elasticity, magnetism, density, and electrical con-

ductivity, to name a few. Elasticity holds a prominent place among these mainly because

of the level of sophistication in our understanding of this property and because of the

wealth of information it carries via seismic observations of the Earth. Methods employ-

ing elastic wave propagation are most frequently used to investigate the elastic properties

of rocks. The methodologies of elastic wave propagation are considerably developed in

geophysics as they are flexible and directly applicable to solving a wide range of geo-

physical problems.

In general, elasticity is introduced through the relationship between an applied stress

and the subsequently acquired strain in the deformation of a body. If the body returns to

its original shape after the stress is removed the deformation is said to be elastic. Elas-

tic deformation within the elastic limit consists of two regions: linear - where strain is

linearly proportional to applied stress, also known as Hooke’s Law, and non-linear one.

This thesis is concerned with the elasticity that is defined in the region of small defor-

mations where a linear form of Hooke’s Law applies. This thesis narrows the topic of

investigation to the scope of elasticity of ’intrinsically anisotropic rocks, a terms to be

defined here first:

• the term intrinsic implies that only constituent mineral phases and their spatial ori-

entations contribute to the elastic properties of investigated material;

• the term anisotropy stands for directional dependence of the physical property of

an investigated material or medium. Commonly, in geophysics, the dependence

of elastic wave velocity on the direction of wave propagation is defined as elastic



anisotropy. More generally, the term anisotropy can be defined as the dependence of

elastic wave velocity on direction of wave polarization. Anisotropy 1 incorporates

effects such as shear wave splitting (the elastic analogy to optical birefringence) and

a general discrepancy of phase (plane wave) and group (ray) velocities.

In the thesis the definition of the term texture is adopted from the field of textural

analysis and means lattice preferred orientation (LPO) of constituent minerals of aggregate.

This definition narrows the meaning of the term texture as it’s normally used in geological

investigations.

1In this work, the term anisotropy is to be taken to mean elastic anisotropy for convenience. Other
physical properties such as electrical conductivity, magnetic susceptibility, and permeability also can be
highly anisotropic.



Chapter 1

Introduction

Seismic observations of the dependency of compressional (P) and shear (S) wave veloc-

ities on the direction of propagation and of shear-wave splitting in the Earth has made

the study of anisotropy one of the most exciting and challenging research themes in Solid

Earth Geophysics. Anisotropy carries a wealth of information about the structural and

textural elastic properties of the medium it propagates through. In Geophysics this may

be the only means to access information on the elastic properties of the Earth’s interior to

the increasingly demanding level of resolution. In this introduction to the thesis, the var-

ious evidence for the presence of seismic anisotropy in the Earth is briefly reviewed. The

main sources of elastic anisotropy in rocks and in Earth’s interior are discussed. The the-

oretical background describing elasticity of anisotropic materials is outlined. Finally, the

major challenges of the determination of intrinsic elastic properties of anisotropic rocks

that have been addressed in the thesis are defined.

1.1 Geophysical observations of elastic anisotropy

During the past half century considerable geophysical evidence for seismic anisotropy

has accumulated. This wealth of observations has made anisotropy a widely accepted

characteristic of the Earth’s interior (e.g. Babuška and Cara, 1991). All rock-forming min-

erals are elastically anisotropic and anisotropy is an inherent property of most rocks.

Anisotropy has been detected at various scales with different geophysical techniques.

Anisotropy is manifested in rock samples several millimeters in size by high frequency

ultrasonic laboratory measurements (e.g. Migliori and Fisk, 1993), in sedimentary layers

1



1.1. GEOPHYSICAL OBSERVATIONS OF ELASTIC ANISOTROPY

and metamorphic rock formations at scales up to hundreds of meters in thickness in

exploration seismic surveys (e.g. Jolly, 1956; Winterstein and Paulsson, 1990; Miller et al.,

1994; Kebaili and Schmitt, 1996; Leslie and Lawton, 1999), and in massive blocks (up to tens

of kilometers) of the continental lithosphere during the seismological observations of sur-

face and teleseismic body waves (e.g. Silver, 1996; Montagner, 1998). This Section briefly

overviews the evidence for elastic anisotropy in rocks and in the Earth’s interior.

1.1.1 Ultrasonic measurements of anisotropy on rock samples

The importance of the laboratory anisotropy measurements in Rock Physics investiga-

tions cannot be overemphasized. The results of ultrasonic experiments are essential for

the proper understanding of elastic wave behaviour in rocks. The knowledge of elastic

behaviour of rocks gained from laboratory experiments is also of critical importance in

other areas of geophysics. For example, exploration seismology benefits from the proper

design of surveys that take into account the elastic behaviour of subsurface geology and

although it has been ignored in most seismological studies, consideration of anisotropy

is becoming more of a necessity in the processing and interpretation of applied seismic

and global seismological observations (e.g. Vestrum et al., 1999).

By analogy to the determination of elastic constants in rock-forming minerals (e.g.

Aleksandrov and Ryzhova, 1961; Babuška, 1981; Bass, 1995) various ultrasonic techniques

have also been developed for determination of the elastic properties of rocks (e.g. Schreiber

et al., 1973; see also Appendix A for brief review of experimental techniques). The relative

simplicity of the experimental configuration and the close relationship of the observed

elastic anisotropy to the physical properties of materials makes the laboratory ultrasonic

measurements of elastic wave velocities a basic technique for the fine-scale investigation

of anisotropy in rocks.

Despite initial simplified assumptions in considering rocks as isotropic polycrystalline

aggregates (e.g. Simmons and Wang, 1971), laboratory measurements consistently revealed

a directional dependence of the elastic velocities in nearly all types of rocks. Since the

1950’s, elastic anisotropy has been of constant interest to experimental geophysicists. P-

and S-wave velocities have been measured on almost all naturally occurring rocks (e.g.

Guéguen and Palciauskas, 1994; Ahrens, 1995). Elastic anisotropy has been reported in a

2



1.1. GEOPHYSICAL OBSERVATIONS OF ELASTIC ANISOTROPY

variety of sedimentary rocks, including shales (Jones and Wang, 1981; Banik, 1984; Vernik,

1993; Johnston and Christensen, 1995; Vernik and Liu, 1997; Hornby, 1998; Wang, 2002), sand-

stones (Mavko et al., 1995), calcite rocks (Khazanehdari et al., 1998) and reservoir carbonate

rocks (Dey-Barsukov et al., 2000), as well as metamorphic and igneous rocks (Kern, 1978;

Babuška, 1984; Ji et al., 1997; Takanashi et al., 2001). Ultrasonic laboratory measurements

have detected seismic anisotropy in mylonites (Ji et al., 1993; Burlini and Kunze, 2000),

metapelites (Burlini and Fountain, 1993), schists (Godfrey et al., 2000), granites (Sano et al.,

1992; Pros et al., 1998b), granodiorites and quartzites (Babuška and Pros, 1984), anorthosites

(Seront et al., 1993), and gneisses (Ji and Mainprice, 1988; Aleksandrov and Prodayvoda, 1994;

Brosch et al., 2000; Meltzer and Christensen, 2001). With predominant frequencies near 1

MHz and compressional wave velocities in the range of 2 to 8 km/sec, the wavelength

in a typical ultrasonic experiment is 2-8 mm, allowing elastic wave to detect causes of

anisotropy of few millimeters in dimension.

1.1.2 Observations of seismic anisotropy in the uppermost crust

In addition to laboratory ultrasonic measurements, seismic anisotropy has also been ob-

served on several orders of magnitude larger scales during exploration seismic surveys

(Helbig, 1994). Seismic anisotropy of geological strata can be sampled with a typical fre-

quency range of 10-120 Hz and a wavelength of seismic wave in the range of 25-400 m .

A directional dependence of P-wave velocities was reported for seismic surveys of differ-

ent geometries, including reflection (e.g. Thomsen, 1988; Lynn and Thomsen, 1990; Grechka

and Tsvankin, 1999; Thomsen et al., 1999), refraction surveys (Helbig, 1964; Leslie and Law-

ton, 1999), and vertical seismic profiling (VSP) (e.g. Jolly, 1956; Gaiser, 1990; Winterstein

and Paulsson, 1990; Yardley and Crampin, 1991; Liu et al., 1993; Miller et al., 1994; Kebaili and

Schmitt, 1996; Leaney et al., 1999). The main objective of the above mentioned exploration

surveys was to determine the orientation of the predominant fracture set form anisotropy.

Recently, Holmes et al. (2000) reported an unconventional experiment to measure seis-

mic anisotropy in a mine environment. The unique possibility of making multidirectional

measurements allowed not only the seismic anisotropy of granite masses to be detected,

but also allowed prediction of the orientation of cracks and gneissic layering within the

granodiorites investigated.

3



1.1. GEOPHYSICAL OBSERVATIONS OF ELASTIC ANISOTROPY

1.1.3 Seismological observations of anisotropy in the lower crust and upper
mantle

Seismological records of surface Rayleigh and Love waves and Pn, P, S, SKS, SKKS phases

of body waves (e.g. Lay and Wallace, 1995) reveal anisotropy on a global scale.

Since the original work of Smith and Dahlen (1973) on the azimuthal velocity de-

pendence of Love and Rayleigh waves in an anisotropic medium, surface waves have

been extensively used for investigations of anisotropy in the Earth’s interior. Inver-

sion of dispersion curves of Rayleigh and Love waves is one of the manifestations of

seismic anisotropy (Montagner, 1986). Montagner and Nataf (1986) followed Smith and

Dahlen (1973) method of inverting azimuthal variations of surface velocities to provide

functional dependence of anisotropy with depth. Since then, large sets of Love and

Rayleigh dispersion curves have been inverted to better reconstruct the 3-D variations

of anisotropic parameters in the upper mantle. Present day models of the Earth’s interior

account for anisotropy in the upper mantle (e.g. Babuška et al., 1998; Montagner, 1998).

Azimuthal and lateral anisotropy in the lower crust and upper mantle has been widely

reported from observations of variations in Pn phase body wave. Azimuthal variations

of Pn velocity provide information about subhorizontal properties of the mantle just be-

neath the Moho discontinuity. Hess (1964) first reported azimuthal dependence in seismic

velocity of Pn phase that propagates subhorizontally beneath the oceanic Moho discon-

tinuity. Bamford (1977) analyzed large sets of Pn traveltimes from deep continental re-

fraction profiles. His analysis suggested a 6 to 7 % anisotropy of Pn in the continental

lithosphere beneath western Germany. Tomographic analysis of Hearn (1999) required

5% of P-wave anisotropy to properly image the uppermost mantle from Pn wave obser-

vations.

More complete information about the 3-D structure of the Earth’s interior may be

obtained from observations of teleseismic P- and S-waves seismic anisotropy. Mapping

the lateral changes of P-wave anisotropy within the subcrustal lithosphere on teleseismic

P-residual spheres allows detection of direction of the symmetry axis of the observed

anisotropy (Babuška et al., 1993). Joint interpretation of P-wave delay times with polariza-

tion analysis of shear wave splitting of SKS phase (see review by Silver (1996) for more

details) resolved the ambiguity in the interpretation of vertical velocity anomalies in the

4



1.2. SOURCES OF ANISOTROPY IN THE EARTH’S INTERIOR

mantle (Plomerova et al., 1996, 1998; Babuška et al., 1998; Babuška and Plomerova, 2001).

The relationship between the shear wave splitting of SKS teleseismic wave and seis-

mic anisotropy has been extensively studied (e.g. Crampin and Yedlin, 1981; Crampin,

1985b; Crampin and Lovell, 1991; Mainprice and Silver, 1993; Ji et al., 1994; Vauchez and Bar-

ruol, 1996; Savage, 1999). Estimation of contributions of crustal anisotropy (Barruol and

Mainprice, 1993; Weiss et al., 1999b) and upper mantle anisotropy (e.g. Barruol and Kern,

1996) to shear-wave splitting of almost vertical SKS arrivals improve interpretation of ob-

served anisotropic effects for more accurate delineation of discontinuities in the Earth’s

interior.

1.2 Sources of anisotropy in the Earth’s interior

It has been shown in the previous Section that anisotropy of the Earth’s interior is ob-

served on various scales. This implies that different sources of elastic anisotropy can be

sampled and can contribute to overall observed anisotropic effect. Indeed, the origin of

elastic anisotropy is non-unique. The physical properties of rock are superposed upon

geological structure with preferential symmetries that are further enhanced by the sub-

surface distribution of stresses to produce the overall in situ anisotropy (such cumulative

effects of different sources on observed anisotropy have been discussed, for instance, by

Hood, 1991; Werner and Shapiro, 1998, 1999; Rasolofosaon et al., 2000). Elastic wave prop-

agating in an anisotropic medium senses the integral effect of the different causes of

anisotropy. Elastic constants obtained from velocity inversion are affected by the super-

position of the various sources of anisotropy and may, in general, have complicated and

non-linear behaviour as a function of pressure and temperature (Kumazawa, 1969; Kern,

1978).

The non-uniqueness of the origin of anisotropy imposes ambiguity on geological in-

terpretation of observed variations in P- and S-wave velocities. By selecting specific ge-

ological settings, the origin of observed seismic anisotropy is most commonly attributed

to three mechanisms:

• horizontal or inclined layering of rock units;

5



1.2. SOURCES OF ANISOTROPY IN THE EARTH’S INTERIOR

• extensive networks of oriented cracks and microfractures (also incorporates ori-

ented pore space), that usually further complicated by in situ stress state, and

• textured rocks with a lattice preferred orientation (LPO) of the constituent minerals.

In many cases, all three sources are superposed and contribute simultaneously to the

anisotropy. On a global scale the correlation of the source of the seismic anisotropy ob-

served on the Earth’s surface as a function of the depth is complex (e.g. Montagner, 1998).

Anisotropy may be attributed to the combined effect of layering, fracturing and LPO in

the sedimentary formations and upper crust (Crampin, 1991; Crampin and Lovell, 1991;

Miller et al., 1994; Leaney et al., 1999), fracturing and LPO in the lower crust (e.g. Crampin,

1985a; Crampin and Atkinson, 1985; Mainprice and Nicolas, 1989), and predominantly to the

LPO of constituent minerals in the upper mantle (e.g. Christensen, 1984). In this Section

all three sources of anisotropy are discussed.

1.2.1 Anisotropy produced by horizontally layered (stratified) medium

In many geological settings, but especially in sedimentary basins with characteristic sub-

horizontal layering, seismic P-wave propagates substantially faster in the horizontal than

in the vertical direction reflecting their so-called transverse isotropy (TI). Seismic waves in

a TI medium behave similarly to elastic waves in the single crystals of hexagonal sym-

metry. This property of a TI medium allows a better understanding of the dependencies

of velocities on the elastic properties. Early theoretical work on the wave propagation in

a TI medium were based on a model of the solid composed by thin isotropic horizontal

layers (Riznichenko, 1949; Postma, 1955; Krey and Helbig, 1956; Rytov, 1956; Backus, 1962).

Since then, the anisotropy of TI media have been extensively investigated by numerous

authors (Daley and Hron, 1977; Levin, 1979; Berryman, 1979; Helbig, 1981, 1984a,b; Byun,

1984; Hake et al., 1984; Thomsen, 1986; Helbig and Schoenberg, 1987). These studies lead to

more systematic characterization of TI media, and parameterizations of P- and S-wave

behaviour that significantly simplifies the description of elastic wave velocities in a TI

media. An additional, but poorly studied aspects of elastic wave behaviour in TI media

is scale-dependent frequency dispersion (e.g. Werner and Shapiro, 1999; Liu and Schmitt,

2003)

6



1.2. SOURCES OF ANISOTROPY IN THE EARTH’S INTERIOR

Evidence for TI anisotropy produced by thin layers has been reported in laboratory

ultrasonic experiments on synthetic materials with well-controlled properties (e.g. Melia

and Carlson, 1984; Cheadle et al., 1991; Kebaili and Schmitt, 1997; Mah and Schmitt, 2003) as

well as in numerical experiments (e.g. Schoenberg and Costa, 1991; Hovem, 1995).

1.2.2 Fracture-induced anisotropy

Anisotropy can also be produced if directionally aligned discontinuities, e.g. cracks,

microfractures, and mineral grain boundaries are present in an isotropic or anisotropic

quasi-continuous solid. For example, Babuška and Pros (1984) attributed experimentally

observed anisotropy of granodiorites and quartzites to a pervasive set of oriented micro-

cracks. Several approaches have been taken to develop the theoretical background for

the elasticity of cracked solid materials (see, for instance, O’Connell and Budiansky (1974);

Watt et al. (1976); Hudson (1980); Crampin (1981); Berryman (1995) for extensive reviews).

Crampin (1978) developed a technique to model the elastic constants of cracked mate-

rials. Calculations of the complex effective elastic constants (Crampin, 1981) and further

development of Hudson’s theory (Hudson, 1980, 1981) for a wide variety of crack config-

urations and crack geometries allowed Crampin (1984) to predict the attenuation of solids

filled with a dilute system of cracks. Schoenberg and Sayers (1995) suggested the effective

compliance tensor of a fractured rock could be rewritten as the sum of the compliance

tensors of the non-fractured background rock and of the sets of aligned fractures. Their

approach allows the orientation of the dominant fracture system to be obtained from

seismic data.

The evidence from seismic anisotropy for the presence of systems of aligned cracks

in the crust was discussed by Crampin (1985a), Crampin and Atkinson (1985). Crampin

(1985b) evaluated the possibility of using the shear-wave splitting of seismic reflections

for estimation of crack orientations. Leary et al. (1990) provided a general overview on

feasibility of employing shear waves to explore the anisotropic properties of fractured

crust. Mechanisms causing shear-wave splitting within the crust were discussed in de-

tails by Crampin and Lovell (1991).
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1.2.3 Lattice preferred orientation as a source of intrinsic anisotropy

Hess (1964) suggested that the azimuthal variations in seismic velocities observed during

refraction surveys of Pn phase is due to the preferred orientation of olivine crystals in

the upper mantle. Since then, considerable attention has been paid to the investigation

of the relationship between elastic properties of upper mantle rocks and observed seis-

mic anisotropy (Christensen and Crosson, 1968; Peselnick et al., 1974; Peselnick and Nicolas,

1978; Christensen and Salisbury, 1979; Christensen, 1984; Barruol and Kern, 1996; Nicolas and

Christensen, 1987; Soedjatmiko and Christensen, 2000; Christensen et al., 2001). These studies

suggest that the observed upper mantle seismic anisotropy is closely related to the lattice

preferred orientation of constituent peridotite minerals, mainly olivine and pyroxenes.

The significant contribution of LPO of olivine in peridotites to shear wave splitting of

observed teleseismic SKS waves is also well established (e.g. Mainprice and Silver, 1993; Ji

et al., 1994; Silver, 1996; Vauchez and Barruol, 1996).

The relation between observed seismic anisotropy and LPO of plastically deformed

peridotites leads to the suggestion that the observed seismic anisotropy may be directly

interpreted as a manifestation of geodynamic processes in the upper mantle related to

plate motion (e.g. Carter et al., 1972; Fuchs, 1977; Karato, 1987, 1998; Vauchez et al., 2000).

Numerous works were devoted to the investigation of olivine lattice preferred orien-

tation development in polycrystalline aggregate and numerical modelling of LPO pro-

duced seismic anisotropy of the upper mantle (Wenk et al., 1991; Chastel et al., 1993; Tom-

masi, 1998; Vauchez et al., 1998; Tommasi et al., 1999, 2000) and will be discussed in more

details in Chapter 3.

1.3 Elasticity and anisotropic wave propagation

”We are like dwarfs standing [or sitting] upon the shoulders of giants, and so able to see more

and see farther than the ancients.”

Bernard of Chartres, circa 1130

The concepts and principals of the theory of elasticity are based on original publica-

tions of Galileo, Newton, Euler, Laplace, Cauchy, Hooke, Snell and other famous scien-

tists and philosophers. Contributions to the theory of waves in anisotropic media may
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be traced to the original works of Hamilton and Kelvin in the first half of the XIX century

(see Helbig, 1994, for detailed historical sketch). An extensive work on the mathematical

aspects of the theory of elasticity was published by Love in 1882. The basic principals of

continuum mechanics and the physics of crystals were reviewed and systemized in the

excellent book by Nye, 1957 (here the reprint Nye (1990) is typically cited). Since then, sev-

eral books serve as comprehensive references on the theory of elastic wave propagation

in crystals and solids, including those by Fedorov (1968), Musgrave (1970) and Auld (1990).

The texts of Aki and Richards (2002) and White (1983) describe different applications of

the theory of elasticity to seismic wave propagation in the Earth’s interior and incorpo-

rate some aspects of elastic anisotropy. Most recently, books by Babuška and Cara (1991),

Helbig (1994) and Tsvankin (2001) deal with the topic of elastic anisotropy in variety of

geophysical applications. A brief overview on the theory of elastic wave propagation in

anisotropic media is presented in Appendix B. This Section concentrates on current tech-

niques of modelling elasticity in rocks, and on the major problems of the investigation of

intrinsic elasticity of polycrystalline aggregates addressed in the thesis.

1.3.1 Modelling elasticity of multiphase polycrystalline rocks

Rocks naturally occur as textured multiphase mixtures of anisotropic minerals. To further

complicate matters, discontinuities in the form of fractures, microcracks and pore space,

usually saturated with fluid phases, are prevalent. Not surprisingly, modelling the elas-

tic properties of such complex systems are still particularly challenging and remains an

actively developing topic in Rock Physics and continuum mechanics research.

Several attempts have been made to take the most general approaches to modelling

rocks as multiphase composite materials (e.g. Hashin and Shtrikman, 1963; Hill, 1965; Bu-

diansky, 1965; Kröner, 1967). Extensive reviews on the elasticity of composite materials

are available by Watt et al. (1976); Willis (1981) and Berryman (1995). Eshelby (1957) treated

heterogeneous material as an effective medium consist of a region (the inclusion) with

the properties different from the homogeneous surrounding (the matrix), and derived

analytical solutions for inclusions of ellipsoidal shape. Since then, O’Connell and Budian-

sky (see 1974); Budiansky and O’Connell and others extended this technique to spherical,

disc- and needle-shape aligned or disordered inclusion geometries (Watt et al., 1976). Ef-
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fective medium theory is widely used to model elasticity of porous and cracked solids as

well as textured polycrystalline aggregates.

The scope of the review presented here is restricted to the investigation of the elastic-

ity of polycrystalline aggregates. Furthermore, with this restriction, isotropic monomin-

eralic polycrystalline aggregates composed of anisotropic crystals are first considered. It

may be assumed that only the physical properties of the volume weighted constituent

minerals contribute to the overall elastic constants of the material. Further assumptions

of uniformly distributed strain or stress throughout the aggregate allow definition of the

Voigt and the Reuss bounds, respectively (Voigt, 1928; Reuss, 1929, see also Appendix D

for details on the Voigt and the Reuss averaging). Hill’s average (Hill, 1952) is taken as an

arithmetical mean of the Voigt and Reuss widely separated bounds to provide unique so-

lution consistent with experimental measurements in some cases (e.g. Chung and Buessem,

1967b). Effective medium theory has been applied to the polycrystalline aggregate com-

posed of weakly anisotropic crystals by Lifshitz and Rozenzweig (1946). A more general

formulation of the effective medium theory in application to polycrystals is based on the

standard methods to solve the Lippmann-Schwinger equation of quantum mechanics scat-

tering theory was given by Zeller and Dederichs (1973). Although restricted by several

assumptions, these authors presented a solution for an isotropic polycrystalline aggre-

gate composed of weakly anisotropic crystals of cubic symmetry; they also mentioned

the difficulties of obtaining analytical solutions for suitable practical cases.

Application of variational approach by Hashin and Shtrikman (1962a,b) narrowed the

upper and lower bounds of the elastic constants compared to the Voigt-Reuss (VR) bounds.

This method was initially developed by authors for the case of isotropic polycrystalline

mixtures of crystals of cubic symmetries and extended to incorporate crystals of other

symmetries as low as monoclinic by Watt (1979, 1980); Watt and Peselnick (1980) and Watt

(1986, 1987, 1988).

A more general approach developed by Kröner (1977) incorporates these previous re-

sults into a recursive procedure that is a modification and extension of Zeller and Dederichs

(1973) work. The bounds of effective medium are established through the n-point corre-

lation functions (n = 1, 2, 3, ..., ∞). Restrictions of statistical homogeneity, isotropy,

and disorder are imposed on correlation functions. First order upper and lower bounds
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coincide with the Voigt and the Reuss bounds. For the statistically homogeneous and

isotropic material of grade n = ∞, and disorder of grade n = 2 bounds coincide with

the Hashin-Shtrikman bounds. For the material of statistical properties of homogeneity,

isotropy, and disorder of overall grade n →∞ upper C(+n) and lower C(−n) bounds con-

verge to the self-consistent solution CSC(Hershey and Dahlgren, 1954; Kröner, 1958). The

recursion formula must be applied to calculate the effective elastic constants of higher-

grade polycrystalline aggregates (Kröner, 1978). ’Seeds’ are required to initiate this re-

cursive procedure. For the odd-order bounds the first order (n = 1) Voigt-Reuss bounds

are needed. For the even-order bounds (e.g. the Hashin-Shtrikman bounds) the zero-

order bounds are required (Nadeau and Ferrari, 2001). The application and accuracy of

different averaging techniques to model the elasticity of rocks has been discussed by nu-

merous authors (e.g. Kumazawa, 1969; Crosson and Lin, 1971; Christensen, 1971; Babuška,

1972; Thomsen, 1972) and Bunge (1974).

One serious defect of many averaging procedures is they are not properly invertible.

In elasticity, invertibility means that the stiffnesses may be obtained from the inverse

of compliances, and vice versa. More precisely, the set of elastic stiffnesses determined

using the averaging procedure should be the same as the corresponding set of elastic

stiffnesses obtained from inversion of elastic compliances also calculated using the same

averaging procedure ( [C] = [S]−1). This is physically necessary condition for real mate-

rials. However, many averaging methods fail this physical reality. Aleksandrov and Aizen-

berg (1966) proposed a novel approach to averaging elastic constants of polycrystalline

materials. Specifically, they suggested that the averaging technique must be modified

by defining new averaging function that accommodates property of invertibility of elas-

tic stiffnesses of the aggregate into its elastic compliances. In other words, averaging

can be performed on either stiffnesses or compliances, and produces identical result as

it properly should. In this sense, Aleksandrov and Aizenberg’s solution is ”self-consistent”.

Morawiec (1989) further developed this method for averaging the elastic properties of

anisotropic aggregates, i.e. not only scalar properties (e.g. bulk modulus, shear modu-

lus), but also tensorial quantities (e.g. elasticity) can be averaged. Matthies and Humbert

(1993) named this method the ’Geometric mean’ and reported its applicability in the calcu-

lation of the Young’s modulus of a hypothetical Zn sample. For this case, the geometric
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mean results were almost identical to those obtained by the self-consistent approxima-

tion. The term geometric mean is slightly misleading as the result produced is not an

exact geometric mean average in a strict mathematical sense. Instead, the geometric mean

averaging (GMA) resembles geometric mean averaging but has different properties. The

GMA technique is discussed in detail in this thesis and the method is further devel-

oped here to solve particular problems of hexagonal minerals in TI specimen and an or-

thorhombic minerals in orthotropic specimen. These problems have not been solved pre-

viously to my knowledge but they have important implications for seismological studies.

The averaging procedure is further complicated if the textural properties of an aniso-

tropic aggregate must be taken into account. The textural properties of the aggregate

and of the constituent minerals are quantitatively described by an orientation distribution

function (ODF) (Viglin, 1960) incorporated into the averaging. Briefly, an ODF statistically

describes the distribution of the orientation of the crystal symmetry axes within the carte-

sian coordinate frame of the specimen. Detailed descriptions of the ODF developed for

the orthorhombic-orthotropic case is derived in Appendix D. Independently, Roe (1965,

1966) and Bunge (1982) introduced a method of calculating the intrinsic elastic properties

of polycrystalline aggregates based on its texture as described by the ODFs. Since these

original publications, the ODF technique has been extensively applied in metallurgical

studies mainly to determine the elastic constants of bcc metals (e.g. Morris and Heckler,

1967; Van Houtte et al., 1981). Sayers (1986, 1987) used this technique to model elastic con-

stants of a hexagonal zirconium composite and Thompson et al. (1994) applied ODF’s to

describe the anisotropy of an orthorhombic titanium sheet.

It was mentioned above that the elastic constants of a polycrystalline aggregate may

be calculated by the self-consistent approach (Kröner, 1958, 1978) assuming an effective

medium with a specific geometry of inclusions. Morris (1970, 1971) incorporated aggre-

gate textural properties into a modified Kneer (1965) self-consistent averaging procedure

to calculate elastic properties of orthorhombic symmetry metal plates composed of dif-

ferent cubic crystals. Humbert and Diz (1991) and Diz and Humbert (1992) discussed the

practical aspects of applications of the self-consistent model. These authors pointed out

that although the SC technique provides a unique solution within the VR bounds, its ap-

plication to complex models such as textured rocks is nontrivial, and convergence of the
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SC solution is sensitive to the initial model assumptions.

Texts by Wenk (1985) and Kocks et al. (1998) discussed applications of the ODFs; but

they exclude the application of the GMA method to geomaterials. They pointed out the

difficulties in modelling elastic properties due to the fact that rocks are texturally more

complicated polycrystalline aggregates, and are composed of lower symmetry minerals

than cubic crystals. Therefore, the application of an ODF to geomaterials is currently lim-

ited mainly to textured monomineralic aggregates; as such ODF technique is a basic tech-

nique to qualitatively account for the elasticity of textured rocks. Johnson and Wenk (1986)

and Wenk et al. (1988) incorporated the ODF to average the elastic properties of an aggre-

gate with orthorhombic symmetry composed of trigonal calcite. Sayers (1994) provided

explicit formulae to calculate the elastic constants of hexagonal polycrystalline aggregate

composed of hexagonal crystals from the coefficients of expansion of the ODF into a se-

ries of generalized spherical harmonics. In both cases Voigt’s uniform strain assumption

has been used. Mainprice et al. (1990) used an ODF to investigate the effect of solid state

mineral phase transitions (α− β quartz, calcite-aragonite, orthopyroxene-clinopyroxene,

olivine-spinel) on compressional wave velocity and anisotropy. In all these studies the

GMA method was not used or tested against experimental results.

Most of the studies employing ODF averaging assume the Voigt approximation of

uniform strain, usually without any detailed physical justification. The only paper known

to the author where the more physically meaningful geometric mean (Aleksandrov and

Aizenberg, 1966) has been applied to geomaterials is by Mainprice and Humbert (1994).

The velocities of textured plagioclase feldspar and biotite aggregate have been calculated

in this study from elastic constants obtained by different method including the Voigt, the

Reuss, the Hill, the GMA and the self-consistent model with specific geometry (i.e. grains

of spherical shape). Volumetrically minor mineral phases have been neglected to simplify

the model. Results of the plagioclase modelling have been compared to experimentally

observed velocities. Discrepancy in observed and calculated data was attributed to the

cleavage cracks in plagioclase that were not accounted for in the model. After comparing

the GMA to other calculations these authors concluded that ’the geometric mean is the best

estimate of the seismic properties of the simple averaging methods’.

Despite this initial success, however, to the author’s knowledge the GMA method has
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not been further extended to other geoscience related problems. One potential reason for

this is that the GMA results might be presumed to be relatively close to Hill’s solution

and therefore provide little or no additional insights for the increased effort. Based on

conclusions of these studies and physically more significant assumptions, the GMA has

been chosen here as the technique to study the intrinsic anisotropy of rocks and, more

importantly, to investigate the dependence of intrinsic elasticity as a function of texture.

Results presented in the thesis provide insights related to averaging procedure in general

that are of interest to the community; insights some of which were unanticipated.

Textural information, usually given in terms of pole-figures, is required in calculat-

ing the elastic constants of a polycrystalline aggregate. Obtaining this information is

time and labor intensive and due to technological limitations is imperfect. Even the lat-

est developments in the field of texture analysis such as electron back scattering diffraction

(EBSD) in the scanning electron microscopes (SEM), high resolution X-ray synchrotrons,

and diffractometers based on neutron time of flight (TOF) diffraction (Leiss et al., 2000) still

require further development in order to fulfill present day textural analysis needs. Infor-

mation about the orientation distribution of many minerals in rock formations at typical

geological conditions is very limited 1. Undoubtedly, textural information on variety of

rocks will be readily available as most of the technical challenges of textural analysis will

be overcome in this actively developing area of geosciences. However, the investigation

of the dependence of elastic properties of rocks on their textural properties should not be

affected by the preset day limitations in textural analysis and may be investigated with

available theoretical tools through the forward modelling techniques and meaningful as-

sumptions on textural mineral distributions. Such studies can still provide important in-

sights into the understanding of seismic anisotropy and its relation to the fabric of rocks

within the Earth. In this thesis application of averaging techniques to model intrinsic

anisotropy of different textured rocks is investigated.

1Quoting H.-R. Wenk (in Leiss et al., 2000): ”There have been many books and a multitude of scientific papers
published on various experimental and theoretical aspects of preferred orientation in rocks, yet many questions remain.
While much is known about monomineralic rocks such as quartzite, marble and olivinite, we still know practically
nothing about polymineralic rocks and do not understand in any quantitative way such basic questions as to how
hornblende aligns in an amphibolite, or mica in a gneiss. While the theoretical framework to deal with such materials is
still in its infancy (having the balance growth, deformation, chemical reactions, and recrystallization), it is also difficult
to characterize the orientations of crystals and orientation relationships between neighbours.”
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1.4 Investigation of intrinsic anisotropy: scope of the thesis and
main challenges

Understanding the effects of main sources of anisotropy on elastic properties of the me-

dium allows significant improvement in the interpretation of seismic data to be achieved.

By distinguishing different sources of anisotropy effect of each one can be better under-

stood. Calculation of elastic properties of the textured aggregate is treated as forward

modelling. An advantage of forward modelling approach is that geologically meaning-

ful properties of the initial model can be assumed (if not available from experiments),

and then effect of different averaging approximations on modelling elasticity as a func-

tion of texture can be investigated. The dependence of each elastic constant of the aggre-

gate on its textural properties can be studied to provide insights on intrinsic elasticity of

anisotropic rocks. In the thesis, the intrinsic anisotropy is investigated through the av-

eraging elastic properties of polycrystalline aggregate by the GMA technique, as well as

conventional the Voigt and the Reuss approaches, with the texture captured in the ODF

and incorporated into the averaging procedure.

The major challenges of this approach are the complex mathematical description of

the ODF which requires functions that are specific to each case of symmetry of the con-

stituent mineral and the statistical symmetry of the aggregate. In addition, specific care

should be taken for proper implementation of the GMA technique for the cases of partic-

ular symmetries.

The thesis contains three Chapters that deal with different types of rocks, namely

collection of metamorphosed sediments and volcanics from the Flin Flon Belt (FFB), con-

tinental lithosphere peridotites composed predominantly of olivine, and rocks composed

of phyllosilicates such as shales. Despite the diversity of the rock types selected, all

three examples are related through rock’s intrinsic elastic behaviour defined by elastic

anisotropy. Detailed investigation, described in the thesis, revealed similarities and dif-

ferences in elasticity of these intrinsically anisotropic rocks.
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1.4.1 Chapter 2 - Flin Flon Belt Seismic Anisotropy

Chapter 2 deals with the experimental determination of elasticity and anisotropy of meta-

sediments and metavolcanics from the Flin Flon metamorphic terrane (Trans-Hudson

Orogen). The intrinsic anisotropy of the investigated rocks is revealed through the lab-

oratory measurements of P- and S-wave velocities on core samples in directions corre-

sponding to rocks textural properties. The effect of heterogeneities on ultrasonic veloci-

ties is estimated. The textural (intrinsic) origin of anisotropy is inferred from the analysis

of velocity measurements as a function of confining pressure (up to 300 MPa correspond-

ing to ∼ 11 km depth). Metamorphosed sediments and volcanics rocks show strong

P-wave anisotropy (up to 21%) and shear-wave splitting. Analysis of overall elasticity

of the collection suggest two types of elastic symmetry (transversely isotropic and or-

thotropic) to be predominant within the Flin Flon metamorphic terrane. The material

presented in this Chapter is accepted for publication in Canadian Journal of Earth Sci-

ences.

1.4.2 Chapter 3 - Elasticity of polycrystalline aggregates of orthotropic sym-
metry

Chapter 3 discusses the effects of different averaging techniques on the estimation of

the intrinsic elasticity of rocks of orthotropic symmetry. In order to investigate the av-

eraging effect on the elasticity, the ODF with orthotropic-orthorhombic symmetry was

developed, for first time to our knowledge, to describe orthotropic aggregate composed

of orthorhombic crystals. Further, the GMA was applied for first time to the orthotropic

aggregate and results were compared to the conventional Voigt and the Reuss averages.

Averaging techniques were applied to investigate the elasticity of olivine aggregate with

textural properties similar to olivine texture of orthotropic symmetry in naturally de-

formed peridotites. A short review of the anisotropy of mantle peridotites is provided,

and the modelling results obtained are compared with laboratory measurements avail-

able in the literature.
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1.4.3 Chapter 4 - The intrinsic anisotropy of phyllisilicates

Chapter 4 deals with the effect of texture on the elasticity and anisotropy of a phyllosili-

cate aggregate with specific reference to shale elasticity. Phyllosilicates include mica and

clay family minerals; their layered structure makes them highly anisotropic. The de-

pendence of the aggregate elastic constants and anisotropic parameters as a function of

texture is modelled by different averaging techniques including the GMA. Modelling

covers all stages of texture in such aggregate, i.e. development from randomly ori-

ented isotropic aggregate to strongly aligned textured aggregate with elastic properties

of single crystal. Results demonstrated strong dependence of phyllosilicate elasticity and

anisotropic parameters on both texture and choice of averaging procedure. Elastic con-

stants of isotropic phyllosilicates aggregate in the Voigt approximation are 160% of those

in the Reuss. Based on results of this study, it has been suggested that the GMA may

most appropriately model phyllosilicate intrinsic elasticity. Some results of the study

presented in this Chapter have been published in the CSEG Recorder.

1.4.4 Chapter 5 - Discussion and Conclusions

The analysis of this application of different averaging techniques to model the intrinsic

elasticity of rocks is presented in the Discussion and Conclusion Chapter of the thesis

that summarizes the findings of the above mentioned studies. The differences in the

intrinsic elasticity of the rock types investigated is then discussed. One important con-

clusion arising from comparison of the results of Chapters 3 and 4 is that the assumption

on the choice of averaging techniques may be a major source of error in predicting in-

trinsic elastic properties of some types of rocks, and not so critically important for others.

Limitations of the different averaging techniques and their applicability to model intrin-

sic elasticity and anisotropy is analyzed. Finally, conclusions on modelling the intrinsic

elasticity of rocks and suggestions for future research directions are presented.
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Chapter 2

Flin Flon Belt Seismic Anisotropy:
Elastic Symmetry, Heterogeneity, and
Shear Wave Splitting

1

This Chapter deals with experimental measurements of the elasticity of intrinsically

anisotropic metamorphic rocks from Flin Flon Belt area, Manitoba Saskatchewan border.

Laboratory measurements of compressional (P) and shear-wave (S) velocities, and

shear-wave splitting have been carried out on a set of upper greenschist - lower am-

phibolite facies metasediments and metavolcanics and plutonic rocks from two ductile

shear zones in the Flin Flon Belt (FFB) of the Trans-Hudson Orogen (THO). Selected

metamorphic rocks vary in composition from felsic to mafic. Test sites with outcrops

of sheared metamorphic rocks were correlated with a series of inclined seismic reflectors

possibly extending from the midcrust and intersecting a well mapped shear zone at the

surface. Determination of the lithological and physical properties of highly deformed

metamorphic rocks is essential for proper interpretation of the nature of observed seis-

mic reflectors. To investigate the anisotropic properties of the rocks, compressional ve-

locity was measured at a confining pressure up to 300 MPa in three mutually orthogonal

directions aligned with respect to visible textural features. In addition, on selected sam-

ples, shear-wave velocity was measured at two orthogonal polarizations for each of three

propagation directions to determine shear wave splitting. The seismic heterogeneity of
1A version of this Chapter has been accepted for publication, Cholach et al. (2004). Some parts of this

Chapter were also presented at CGU 2003 and AGU 2003 annual meetings.
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hand specimens was also investigated by measuring P- and S-wave velocities on several

cores cut in the same direction. Observed compressional wave anisotropy varied from

quasi-isotropic to 24%. Maximum observed shear wave splitting reaches a value of 0.77

km/sec at confining pressure of 300 MPa. The pressure invariance of observed P-wave

anisotropy and shear-wave splitting indicates that intrinsic anisotropy due to the lattice

preferred orientation (LPO) of highly anisotropic minerals such as mica and hornblende

is mainly responsible for the measured seismic anisotropy.

2.1 Introduction

Geophysical capabilities in making seismological observations of the crust and mantle

at all scales have improved dramatically over the last decade. Technological advances

allow us to acquire, store, and process progressively larger volumes of active and pas-

sive seismic records. The analysis of such observations, however, has required increasing

levels of sophistication in the consideration of scale, structure, and material properties.

Often, these analysis must invoke elastic anisotropy to provide a reasonable geological

model, that is they must allow the seismic velocity to depend on the direction of wave

propagation through the Earth. For example, Hearn (1999) included compressional wave

anisotropy greater than 5% in order to properly focus tomographic images of the up-

permost mantle derived from Pn wave observations. Vestrum et al. (1999) demonstrated

that conventional seismic migration algorithms that do not account for anisotropy would

produce significant lateral positioning errors in active-source seismic measurements in

overthrust belts. Large numbers of workers are mapping the polarization directions and

time delays associated with shear wave splitting of SKS teleseismic arrivals (e.g. Park and

Levin, 2002) that are almost exclusively interpreted as indicators of upper mantle fabric.

These studies highlight the existence of seismic anisotropy and there is no doubt that it

must be included if we are to better understand seismic observations.

The anisotropy of compressional (P) and shear (S) wave velocities is one manifesta-

tion of the overall elastic character of a material at many scales. Any loss of symmetry

in a material results in anisotropy; elastic wave anisotropy can be produced by preferen-

tial mineral orientations obtained during deposition, or developed during diagenesis or
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metamorphism, by cracks and joints, and by layering. In void-free metamorphic rocks,

the fabric symmetry is usually assumed to take one of three forms: isotropic for a rock

with no detectable texture, transversely isotropic for a foliated rock (Figure 2.1a), or or-

thorhombic for a rock with a clear lineation within its plane of foliation (Figure 2.1b).

More precisely, an isotropic material will appear the same across any arbitrary plane or

by rotation about any arbitrary axis. A transversely isotropic material will have one plane

of symmetry, the XY foliation plane, and a rotational axis of symmetry perpendicular to

the foliation - normal Z axis. Once a clear lineation exists, the symmetry of the sample

is further reduced to three planes of symmetry, all oriented with respect to the lineation

and foliation (Figure 2.1b). As such, observations of seismic anisotropy are diagnostic of

texture; and it is this linkage that makes anisotropy such an active area of study.

However, despite the many observations of elastic anisotropy in rocks since the early

part of the last century Zismann (1933), the recognition that it is important to consider

both for purposes of proper imaging and as a tool for interpretation and the develop-

ment of mathematical tools (e.g. Auld, 1990) and theoretical approximations (e.g. Thom-

sen, 1986); Tsvankin (1997) to make modelling of such anisotropy simpler, our under-

standing of the anisotropy of real rocks remains limited. Metamorphic rocks, in partic-

ular, have complex elastic behavior and exhibit seismic velocity anisotropy that can be

attributed to their mineralogical composition and textural properties. The elasticity of

rocks of different metamorphic facies from a number of shear zones worldwide has been

extensively studied. Most of these studies have attempted to focus on the relationship

between the rock velocity anisotropy and texture; these results are often used to make

inferences on the source of seismic reflectivity within the crust.

Jones and Nur (1982) reported laboratory measured P-wave anisotropy greenschist fa-

cies mylonitic rocks from the Columbia River fault zone, BC. The authors concluded that

strong seismic anisotropy of these silicic and intermediate rock samples was controlled

by the volumetric abundance and degree of lattice preferred orientation of phyllosilicates.

Wang et al. (1989) report measurements of P-wave velocities on a varied suite of my-

lonitic gneisses, less deformed crystalline protoliths, plutonic and volcanic samples taken

from the Whipple Mountains shear zone, California. Velocities were measured to pres-

sures of 500 MPa in three directions through rectangular samples cut parallel to the meta-
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Figure 2.1: Hand specimen coordinate system defined with respect to the visible textural
elements of foliation and lineation in metamorphic rocks. The principal axes X and Y
both lie within the foliation plane but parallel and perpendicular to the lineation. Prin-
cipal axis Z is normal to the foliation plane. Scanned thin-sections were cut along the
symmetry planes of specimens. a) Strong foliation apparent in the XZ and Y Z thin sec-
tions but not in the XY thin section in the highly deformed metavolcanic sample 93-1
defines transversely isotropic symmetry; b) presence of the well-developed lineation in
the XY foliation plane of metavolcanic sample 93-7 defines orthorhombic symmetry.
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morphic fabrics of the samples. In general, the authors observed a high degree of hetero-

geneity from sample to sample, in part due to alteration, with P-wave anisotropy values

as high as 19.2% being measured.

Kern and Wenk (1990) investigated the pressure and temperature dependence of veloc-

ity anisotropy for progressively deformed mylonites from the Santa Rosa Mylonite Zone,

southern California. Observed high P-wave velocity anisotropy strongly correlates with

the degree of deformation. Measured shear wave splitting was attributed directly to the

lattice preferred orientation of biotite. The authors concluded that a 1 km thick layer of

the investigated mylonites, which had a velocity variation more than 10%, might be a

readily detectable seismic reflector.

Christensen (1989) and McCaffree and Christensen (1993) analyzed experimentally mea-

sured the compressional and shear wave properties of mylonites from continuous drill

core through a major part of the Brevard fault zone, North Carolina. Measured properties

of metamorphic rocks of upper amphibolite facies were correlated with the reflectivity of

a seismic reflection profile in the vicinity of the drilling site. The observed seismic reflec-

tivity was explained by the presence of fine subhorizontal layering of metamorphic rocks

that might have originated from lower crustal ductile deformation.

A number of publications have dealt with the elasticity of metamorphic rocks from

the Ivrea Zone and adjacent zones of exposed continental crust in northern Italy. Sieges-

mund et al. (1989) reported the pressure and temperature dependence of Vp and Vs aniso-

tropy of amphibolites that was mainly related to the texture of constituent hornblende

minerals. Burke and Fountain (1990) concluded that the preferred orientation of mica con-

trols the measured compressional wave anisotropy of investigated schists and gneisses.

Siegesmund and Kern (1990) reported strong P- and S-wave anisotropy of mylonitic rocks

that correlates with both oriented microcracks and LPO of rock-forming minerals. Burlini

and Fountain (1993) measured P- and S-wave velocities on a set of granulite-facies metape-

lites. Two distinctive P-wave velocity patterns of transverse isotropy and orthorhombic

symmetry were identified and attributed to the preferred orientation of mica and a com-

bination of both mica and sillimanite, respectively.

Ji et al. (1993) and Ji and Salisbury (1993) examined the elasticity of mylonites from

the Tantato high-grade metamorphic domain in the Snowbird tectonic zone (northern
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Saskatchewan) and discussed its applications to the interpretation of lower crustal shear-

zones reflectivity. On the basis of laboratory P- and S-wave velocity measurements,

shear wave splitting measurements and petrophysical studies, the authors concluded

that strong anisotropy of amphibolitic mylonites correlates with the volume fraction of

aligned hornblende. In contrast, granulite-facies mylonites did not develop significant

anisotropy and might be interpreted as quasi-isotropic. Ji et al. (1997) obtained similar re-

sults for granulite-facies metamorphic rocks from the Morin shear zone in the Grenville

Tectonic Province (Québec, Canada).

Zappone et al. (2000) measured compressional wave anisotropy on 12 rock samples

from a wide range of metamorphic grades and lithologies taken from the southern Iberian

peninsula. Based on measurements to confining pressures of 280 MPa, they reported

anisotropies of 1.6% to 17.6% relative to the mean velocities.

Quartz-rich feldspathic gneisses from the Nanga Parbat - Haramosh massif, India,

show surprisingly high levels of anisotropy of up to 12.5% and 21% for P-wave and S-

wave velocities, respectively (Meltzer and Christensen, 2001). These velocities were mea-

sured on cylindrical cores cut along the principal metamorphic directions to pressures

of 1 GPa. The degree of anisotropy depended on the modal volume of mica mode and

the fabric strength. Of particular note was the observation that the maximum veloci-

ties in many of the samples were similar to those expected for more mafic rocks. Such

anisotropy could influence the velocities of waves propagating along turning rays in

seismic refraction studies and could lead to incorrect inferences about the mineralogy

at depth.

In the above studies, P- or S-wave speeds were measured along the three presumed

principal directions with respect to the lineation and foliation. Wang et al. (1989) noted,

however, that this does not provide sufficient information to completely characterize the

elastic properties, and hence the wave speed anisotropy, at angles different from the

symmetry axes. To overcome this limitation, a number of recent studies have included

measurements using off-axes cores. Under the assumption that schists are transversely

isotropic, Godfrey et al. (2000) made high pressure velocity measurements on cylindrical

cores cut parallel, at 45◦, and perpendicular to foliation. These samples exhibited P-wave

anisotropy from 9% to 20% and significant shear wave splitting. The latter values were
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sufficiently large to account for up to 45% or more of the time delays seen in split SKS

teleseismic arrivals over the Haast Schist Terrane in New Zealand. Okaya and Christensen

(2002) carried out further analysis of these same data to illustrate how crucial off symme-

try axis velocity determinations are.

More recently, Takanashi et al. (2001) reported results on P- and S-wave velocity mea-

surements for several amphibolites, a biotite gneiss and a biotite schist from the Hidaka

Metamorphic Belt, Japan. The observed pattern of seismic anisotropy in this case strongly

correlates with the lattice preferred orientation (LPO) of rock-forming hornblende and bi-

otite.

A common conclusion of the above studies is that deformed metamorphic rocks are

more likely than not to be elastically anisotropic, with the anisotropy dependent on a

variety of factors including mineralogical composition, metamorphic grade, the degree

of fabric development, and the extent of brittle deformation. Further, anisotropy has im-

plications for both active source and passive seismology. The main purpose of the study

presented in this Chapter is to obtain additional information on the elasticity of metamor-

phic rocks produced within the Annabel Lake ductile shear zone of the Flin Flon Domain

in the Proterozoic Trans-Hudson Orogen. The mapped shear zones correlate well with

seismic reflectors that extrapolate to the surface and, indeed, the initial motivation for

this work was to explain this strong reflectivity. As will be discussed, this goal was not

achieved but the extensive series of high pressure laboratory measurements made on

rocks from the shear zone provides considerable insight into the elastic symmetry of the

material, its overall elastic properties, the degree of heterogeneity between samples, and

the influence of sections of such metamorphosed rock on shear wave splitting observa-

tions.

2.2 Elasticity of an anisotropic medium - a review

The literature on the anisotropy of elastic P- and S-waves is rich in physics and only a

brief overview of the theory is given here; the reader is referred to Musgrave (1970) or

Auld (1990) for additional details. The main purpose of this section is to demonstrate that

the P- and S- wave velocities through a material depend directly on the material’s elastic
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properties and that quantitative measurements of velocities and density yield the elastic

properties directly. Further, while anisotropy in wave velocities can tell us a great deal

by themselves, knowledge of the elastic properties are perhaps more useful in that they

directly reveal the material’s symmetry, and hence metamorphic texture. In the section

below, the relationships that allow determination of the elastic properties from measured

velocities are developed, Mah and Schmitt (2001b) and Mah and Schmitt (2003) review this

topic more fully.

In any general elastic medium, stress and strain are specified as the second-rank ten-

sors σij and εkl, respectively. The relationship between these two tensorial quantities

may be written in the form of the generalized Hooke’s Law:

σij = Cijklεkl (2.1)

where Cijkl is a fourth rank tensor with 81 components known as elastic constants

or stiffnesses and repeated indices summing notations apply (Auld, 1990). The elasticity

tensor Cijkl fully describes the elastic properties of anisotropic crystals or solids. A num-

ber of symmetric and physical arguments reduce this to 21 independent elastic constants

for the least symmetric triclinic case. The symmetry of the tensor of elasticity allowed

Voigt to introduce a simpler matrix notation (Nye, 1990) that is commonly used in the

geophysical literature where the four indices ijkl are replaced by two indices mn:

Cijkl = Cmn(i, j, k, l = 1, 2, 3;m,n = 1, , 6)

so that the generalized Hooke’s Law may be simplified to a matrix equation:

σI = CIJεJ (2.2)

where σI and εJ are 6 × 1 vectors containing independent components of stress and

strain tensors, respectively. In (2.2), the indices I and J are related to the ij in according

to the cyclical recipe I,J = 1, 2, 3, 4, 5, 6 when ij or kl = 11, 22, 33, 13 or 31, 23 or 32, 12

or 21, respectively. Each Cij is one of the components of a 6 × 6 symmetric matrix of 21

independent elastic stiffnesses that may be written in the form:
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Cij =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66




(2.3)

The matrix in (2.3) is symmetric about the diagonal (e.g. C12 = C21) and for clarity

those components below the diagonal are not shown. The number of independent elastic

constants in the Cij matrix depends on the elastic symmetry of the investigated medium

and may vary between one elastic constant (usually defined as the bulk modulus K) for

liquids, two elastic constants (the Lamé parameters λ and µ) for isotropic solids and up to

the twenty one independent elastic constants for the most general case of triclinic sym-

metry. For this study the most important symmetries are isotropic, transversely isotropic

and orthorhombic, which can be described by two, five and nine elastic constants, re-

spectively. For these cases, the matrix of elastic constants will have the form:

Cij =




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66




(2.4)

In an isotropic medium the coefficients will be C11 = C22 = C33 = λ + 2µ , C44 =

C55 = C66 = µ , and C12 = C21 = C13 = C31 = C23 = C32 = λ . The isotropic case is the

only one in which the familiar elastic Lamé parameters λ and µ apply. In the transversely

isotropic medium only five of the elastic constants from matrix (2.4) are independent

(C11 = C22; C33; C44 = C55; C66 = 1/2(C11−C12); C12; C13 = C23). In the orthorhombic

medium all nine non-zero constants from the matrix in (2.3) are independent.

Elastic wave velocities can be calculated from the known elastic constants by solving

the so-called Christoffel equation (e.g. Musgrave, 1970). Under the plane wave assumption

the wave equation in an anisotropic medium can be written (see Appendix B for more

details):

(Cijklnjnl − ρv2δik)uk = 0 (2.5)
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where δij is the Kronecker delta (Nye, 1990), ρ is density, and ni are the components

of the wavefront normal vector. The nonzero values of displacement ui are obtained as

characteristic (eigen) vectors corresponding to the characteristic (eigen) values of velocities

v2 which are the roots of the standard eigenvector-eigenvalue problem:

det | Cijklnjnl − ρv2δik |= 0 (2.6)

The solution of (2.6) represents the velocity surface for an infinite number of plane

waves. It is convenient to rewrite (2.5) by introducing the notation

Γik = Cijklnjnl (2.7)

where Γik is the symmetric Christoffel matrix. Then

(Γik − ρv2δik)uk = 0 (2.8)

Equation (2.8) is well known as the Christoffel equation and the standard eigenvalue-

eigenvector problem may be now rewritten in the form:

det | Γik − ρv2δik |= 0 (2.9)

Solution of the cubic (2.9) for any specific slowness direction n yields three posi-

tive values of the squared phase velocity v2, which correspond to the P-wave and two

S-waves. In an isotropic medium the P-wave and S-wave particle motions are purely

longitudinal and transverse, respectively. For this case the S-wave polarization (i.e. di-

rection of particle motion) can be in any direction normal to the wave propagation di-

rection; no shear wave splitting is allowed. More generally, the waves are referred to as

”quasi-P” and ”quasi-S” waves in an anisotropic medium due to additional complications

with regard to the relationships between the polarization and wave propagation direc-

tions. Once the material is anisotropic, there will generally be two distinct shear waves

in nearly all propagation directions, the polarizations of these two shear waves will be

forced into two materially dependent but orthogonal directions and they will travel at

different velocities leading to differences in their time of arrival. This phenomena is more
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commonly known as shear wave splitting. These characteristics are apparent in the ex-

amples of velocity surfaces through the three planes of symmetry for isotropic (Figure

2a), transversely isotropic (Figure 2.2b), and orthorhombic (Figure 2.2c) materials.

While the point of the above discussion is to link measured velocities to elastic prop-

erties, the mathematics indicates that this is not straightforward in general (Mah and

Schmitt, 2003). However, within planes of symmetry and along principal axes the wave

behaviour, and consequently the formula linking velocities to elastic constants, simplify

substantially.

Before going further, it is necessary to place the wave propagation and particle mo-

tion directions discussed above in the context of the fabric XYZ axes introduced in Figure

2.1 because this is the context within which the laboratory measurements are made (Fig-

ure 2.5). In particular, for any P- or S- wave propagating along one of the three axes

of symmetry in an isotropic, transversely isotropic, or orthorhombic medium the waves

will be purely longitudinal or transverse, respectively and the shear polarizations must

lie within the planes of symmetry. Consider, for example, waves propagating only along

the lineation direction X. The three elastic waves that will exist in such a situation are a

P mode with polarization in the X direction, and two S-modes polarized in the Y and Z

directions. In the following discussions we associate these three waves as XX, XY, and

XZ, respectively. The P-waves along the Y and Z axes are designated by YY and ZZ,

respectively. The two shear waves propagating in the Y direction will similarly be polar-

ized in the X and Z directions and are assigned YX and YZ. Similarly, those propagating

in the Z direction will have polarizations ZX and ZY (Figure 2.5).

In an isotropic medium the X, Y, and Z axes are arbitrary and the velocities VXX =

VY Y = VZZ , and VXY = VY X = VXZ = VZX = VZY = VY Z . With knowledge of the mass

density ρ, the complete set of elastic constants is determined via:

C11 = C22 = C33 = ρV 2
XX

C44 = C55 = C66 = ρV 2
XY

C12 = C13 = C23 = ρ(V 2
XX − V 2

XY )
(2.10)

Similar symmetries exist in the transversely isotropic case with VXX = VY Y 6= VZZ ,

VZX = VZY 6= VXY = VXZ = VY X = VY Z . Note that in this case, the selection of

the X and Y axes is arbitrary. The elastic constants that may be obtained from velocity

28

User
Note
Note - this is incorrect, should be VZX = VZY = VXZ = VYZ (not =) VXY = VYX.

User
Highlight



2.2. ELASTICITY OF AN ANISOTROPIC MEDIUM - A REVIEW

Y

Z

X

Y

Z

X

a)

c)

b)

Y

Z

X

Y

Z

X Y

Z

X

Y

Z

X Y

Z

X

a)

c)

b)

Y

Z

X Y

Z

X

Figure 2.2: Normalized slowness (reciprocal velocity) surfaces and polarization direc-
tions of P- and S-waves for different elastic symmetries XY Z directions as in Figure 2.1
Bars indicate directions of particle motion. Note that S modes have lower velocities than
the P mode and as such, have larger slownesses and plot further from the origin in the
figure. a) P- and S-wave slowness surfaces are perfect spheres in an isotropic medium.
b) The most pronounced shear wave splitting is within the symmetry plane for the trans-
versely isotropic medium. c) Complicated P- and S-wave slowness surfaces with shear
wave splitting along all three symmetry axes in a medium with orthorhombic symmetry.
Note that one shear wave surface displays convexity and concavity in the XZ and Y Z
planes, respectively.
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measurements along the symmetry axes are:

C11 = C22 = ρV 2
XX

C33 = ρV 2
ZZ

C44 = C55 = ρV 2
XZ

C66 = ρV 2
ZX = ρV 2

ZY

C12 = C11 − 2C66

(2.11)

For the orthorhombic case, VXX 6= VY Y 6= VZZ , VXZ = VZX 6= VY X = VXY 6= VY Z =

VZY . Six of the nine elastic constants may be determined from velocity measurement

directions parallel to the symmetry axes:

C11 = ρV 2
XX

C22 = ρV 2
Y Y

C33 = ρV 2
ZZ

C44 = ρV 2
Y Z

C55 = ρV 2
XZ

C66 = ρV 2
XY

(2.12)

The independent off-diagonal elastic stiffnesses cannot be determined given only the

values of velocity measured along the symmetry axes of Figure 2.2. Despite this, how-

ever, one is able to make an assessment of the degree of symmetry of a sample by exami-

nation of the diagonal stiffnesses determined in the measurements.

In recent years, many workers (e.g. Takanashi et al., 2001) have used ’ε− δ− γ’ param-

eterizations that allow approximate calculation of the variation in velocity with direction

using simpler trigonometric formulas. The original formulas may be found in Thomsen

(1986) and Tsvankin (1997) for transversely isotropic and orthorhombic materials, respec-

tively. For the sake of completeness we have included these parameters in Table 4. How-

ever, these parameterizations are not elastic constants, and we would like to reaffirm

Thomsen’s (1986) cautionary remarks about relying on such parameterizations if the true

elastic coefficients are known.

2.3 Geological background and sampling

The rock samples for this study were taken from the vicinity of the Annabel Lake Shear

zone contained within the Flin Flon Belt (FFB) of the Paleoproterozoic Trans-Hudson

Orogen (THO). The orogen, and the FFB in particular has long been studied, due to the
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existence of large economic mineral deposits. Only a brief overview of the present-day

geological models of this complex zone are presented here in order to give a sense of the

deformation and metamorphism that these rocks have experienced. Additional details,

maps, and references can be found in Lucas et al. (1999a, 1999b).

The THO extends from Northern Québec through Saskatchewan and into South Dako-

ta (Figure 2.3a). The Orogen played a major role in the construction of the North Amer-

ican continent by assembling separate Archean cratonic blocks and juvenile Paleopro-

terozoic terrains (Hoffman, 1988; Lewry and Stauffer, 1990). The Flin Flon Belt study area

(as a part the Canadian Shield) lies in eastern Saskatchewan immediately to the west of

the town of Flin Flon, Manitoba. The belt is wedged between the Archean Superior and

Hearne cratons to the east and west, respectively.

Recent geological models for the Flin Flon Belt have been developed through the

Shield Margin Project and the Trans Hudson Orogen LITHOPROBE Transect. Three

main elements of the belt, joined in collisional deformations at 1.84-1.80 Ga, are thought

to be an underlying Archean ”Sask craton” (3.20 to 2.40 Ga), an intermediate complex of

metamorphosed juvenile arc, oceanic, plutonic, volcano-sedimentary, and fluvial-alluvial

sandstones ranging in age from 1.92 Ga to 1.85 Ga that make up the Flin Flon Belt, and an

uppermost metamorphosed series of marine turbidites (1.85-1.84 Ga) and sandstones in

the Kisseynew Domain. Essentially, the Flin Flon Belt consists of a series of 1.92 - 1.87 Ga

arc and sea floor assemblages called the ”Amisk collage” (Lucas et al., 1996) separated by

highly strained zones at 1.88 - 1.87 Ga and crosscutting plutons at 1.87 - 1.84 Ga. These

plutons are thought to be superimposed on the collage by later arcs. Uplift ca. 1.85 - 1.84

Ga led to erosion of continental sediments (Missi Group) and marine turbidites (Burnt-

wood Group) coeval with the decaying arc volcanism, events that led to the protoliths

of the nonplutonic rocks studied here. Construction of the stack began with the Flin

Flon Belt overriding the Sask craton along a décollment with interleaving between the

Flin Flon Belt and the Kisseynew Domain from 1.84 - 1.80 Ga. Peak metamorphism and

deformation occurred at 1.82 - 1.80 Ga.

As might be imagined, the geological structure in this area is complex. A simpli-

fied geological map of the study area (Figure 2.3, b), abstracted from Ashton et al. (1988),

separates the surficial bedrock geology essentially into plutonic and nonplutonic rocks.
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Figure 2.3: a) Location of the study area relative to the Archean provinces of continen-
tal North America. b) Simplified geological map of the Flin Flon Belt section along
Saskatchewan highway 106 with location of the Granite Lake and Nesootao Lake sam-
pling areas indicated. The map represents an abstract of the detailed mapping of Ashton
et al. (1988). White regions represent zones comprised of metavolcanic/metasedimentary
rocks. Dark grey regions are plutons. The strike and dip of the local shear fabric are
indicated by the orientation of the arrows and the overriding number, respectfully. c)
Locations of Granite Lake samples. d) Locations of Nesootao Lake samples.
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Figure 2.4: Section of the LITHOPROBE THO transect seismic Line 9 east of the Sturgeon
weir fault. The lines labelled ’Granite Lake’ and ’Nesootao Lake’ correspond to the length
of the segments of Saskatchewan highway 106 through the expanded segments of Figure
2.3 c and 2.3 d, respectively. The well-identified zone of east-dipping reflectors correlates
at the surface with the Flin Flon Belt ductile shear zone test sites.

The LITHOPROBE THO transect Line 9 (Figure 2.4) was acquired along Saskatchewan

highway 106 through the area (Lucas et al., 1993). To the west of this image, a series of

prominent seismic reflectors with an apparent dip to the east from near the surface in the

vicinity of Granite Lake extends possibly to midcrustal levels. To the east of shot number

1200 a second interesting ’canoe’ shaped event is seen at ∼ 0.5 seconds two-way travel.

This event is likely associated with the contact zone between the pluton and underlying

metasediments/metavolcanics to the west of Nesootao Lake and could in part be due

to out of plane reflections. Together, these reflectors show a great deal of structure be-

tween the plutons and the ”Amisk collage” rocks (Lewry et al., 1994; Lucas et al., 1996).

Our initial objectives was to attempt to explain these strong seismic events using labo-

ratory - derived impedances of candidate rocks outcropping at the surface extensions of

the reflectors.

There has been some limited earlier field and laboratory work on rocks from the FFB.

Hajnal et al. (1983) compared pressure - dependent velocities measured in the laboratory

on several Amisk volcanics to borehole and surface observations. While these authors

demonstrated the large differences between competent laboratory samples and fractured
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2.3. GEOLOGICAL BACKGROUND AND SAMPLING

near surface materials, the investigation was mainly concentrated on the near-surface

fracture distribution in different types of rocks as well as analysis of frequency-dependent

attenuation in seismic, borehole and laboratory velocity measurements. Limited number

of samples for laboratory measurements and no directional dependencies of velocities in

rocks made it difficult to incorporate these data in order to assist the interpretation of the

reflectors in Line 9. Thus sampling was carried out at the Granite Lake and Nesootao

Lake locations along Saskatchewan highway 106, approximately 40 and 20 km west of

Flin Flon, Manitoba (Figure 2.3 c, d). During the first trip in 1991, metamorphic samples

of variable composition were collected at the test site in the proximity of Granite Lake and

during a trip in 1993 sampling conducted at a second site near Nesootao Lake (Figure 2.3

d). Fresh bedrock exposures were limited by Quaternary cover near Granite Lake. The

Nesootao Lake sampling was more continuous with frequent fresh exposures opened by

road cuts through the bedrock.

The Granite Lake hand specimens were collected over an 8 km section (Figure 2.3, c)

that crosses the shear zone. All specimens from the 1993 trip were collected over a 3 km

section covering an exposure of the same ductile shear zone in the vicinity of Nesootao

Lake (Figure 2.3, d). Aside from the plutons, the samples collected display strong visible

foliation defined by interchangeable layers of deformed quartz and hornblende (Figure

2.1).

To determine modal compositions and estimate mineral grain parameters, 97 thin sec-

tions cut parallel to the XY , XZ and Y Z planes of each of the hand specimens were an-

alyzed. Digital micrographs of thin sections were taken under plane-polarized light and

average grain cross section areas were estimated by tracing each grain on the digital im-

age. The mineralogical composition of each sample was determined by point counting on

the thin sections that were oriented normal to the foliation (more then 300 points/slide).

Results of the determination of mineralogical composition are summarized in Table 2.1.

The compositions of the metasediments vary from felsic to mafic as can be noted

from significant variations in the modal quartz content, especially in the Granite Lake

collection.

The peak metamorphic pressure (P) and temperature (T) were estimated on a few of

these samples using microprobe-based garnet-biotite Mg/Fe geothermometry (Ferry and

34



2.3. GEOLOGICAL BACKGROUND AND SAMPLING

Table 2.1: Mineralogical composition of the Granite Lake and the Nesootao Lake samples
Sample Mineralogy
Granite Lake Metasediments

1 41.8% QZ, 35.4% PL, 19.9% HBD, 1.8% GT
3 33.3% QZ, 47.3% PL, 13.6% BIO, 3.8% GT
4 41.9% QZ, 32,8% PL, 16.5% BIO, 2.7% GT, 4.2% SIL
5 40.2% QZ, 40.3% PL, 19.1% BIO
7 24.8% QZ, 51.7% PL, 18.3% BIO, 2.5% GT, 2.8% OPQ

10 19.7% QZ, 22.8% PL, 31.9% BIO, 5.3% GT
11b 24.4% QZ, 52.5% PL, 23% BIO

Granite Lake Metavolcanics
2 25.5% PL, 25.2% BIO, 49.3% HBD
6 7.6% QZ, 56.5% PL, 9.7% BIO, 20.9% HBD, 3.9% ACS
8 4.15% QZ, 66.6% PL, 9.5% BIO, 18.2% HBD

Granite Lake and Nesootao Lake plutons
13 2.7% QZ, 43.2% PL, 4.7% BIO, 46.9% HBD, 2.2% KF

15a 6.6% QZ, 60% PL, 10.0% BIO, 10% HBD, 10.9% KF
16 6.6% QZ, 60% PL, 10.0% BIO, 10% HBD, 10.9% KF
32 2.5% QZ, 61.8%PL, 27.3% HBD, 5.2% KS, 2.0% ACS
33 47% PL, 35.5% HBD, 15.5% CPX
34 34.9% QZ, 52%PL, 8.2% BIO, 2.3% HBD

93-8a 45.2% QZ, 29.1% PL, 16.3% BIO, 7.2% EPD
VOL-A 27.3% QZ, 64.8% PL, 6.7% BIO
VOL-B 22.5% QZ, 61.2% PL, 8.3% BIO, 1.9% OPQ

Nesootao Lake Metasediments
93-2 39.5% QZ, 21.3% PL, 17.1% BIO, 3.5% HBD, 16.5% KS
93-3 60.2% QZ, 5.5% PL, 18.2% BIO, 8.3% HBD, 3.9% ALTN, 3% - CTE
93-8 43.2% QZ, 10.5% PL, 24.1% BIO, 6.4% HBD, 13.3% MS
93-9 25.7% QZ, 45% PL, 22.7% BIO, 4.6% OPQ
93-12 39.7% QZ, 23.3% PL, 22.8% BIO, 2.5% HBD, 9.6% EPD
93-13 28.1% QZ, 38.5% PL, 28.1% BIO, 4.2% ALTN
93-14 39.5% QZ, 3.6% PL, 30.8% BIO, 19.7% MS
93-17 33.4% QZ, 17.4% PL, 30.9% BIO, 2% OPQ, 15.1% MS
93-18 51.3% QZ, 38.6% BIO, 8.3% ALTN
93-20 31.6% QZ, 12.2% PL, 34.9% BIO, 2.2% OPQ, 11.6% ST
VOL-I 13.2% QZ, 16.3% PL, 67.1% HBD

VOL-III 10.8% QZ, 1.4% PL, 59.2% HBD, 9.4% CTE, 19.2% EPD
Nesootao Lake Metavolcanics

93-1 30.8% QZ, 12.7% PL, 49.6% HBD, 4.9% EPD
93-5 21% QZ, 11.7% PL, 66.7% HBD
93-6 10.8% QZ, 21% PL, 41.8% HBD, 21.4% EPD
93-7 17.9% QZ, 23.4% PL, 51.9% HBD, 2.5% CTE, 3.7% EPD

Abbreviaions: QZ-quartz, PL-plagioclase, BIO-biotite, MS-muscovite, HBD-hornblende, GT-garnet, KF-K-feldspar, CPX-clinopyroxene, OPX-orthopyroxene,

SIL-silimanite, EPD-epidote, CTE-calcite, ST-staurolite, ACS -accessory, OPQ -opaque minerals, ALTN-alterations abbreviations after (Yardley, 1989).
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Figure 2.5: Relationship between the fabric-dependent XY Z coordinate system and ve-
locity measurements directions. Velocity measurements along the sample symmetry axes
have been identified by both wave propagation (first subscript) and polarization direc-
tions (second subscript). For example, VXX refers to the longitudinally polarized wave
propagating along the lineation direction X . VY X and VY Z refer to the two shear modes
propagating in the foliation plane but perpendicular to the lineation, with transverse po-
larizations parallel to the lineation and perpendicular to the foliation plane, respectively.

Spear, 1978) and by considering the stability fields of characteristic minerals. The esti-

mated peak temperatures scatter about 500◦C and 530◦C for the Nesootao and Granite

Lake samples, respectively. Grains of sillimanite aligned with foliation in sample 4 are

presumably of syntectonic origin and indicate temperatures of more than 500◦C and pres-

sure of 400 MPa. Staurolite grains that are not aligned with the foliated texture formed

after the main deformation phase and reflect temperatures of 500− 650◦C. Garnet-biotite

thermometry combined with the stability conditions for staurolite and sillimanite sug-

gest peak P-T conditions at 510 − 530◦C and ∼ 400MPa (equivalent to ∼ 14 km depth).

These P-T conditions and the presence of characteristic minerals suggest the rocks inves-

tigated fall at the boundary of the upper greenschist and mid amphibolite metamorphic

facies (Yardley, 1989).
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2.4 Experimental procedure and results

2.4.1 Sample preparation

P-wave and S-wave measurements were made on cylindrical cores (2.54 cm diameter ×
3.5 to 5.5 cm length) from 16 Granite Lake and 19 Nesootao Lake specimens (Table 2.1).

The cores were cut from specimens aligned with respect to visible textural features. Each

Granite Lake specimen has one core cut perpendicular to the foliation plane and at least

one core parallel to the foliation plane. If visible lineation was present, two cores were cut

within the foliation plane, one parallel and one perpendicular to the lineation direction as

shown in Figure 3. More emphasis was placed on the Nesootao Lake cores because of the

more frequent sampling possible there; and at least three mutually orthogonal X, Y, and

Z samples were cored from each specimen. In addition, several cores were cut in the same

direction in some samples (e.g. core sample 93-1-X1 and 93-1-X2), allowing investigation

of the heterogeneity within a given specimen. Altogether, 147 cores were cut (Table 2.2).

The ends of cores were flattened and made parallel using a surface grinder.

After cutting and flattening, the cores were dried in the vacuum oven for over 6 hours

at temperatures near 80◦C. Bulk densities were obtained by the immersion method to an

uncertainty of better than ± 0.5% (Table 2.2). The variations in density between cores

obtained from the same specimen are generally less than 1%, indicating a consistency of

the mineral composition within any given sample. The porosities of the samples were

not determined experimentally but estimated to be less than 1% at room pressure. The

fact that the submerged masses of samples did not appreciably change during the density

measurement is indicative of their low permeability and porosity.

P-wave measurements were made on all the cores; S-waves were measured only on

a subset from the Nesootao Lake suite. Longitudinal mode, 2.54 cm diameter, 1-MHz

frequency, piezoelectric ceramics were placed at both ends of the cores for the P-wave

measurements. Similar transverse mode ceramics were used for the S-wave measure-

ments. The S-wave ceramics provide a mechanical pulse polarized parallel to the ends

of the samples and care needed to be taken to ensure that the polarization directions of

both transverse mode ceramics were properly in line and that they were appropriately

oriented with respect to the rock’s principal textural X, Y, or Z axes as indicated earlier
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(Figure 2.5). Note that only one set of ceramics could be used for each run; core sam-

ples for which S-wave velocities were determined required 1 P-wave and 2 orthogonally

oriented S-wave runs. The piezoelectric ceramics were mechanically damped with an

epoxy-tungsten backing mixture in order to broaden the overall transducer bandwidth.

The attached ceramic transducers and rock sample were then hermetically sealed in a

flexible urethane to exclude the pressure vessel fluid from the rock and this assemblage

was placed in the pressure vessel.

2.4.2 Measurement technique

A conventional pulse transmission technique (Molyneux and Schmitt, 1999, 2000) was used

to obtain P and S wave velocities using longitudinally and transversely polarized piezo-

electric ceramics, respectively. Briefly, the transmitting ceramic was activated by fast

rise-time, 200 Volt square pulse that generated the appropriate mechanical wave. The

response of the receiving ceramic was recorded at rates from 4 to 10 ns per sample de-

pending on the digital oscilloscope used a typical final waveform trace was constructed

from 100 to 500 progressively stacked records to reduce random noise. The waveform

was then transferred to a computer to be stored for later transit time determination.

In each run, waveforms were acquired in increments of∼10 MPa from room pressure

to 300 MPa (equivalent of ∼11 km depth) and back. Pressure is applied not so much

to mimic in situ conditions but to close as much of the microcrack porosity in the rocks

as possible in order that the velocities are representative of the intrinsic mineralogical

textures of the samples. The results from one S-wave run consisting of nearly 60 traces

(Figure 2.6a) highlight the well-known decrease in pulse transit times with increasing

confining pressure. The main S-wave pulse train is clearly distinguished in a section

(Figure 2.6b) taken from one of the waveforms of Figure 2.6a. In this study the pulse

onset was used to determine the transit time. Figure 2.6b also shows a smaller parasitic

P-wave arrival that is likely produced at the edges of the transmitting ceramic when it is

pulsed this arrival did not give consistent P-wave transit times and was ignored.

Velocities reported in Tables 2.2 and 2.3 are simply the ratio of the sample length

determined by repeated calliper measurements at room pressure to the transit time; the

uncertainty of the measurements of length and transit time will depend on the sample
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Figure 2.6: a) Representative gather of waveform traces for a shear wave velocity run
at different confining pressures. Overlaid black line indicates shear-wave first break. b)
Single trace from the gather with identified P- and S-waves and defined shear-wave first
break.
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length but for the worst case was always less than 1%, which is less than the variations

in velocity observed for different cores with the same axial orientation from the same

specimen. As has been shown by numerous authors, phase (plane-wave) velocities are

determined in the short cylindrical geometry of these experiments (e.g., Dellinger and

Vernik, 1994; Johnston and Christensen, 1995). The fact that phase velocities, and not ray

(group) velocities are determined is important if elastic constants are to be determined,

particularly for directions inclined to the symmetry axes (see Kebaili and Schmitt, 1997).

2.5 Results and Discussion

2.5.1 P-wave velocities

One example of the pressure dependence of P-wave velocities is shown for the entire

suite of 6 cores taken from sample 93-1. Cores Z1 and Z2 both have axes normal to

foliation and they show a larger increase in velocity at low pressures to approximately

150 MPa, suggesting that the planes of the microcracks within these rocks are primarily

parallel to the foliation. The other four cores are cut within the plane of foliation; their

compressional velocities increase nearly linearly with pressure and show little hysteresis

when the pressure is decreased. This suggests that the microcrack porosity does not

significantly influence these axial directions. It is important to note that the two cores cut

in the Y direction show similar values of velocity while the two X cut cores do not. This

discrepancy between two similarly oriented cores from the same specimen illustrates the

effect that heterogeneity at the decimeter scale can have on these rocks.

Table 2.2 gives the P-wave velocities measured at confining pressure of 200 MPa and

300 MPa for all 147 cores, pressures considered to be sufficiently high to close most of

the microcrack porosity. Note that the core sample ID in the first column in Table 2.2

was an arbitrary name given to the core when it was cut and its name may or may not

correspond with the proper core axis direction relative to the sample texture given in the

fourth column.

The P-wave anisotropy was estimated by calculating the anisotropy coefficient AP =

(Amax − Amin)/(Amax + Amin) ∗ 200% and is summarized along with the results of P-

wave velocity measurements (at 200 MPa and 300 MPa), pressure derivatives dV/dP ,
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Table 2.2: P-wave velocities, densities and average grain cross-section sizes
Sample Density, Grain X - Pr./Pol. Velocity @ Velocity @ ∼ dV/dP, A,

ID (g/cm3) sec., (mm2) direction 200MPa 300MPa T = const (%)
93-1-X1 2.946 0.011 XX 6.90 6.91 0.01 12.1
93-1-X2 2.982 XX 7.18 7.20 0.02
93-1-Y1 2.930 0.007 ZZ 6.37 6.38 0.01
93-1-Y2 2.920 ZZ 6.43 6.44 0.01
93-1-Z1 2.953 0.006 YY 7.09 7.10 0.01
93-1-Z2 2.941 YY 7.03 7.05 0.02

93-2-X1 2.721 0.003 XX 6.51 6.53 0.02 10.3
93-2-X2 2.719 XX 6.54 6.55 0.01
93-2-X3 2.717 XX 6.50 6.52 0.02
93-2-Y1 2.720 0.007 ZZ 5.99 6.02 0.03
93-2-Y2 2.724 ZZ 6.03 6.06 0.03
93-2-Y3 2.718 ZZ 5.88 5.91 0.03
93-2-Z1 2.718 0.004 YY 6.36 6.38 0.02
93-2-Z3 2.721 YY 6.38 6.41 0.03

93-3-X2 2.752 0.060 ZZ 5.96 5.98 0.02 6.0
93-3-Y1 2.743 0.032 XX 6.33 6.35 0.02
93-3-Y3 2.735 XX 6.29 6.30 0.01
93-3-Z1 2.741 0.025 YY 6.24 6.25 0.01

93-5-X 2.994 0.005 XX 7.28 7.30 0.02 9.0
93-5-Y 2.993 0.116 ZZ 6.66 6.67 0.01
93-5-Z 3.001 0.008 YY 7.07 7.08 0.01

93-6-X1 2.965 0.025 XX 6.82 6.83 0.01 3.2
93-6-X2 2.978 XX 7.00 7.00 0.00
93-6-Y1 2.987 0.051 ZZ 6.76 6.78 0.02
93-6-Y2 2.974 ZZ 6.76 6.78 0.02
93-6-Y3 3.026 ZZ 6.81 6.84 0.03
93-6-Z2 2.968 0.010 YY 6.85 6.87 0.02

93-07-X1 2.919 0.006 ZZ 6.53 6.54 0.01 9.2
93-07-X2 2.912 ZZ 6.51 6.54 0.03
93-07-Y 2.946 0.004 XX 6.87 6.88 0.01

93-07-Z1 2.920 0.003 YY 6.98 7.00 0.02
93-07-Z2 2.897 YY 6.99 7.00 0.01
93-07-Z3 2.960 YY 7.16 7.17 0.01
Table continued on next page
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Table continued from previous page
Sample Density, Grain X - Pr./Pol. Velocity @ Velocity @ ∼ dV/dP, A,

ID (g/cm3) sec., (mm2) direction 200MPa 300MPa T = const (%)
93-8-X1 2.767 0.110 ZZ 5.89 5.92 0.03 8.4
93-8-Y1 2.764 0.080 YY 5.89 5.92 0.03
93-8-Y2 2.758 YY 6.04 6.08 0.04
93-8-Y3 2.764 YY 5.98 6.00 0.02
93-8-Z1 2.766 0.140 XX 6.38 6.39 0.01
93-8-Z2 2.759 XX 6.42 6.44 0.02

93-8A-X2 2.744 35.000 - 6.22 6.24 0.02 1.9
93-8A-Y1 2.740 58.000 - 6.28 6.30 0.02
93-8A-Y2 2.747 - 6.26 6.28 0.02
93-8A-Y3 2.753 - 6.32 6.34 0.02

93-9-X1 2.762 0.040 YY 6.25 6.27 0.02 8.4
93-9-X2 2.770 YY 6.52 6.54 0.02
93-9-X3 2.799 YY 6.22 6.24 0.02
93-9-Y1 2.788 0.110 ZZ 5.98 6.01 0.03
93-9-Y2 2.784 ZZ 6.14 6.16 0.02
93-9-Y3 2.797 ZZ 6.03 6.04 0.01
93-9-Z1 2.746 0.036 XX 6.31 6.33 0.02
93-9-Z2 2.797 XX 6.39 6.40 0.01

93-12-X 2.712 0.190 ZZ 6.15 6.19 0.04 6.0
93-12-Y1 2.853 XX 6.53 6.57 0.04
93-12-Y2 2.852 0.890 XX 6.22 6.25 0.03
93-12-Z 2.707 1.510 YY 6.18 6.21 0.03

93-13-X1 2.706 0.047 YY 6.30 6.32 0.02 9.3
93-13-X2 2.712 YY 6.32 6.34 0.02
93-13-X3 2.712 YY 6.32 6.34 0.02
93-13-Y1 2.723 1.730 ZZ 5.86 5.89 0.03
93-13-Y2 2.713 ZZ 6.05 6.08 0.03
93-13-Y3 2.714 ZZ 5.83 5.86 0.03
93-13-Z1 2.712 0.736 XX 6.39 6.41 0.02
93-13-Z2 2.714 XX 6.41 6.43 0.02

93-14-X1 2.757 0.050 ZZ 5.39 5.44 0.05 24.0
93-14-X2 2.754 ZZ 5.39 5.43 0.04
93-14-Y1 2.758 0.030 YY 6.89 6.91 0.02
93-14-Z 2.755 0.070 XX 6.27 6.30 0.03

Table continued on next page
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Table continued from previous page
Sample Density, Grain X - Pr./Pol. Velocity @ Velocity @ ∼ dV/dP, A,

ID (g/cm3) sec., (mm2) direction 200MPa 300MPa T = const (%)
93-17-X1 2.752 0.190 XX 6.36 6.39 0.03 12.2
93-17-X2 2.745 XX 6.39 6.41 0.02
93-17-X3 2.746 XX 6.42 6.44 0.02
93-17-Y1 2.754 0.210 YY 6.41 6.42 0.01
93-17-Y2 2.752 YY 6.41 6.43 0.03
93-17-Y3 2.758 YY 6.47 6.50 0.03
93-17-Z1 2.757 0.170 ZZ 5.74 5.77 0.03
93-17-Z2 2.757 ZZ 5.71 5.75 0.04
93-17-Z3 2.760 ZZ 5.75 5.78 0.03

93-18-X1 2.709 0.084 XX 5.67 5.74 0.07 6.1
93-18-X2 2.723 XX 5.77 5.80 0.03
93-18-Y 2.722 0.037 ZZ 5.90 5.94 0.04

93-18-Z1 2.712 0.050 YY 6.07 6.10 0.03

93-20-X1 2.799 0.028 XX 6.11 6.15 0.04 13.2
93-20-Y1 2.869 0.069 ZZ 5.68 5.74 0.06
93-20-Z1 2.821 0.013 YY 6.50 6.55 0.05

VOL-I-X1 2.911 0.013 XX 7.36 7.38 0.02 15.8
VOL-I-X2 2.869 XX 7.07 7.09 0.02
VOL-I-Y1 2.945 0.004 ZZ 6.33 6.35 0.02
VOL-I-Y2 2.939 ZZ 6.27 6.30 0.03
VOL-I-Z 2.889 0.060 YY 7.03 7.04 0.01

VOL-III-X1 3.027 0.105 ZZ 6.56 6.58 0.02 14.6
VOL-III-X2 3.021 ZZ 6.51 6.55 0.04
VOL-III-Y1 3.028 0.015 XX 7.42 7.44 0.02
VOL-III-Y2 3.035 XX 7.50 7.51 0.01
VOL-III-Y3 3.032 XX 7.57 7.58 0.01
VOL-III-Z1 3.067 0.190 YY 7.26 7.27 0.01
VOL-III-Z2 3.069 YY 7.19 7.20 0.01

VOLC-A-X 2.618 0.280 ZZ 5.58 5.62 0.04 6.9
VOLC-A-Y 2.625 0.320 YY 5.77 5.79 0.02
VOLC-A-Z1 2.624 0.220 XX 6.00 6.02 0.02
VOLC-A-Z2 2.627 XX 5.81 5.84 0.03
Table continued on next page
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Table continued from previous page
Sample Density, Grain X - Pr./Pol. Velocity @ Velocity @ ∼ dV/dP, A,

ID (g/cm3) sec., (mm2) direction 200MPa 300MPa T = const (%)
VOLC-B-X1 2.632 0.230 XX 5.84 5.88 0.04 1.7
VOLC-B-X2 2.635 XX 5.83 5.86 0.03
VOLC-B-Y 2.631 1.680 YY 5.81 5.84 0.03
VOLZ-B-Z 2.635 1.170 ZZ 5.74 5.78 0.04

1a-a1 2.742 0.410 ZZ 5.88 5.90 0.02 6.2
1a-c2 2.760 0.390 XX 6.26 6.28 0.02

2-1B 2.937 0.220 ZZ 5.75 5.80 0.05 19.6
2-2b 2.946 0.460 YY 6.71 6.74 0.03
2-3b 2.936 0.150 XX 7.02 7.06 0.04

3-//lin 2.773 0.120 XX 6.48 6.49 0.01 7.5
3-Llin 2.789 0.210 YY 6.39 6.41 0.02
3-c2 2.755 0.640 ZZ 5.99 6.02 0.03

4-c1 2.777 0.280 ZZ 5.93 5.95 0.02 9.1
4-c2 2.767 0.160 XX 6.50 6.52 0.02

5-c1 2.746 0.370 XX 6.39 6.41 0.02 7.6
5-c2 2.745 0.350 ZZ 5.92 5.94 0.02

6-L lin 2.796 0.090 YY 6.57 6.59 0.02 9.2
6-//lin 2.807 0.077 XX 6.54 6.55 0.01

6-c2 2.806 0.100 ZZ 5.98 6.01 0.03

7-//lin 2.824 0.320 XX 6.59 6.60 0.01 5.3
7-Lfoln 2.841 0.240 ZZ 6.25 6.26 0.01
7b-Llin 2.855 0.260 YY 6.58 6.60 0.02

8 Llin 2.814 0.170 YY 7.05 7.06 0.01 2.7
8//lin 2.800 0.180 XX 6.86 6.87 0.01

8-c3 2.830 0.400 ZZ 6.86 6.87 0.01

10-c2 2.831 0.140 ZZ 6.10 6.23 0.13 4.7
10//foln 2.864 0.160 XX 6.50 6.53 0.03

11b//foln 2.705 0.029 XX 6.38 6.41 0.03 10.3
11b-c Lfoln 2.700 0.033 YY 5.83 5.90 0.07
11b-c1 Lfoln 2.696 - ZZ 5.70 5.78 0.08
Table continued on next page
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Table continued from previous page
Sample Density, Grain X - Pr./Pol. Velocity @ Velocity @ ∼ dV/dP, A,

ID (g/cm3) sec., (mm2) direction 200MPa 300MPa T = const (%)
13-Llin 2.654 0.200 YY 6.38 6.39 0.01 0.2

13a-//lin 2.658 0.140 XX 6.41 6.44 0.03
13-c2 2.653 0.130 ZZ 6.38 6.40 0.02

15a 2.667 0.320 XX 6.33 6.35 0.02 4.2
15a-c1 2.681 0.620 ZZ 6.02 6.09 0.07
15a-c2 2.687 0.190 YY 6.17 6.21 0.04

16-c1 2.694 0.440 ZZ 6.44 6.47 0.03 1.4
16-c3 2.700 0.570 XX 6.55 6.56 0.01

32-c1 2.833 0.280 ZZ 5.99 6.00 0.01 7.1
32-c2 2.823 0.330 XX 6.40 6.44 0.04

33 2.775 0.860 YY 7.08 7.10 0.02 7.0
33-a//lin 2.943 0.460 XX 7.05 7.08 0.03

33-c2 2.844 0.700 ZZ 6.60 6.62 0.02

34-c2 2.710 0.450 XX 6.52 6.55 0.03 4.4
34-c4 2.692 0.470 ZZ 6.24 6.27 0.03

where dP = 300MPa− 200MPa, density, and average grain size for each core sample in

Table 2.1. In both collections, the rocks vary in P-wave anisotropy from quasi-isotropic

to highly anisotropic. The average P-wave anisotropy for sixteen specimens from the

Granite lake collection is 6.7% and reaches as high as 19.6% in sample 2. Only two plu-

tonic samples, 13 and 16, have anisotropy coefficients less than 2% allowing them to be

treated as quasi-isotropic. Six hand specimens with foliation but no obvious lineation were

treated as having quasi transversely isotropic (TI) symmetry and samples 6, 7 and 32 dis-

played no anisotropy within the foliation plane and were thus considered as transversely

isotropic. Five samples ( 2, 8, 11, 15 and 33) have significant (∼ 0.3 km/sec) variations in

velocities within the foliation plane and have been defined as orthorhombic. Regardless

of symmetry, all the anisotropic samples except for samples 8 and 11, have a slow P-wave

velocity normal to the foliation plane and a faster P velocity within the foliation plane.

The average difference between the velocity within the foliation plane and normal to the
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foliation plane is 0.45 km/sec.

The average P-wave anisotropy of the Nesootao Lake collection is higher than the

Granite Lake samples and equals 9.5%. The variation in P-wave anisotropy, however, is

similar as the collection includes both quasi-isotropic samples (e.g. 93-8A and VOLC-B)

and highly anisotropic samples (e.g. 93-14 and VOL-I). Only three samples (93-6, 93-8A

and VOLC-B) might be considered quasi isotropic, with AP < 3%. Four samples (93-1,

93-9, 93-13, 93-17) were identified as transversely isotropic, having P velocities normal to

the foliation plane substantially lower than those within the foliation plane. The remain-

ing twelve samples show orthorhombic symmetry with a general tendency for the com-

pressional velocity to be lower in the direction perpendicular to the foliation plane. For

these samples, velocity variations within the foliation plane are also significant, reaching

a value of 0.61 km/sec in sample 93-14.

Heterogeneity within the hand specimens was studied by measuring P-wave veloc-

ities on core samples that were cut in the same direction. Most of the Nesootao Lake

collection had measurements on at least two samples cut along each axis of symmetry. In

several cases, the variation of compressional velocity in the same direction exceeds 4%,

as in the case of P-wave propagation along the Y direction in sample 93-9. This suggests

that care must be taken when interpreting the results of velocity measurements in such

deformed rocks. Ideally it would be prudent to make measurements on as many cores

as possible, but in reality high pressure measurements are difficult and time consum-

ing to carry out and an appropriate balance between sampling and statistics needs to be

found. In most cases, however, compressional wave velocities in the same direction are

consistent and vary within the experimental uncertainty.

2.5.2 Shear wave velocities

Nine metasediments from the Nesootao Lake collection were selected to measure shear

wave splitting. In all cases, two successive runs with mutually orthogonal sets of shear

wave transducers were performed on core samples used for the P-wave measurements.

The results from two such runs on sample 93-5 display a nearly linear increase in the VY Z

and VY X velocities with pressure (Figure 2.8a). It is important to note that the increase in

these velocities over the entire pressure range is less than 100 m/s or about 2%. The shear
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Figure 2.7: Compressional velocities versus confining pressure for sample 93-1.

wave splitting, here taken as the simple difference between the two velocities, displays a

small increase with pressure (Figure 2.8b) although no change with pressure would also

be allowed by the scatter in the plot together with the expected experimental uncertainty.

Results of the VS measurements and shear wave splitting are summarized in Table

2.3. In general, the shear wave behaviour correlates with the symmetries inferred on the

basis of the compressional wave anisotropy in Table 2.3. Samples 93-3, 93-07 and 93-8

display significant shear wave splitting for propagation within the foliation plane that

correlates with the transversely isotropic behaviour of compressional waves (see Figure

2.2b). Samples 93-1, 93-2, 93-5, and 93-12 display substantial variations in shear wave

splitting not only within the foliation plane but also normal to the foliation plane. Such

shear wave behaviour was interpreted as orthorhombic and correlates well with the as-
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sumption of orthorhombic P-wave symmetry for these samples. Shear wave velocities

were also measured in two samples (93-6 and 93-8A) with weak compressional wave

anisotropy. The measured VS anisotropy, especially for quasi-isotropic sample 93-8A,

approaches the level of experimental uncertainty in determining shear wave splitting,

which was estimated to be 0.03-0.06 km/sec. It is also important to note the significant

variability of shear wave splitting in the same direction compared to That for compres-

sional waves. Measured shear wave splitting shows no significant variations with pres-

sure.

The seismic section (Figure 2.4) suggests that the deformation structures observed at

the surface may extend to depths of 10-km or more. As this is a significant fraction of the

overall crustal thickness, it is worthwhile to consider what time delays could be incurred

by split shear waves traversing a section of the crust since this value may be significant in

certain terrains (Godfrey et al., 2000; Okaya and Christensen, 2002). The average shear wave

splitting within the foliation plane of the measured metasediments and metavolcanics

is 0.27 km/sec. The estimated shear wave splitting of teleseismic SKS waves travelling

parallel to the foliation plane though a 10 km thick slab of metasedimentary-metavolcanic

rocks in the midcrust section might reach a value of 0.2 sec and significantly contribute to

the overall observed shear wave splitting of SKS waves (Savage, 1999; Godfrey et al., 2000).

2.5.3 Source of anisotropy

Most of the studied metasediments from both collections show significant P and S ve-

locity anisotropy (Figure 2.9a). Seismic anisotropy in metamorphic rocks is usually at-

tributed to the presence of microcracks and intrinsic anisotropy due to the lattice pre-

ferred orientation of constituent anisotropic minerals. We analyze the sources of seismic

anisotropy from an analysis of velocity-pressure dependence curves. In our study, nei-

ther P- nor S-waves (Figures 2.7 and 2.8) display significantly higher velocity gradients

with pressure low confining pressure and both display quasi-linear behaviour at confin-

ing pressures higher than 150 MPa, which is lower than the onset of linear behavior usu-

ally estimated in literature (200-300 MPa) (Kern and Fakhimi, 1975; Kern, 1978; Siegesmund

et al., 1989; Burlini and Fountain, 1993; Ji et al., 1993; Ji and Salisbury, 1993). The absence

of the high velocity gradients at low confining pressure that are usually attributed to the
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Table 2.3: Shear-wave velocities and shear-wave splitting at 200MPa and 300MPa and
room temperature

Sample Pr./Pl. VS @ VS @ Pr./Pl. VS @ VS @ δVS @ δVS @
ID dir 200MPa 300MPa dir 200MPa 300MPa 200MPa @ 300MPa

93-1-X1 XZ 4.28 4.28 XY 4.40 4.45 0.12 0.17
93-1-X2 XZ 4.26 4.27 XY 4.30 4.32 0.04 0.05
93-1-Y1 ZY 4.19 4.27 ZX 3.81 3.82 0.38 0.45
93-1-Y2 ZY 4.17 4.18 ZX 3.88 3.89 0.29 0.29
93-1-Z1 YZ 4.16 4.16 YX 4.41 4.41 0.25 0.25
93-1-Z2 YZ 3.96 3.97 YX 4.53 4.54 0.57 0.57

93-2-X1 XY 3.77 3.78 XZ 4.15 4.18 0.38 0.40
93-2-X2 XY 3.94 3.95 XZ 3.97 3.97 0.03 0.02
93-2-X3 XY 4.27 4.31 XZ 3.52 3.54 0.75 0.77
93-2-Y1 ZX 3.69 3.76 ZY 3.84 3.88 0.15 0.12
93-2-Y2 ZX 3.50 3.51 ZY 3.66 3.77 0.16 0.26
93-2-Y3 ZX 3.71 3.75 ZY 3.72 3.77 0.01 0.02
93-2-Z1 YX 3.51 3.54 YZ 3.92 3.95 0.41 0.41
93-2-Z3 YX 3.58 3.63 YZ 3.99 4.08 0.41 0.45

93-3-X2 ZX 3.61 3.67 ZY 3.73 3.77 0.12 0.10
93-3-Y1 XZ 3.61 3.62 XY 4.07 4.11 0.46 0.49
93-3-Y3 XZ 3.75 3.76 XY 3.92 3.93 0.17 0.17
93-3-Z1 YZ 3.92 3.93 YX 3.98 4.02 0.06 0.09

93-5-X XY 4.21 4.22 XZ 4.01 4.02 0.20 0.20
93-5-Y ZX 4.24 4.29 ZY 4.29 4.29 0.05 0.00
93-5-Z YX 4.04 4.06 YZ 4.61 4.63 0.57 0.57

93-6-X1 XY 4.20 4.24 XZ 4.66 4.80 0.46 0.56
93-6-X2 XY 4.00 4.02 XZ 4.11 4.15 0.11 0.13
93-6-Y1 ZX 4.16 4.20 ZY 4.23 4.25 0.07 0.05
93-6-Y2 ZX 4.13 4.13 ZY - - - -
93-6-Y3 ZX 3.99 4.00 ZY 4.06 4.07 0.07 0.07
93-6-Z2 YX 4.15 4.23 YZ 4.01 4.02 0.14 0.21

93-07-X1 ZX 3.94 3.96 ZY 3.86 3.87 0.08 0.09
93-07-X2 ZX 3.87 3.88 ZY 3.87 3.87 0.00 0.01
93-07-Y XZ 3.77 3.78 XY 4.05 4.08 0.28 0.30

93-07-Z1 YX 3.91 3.91 YZ 4.12 4.13 0.21 0.22
93-07-Z2 YX 4.11 4.12 YZ - - - -
93-07-Z3 YX 4.10 4.12 YZ - - - -
Table continued on next page
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Table continued from previous page
Sample Pr./Pl. VS @ VS @ Pr./Pl. VS @ VS @ δVS @ δVS @

ID dir 200MPa 300MPa dir 200MPa 300MPa 200MPa @ 300MPa
93-8A-Z1 - 3.70 3.73 - 3.75 3.77 0.05 0.04

93-9-X1 YX 3.46 3.48 YZ 3.61 3.61 0.15 0.13
93-9-X2 YX 3.66 3.67 YZ 3.66 3.67 0.00 0.00
93-9-X3 YX 3.32 3.32 YZ 3.40 3.42 0.08 0.10
93-9-Y1 ZX 3.31 3.32 ZY 3.31 3.33 0.00 0.01
93-9-Z1 XY 3.72 3.72 XZ 3.76 3.76 0.04 0.04

93-12-X ZX 3.33 3.34 ZY - - - -
93-12-Y2 XY 3.36 3.37 XZ 3.54 3.56 0.18 0.19
93-12-Z YX 3.37 3.38 YZ 3.49 3.50 0.12 0.12

closure of pores, cracks and microfractures in dry rocks (Birch, 1960; Kern, 1978) suggests

that cracks may play only a minor role in our observations. This won’t also be consistent

with the weak hysteresis in the velocities when the measurements are made in the down

pressure cycle.

The stronger velocity gradient for P-waves propagating normal to foliation (Figure

2.7) indicates that whatever microcracks are present in this sample are oriented sub-

parallel to the foliation plane. Therefore, preferentially oriented microcracks might con-

tribute to the difference in velocities of seismic waves propagating parallel and perpen-

dicular to the foliation plain at confining pressure less than 100 MPa (equivalent to∼ 3.5

km depth). Anisotropy of P and S velocities at 300 MPa or higher, however, may be

attributed solely to the preferred orientation of constituent anisotropic minerals.

The absence of quantitative information on the textural properties of each mineralog-

ical species makes direct correlation of observed seismic anisotropy to the elasticity of

polycrystalline aggregates of constituent minerals ambiguous. Some correlations, how-

ever, may be suggested on the basis of the mineralogical composition of the metasedi-

ments and metavolcanics (Figure 2.9). For example, the presence of highly anisotropic

mica minerals significantly contributes to the seismic anisotropy in felsic samples and

can be directly identified as a source of seismic anisotropy in sample 93-14, which has

the maximum observed compressional wave anisotropy (AP = 24%)(Figure 2.9a). In

the samples of intermediate to basic composition, seismic anisotropy is likely corre-
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Figure 2.8: a) Shear wave velocity versus confining pressure measured along the Y di-
rection in metavolcanic sample 93-5. b) Shear wave splitting versus confining pressure
along the Y-axis of sample 93-5. Bar indicates the comparative range of the estimated
uncertainty in the shear wave velocity measurements.
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lated with the abundance of hornblende, which is highly anisotropic (Figure 2.9b). Pla-

gioclase, quartz and pyroxenes do not correlate directly with the observed P- and S-

wave anisotropy. The absence of a direct correlation between elastic anisotropy and

the modal abundance of these highly anisotropic minerals indicates that the degree of

lattice preferred orientation is the most important factor in the development of signifi-

cant anisotropy. Constructive and destructive interference between different anisotropic

minerals might also contribute to the overall observed anisotropy. Detailed quantitative

study of the texture of major constituent minerals is needed for proper correlation of the

influence of each mineralogical species on the seismic anisotropy of complex multiphase

metasedimentary and metavolcanic rocks.

2.5.4 Elastic properties

Elastic stiffnesses Cij were calculated directly from the observed phase velocities (Equa-

tions (2.12)) and the average values of the stiffnesses are given in Table 2.4. The utility of

expressing the elastic properties in terms of stiffnesses instead of velocities and densities

is that the symmetry of the material is more readily apparent. Each of the samples is as-

signed a symmetry. Samples in which the elastic moduli differ by less than the expected

levels of uncertainty are assumed to be quasi-isotropic. Those in which C11 ∼ C22 6= C33

and C44 ∼ C55 6= C66 are considered to have transversely isotropic symmetry, and those

with C11 6= C22 6= C33 and C44 6= C55 6= C66 are orthorhombic.

As can be seen in Table 2.4, elastic moduli vary significantly from sample to sample.

One useful exercise is to find the simple average of each of these elastic coefficients. The

simple average has some physical significance because it represents the elastic properties

of a hypothetical formation composed of equal volumes of each of the samples measured,

assumed that the samples are identically aligned with respect to the X, Y and Z axes.

Under this assumption the simple average is identical to the Voigt bound (e.g. Watt et al.,

1976) and as such, would provide the upper bound to the allowed anisotropy. In reality,

the foliations of the rocks in the field are not as well aligned and the real average, if it

could be determined, would be more isotropic. However, as indicated in Figure 2.3b, the

foliations are regionally consistent.

Simple averages were calculated for both suites individually and are presented to-
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Table 2.4: Average elastic stiffnesses (GPa) and anisotropic parameters
Polar. XX YY ZZ ZY,YZ ZX,XZ XY,YX Anis. parameters ρave Elst.

ID C11 C22 C33 C44 C55 C66 ε(1) ε(2) γ(1) γ(2) g/cm3 sym
93-1 148 148 120 50 49 58 0.11 0.11 0.09 0.07 2.945 TI
93-2 116 111 98 41 39 40 0.07 0.09 0.02 -0.01 2.720 ORT
93-3 110 107 98 41 37 44 0.04 0.06 0.09 0.04 2.743 ORT
93-5 160 133 150 60 52 51 -0.06 0.03 0.00 -0.07 2.996 ORT
93-6 142 140 139 51 54 52 0.01 0.01 -0.03 0.01 2.983 qISO
93-7 139 146 125 46 44 48 0.08 0.06 0.05 0.03 2.926 ORT
93-8 114 99 97 - - - 0.01 0.09 - - 2.763 ORT
93-8a 107 109 111 39 - - -0.01 -0.02 - - 2.748 qISO
93-9 112 112 103 34 35 35 0.04 0.05 0.00 0.01 2.780 TI
93-12 117 104 104 33 33 32 0.00 0.06 -0.02 -0.02 2.781 ORT
93-13 112 109 96 - - - 0.07 0.08 - - 2.713 TI
93-14 109 132 81 - - - 0.31 0.17 - - 2.756 ORT
93-17 113 115 92 - - - 0.12 0.12 - - 2.753 TI
93-18 90 101 96 - - - 0.03 -0.03 - - 2.716 ORT
93-20 106 121 95 - - - 0.14 0.06 - - 2.830 ORT
VOL-I 151 143 118 - - - 0.11 0.14 - - 2.911 ORT

VOL-III 171 161 130 - - - 0.12 0.16 - - 3.040 ORT
VOLC-A 92 88 83 - - - 0.03 0.06 - - 2.623 ORT
VOLC-B 91 90 88 - - - 0.01 0.02 - - 2.633 qISO

1 109 - 95 - - - - 0.07 - - 2.751 TI
2 146 134 99 - - - 0.18 0.24 - - 2.940 ORT
3 117 115 100 - - - 0.07 0.08 - - 2.772 TI
4 118 - 98 - - - - 0.10 - - 2.772 TI
5 113 - 97 - - - - 0.08 - - 2.745 TI
6 120 121 101 - - - 0.10 0.09 - - 2.803 TI
7 123 124 111 - - - 0.06 0.05 - - 2.840 TI
8 132 140 134 - - - 0.03 -0.01 - - 2.814 ORT
10 122 - 110 - - - - 0.06 - - 2.847 TI

11b 111 94 90 - - - 0.02 0.12 - - 2.700 ORT
13 110 108 109 - - - 0.00 0.01 - - 2.655 qISO

15a 108 104 99 - - - 0.02 0.04 - - 2.678 ORT
16 116 - 113 - - - - 0.02 - - 2.697 qISO
32 117 - 102 - - - 0.07 - - - 2.828 TI
33 148 140 125 - - - 0.06 0.09 - - 2.854 ORT
34 116 - 106 - - - - 0.05 - - 2.701 TI
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Table 2.5: Average elastic stiffnesses with standard deviation, (GPa)
Mean value C11 STD C22 STD C33 STD C44 STD C55 STD C66 STD

Nesootao Lake 121 24 119 21 106 4 44 9 43 8 45 9
Granite Lake 120 12 120 16 106 11 - - - - - -

gether with the standard deviations for each elastic constant at the bottom of Table 2.5.

A surprising result is that both averages are nearly the same. Furthermore, the overall

elastic stiffnesses tends to be transversely isotropic.

The standard deviations, too, are of interest. Heterogeneity within the crust has for

the most part been ignored in seismological studies. However, heterogeneity, or more

precisely the relative dimensional scale of heterogeneity with respect to the wavelength

of interrogating seismic waves can have some important influences on the observed seis-

mic velocities (see Molyneux and Schmitt, 1999).

2.6 Conclusions

Two representative collections of textured metamorphic rocks with compositions that

vary from felsic to basic have been studied to determine the elastic behaviour of de-

formed low-grade metamorphic rocks. Measurements of the P- and S-wave velocities

and shear wave splitting indicate that samples of the metasediments and metavolcanics

vary from the moderately to highly anisotropic with an average P-wave anisotropy of

6.7% for the Granite Lake collection and 9.5% for the Nesootao Lake collection, with in-

dividual samples displaying quasi-isotropic, transversely isotropic or orthorhombic elas-

tic symmetry. P-wave symmetry was correlated with Vs measurements and shear wave

splitting to reinforces these inferences on the elastic symmetry.

The observed seismic anisotropy is directly related to the visible fabric. The velocities

in most samples do not show large increases with pressure above 150 MPa, indicating

that most of the cracks are closed at lower pressures. At high confining pressures the ob-

served P- and S-wave anisotropy is caused by lattice preferred orientation of constituent

anisotropic minerals. The presence of mica and hornblende influence the level of seismic

anisotropy for felsic and basic metasediments, respectively. There is no direct evidence

for a correlation of the seismic anisotropy with the volumetric abundance of quartz, pla-
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a)

b)

c)

Figure 2.9: Mineral abundance of investigated rocks is plotted versus anisotropic coeffi-
cients for a) metasediments; b) metavolcanics; c) plutons (QZ - quartz, PL - plagioclase,
BIO - biotite, HBD - hornblende, GL stands for Granite Lake collections, NL for Nesootao
Lake).
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Figure 2.10: Compressional wave velocity versus density for measured samples. Con-
tours of constant acoustic impedance provide mapping of obtained results on acoustic
impedance scale. Velocity normal and parallel to foliation plotted to reflect effect of
anisotropy.

gioclase or pyroxenes.

The experimentally observed velocity and density contrasts in these anisotropic rocks

(more than 10-16% seismic anisotropy) may influence seismic reflectivity (Jones and Nur,

1982; Kern and Wenk, 1990; Siegesmund and Kern, 1990) and should be taken into consid-

eration in seismological studies of the reflectivity of ductile shear zone of the FFB. While

one could construct a model of the velocity structure in the Flin Flon Belt using the results

of these velocity measurements, it is likely that this model would not be very representa-

tive of the real situation given the range and heterogeneity of elastic properties, densities

and velocities within any given suite of rocks (Figure 2.10). That is, it would be difficult
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to unambiguously explain the strong seismic reflectivity seen in Figure 2.4 on the basis of

the present measurements alone. Indeed, while one may want to make an interpretation

that the reflectivity is simply due to impedance contrasts between the plutons and the

other metamorphosed rocks, this interpretation is difficult to make given that the elastic

properties of the plutons do not noticeably differ from the other rocks (Figure 2.10). The

best way to study the reflectivity in detail would be to acquire a continuous section of

the rocks by drilling and to carry out wellbore seismic and sonic logging experiments

throughout the zone to better understand where exactly the reflections are coming from.

The relatively shallow depth of the reflectors beneath the pluton in Figure 2.4 makes this

area a good potential target for scientific drilling.

Finally, although the measurements presented are already relatively extensive, the

results could be greatly improved by additional off-symmetry axis measurements of P-

and S-wave velocities. These would be useful to constrain the behaviour outside of the

symmetry planes and to calculate the off-diagonal elastic stiffnesses. Such information

may be particularly important for the interpretation and future reprocessing of active

source seismic data given that lineations in the region dip at angles near 45◦. Future

work may involve the ultrasonic array methods developed in Mah and Schmitt (2003) to

test whether even more complex elastic symmetries than orthorhombic are required to

fully describe the elasticity of deformed metamorphic rocks.
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Chapter 3

Elasticity of polycrystalline
aggregates of orthotropic symmetry:
application to olivine texture

1

The elasticity of a textured olivine polycrystalline aggregate is investigated on the

basis of the Voigt, the Reuss, and the Geometric Mean Averaging (GMA) procedure. To

account for the aggregate textural properties the orientation distribution function (ODF)

of the hypothetical texture of polycrystalline aggregate of orthotropic symmetry is de-

veloped and incorporated into the averaging. The Voigt (upper) and the Reuss (lower)

bounds are generally accepted as limits of a range of values for elastic constants of tex-

tured aggregate. The Geometric Mean Averaging technique is employed to provide a set

of elastic constants that are independent on the initial averaging assumptions. This av-

eraging procedure is applied to the monomineralic olivine aggregate with hypothetical

texture of orthotropic symmetry that reflects one of the main types of texture developed

in naturally deformed mantle peridotites. The effect of the averaging assumptions on the

elastic velocities and anisotropy is discussed. Elastic velocities and intrinsic anisotropy

derived from the hypothetical texture are compared to experimental ultrasonic velocities

of peridotites reported in the literature.

1Different parts of this Chapter have been presented at EGS 2001, AGU 2001, 2003 annual meetings, and
CGU/AGU/SEG/EEGS 2004 joint assembly.
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3.1 Introduction

The investigation of the elasticity of polycrystalline aggregates has a long history. Since

the work of Voigt (1928) and Reuss (1929) based on assumptions of uniform strain and

stress within the isotropic polycrystalline aggregate, respectively, more sophisticated tech-

niques have emerged. The self-consistent approach of Kröner (1958) and the variational

approach of Hashin and Shtrikman (1962a,b) have been incorporated by Zeller and Ded-

erichs (1973) and Kröner (1977) into a generalized effective medium theory and since have

been successfully applied mainly to isotropic polycrystalline aggregates composed of

weakly anisotropic cubic crystals, usually metals.

If an aggregate is textured its elastic properties will deviate from isotropy. In order

to investigate the elasticity of a textured polycrystalline aggregate detailed knowledge of

the crystallographic orientation of the constituent minerals relative to a convenient refer-

ence frame is necessary. This information can quantitatively be provided by the orienta-

tion distribution function (ODF) of Viglin (1960). Roe (1965) and Bunge (1982) described

application of the ODF in the Voigt averaging procedure to calculate elastic constants of

textured polycrystalline in the stiffness domain. Similarly, results of the Reuss approxi-

mation can be produced if the averaging is performed in the compliance domain. Kneer

(1965) incorporated the ODF into self-consistent approximation of Kröner (1958). Morris

(1970, 1971) further developed this technique and Humbert and Diz (1991) and Diz and

Humbert (1992) discussed its applications to the elasticity of polycrystals. It has been

mentioned by these authors that specific care has to be taken in this types of calculations

to provide convergence of the solution.

An elegant approach to estimate the elastic properties of an aggregate that reduces

complicated calculations and the restrictive assumptions has been proposed by Aleksan-

drov and Aizenberg (1966). They modified the volume weighted averaging procedure of

Voigt (Voigt, 1928) or Reuss (Reuss, 1929) to produce a set of elastic constants that is inde-

pendent of the averaging domain employed, i.e. the same answer is obtained regardless

of whether stiffnesses or compliances are averaged. This concept was further developed

by Morawiec (1989) and later by Matthies and Humbert (1993) to average physical proper-

ties described by a fourth-rank tensor. This technique is referred to as Geometric Mean
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Averaging (GMA) (Matthies and Humbert, 1993) and is used here for the first time to our

knowledge to estimate the elasticity of textured aggregate with defined symmetry, i.e.

aggregate of orthotropic symmetry composed of orthorhombic symmetry crystals.

In Geophysics, application of the above mentioned averaging techniques to geomate-

rials is usually complicated (e.g. Wenk, 1985). The difficulty in modelling rocks originates

from the complexity of textured multiphase polycrystalline aggregates composed of a va-

riety of low-symmetry minerals. In geosciences the ODF averaging procedure has mainly

been mainly applied to monomineralic aggregates, for example Johnson and Wenk (1986)

and Wenk et al. (1988) estimated the elastic properties of an aggregate with orthorhombic

symmetry composed of trigonal calcite using the Voigt averaging scheme.

In order to model the elasticity of textured olivine aggregates the Voigt averaging

technique has usually been used (e.g. Crosson and Lin, 1971; Christensen, 1971; Babuška,

1972). Application of different averaging techniques to geomaterials is one of the objec-

tives of this study and presently a topic of investigation in Rock Physics (e.g. Kocks et al.,

1998). Mainprice and Humbert (1994) applied several averaging techniques, including the

GMA and the self-consistent approach, to calculate compressional and shear velocities of

textured plagioclase feldspar and biotite aggregates. It is unclear from the paper if any

assumption on the symmetry of the aggregate’ elasticity has been incorporated into the

GMA procedure. These authors compared velocities modelled by different techniques

with experimental measurements and concluded that the GMA provides the closest re-

sults to experimental data among simple averaging techniques.

The fabrics of ultramafic rocks in general, and peridotites in particular, display sym-

metries that are close to transversely isotropic, orthorhombic or monoclinic (Babuška and

Cara, 1991). In this Chapter the elasticity of the aggregate expressing orthotropic statisti-

cal symmetry is considered. Here the term orthotropic instead of orthorhombic is used. The

term orthotropy reflects a statistical sample symmetry consistent with three mutually or-

thogonal symmetry planes, and three orthotropic two fold rotation axes defined by inter-

section of three mirror symmetry planes (Kocks et al., 1998). Orthotropic symmetry holds

in a statistical sense within the medium, not for every point, and is therefore more suit-

able for description of overall aggregate symmetry. For orthotropic symmetry the num-

ber of the unknown elastic constants is nine (the same as for orthorhombic symmetry). In
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practice, the nine independent elastic constants are usually unknown. This complicates a

model compared to an isotropic medium with two unknown. The orthotropic medium,

however, is still a simplified approximation if compared to twenty-one unknown elastic

constants for the most general case of triclinic anisotropy with no symmetry. Seismolog-

ical observations of elastic anisotropy interpreted using orthotropic approximation may

provide a more exact characterization of elastic wave behavior by better fitting data and

assisting proper interpretation. Orthotropic symmetry also provides the best characteri-

zation of elastic wave behaviour when rocks exhibit foliation and lineation (see Chapter

2 for discussion).

The main purpose of this Chapter is to investigate the effect of different averaging

techniques on modelling the elasticity of polycrystalline aggregates of orthotropic sym-

metry. The polycrystalline aggregate considerate here composed solely of Mg-rich upper

mantle olivine, (Mg1−x Fex)2 Si O4 where x ≈ 0.1, which is elastically orthorhombic. The

algorithm of averaging orthotropic aggregate composed of orthorhombic crystals based

on the standard the Voigt and the Reuss averages is developed following a Bunge (1982)

style of ODF normalization. Further, to avoid generalizing assumptions of the Voigt or

the Reuss averages the GMA has been developed for this orthotropic-orthorhombic case

and incorporated into the ODF averaging procedure. Although application of the ODF

to model the elasticity of polycrystalline olivine aggregate is not new (the Voigt approx-

imation has been used before, e.g. Ben Ismaı̈l and Mainprice (1998)), the investigation of

the effect of different approximations, particularly development of a GMA solution to

this problem, provides new insights.

Earlier studies in which the olivine texture in dunite and peridotites is described

are reviewed. On the basis of this information, a hypothetical texture representative of

one type of naturally deformed peridotites, is constructed for a olivine aggregate with a

strong lattice preferred orientation (LPO) and quantitatively described by the ODF of or-

thotropic symmetry. The elastic constants and corresponding elastic wave velocities for

this olivine texture are calculated and discussed in light of comparison to the laboratory

measurements of the elastic velocities of peridotites.
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3.2 Elasticity of polycrystalline aggregate: averaging procedure

In order to evaluate the intrinsic elastic properties of the polycrystalline aggregate, knowl-

edge about the single crystal elastic constants, the aggregate density and the distribution

of the orientations of the crystals in the aggregate are required. In this Section aver-

aging procedures used to obtain the elasticity of textured polycrystalline aggregate are

discussed. Quantitative description of the crystals orientations within the aggregate (i.e.

the texture) is provided through the orientation distribution function f(g) (See Appendix

D for definitions and details on the ODF). The reader should refer to the monograph by

Bunge (1982) for extensive and detailed description of the ODF. In the present study, his

notation and normalization are adopted directly.

The relationship between stress and strain in the single crystal in the linear regime of

small deformations is described through the generalized Hooke’s Law and represented

by the forth-rank tensor of elastic stiffnesses Cijkl, where i, j, k, l = 1, 2, 3. The inverse

of the elastic stiffnesses are the elastic compliances Sijkl, where i, j, k, l = 1, 2, 3, relate

acquired stain to applied stress in the crystal. Naturally, [Cijkl]−1 = [Sijkl].

When crystals comprise a polycrystalline aggregate, the stresses applied to the aggre-

gate are related to its strain via the elastic stiffnesses of the aggregate C̃ijkl. Correspond-

ing elastic compliances of the aggregate are [S̃ijkl] = [C̃ijkl]−1. These values, also knows

as the effective elastic constants, can in principle be measured experimentally. When aver-

aging procedures are used, the assumption is made that elastic constants of the aggregate

are equal to the volume weighted average values of elastic constants of constituent min-

erals C̃ijkl = Cijkl. If the aggregate is textured, the averaged elastic constants are also

appropriately weighted by the textural properties, this weighting is quantitatively de-

scribed by the ODF. In the case of the Voigt assumption of uniform strain throughout the

aggregate, the average value of elastic constants is calculated as (e.g. Kneer, 1965):

C
V
ijkl =

∮
Cijklf(g) dg (3.1)

where integration is carried out over the orientation domain g = (ϕ1, Φ, ϕ2) com-

posed the three Euler angles (cf. Morse and Feshbach, 1953), the ODF is discussed in more

detail in Appendix D. The choice of the integration symbol employed here is intended
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to provide consistency with notations of Bunge (1982). Similarly, to obtain elastic compli-

ances of the aggregate, the compliances of the constituent minerals are averaged in the

identical procedure fulfilling the Reuss approximation of uniform stress:

S
R
ijkl =

∮
Sijklf(g) dg (3.2)

In practice, the averaging procedure in equation (3.1) is written as:

C
V
i =

∑

j

a V
ij Cj (3.3)

where C
V
i , i = 1, 2, ...,m are averaged symmetry-dependent elastic stiffnesses of the

aggregate using the Voigt notations (e.g Nye, 1990), the Cj , j = 1, 2, .., n are elastic stiff-

nesses of the single crystal, and the a V
ij are averaging constants that contain information

about statistical symmetry of the aggregate and its textural properties. These a V
ij are de-

termined from the ODF or theoretically derived for the case of isotropic aggregate (Voigt,

1928).

Equation (3.3) can be re-written in a matrix form (See Appendix C for description of

an isotropic Voigt and Reuss averaging matrixes):

C
V = a V C (3.4)

where C
V is a vector of length [m], composed of the m elastic stiffnesses of the ag-

gregate in the Voigt approximation, C is vector of length [n], corresponding to the n

independent elastic stiffnesses of the single crystal, and a V is the Voigt [m×n] averaging

matrix. In the present case of orthotropic aggregate composed of orthorhombic crystals

n = m ≡ 9 and the averaging matrix a V is a square matrix of size [9× 9].

Corresponding to Equation 3.2, the Reuss assumption (Reuss, 1929) of uniform stress

is fulfilled if instead the compliances S are averaged:

S
R = a R S (3.5)

where similarly S is vector of length [9] of independent elastic compliances of the

single crystal, a R is the Reuss [9 × 9] averaging matrix, and S
R is a resulting vector of

nine elastic compliances of aggregate in the Reuss approximation.
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To compare results of these two averages either the Voigt stiffnesses or the Reuss

compliances must be inverted. A complication with the application of either the Voigt

or the Reuss averages is that C
R 6= C

V and S
V 6= S

R. That is, the Voigt and the Reuss

averages, generally accepted to provide respectively the upper and lower bounds to the

aggregate elastic constants, diverge from one other with an increase in anisotropy of

the single crystal. Usually one of the bounding assumption is chosen to be used in the

averaging, depending on whether experimental results are presumed to be closer to the

Voigt or the Reuss solution. In the absence of the experimental constrains, justification

of specific averaging assumption to be used is usually cumbersome (for discussion see

Kumazawa, 1969).

In order to overcome the difficulty of choosing appropriate averaging assumption

Aleksandrov and Aizenberg (1966) suggested a modified averaging procedure that in addi-

tion to the general averaging assumption C̃ijkl = Cijkl, also accommodates the physical

requirement of the invertibility of aggregate elastic stiffnesses Cijkl into the correspond-

ing elastic compliances Sijkl, i.e. [Cijkl]−1 = [Sijkl].

The details of Aleksandrov and Aizenberg (1966) idea, which underly much of the cur-

rent averaging techniques but are perhaps not always properly acknowledged, are de-

scribed here retaining these authors’ original notation for consistency. Assume the un-

known physical properties of the aggregate are Ri, i = 1, 2, ..., N . The inverse of these

properties defined as Qi, i = 1, 2, ..., N exist, and R
−1
i ≡ Qi. The averaging operator

<φ(Rj) contains an averaging function φ(Rj), which has its inverse function φ−1, and

Rj , j = 1, 2, ..., N are corresponding physical properties of the constituent minerals (their

inverse Qj = R−1
j ). The averaged physical properties can then be written in the averag-

ing operator form:

Ri = <φ(Rj) = φ−1

{∑

j

aij φ(Rj)
}

(3.6)

where aij are averaging constants that contain an information about statistical sym-

metry of the aggregate and its textural properties. Aleksandrov and Aizenberg (1966) proved

that the averaging function that allows the assumption R
−1
i = Qi to be satisfied has a

form ϕ = α ln Rj + β, for any α 6= 0 and β, and the averaging operator can then be
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written:

Ri = <φ=αlnR+β(Rj) = <φ=lnR(Rj) = exp

[∑

j

pij ln(Rj)
]

=
∏

j

R
pij

j (3.7)

Aleksandrov and Aizenberg (1966) applied this technique to calculate the bulk and the

shear moduli of weakly anisotropic cubic crystals with random orientation distribu-

tions. Morawiec (1989) and Matthies and Humbert (1993) further developed Aleksandrov

and Aizenberg (1966) idea, and Matthies and Humbert (1993) demonstrated its applicability

to average physical properties of aggregates described by forth-rank tensors, e.g. elastic-

ity.

In order to model elasticity using GMA, the elastic constants must be re-arranged

into a matrix form. The elastic stiffnesses and compliances of the single crystal in the

Voigt notation written as a vector in equation (3.4) and (3.5), correspondingly, usually

appear in the form of the of [6× 6] symmetric matrix known as the elasticity matrix. This

elasticity matrix contains either stiffnesses Cij or compliances Sij , where i, j = 1, 2, ..., 6,

and correspondence between stiffnesses and compliances in this case is provided by the

matrix operation of inversion, [Cij ]−1 = [Sij ].

Matthies and Humbert (1993) demonstrated that Aleksandrov and Aizenberg (1966) idea

of modification of averaging technique to make results of an averaging operator invert-

ible can be extended to physical properties described by the forth-order tensor (e.g. elas-

ticity tensor). The elasticity tensor should be re-written in matrix form, and the GMA

is implemented by diagonalizing elasticity matrix to average modified eigenvalues of

elasticity matrix:

Cij = UΛ0UT (3.8)

where Λ0 is a diagonal matrix of the eigenvalues of the elasticity matrix Cij , and U is

the matrix of its eigenvectors. Equation (3.8) basically describes the operation of single

value decomposition (SVD) of elasticity matrix. Matthies and Humbert (1993) showed that

a proper implementation of the GMA requires conditions of orthogonality of the matrix

U and positivity of eigenvalues in Λ0 to be satisfied. If the matrix U is orthogonal, it

satisfies property UT = U−1, and equation (3.8) can also be re-written as eigenvalue
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decomposition of the elasticity matrix Cij :

Cij = UΛ0U−1

Following averaging operator <ϕ the diagonalized matrix Λ0 must be modified ac-

cording to the averaging function ϕ, i.e. new diagonal matrix Λ = exp Λ0 that contains

exponents of eigenvalues of Cij is calculated. The elasticity matrix is now modified:

Cij = U ΛU−1 (3.9)

and its values can now be used in the averaging procedure similar to equation (3.4):

Ĉ = aC (3.10)

where averaging matrix a that contains an information on both the symmetry and the

texture of the aggregate (detailed description on construction of the averaging matrix for

aggregate of orthotropic symmetry from the ODF is presented in Appendix D). Follow-

ing the averaging operator <ϕ in Equation (3.7), the inverse averaging function ϕ−1 must

be applied through the eigenvalue decomposition of matrix Ĉij :

Ĉij = W Λ̂W−1 (3.11)

and

Λ = ln Λ̂ (3.12)

where Λ is a diagonal matrix that contains the logarithms of the eigenvalues of matrix

Ĉij . Finally, to complete averaging operator <ϕ matrix of elastic constants of the textured

aggregate can be obtained by:

Cij = W ΛW−1 (3.13)

Cij is a matrix of elastic stiffnesses of textured aggregate averaged by the GMA. If

one applies the averaging operator <ϕ to the elastic compliances of the single crystal Sij ,

the GMA elastic compliances matrix Sij would satisfy the condition of invertibility of
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the elastic stiffnesses to its elastic compliances, [Sij ]−1 = [Cij ]. In this sense the GMA

procedure described by equations (3.8) - (3.13) is self-consistent. One also might note, that

if the averaging function in the operator <ϕ is chosen to be unity, ϕ ≡ 1, the averaging

operator reduces to the those used in the Voigt or the Reuss averaging, equations (3.4)

and (3.5), respectively.

3.3 Application to an olivine aggregate of orthotropic symmetry

The averaging procedure described in Section 3.2 is general and restricted only by the

symmetries of the constituent minerals and the statistical symmetry of the aggregate. It

is also intended to model single-phase polycrystalline aggregate and developed to inves-

tigate elasticity of orthotropic aggregate of orthorhombic olivine. Olivine is the major

constituent of peridotite and as such its properties significantly affect the propagation

of seismic waves through the Earth’s upper mantle. Many studies of mantle peridotites

brought to the surface by different geological processes show peridotites have acquired

noticeable texture suggesting these rocks are likely deformed within the Earth.

The mineral phases composing peridotite, olivine particularly, develop a strong tex-

ture as a result of plastic deformation and recrystallization. It is the lattice preferred

orientation of olivine in textured peridotite rocks that is believed to be primarily respon-

sible for compressional and shear wave anisotropy and shear-wave splitting in the upper

mantle (e.g. Christensen, 1984; Nicolas and Christensen, 1987; Babuška and Cara, 1991).

Dunites and peridotites have long been studied by a variety of methodologies. Elastic

wave anisotropy was observed by ultrasonic measurements on dunites (e.g. Christensen,

1966; Crosson and Lin, 1971; Christensen, 1971; Babuška, 1972; Kern and Richer, 1981) and

peridotites (e.g. Peselnick et al., 1974; Peselnick and Nicolas, 1978; Kern, 1978; Kern et al.,

1996). The relationship between seismic anisotropy and peridotite fabric was investi-

gated in numerous studies (e.g. Christensen and Salisbury, 1979; Christensen, 1984; Nicolas

and Christensen, 1987; Kern, 1993b,a; Mainprice and Silver, 1993; Ji et al., 1994; Ben Ismaı̈l

and Mainprice, 1998; Weiss et al., 1999a; Soedjatmiko and Christensen, 2000; Christensen et al.,

2001).

Strong lattice preferred orientation (LPO’s) are observed in naturally deformed peri-
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dotites from almost all classic type exposures (e.g. Mercier, 1985). In this Chapter a hypo-

thetical olivine texture that is representative of one common type of peridotite is devel-

oped for purposes of investigation of effects of averaging assumptions on the elasticity

of textured olivine aggregate. This texture is characterized with the crystallographic axes

[100], [010] and [001] distributed around the specimen X , Z and Y axes, respectively (Fig-

ure 3.1).

[100]

[001]

[010]

Z

X
X - lineation direction
XOY - foliation plane

O

x

z

y

Y

Figure 3.1: Olivine crystallographic axes alignment with respect to the sample coordinate
system.

This type of texture is well described in the literature and has been called a (010)[100]

or Type I olivine pattern (Ben Ismaı̈l and Mainprice, 1998; Tommasi et al., 2000) or a char-

acteristic Type IV (Weiss et al., 1999a). The olivine crystallographic axes [100], [010] and

[001] are primarily aligned to the specimen lineation direction (X) within the foliation plane

(XOY ), the normal (Z) to the foliation plane and the normal (Y ) to the lineation direction

within the foliation plane, respectively (Figure 3.1). This ’point maximum’ type of olivine

68



3.3. APPLICATION TO AN OLIVINE AGGREGATE

texture has been observed in dunites (Crosson and Lin, 1971; Christensen, 1971; Babuška,

1972), and almost all types of naturally deformed peridotites including those from Alpine

- type massifs (Nicolas et al., 1971, 1973; Peselnick et al., 1974; Weiss et al., 1999a), ophiolitic

massifs (Christensen and Salisbury, 1979; Suhr, 1993; Ben Ismaı̈l and Mainprice, 1998), xeno-

liths (Mercier and Nicolas, 1975; Poirier and Nicolas, 1975; Ji et al., 1994; Kern et al., 1996;

Soedjatmiko and Christensen, 2000; Christensen et al., 2001), and in kimberlite nodules (Boul-

lier and Nicolas, 1975; Mainprice and Silver, 1993; Ben Ismaı̈l and Mainprice, 1998).

During plastic deformation in the lithosphere under high pressure and temperature

conditions the olivine within peridotite develops a highly oriented lattice preferred ori-

entation (e.g. Nicolas and Christensen, 1987). High temperature further promotes the de-

velopment of extremely strong fabrics enhanced by diffusion and large grain boundary

mobility. The mechanisms of peridotite deformations were extensively studied by nu-

merous workers (e.g. Poirier and Nicolas, 1975; Nicolas et al., 1971; Karato, 1988) who sug-

gest that combination of several mechanisms including sliding, dislocation gliding and

dynamic recrystallization contribute to the plastic deformation. The role of each process

on the texture development of an olivine aggregate greatly depends on the pressure and

the temperature conditions as well as on the presence of fluid and minor mineral phases

during the formation or recrystallization periods.

The development of LPO in olivine aggregates has also been theoretically evaluated

with several models based on polycrystalline plasticity theory. Some examples include

the viscoplastic self-consistent (VPSC) theory (Wenk et al., 1991), the stress equilibrium ap-

proach (Chastel et al., 1993), their combination (Tommasi et al., 2000), and the kinematic

approach (Ribe and Yu, 1991). These models consider the LPO to evolve solely by in-

tracrystalline slip and are able to make predictions about olivine LPO development under

pressure-temperature (P-T) conditions where recrystallization may be neglected. How-

ever, early experimental results by Ave’Lalliemant and Carter (1970) and Nicolas et al. (1973)

indicate that recrystallization also likely plays an important role for LPO development in

the high temperature regime.

Most recently, Zhang and Karato (1995); Karato et al. (1998) and Zhang et al. (2000) re-

ported the results of simple shear deformation experiments on olivine synthetic aggre-

gates. These experiments clearly indicate that the olivine crystallographic axes develop
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a so-called ”point maximums” type of texture, when axes are concentrated in particular

directions with close to circular spatial distribution. The degree to which this preferred

alignment occurs depends on the shear strain regime and the presence of fluids. Zhang

et al. (2000) suggested that dynamic recrystallization has a strong effect on both the me-

chanical behavior and the LPO development.

- 90 - 45 0 45 90- 90 - 45 0 45 90

f :[100],[001] m=0, s=30
f :[010] m=0, s=17.5

degree

pdf

Figure 3.2: Probability density functions (PDF) used
in construction of hypothetical olivine texture of or-
thotropic symmetry.

Recent advances in texture

modelling allow for dynamic

recrystallization including sub-

grain rotation and grain-boundary

migration (GBM) to be ac-

counted for. Wenk et al. (1997)

used modified VPSC model to

investigate dynamic recrystal-

lization on several mineral ag-

gregates. Wenk and Tome (1999)

include processes of bound-

ary migration and nucleation

into VPSC plasticity theory to

model simple shear experiment

results. Most recently, Kaminski

and Ribe’s (2001) kinematic model incorporates dynamic recrystallization and LPO de-

velopment in olivine aggregates. Reported modelling results compare favorably with

the simple shear experiments of Zhang and Karato (1995) and Zhang et al. (2000). Kamin-

ski and Ribe (2001) suggest that the [100] and [010] secondary peaks on pole figures ob-

served during shear deformation experiments correspond to the crystallographic axis of

the harder residual olivine grains with low dislocation densities that were not consumed

by grain boundary migration. Modelling results indicate that these [100] and [010] sec-

ondary peaks tend to disappear at larger strain (Kaminski and Ribe, 2001).

Based on the discussed above experimental results, theoretical modelling calcula-

tions and observations in natural peridotites, a hypothetical but representative texture

of olivine aggregate with characteristic point maximum distributions along the sample
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symmetry axes was constructed. To create this texture the [100], [010] and [001] olivine’

crystal axes were normally distributed with the mean values of distributions centered on

the specimen X , Z and Y axes, respectively.

Here, the distribution of the olivine crystallographic axes around the specimen sym-

metry axes are represented by Gaussian distributions with standard deviation σ adjusted

to reflect distributions in naturally deformed peridotites of orthotropic symmetry. In or-

der to reflect the observations of usually stronger concentration of the [010] axis within

the deformed peridotites, the axis’ standard deviation is smaller than for the [100] and

[001] axes (Figure 3.2).

Normal distributions of Figure 3.2 were used to construct an orthotropic texture with

distribution of olivine crystallographic axes shown in pole figures in the Figure 3.3. Olivine

[100] and [001] axes distributions within the foliation plane XOY are identical and more

broadly distributed in the foliation plane in comparison to the more centered [010] axis

distribution (Figure 3.3). The values are normalized by uniform distribution and shown

as multiples of uniform distribution or m.u.d. (e.g. Wenk, 1985). No secondary [100] or [010]

axis peaks were assumed.

3.4 Results and discussion

The Voigt, the Reuss, and the GMA averaging procedures described above were applied

to the olivine polycrystalline aggregate with hypothetical texture characterized by equal-

area projections of Figure 3.3. The elasticity of the olivine aggregate considered here is

bounded by the two extreme orientation distributions: first a perfectly aligned aggregate

with the properties similar to those of the single crystal (quasi single crystal) and second

a randomly distributed aggregate with isotropic properties that may be calculated by

the traditional Voigt-Reuss (VR) bounds (Appendix C). The olivine single crystal elastic

constants reported by Webb (1989) (shown in matrix notation alone with the VR bounds

for an isotropic aggregate on Figure 3.4) were used in the calculations. Clearly from

Figure 3.4, the isotropic VR bounds are narrow for all elastic constants (with C
V (iso)
11 being

103.6% of C
R(iso)
11 ). This may explain why experimental results reported in the literature

(which have experimental error close to the value of separation of the bounds for this
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case) could be close to either the Voigt or the Reuss bound (e.g. for further discussion see

Crosson and Lin, 1971)

Figure 3.3: Hypothetical orthotropic ag-
gregate: equal-area projections of olivine
crystallographic axes.

Knowing the full set of elastic constants,

compressional and shear-wave velocities can

be calculated for any specific direction of

wave propagation within the aggregate. By

applying the Christoffel equation (details on

the derivation of the Christoffel equation are

available in Appendix B), the elastic veloci-

ties of the quasi-compressional and the fast

and the slow quasi-shear waves (denoted as

P , Sfast and Sslow in the following for sim-

plicity) were calculated by assuming equal

values of aggregate and single crystal densi-

ties. The P-wave velocities, shear wave split-

ting, δS = (Sfast−Sslow), and the Sfast polar-

ization directions for an olivine single crystal

and for the hypothetical polycrystalline ag-

gregate are presented on an equal-area pro-

jections in Figure 3.5.

As expected, the averaging procedure

moderates the anisotropic properties of the

textured aggregate if compared to the single

olivine crystal. The hypothetical LPO con-

sidered is relatively strong, and the aggre-

gate’s P-wave anisotropy is reduced insignif-

icantly relative to that for the single crystal

(A(Vp) = 24.2%, where A(Vp) = 2 (Vp max −
Vp min)/(Vp max + Vp min) × 100% (e.g. Main-

price and Silver, 1993)). The P-wave anisotropy is insignificantly influenced by the use of

either the Voigt or Reuss averaging procedures (varies by 2%).
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Figure 3.4: Elastic constants of single olivine crystal from Webb (1989), and the isotropic
Voigt-Reuss bounds.

However, the spatial distribution of S-wave splitting is more sensitive to the averag-

ing assumptions. The maximum shear wave splitting for the Reuss average is δS = 0.82

km/sec while the Voigt average gives δS = 0.76 km/sec. The pattern of the shear wave

splitting is sensitive to the elastic constants and therefore affected by the choice of the av-

eraging method used, as seen in Figure 3.5. The various approximations have practically

no influence on the Sfast polarization directions, although polarization direction differs

from the polarization directions of the single crystal in some directions of propagations.

The results here indicate that the calculated elasticity of olivine textured polycrystalline

aggregate is significantly more influenced by its textural properties rather than the av-

eraging assumption. Variations or errors in estimating the textural coefficients and con-

sequently the ODF would have a profound effect on the estimation of elasticity of the

olivine aggregate.

The calculated elastic wave velocities and anisotropy obtained by different averag-

ing techniques are comparable to those reported for naturally deformed dunites and

peridotites with similar textures. P-wave elastic anisotropy was measured directly at
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Table 3.1: Elastic constants of single olivine crystal from Webb (1989), and the isotropic
Voigt-Reuss bounds

Averaging Elastic constants, GPa
technique C11 C22 C33 C44 C55 C66 C12 C13 C23

Single crystal 320.2 195.9 233.8 63.5 76.9 78.1 67.9 70.5 78.5
Voigt 237.2 237.2 237.2 79.2 79.2 79.2 78.7 78.7 78.7
Reuss 228.9 228.9 228.9 76.0 76.0 76.0 76.9 76.9 76.9

ultrasonic frequencies on Twin Sisters dunites by Christensen (1971). His samples TW-

2 and TW-4 were characterized by an explicit point maximum texture, although not as

strong as hypothetical one developed here, and displayed P-wave anisotropy of 6% and

7.9%, respectively. The lower values of P-wave anisotropy in dunites can partially be

attributed to the fact that the pure olivine texture is weaker than the olivine textures in

mixed phase rocks (i.e. peridotites) for the same amount of overall shear (Wenk et al.,

1991). The stronger LPO of olivine in peridotites reflects the concentration of strain on

the plastically weaker olivine, which has more crystallographic slip systems available

than the more rigid pyroxene. Ben Ismaı̈l and Mainprice (1998) calculated P-wave seismic

anisotropies for olivine based on the olivine petrofabric data from a large ensemble of

110 peridotite samples and using Mainprice’s (1990) code based on the Voigt assumption.

They determined P-wave anisotropies varying from 4% to 21.4% with a mean value of

12.2%. They estimated the P-wave seismic anisotropy for Type 1 (orthorhombic symme-

try) olivine aggregates to be 15.3%. Soedjatmiko and Christensen (2000) have calculated

the average A(Vp) anisotropy of fifteen harzburgites and lherzolites from Cima volcano

field xenoliths to be 6.9%. Samples CX-08-3, CX-17-7 and CX-21-1 that exhibit orthotropic

LPO pattern have the P-wave anisotropies of 9.5%, 9.0% and 12.8%, respectively. Tommasi

et al. (1999) reported seismic anisotropy of olivine aggregates based on results of LPO de-

velopment modelling. The authors predicted P-wave anisotropy to be 14.7% in case of

deformations by simple shear and 15.4% for pure shear deformations. Zhang and Karato

(1995) calculated the seismic anisotropy for experimentally deformed by simple shear

olivine aggregate to be 16.6% for case of highly strained aggregate. Another shear defor-

mation experimental results on olivine aggregate (Zhang et al., 2000) allowed A(Vp) to be

estimated in the interval of 9-10% for samples with the LPO controlled by the flow geom-
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Table 3.2: Elastic constants of single olivine crystal rotated 90◦ around X axis and tex-
tured olivine aggregate calculated by the Voigt, the Reuss, and the GMA technique

Averaging Elastic constants, GPa
technique C11 C22 C33 C44 C55 C66 C12 C13 C23

Single crystal 320.2 233.8 195.9 76.9 63.5 78.1 70.5 67.9 78.5
Voigt 289.7 235.7 198.4 77.1 68.4 88.3 103.1 48.9 80.0
Reuss 295.4 216.1 219.7 75.9 67.2 84.9 109.5 47.9 73.6
GMA 289.6 221.8 200.5 75.9 67.1 87.7 103.9 49.3 77.4

etry. All these results suggest that seismic properties of olivine aggregates in the upper

mantle peridotites are broadly scattered due to textural variations even within one type

of LPO pattern. Further the anisotropy will depend on additional factors such as the de-

gree of recrystallization, the type of deformation, and the origin of the peridotite. The

calculation results obtained here are an upper range of possible anisotropy that can be

observed in naturally deformed peridotites on the scale of hand specimens.

The hypothetical texture employed here is representative of one of the types of olivine

texture widely observed in the naturally deformed peridotites collected worldwide. Con-

sequently, the calculated seismic properties of this hypothetical aggregate may be consid-

ered as possible average properties characteristic to the upper mantle region subject to

simple shear deformation in which the olivine aggregate may have mostly orthotropic

texture. Interpretation of seismologically observed traveltimes anisotropy usually re-

lies on trade-off of the thickness of anisotropic layer (region) and the strength of the

anisotropy. Sophisticated full elastic field forward modelling techniques, e.g. anisotropic

finite-element code, based on the initial models obtained from anisotropic tomographic

inversion and constrained by results of modelled rock properties would aid proper seis-

mological interpretation. Rock physical modelling of elasticity, as presented here, allow

estimating variations in initial model parameters and constrain solution. In addition,

proper estimation of the upper mantle elasticity should incorporate models that allows

for multi-phase polycrystalline composites (see recent paper by Ji et al. (2004) for ap-

plication of the GMA to multi-phase but isotropic aggregates). In order to incorporate

fluid/melt inclusions a combination of the GMA technique with effective medium theo-

ries is worth consideration.

The averaging of hypothetical aggregate properties over the upper mantle thickness
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a)

d)

c)

b)

Figure 3.5: Compressional velocities, shear-wave splitting and Sfast polarization direc-
tions on the equal-area projection: a) single olivine crystal; b) the Voigt average; c) the
Reuss average; d) the Geometric Mean Average.

as well as presence of more randomly oriented pyroxenes and accessory minerals in peri-

dotites reduces the anisotropy. The azimuthal distribution patterns of the seismic and

elastic properties, however, may still be governed by the olivine LPO (Peselnick et al.,

1974; Peselnick and Nicolas, 1978; Weiss et al., 1999a). Orthotropic model with nine un-
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known elastic constants that can be estimated by the GMA technique could be useful for

seismological interpretations of Pn anisotropy and SKS shear wave splitting.

3.5 Conclusions

This Chapter discusses application of volume weighted averaging techniques to model

the elasticity of an aggregate of orthotropic symmetry composed of olivine with or-

thorhombic symmetry. Textural properties of the aggregate were incorporated into the

algorithm through the analytical derivation of an orthotropic-orthorhombic ODF (Ap-

pendix D). The expansion coefficients of the ODF into a series of symmetrical generalized

spherical harmonics was included into the averaging procedure following the Voigt and

the Reuss assumptions. The averaging technique developed further to incorporate the

GMA, i.e. implement an idea of the averaging procedure independent on the averaging

domain.

A hypothetical texture was constructed to reflect one type of texture of naturally de-

formed peridotites with distinctive orthotropic texture. This textural pattern has been

widely observed in naturally deformed peridotites and has been reproduced in high

strain experimental deformations of synthetic olivine aggregates in simple shear defor-

mation regimes. Several plastic deformation theories including recent dynamic recrys-

tallization models also predict the development of similar LPO patterns. All these results

taken together suggest that orthotropic olivine symmetries may be one of the dominant

textures within the regions of the upper mantle undergoing simple shear deformation.

An orientation distribution function was applied to model the elastic parameters of

the textured olivine aggregate. The ODF coefficients were recalculated from information

about the orientations of the individual crystals. Results of the modelling suggest that

the aggregates with strong LPO develops spatial distribution of P-wave velocities com-

parable to velocity distribution of a single crystal. This anisotropy is, however, reduced

with respect to single crystal up to 7% depending on the averaging assumption. One

of the main objectives of this study was to estimate effect of the averaging techniques

on elasticity and intrinsic anisotropy of olivine aggregate of orthotropic symmetry. The

application of the different averaging techniques appears to have no crucial effect on the
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elasticity of a textured olivine aggregate. While this result may be true for the olivine

aggregate, one cannot presume this conclusion is universal as will be demonstrated in

the next Chapter.

The textural properties of olivine aggregate, however, have significant effect on the

calculated elasticity. Therefore, efforts should be directed to insure not only quality of

textural information but also statistical representativeness of this information that reflects

purposes of particular investigation. The P-wave anisotropy is relatively insensitive to

the averaging procedures employed. The degree of shear wave splitting and especially

its spatial distribution is more averaging procedure dependent. Overall, all averaging

techniques produce similar results for textured olivine aggregate, however, application

of the GMA to the orthotropic texture allows assumptions of the uniform stress or strain

to be omitted.

The orthotropic sample approximation makes an averaging result more readily com-

parable to seismological observations with anisotropic pattern in data, and could be a

reasonable approximation of regional elasticity in the upper mantle undergoing simple

shear deformation. The results presented here and successful applications of the ODF

in several other studies to model elastic properties of different geomaterials clearly indi-

cate that the ODF could be useful not only for quantitative texture analysis but also for

modelling textural effects on seismic wave properties of anisotropic aggregates. The pos-

sibility of including different sample symmetries into the calculation algorithm makes

this modelling technique an important tool to investigate texture dependent seismic ve-

locities and predict reliable symmetry of the upper mantle materials.
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Chapter 4

The intrinsic anisotropy of
phyllosilicates

1

This chapter deals with the modelling of the intrinsic elastic properties of phyllosilicate-

rich rocks that occur naturally and are highly anisotropic to seismic waves. The anisotropic

properties of such rocks are investigated through the modelling of the intrinsic elasticity

of a solid matrix. ’Intrinsic’ implies properties of a non-porous and non-fractured solid

matrix that can be investigated on the basis of the theory of polycrystalline aggregates.

The study is specifically concerned with the investigation of intrinsic elasticity of shales

as a function of texture. Modelling of the intrinsic elasticity takes into consideration the

textural properties of shales and assumptions about the elasticity of constituent shale

minerals (i.e. clays). Elastic constants of solid matrix with developed texture were calcu-

lated using volume averaging techniques and widely used Voigt, Reuss and Hill assump-

tions. Taking into account the plausibility of the significant anisotropy of clay minerals

and the resulting wide separation of the Voigt and Reuss (upper and lower) bounds of the

textured aggregate, the method of the Geometric Mean Averaging (GMA) was employed

to further refine the elasticity. The GMA method employs straightforward physical re-

quirement of the invertibility of the elastic stiffnesses of textured aggregate into its elastic

compliances and yields a unique set of elastic constants independent of the averaging

domain (either stiffnesses or compliances). The resulting elastic constants are not lim-

1A version of this Chapter has been published, Cholach and Schmitt (2003), and presented in CSPG/CSEG
2003, SEG 2003, CSEG 2004 annual conventions.
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ited by Hill’s assumption and can lie either above or below the Hill average, depending

on a certain elastic constants and textural properties of the aggregate, and fall predomi-

nantly within the Voigt-Reuss bounds. Limits of the seismic anisotropy and anisotropic

parameters of the solid monomineralic muscovite matrix have been estimated. It has

been shown that despite the strong dependence of absolute values of elastic constants

on the averaging assumptions, properties of elastic waves and especially anellipticity of

P-wave is practically independent on the averaging procedure.

4.1 Introduction

Shales are elastically anisotropic rocks with complex petrophysical properties. Their

abundance in sedimentary basins significantly affects seismic wave propagation. The

most direct consequence of this shale induced anisotropy is erroneous determination of

the depths of subsurface events (e.g. Banik, 1984). Perhaps more importantly, ignoring

anisotropy during migration does not provide for proper lateral positioning of seismic re-

flectors in areas with dipping sedimentary strata (e.g. Vestrum et al., 1999). Consequently,

estimating the elastic properties of shales is both an academic and a practical problem.

Since the pioneering work of Kaarsberg (1959) shales elastic properties have been ex-

tensively investigated both theoretically (Hornby et al., 1994; Sayers, 1994; Schoenberg et al.,

1996; Sayers, 1999; Jakobsen et al., 2003), and experimentally (Jones and Wang, 1981; Vernik

and Nur, 1992; Johnston and Christensen, 1995; Hornby, 1998; Jakobsen and Johansen, 2000;

Wang, 2002; Domnesteanu et al., 2002). These studies demonstrated that anisotropy is

a feature of seismic wave propagation in the majority of shales. The anisotropic be-

haviour of shales was also observed in a variety of seismic field observations (e.g. Jolly,

1956; White et al., 1983; Winterstein and Paulsson, 1990; Miller et al., 1994; Kebaili and

Schmitt, 1996; Leslie and Lawton, 1999; Leaney et al., 1999). The significant lithological

and compositional variability is responsible for variations in the magnitude of shale

anisotropy from almost isotropic to highly anisotropic (Banik, 1984; Jakobsen and Johansen,

2000; Wang, 2002) with the coefficient of anisotropy for compressional wave (A(VP ) =

(VPmax − VPmin)/VPmean × 100%) exceeding 40% in some cases (cf. Johnston and Chris-

tensen, 1995).
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A number of different modelling techniques have been employed to explain the ob-

servations. Vernik and Nur (1992) applied the long wavelength theory of Backus (1962) to

average the properties of a composite medium consisting of layers of isotropic illite and

kerogen in an attempt to explain ultrasonic observations of strong anisotropy in source

rock shales. Hornby et al. (1994) used the combination of the self-consistent (SCA) (Kröner,

1958) and the differential effective medium (DEM) (e.g. Sheng and Callegari, 1984) approx-

imations to first provide an estimate of the elasticity of a perfectly aligned clay-fluid

composite that was then averaged according to a statistical measure of the relative orien-

tation of clay platelets. The calculated elastic constants of this clay-water composite was

almost identical to those obtained from ultrasonic measurements on Cretaceous shales by

Jones and Wang (1981). Schoenberg et al. (1996) invoked a simplified three-parameter trans-

versely isotropic (TI) medium to model shale anisotropy. Their initial model is based on

the long wavelength approximation of stiffened media consisting of two interchangeable,

infinitely thin isotropic layers (Schoenberg and Muir, 1989). Most of the calculated elastic

constants of this simplified transversely isotropic medium, with exception of one (C33),

are in reasonable agreement with reported elastic constants of shales.

Despite these advances, there remains significant ambiguity in the models with re-

spect to the in situ sources of seismic anisotropy. The seismic anisotropy of shales is in-

fluenced by several factors, including the preferred orientation (texture) of clay platelets

(Kaarsberg, 1959; Tosaya, 1982; Sayers, 1994; Johnston and Christensen, 1995), alternation of

fluid filled collinear cracks with clay platelets (Vernik and Nur, 1992; Hornby et al., 1994),

microcracks (Vernik, 1993; Vernik and Liu, 1997), fine layering (Schoenberg et al., 1996), fluid

filled porosity (Hornby, 1998), and stress-induced anisotropy (Sayers, 1999). A combina-

tion of several of these factors (e.g. Jakobsen et al., 2003; Johansen et al., 2004) is required to

fully describe shale anisotropy.

In this Chapter the issue of the origin of the seismic anisotropy of shales is partially

addressed by modelling of their intrinsic elastic properties. Intrinsic implies here the

elastic anisotropy due solely to the averaging of the elastic properties of the constituent

minerals as controlled by their orientation texture within the aggregate. An example

of this texture in a wet shale may be seen in Figure 4.1. That is, this study attempts

to provide a measure of the elasticity of a pore free shale solid matrix. In the paper
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the Geometric Mean Averaging (GMA) procedure is applied for a first time to a series of

monomineralic muscovite aggregates with different degrees of texture. The evolution of

the anisotropy with texture provides insight into some of the factors controlling shale

anisotropy.

4.2 Averaging the elastic properties of a polycrystalline aggre-
gate

Modelling of the intrinsic anisotropy is based on the orientation distribution function (ODF)

averaging technique (Viglin, 1960; Roe, 1965; Bunge, 1982) in combination with the con-

cept of the ”Geometric mean” (Aleksandrov and Aizenberg, 1966; Morawiec, 1989; Matthies

and Humbert, 1993). The Geometric mean averaging (GMA) technique aims to show the lim-

its of the possible anisotropy of the solid matrix. The results obtained here are intended

to be used as a starting point for more complex models that consider the elasticity of

porous and/or fractured shales. ODF averaging has previously been applied to shales

by Sayers (1993, 1994) to identify the textural parameters responsible for anisotropic ve-

locity variations in shales. Sayers (1993, 1994) showed that only two coefficients of the

ODF expansion affect the seismic anisotropy of shales with vertical transversely isotropic

(VTI) symmetry. The Voigt approximation of uniform strain of shale aggregate was used

to derive explicit formulae for calculation of averaging elastic constants. By varying the

values of texture coefficients Sayers (1994) demonstrated that shales might develop a

strong anelliptic anisotropy the degree of which is a function of a single texture parame-

ter, viz. W400.

In order to carry out ODF averaging, one needs knowledge of the volumetric fraction

of the constituent mineral phases, their elasticity, and the statistics of the textural orien-

tation distributions. Despite the expectations that clay minerals themselves are highly

anisotropic (Kaarsberg, 1959; Tosaya, 1982), they are often assumed to be isotropic in at-

tempts to estimate some of their elastic characteristics (cf. Katahara, 1996; Wang et al.,

1998; Vanorio et al., 2003). The absence of reliable data on the elastic stiffnesses of clay

minerals remains the most serious obstacle for the proper modelling of the intrinsic elas-

ticity of shales and may be attributed to the difficulty of carrying out experimental mea-
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surements on the small, typically submicron, size of naturally occurring illite, chlorite,

kaolinite and montmorillonite. Wetting effects due to the presence of water is an addi-

tional concern of which little is known. To overcome this limitation several assumptions

are made here, firstly that shale matrix is composed solely of illite, which is one of the

most abundant clay minerals in shales (Kaarsberg, 1959) and contributes significantly to

their overall elasticity. Due to the fact that elastic stiffnesses of illite are not yet known

the second assumption is made that properties of the muscovite mica crystal (chemical

formula is KAl2(Si3Al)O10(OH)2) are instead taken as representative (Tosaya, 1982; Say-

ers, 1994). This assumption is mainly based on the similarity of the structures of both

layered silicates with the replacement of some of the K+ ions in muscovite by H3O
+

(e.g. Putnis, 1992). The anisotropy of a single muscovite crystal is large (compressional

wave anisotropy AP = (VPmax − VPmin)/VPmean × 100% = 56.8%; Thomsen param-

eters ε = 1.12; δ = −0.27; γ = 2.28) and, although while, rigorously, muscovite has

monoclinic symmetry, it may be considered to have quasi-hexagonal symmetry (Alexan-

drov and Ryzhova, 1961b). Similarly structured illite (the illite group general formula is

K1−1.5Al4(Si, Al)8O20(OH)4) is also expected to be highly anisotropic. Consequently, re-

sults of the modelling under the assumption of 100% clay mineral (illite) composition

with exclusion of the silt portion of the matrix can be treated as a major component con-

tributing to the intrinsic anisotropy of shales.

The presence of non-clay phases (silt), particularly quartz, feldspar, calcite and dolo-

mite, in the shale matrix, will affect its overall elasticity and, normally, reduce the aniso-

tropy. The reduction is dependent on the volumetric presence of each of these phases. A

substantial volumetric presence of randomly oriented and spatially distributed silt parti-

cles in shales also interferes with the alignment of the clay minerals (Ho et al., 1999). The

effect of the silt particles on the texture of clay minerals will be discussed below. How-

ever, quantitative estimates of the effect of the silt particles per se on the shale elasticity

are not considered here.

The elasticity of the textured solid matrix may be investigated in the theoretical frame-

work of the elasticity of polycrystals. The prediction of the elasticity of polycrystalline

aggregates is a classic problem in solid mechanics and rock physics with the roots of the

investigation coming from early in the last century (e.g. Voigt, 1928; Reuss, 1929; Hill,
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Figure 4.1: SEM images of Colorado Shale from the Cold Lake area of Alberta, Canada: a)
section perpendicular to the bedding plane; b) section parallel to the bedding plane. Ob-
served strong shape preferred orientation of clay particles directly correlates with lattice
preferred orientation of clay minerals (see text for details). Average size of clay platelets
is several microns and almost order of magnitude smaller then embedded randomly dis-
tributed silt (quartz, calcite etc.) particles.

1952; Kröner, 1958; Kumazawa, 1969; Morris, 1970; Thomsen, 1972; Watt et al., 1976; Ono,

1992). In geophysics, the so-called bounding estimates are well established (Watt et al.,

1976). The simplest, most universal, and widely applied calculations employ the Voigt

(Voigt, 1928) upper and the Reuss (Reuss, 1929) lower bounds that assume either uniform

strain or stress within the isotropic aggregate, respectively. The bounds are widely sep-

arated for aggregate composed of highly anisotropic crystals such as clays. The degree

of texturing of the crystals within the aggregate further influences the separation of the

lower and upper bounds. Effective medium schemes, such as the already mentioned
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self-consistent approximation (SCA) method (e.g. Kröner, 1978), are frequently applied

to provide a more constrained solution, which lies within the Voigt-Reuss (VR) bounds.

However, despite the fact that the SCA solution is unique and converges within the VR

bounds, the initial effective medium developments usually require a perfectly disordered

aggregate and an absence of correlation between grains shapes and orientations, these

conditions may not always hold for the case of a polycrystalline aggregate (Ono, 1992).

Hill (1952) suggested that the simple arithmetic mean value of the two VR bounds of an

isotropic polycrystalline aggregate might be most representative of experimental results

(e.g. Chung and Buessem, 1967a). The Hill approximation, however, has no solid physical

foundation and is applied as rather simple intuitive solution.

Another approach to refine the values of the elastic constants of the aggregate was

taken by (Aleksandrov and Aizenberg, 1966) who suggested that use of the physically mean-

ingful condition of the invertibility between the elastic stiffnesses and the elastic compli-

ances be a basis for the search for elastic constants. Description of Aleksandrov and Aizen-

berg’s (1966) technique is provided in Chapter 3. In this Chapter alternative description of

their modification to the averaging procedure is provided. Following these authors no-

tation, if the particular physical property of the crystal can be described by the constants

Ri > 0, i = 1, 2, ..., N which have it’s inverse Qi = [Ri]−1, then the corresponding prop-

erties of polycrystalline aggregate composed of these crystals should fulfill Qi = [Ri]−1,

where Qi and Ri are values averaged by certain mathematical function. The not yet

defined averaging function φ has it’s inverse function φ−1 and the averaging operator

<φ(Rj) can be written in the form:

Ri = <φ(Rj) = φ−1

{ N∑

j=1

pij φ(Rj)
}

with pij ≥ 0 is an orientation distribution,
∑

pij ≡ 1, and fulfill conditions:

• Qi = <φ(Qj) =
[
<φ(Rj)

]−1

= R
−1

i

• <φ(kRj) = k<φ(Rj)

It has been shown that the only averaging function fulfilling these conditions is φ(R) =
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a lnR + b, for any a 6= 0 and b (Aleksandrov and Aizenberg, 1966). Therefore, the averaging

procedure can be rewritten:

Ri = <φ=lnR(Rj) = exp

[ N∑

j=1

pij ln(Rj)
]

=
∏

j

R
pij

j

Aleksandrov and Aizenberg (1966) applied this method to find the bulk and the shear

moduli of isotropic aggregates composed of cubic crystals. The resulting moduli lie not

only within the VR bounds but also within the narrower Hashin - Shtrikman bounds

(Hashin and Shtrikman, 1963). More recently, Morawiec (1989) and Matthies and Hum-

bert (1993) further developed this technique to average elastic constants of the textured

polycrystalline aggregate and have referred to the technique as the ”Geometric mean”

method. Matthies and Humbert (1993) have calculated the Young’s modulus of an hypo-

thetical Zn sample and found good agreement (if compared to experimental accuracy)

between the GMA and self-consistent approach. Mainprice and Humbert (1994) applied

GMA technique to geomaterials. Orientation distributions of biotite grains obtained by

optical microscopy were used to calculate elastic constants of aggregates by the Voigt,

Reuss, Hill and GMA methods. Elastic constants were also obtained by employing the

self-consistent model that assumes spherical shape of aggregate grains. From the elastic

constants obtained by these different techniques P- and S-wave velocities have been cal-

culated and compared with experimental velocity measurements. Results show that the

GMA is close to the Hill solution for both VP and VS values. These authors concluded

”the geometric mean is the best estimate of the seismic properties of the simple averaging meth-

ods”. Alternative to Chapter 3 description of the GMA procedure is discussed in detail

below.

There are several major factors that influence the intrinsic anisotropy of a solid rock

matrix including the elasticity of the constituent minerals, their volumetric fraction and,

most importantly, their texture (orientation distribution) within the aggregate. Follow-

ing Bunge (1982) the elastic constants of a non-porous textured monomineralic polycrys-

talline aggregate may be approximated by the mean value that depends on the elastic

constants of the constituent single crystal Cijkl and the orientation distribution function

f(g) of the aggregate. Integration of the single crystal elastic constants weighted by the
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ODF over all values of the orientation domain g yields elastic constants in the Voigt ap-

proximation of uniform strain throughout the aggregate (e.g. Kneer, 1965):

C
V
ijkl =

∮
Cijklf(g) dg (4.1)

where g = (ϕ1, Φ, ϕ2) is the orientation domain that consists of the three Euler angles

(cf. Morse and Feshbach, 1953). Three consecutive rotations of an initially misaligned single

crystal coordinate system xi (i = 1, 2, 3) by Euler angles (ϕ1, Φ, ϕ2) allow xi to coincide

with the rock (shale) coordinate system Xj (j = 1, 2, 3). The rock coordinate system Xj

is defined such that X1X2 plane is collinear with the bedding plane of shale and X3 is

normal to the bedding plane (Figure D.1).

The orientation distribution function f(g) is normalized to satisfy:

∮
f(g) dg ≡ 1, where dg =

1
8π

sinΦ dΦ dϕ1 dϕ2 (4.2)

In the discrete orientation space g (4.1) can be rewritten in the form:

CV
ijkl =

N∑

n=1

Cijkl f(gn) ∆gn, with
N∑

n=1

f(gn) ∆gn ≡ 1 (4.3)

Equation (4.3) explicitly defines the elastic constants of polycrystalline aggregate ac-

cording to the Voigt approximation: an arithmetic mean of the single crystal elastic con-

stants weighted by the ODF. The Reuss approximation of constant stress throughout the

textured aggregate can be implemented through the procedure similar to (4.1) and the

aggregate elastic constants are obtained if the elastic compliances Sijkl are instead used

in the averaging procedure such that:

C
R
ijkl =

[∮
Sijklf(g) dg

]−1

(4.4)

Note that the averaging procedure in (4.4) yields elastic compliances S
R
ijkl that should

be inverted into the elastic stiffnesses C
R
ijkl . It is particularly important to note that

averaging in either the stiffness or the compliance domains (Equations (4.1) and (4.4),

respectively) yields different solutions presumably with C
V
ijkl > Cijkl > C

R
ijkl.
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Figure 4.2: Elastic constants of the muscovite single crystal assuming hexagonal symme-
try (after Aleksandrov and Ryzhova (1961)) and an isotropic polycrystalline aggregate com-
posed of muscovite crystals in the Voigt, the Reuss and the Hill approximations. Elastic
constants C11 = C33 in the Voigt approximation are 160% of those in the Reuss.

Table 4.1: Elastic constants of single muscovite crystal from Aleksandrov and Ryzhova
(1961), and the isotropic Voigt, Hill and Reuss bounds

Averaging Elastic constants, GPa
technique C11 C33 C44 C66 C12 C13

Single crystal 178.0 54.9 12.2 67.8 42.4 14.5
Voigt 116.3 116.3 41.1 41.1 34.1 34.1
Hill 94.4 94.4 31.6 31.6 31.1 31.1

Reuss 72.5 72.5 22.2 22.2 28.1 28.1

The VR bounds were originally developed for an isotropic medium and generally

accepted as the limits to the possible elastic constants to the polycrystalline aggregate

(Hill, 1952) with the true solution expected at an intermediate value. In the case of the

random orientation distribution (i.e. equal probability in all directions) of the constituent

anisotropic minerals medium results in an elastically isotropic solid. Perfectly aligned

constituent minerals, on the other hand, create a medium with properties the same as the

single anisotropic crystal.
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Elastically anisotropic shales are usually highly textured (e.g. Johnston and Christensen,

1995; Hornby, 1998). SEM images of Colorado shale from the Cold Lake region of Alberta

(Figure 4.1) show strong clay minerals alignment within the bedding plane. Observed

on the SEM images shape orientation distribution provide insight on the lattice preferred

orientation for phyllosilicate minerals as the normals to the clay platelets can be consid-

ered as a crystallographic normal of basal plane in layer-lattice clay minerals. In such

an aggregate both the Voigt and Reuss assumptions of uniform strains and stress, re-

spectively, are violated. Consequently, the elastic properties of textured shales should be

unbiased by the VR bounds and lie between the two extreme cases of the single crystal

and the isotropic medium. In addition to the broad range of the possible values of elas-

tic constants within the bounds due to presence of texture, there is a large uncertainty

in the values of elastic constants even for an isotropic aggregate (Figure 4.2). The sepa-

ration of the VR bounds at this isotropic limit depends solely on the range of values of

the elastic constants of the constituent mineral. For strongly anisotropic single crystals

as in the present case of muscovite the isotropic Voigt and Reuss bounds of some of the

elastic constants differ substantially. For example, value of isotropic muscovite aggre-

gate C11 = C22 = C33 = λ + 2µ (where λ and µ are Lamé parameters) in Figure 4.2 in the

Voigt approximation is 160% of those calculated with the Reuss approximation. There-

fore, technique of averaging the elastic properties of highly anisotropic solids must be

modified to overcome these large uncertainties.

In the Geometric Mean Averaging method a unique solution is obtained independent

of whether the averaging is carried out using the stiffnesses or compliances (equations

(4.1) and (4.4), respectively). The solution also predominantly lies within the VR bounds.

Following Matthies and Humbert (1993) the averaged elastic constants of the textured ag-

gregate may be expressed as:

〈
Cij

〉
= Uik exp (µk) Ukj (4.5)

where
〈
Cij

〉
are the Geometric mean averaged elastic constants of the polycrystalline

aggregate. The reduced Voigt matrix notation and Einstein summation conventions are

assumed here (see Nye, 1990). Uij and µk are components of two arrays described below.

(4.5) may be rewritten in the matrix form:
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4.2. AVERAGING THE ELASTIC PROPERTIES

〈
C

〉
= U exp

(
Λ

)
UT (4.6)

where U and UT an orthogonal matrix and its transpose. Λ is a diagonal matrix

composed of the exponents of the eigenvalues µk obtained from the eigenvalue decom-

position of the matrix 〈C〉:

〈C〉 = U exp (Λ)UT (4.7)

where Λ diagonal matrix with the eigenvalues µk. Matrix 〈C〉 results from the ODF

averaging procedure:

〈C〉 =
∫

W Λ 0
W T f(g) dg (4.8)

where W and Λ 0 are defined by the eigenvalue decomposition of the elastic constants

of the single crystal in the matrix notation C:

C = W Λ 0 W T (4.9)

where Λ 0 is diagonal matrix containing eigenvalues µ0 of the matrix C of the single

crystal elastic stiffnesses and W is the orthogonal matrix of eigenvectors. The diagonal

matrix Λ 0 used in the averaging procedure in (4.8) is composed of the natural logarithms

of the eigenvalues µ0 of the elastic stiffnesses matrix C that results from (4.9). Equa-

tions (4.6)-(4.9) implement Aleksandrov and Aizenberg’s (1966) concept for an anisotropic

solid by averaging the modified eigenvalue functions of the stiffnesses or the compli-

ances rather then directly averaging stiffnesses or compliances. The resulting matrix of

elastic constants
〈
C

〉
in (4.6) is independent of the domain of averaging (i.e. stiffnesses

or compliances) and therefore is a unique solution of the ODF averaging procedure.

In order to obtain this unique solution the textural information is incorporated via

f(g) (4.8). The ODF f(g) quantitatively describes the texture and may be obtained from

the measured pole figures of the distributions of the crystallographic axes of the con-

stituent minerals (Bunge, 1982). The number of the pole figures required to fully describe

an ODF, in general, depends on both the constituent mineral and the overall rock sam-

ple symmetries. Such information is usually obtained from thin-section microscopy or
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X-ray, neutron diffractions, and electron back scattering diffraction (EBSD) techniques (e.g.

Ullemeyer et al., 2000). The choice of the texture determination technique depends on the

rock type and the purpose of the investigation. Ullemeyer et al. (2000) suggested that so-

called ’statistical’ or ’volume’ type texture determination techniques, such as X-ray or

neutron diffraction, are most suitable for bulk texture determination and calculations of

the elastic properties of rocks.

In shales, a weak bedding-parallel preferred orientation of clay minerals may be de-

veloped initially during the depositional process. However, the strong preferred orien-

tation of clay platelets, as can be seen on the SEM images of the Colorado shale (Figure

4.1), most probably develops during the diagenetic transition from smectite to illite (S-I).

Ho et al. (1999) investigated a depth progression of pelites from the Gulf Coast that were

subject to lithostatic stress only. Shallow occurring clay-rich pelites, initially composed

of smectite as the predominant authigenic phase, undergo the S-I transition at depth in-

terval of ∼ 2100 − 2400m (∼ T = 83 − 88◦C). A strong bedding normal orientation of

packed (∼ 0.1 mm thick) illite minerals develops as a result of this transition. The pore

dimensions in the post-transition zone of illite are small (i.e. cannot be observed directly

on SEM images) and estimated to be a maximum of a few angstroms from high resolu-

tion TEM images. It has to be stressed, however, that the shale sequence investigated by

Ho et al. (1999) had been removed from their in situ fluid rich environment and exam-

ined by SEM and TEM, i.e. conditions when pore space would be modified. The main

feature of the developed illite texture is strong clay platelets orientation within the bed-

ding plane with normals distributed quasi-collinearly to the bedding normal without a

specific lateral preferential direction, which is in agreement with the estimates of shale

texture by Hornby et al. (1994). As such, the orientation distribution f(g) of the constituent

clay minerals suggests that the textured clay matrix should statistically have transversely

isotropic elastic symmetry.

The ODF f(g) used in the averaging procedure (4.8) carries information about the

shale matrix texture and, following Bunge (1982), may be expanded into the series of sym-

metrical generalized spherical harmonics referred to as a Viglin expansion (Viglin, 1960):
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f(g) =
∞∑

l=0

+l∑

m=−l

+l∑

n=−l

Cmn
l Tmn

l (g) (4.10)

where Tmn
l are generalized spherical harmonics (GSH) and Cmn

l are constants, represent-

ing the magnitude of the corresponding harmonic in the expansion. The advantage of the

Viglin expansion is that the GSH in (4.10) can be further modified to reflect the specific

rock and constituent mineral symmetries via:

f4(g) =
4∑

l=0

M(l)∑

µ=1

N(l)∑

ν=1

C µν
l T̈ µν

l (g) (4.11)

where for the case considered in this paper the T̈ µν
l are symmetrical generalized spher-

ical harmonics (SGSH) specially constructed to fulfill both the shales transverse isotropy

and the single crystal hexagonal symmetry properties. The C µν
l are coefficients of the

SGSH that carry information about the shale texture and are described below. M(l) is the

number of linearly independent spherical harmonics required for a specific symmetry.

Note that f4(g) represents truncation (to the degree l = 4) of the infinite expansion series

of f(g) (4.10). The maximum degree of the ODF expansion in equation (4.10) corresponds

to the order of the tensor that describes the particular physical properties of the rock. The

elastic properties of the solid material can be fully described by the 4th order elasticity

tensor Cijkl (or Sijkl); consequently the coefficients of the ODF expansion of l = 4 are

sufficient for the averaging procedure (Backus, 1970).

Averaging of the elastic constants by the ODF for transversely isotropic shales with

constituent minerals of hexagonal symmetry has been discussed in detail by Sayers (1994).

He analyzed the anelliptic behaviour of the P-wave slowness surface and showed its de-

pendence on only a single coefficient of the ODF expansion. It must be noted that Say-

ers (1994) development is based on the Roe formalism (Roe, 1965), which differs from the

present development because a different ODF normalization (Equation 4.10) is applied.

In addition, in the Roe formalism, the coefficients of the Viglin expansion must be ad-

justed to accommodate rock and constituent crystal symmetries. In the Bunge formalism

(Bunge, 1982) adopted here the generalized spherical harmonics reflect both the rock and

constituent crystal symmetries (Ferrari and Johnson, 1988). For the transversely isotropic
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aggregate only five coefficients C µν
l of the expansion (viz. C 11

2 , C 21
2 , C 11

4 , C 21
4 , C 31

4 )

are non-trivial. Furthermore, when the infinite symmetry (i.e. rotational) axis of the TI

medium is aligned with the X3 axis of the right handed X1X2X3 shale coordinate sys-

tem, the coefficients C21
2 , C21

4 and C31
4 vanish (reflecting hexagonal crystal symmetry:

C µν
l = 0, if µ ≥ 1, Bunge et al. (1981)) and only two coefficients C 11

2 and C 11
4 contribute

to the elasticity of the aggregate (cf. with W200 and W400 in Sayers development). The

additional coefficient C 11
0 ≡ 1 carries an isotropic component in the expansion and must

be taken into account.

Following Bunge (1982) the coefficients of the expansion can be written (taking into

account the orthonormal properties of the SGSH):

C µν
l = (2l + 1)

∫
f(g) T̈ ∗µν

l (g)dg (4.12)

In the case of TI - hexagonal symmetries all the SGSH in expansion are real (µ and ν

in Equation (4.10) are even) and the complex conjugate symbol ’∗’ may be omitted. For

aggregates that consist of a single crystal with specific orientation taking into account

normalization (4.2) Equation (4.12) can be simplified to:

C µν
l = (2l + 1) T̈ µν

l (g0) (4.13)

where g0 is an orientation of the aligned single crystal. Calculation of the expansion

coefficients C µν
l can further be simplified if one takes into account that T̈ µν

l = P µν
l for

µ = 1 and ν = 1, where P µν
l (cosΦ) are the generalized associated Legendre functions (GALF).

It should be noted that the GALF are functions of only one Euler angle Φ and the ODF of

TI - hexagonal symmetry is independent of the ϕ1 and ϕ2. Bunge (1982) showed that the

GALF can be represented by a Fourier series:

P µν
l (Φ) =

+l∑

s=−1

a µνs
l eisΦ (4.14)

where a µνs
l are Fourier expansion coefficients. For µ + ν even (4.14) can be rewritten:

P µν
l (Φ) =

+l∑

s=0

a’ µνs
l cos(sΦ) (4.15)
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coefficients a’ µνs
l were tabulated by Bunge (1982) and the coefficients of the SGSH

for the ODF consistent of single crystal can finally be written in a simple form of the

combination of cosine functions:

C 11
2 = 5 (0.25 + 0.75 cos(2Φ)) (4.16a)

C 11
4 = 9 (0.140625 + 0.3125 cos(2Φ) + 0.546875 cos(4Φ)) (4.16b)

4.3 Results and discussion

It has been mentioned above that the elasticity of a solid matrix varies with the texture,

and as such one might expect the elasticity to lie between two extreme limiting cases

of a perfectly aligned aggregate, which is indistinguishable from the single crystal, and

an isotropic aggregate with completely random crystal orientations. The resulting aver-

aged elastic constants are, by definition, dependent on the alignment of the crystalline

xi (i = 1, 2, 3) and rock coordinate systems Xj (j = 1, 2, 3). For the case of fully aligned

crystallites Equation (4.14) describe this dependence and values of the textural coeffi-

cients C 11
2 and C 11

4 can be directly incorporated into the averaging procedure.

Investigation of the effect of the different averaging procedures on the intrinsic aniso-

tropy of shale as a function of textural strength would provide more insight. If the texture

peak of the [001] crystallographic axis of the constituent mineral in aggregate of TI sym-

metry is aligned with the X3 axis of the shale coordinate system, then elasticity of such

an aggregate will depend only on the elasticity of the single crystal and the strength of

the texture. A perfectly aligned aggregate has the elastic properties of a single crystal; all

three coefficients of the ODF expansion (viz. C 11
0 , C 11

2 and C 11
4 ) are non-zero and con-

tribute to the averaging. The textural peak of the distribution of the [001] crystallographic

axis in real shales is not fully aligned but rather distributed around the X3 bedding nor-

mal (Hornby et al., 1994; Ho et al., 1999). This distribution can be approximated by the

normal (Gaussian) distribution function characterized by its standard deviations (Figure

4.3). The Gaussian becomes broader as the standard deviation of the normal distribu-

tion increases and, eventually, the distribution of the [001] axis can be treated as nearly

uniform within the aggregate with no specific preferential orientation and, therefore, re-
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pdf

degree

Figure 4.3: Normalized Gaussian distributions with different standard deviations: σ = 1
represents fully aligned muscovite aggregate with the properties identical to the single
crystal; σ = 17.5 is an intermediate value of standard deviation representative of dis-
tribution likely to be observed in textured phyllosilicate aggregate (e.g. clay minerals
in shale); and σ = 150 simulates almost uniform spatial distribution of aggregate with
quasi-isotropic properties.

semble a random distribution of the crystals. For the random orientation distribution the

only non-zero texture coefficient is C 11
0 (Bunge, 1982). By definition C 11

0 ≡ 1 and the

averaging of this single coefficient over the elastic stiffnesses yields well-known isotropic

solution in the Voigt approximation (e.g. Simmons and Wang, 1971). The identical averag-

ing procedure over the elastic compliances yields the isotropic Reuss elastic compliances.

Therefore, C 11
0 ≡ 1 can generally be treated as an isotropic part of arbitrary texture that

is described by the coefficients C µν
l .

The elastic behaviour of the solid matrix with different degrees of textural alignment

is shown in the Figure 4.4. The elastic constants on the left-hand side of the graphs are

those for the single crystal limit (marked by XTL) while those on the right-hand side are

for an isotropic aggregate (marked by ISO). The Voigt, Reuss, Hill and Geometric Mean

Averaging results are all shown for comparison. The Geometric mean averages are close

to Hill’s, but can lie either above or below it. These results indicate that for an anisotropic

solid neither the Voigt, Reuss or Hill approximations uniquely define the elastic proper-
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Figure 4.4: Elastic constants of the transversely-isotropic (TI) matrix as a function of tex-
tural strength, defined by the standard deviation of the Gaussian distribution σ of clay
platelets normals from the shale bedding plane normal (see text for details). Left end of
the ordinate axis for each plot represents values of fully aligned polycrystalline with the
properties of a single crystal (XTL). Right end represents quasi isotropic aggregate (ISO).
Solid lines show values of the elastic constants of single crystal and an isotropic Voigt
and Reuss solutions.
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ties of such a medium. The GMA elastic constants of the anisotropic aggregate vary with

respect to the VR bounds and may have values close to either upper or lower bound

depending on the aggregate strength of texture and the elasticity of the constituent min-

erals. In other words, if the GMA solution is presumed to provide a more accurate es-

timate of the polycrystalline aggregate properties, then the elastic constants of textured

shale cannot be defined by the values based on the VR assumptions. For instance, elas-

tic constants obtained experimentally from ultrasonic laboratory measurements may be

close to either the Voigt, the Reuss or the Hill solutions depending on the particular rock

sample texture. To further complicate matters, proximity to either Voigt, Reuss or Hill ap-

proximation differs from constant to constant in anisotropic solid. This may be reflected

in experiment by values of elastic constants inferred from the ultrasonic measurements

of velocity of specific mode of elastic wave in particular direction of propagation to lie

either below or above Hill approximation.

The importance of this result is that it shows that the rigid constraints of the Hill

approximation with respect to the VR bounds might not be very suitable for accommo-

dating elastic behaviour of such anisotropic solids. Values of the elastic constants (viz.

C12 and C13) for a particular range of textural strengths do not even necessarily lie within

the traditional VR bounds. Notice also that the Voigt and Reuss values even cross for a

certain range of σ for C13 coefficient (Figure 4.4) and therefore for this case they cannot

be treated as bounds per se.

The values of elastic constants are fundamental and completely describe a solids’

elasticity. Elastic properties of the weakly anisotropic medium, however, can be char-

acterized by anisotropic parameters. In general, parameterizations are designed to sim-

plify the description of complex anisotropic elastic behaviour of materials and reduce the

number of initially unknown coefficients responsible for anisotropy. It should, however,

be stressed that parameterization of anisotropic medium should not aim to replace more

fundamental elastic constants but rather to assist in the description of the elastic wave

behaviour for specific cases when it is applicable. For a transversely isotropic medium

Thomsen (1986) introduced three anisotropic parameters ε, δ and γ to describe the be-

haviour of P, SV and SH modes of elastic wave. For completeness, these parameters

are calculated from the elastic constants of Figure 4.4. and plotted as a function of the
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Figure 4.5: Anisotropic parameters for transversely-isotropic (TI) medium as a function
of textural strength (same as Figure 4.4). All parameters approach zero for an isotropic
aggregate. Notice dependence of ε and, especially, δ on the averaging procedure. Anel-
lipticity (η) values are very close for all approximations.

strength of texture on Figure 4.5. Both, ε and γ behave similarly and decay from the

maximum single crystal value to zero for the isotropic aggregate as expected. It is in-

teresting to note that the different averaging approximations insignificantly affect these

anisotropic parameters, except for a certain range of values of ε (corresponding to highly

textured aggregate).

The parameter δ has rather vague physical meaning but it reflects the P-wave phase

velocity dependence on the direction in the vicinity of the vertical incidence angle. It

has a more complex behaviour (Figure 4.5) being negative for the single crystal, but in-

creasing to at least the same positive value before eventually decaying towards zero for

the quasi-isotropic aggregate. It is interesting to note that for a certain range of textural

strengths, δ is sensitive to the averaging method with the Voigt values several times those
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Figure 4.6: Slowness surfaces for qP and qS (SH and SV) waves for intrinsically
anisotropic shale of TI symmetry calculated from the elastic constants obtained by the
GMA procedure and shown in the Figure 4.4. Slowness surfaces vary from highly
anisotropic for a single crystal to almost circular for quasi-isotropic aggregate.
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for the Reuss.

Anellipticity characterizes the deviation of the P-wave slowness surface from ellip-

tical. Gassmann (1964) showed that the elliptical behaviour of P-wave slowness surface

can be characterized by parameter A = (C13 + C44)2 − (C11 − C44)(C33 − C44). P-wave

slowness surface is elliptical for A = 0. This condition occurs in TI medium for ε = δ

(Thomsen, 1986). By defining anellipticity as η = δ − ε (cf. Sayers, 1995; Alkhalifah and

Tsvankin, 1995), η relates to A as η = A/2C33(C33 − C44) and vanishes for an elliptical

slowness surface.

The resulting curves of η for the Voigt, Reuss, Hill, and GMA averages all yield nearly

the same value of anellipticity as shown in Figure 4.5. Despite the fact that the various

averaging procedures give different absolute values of the elastic constants, the overall

behaviour of the elastic waves (especially anellipticity) predicted by these approxima-

tions is similar.

Finally, solving the Christoffel’s equation (e.g. Musgrave, 1970) for a set of elastic con-

stants obtained from the GMA procedure elastic wave slowness surfaces has been calcu-

lated and plotted on Figure 4.6. The initial highly anisotropic slownesses for the textured

aggregates approach circular slowness surfaces for the quasi-isotropic aggregate. The P

slownesses are generally anelliptic while those of SH mode are always elliptical in a TI

medium. The P and S vertical velocities for intrinsically anisotropic shales are always

less than those for the corresponding isotropic aggregate.

Phase velocity surfaces resulted from the solution of the Christoffel equation for all

wavefront propagation directions within the symmetry planes are shown on Figure 4.7.

Phase velocity surfaces are normalized in order to be comparable with those of the Chat-

tanooga Shale (Johnston and Christensen, 1995). Chattanooga Shale elastic constants were

obtained from the laboratory ultrasonic measurements at a confining pressure of 50 MPa

and reflect mainly the intrinsic properties of the shale predominantly composed of il-

lite (Johnston and Christensen, 1995). The experimentally observed P-wave anisotropy of

Chattanooga Shale can be explained on the basis of intrinsic anisotropy and attributed

to textural shale properties, which is in agreement with Johnston and Christensen’s (1995)

conclusions. The calculated and measured shear wave surfaces have very similar elastic

behaviour with the higher calculated intrinsic anisotropy of shear waves due to relatively

100

User
Note
Note, this eta is really only true for the case of weak anisotropy. I think I will prefer the epsilonS of Sayers (1995) which actually comes from Carrion et al, 1992.



4.3. RESULTS AND DISCUSSION

Y

Z

X Y

Z

X

measured
calculated
polarization

SH

qP

SV

Shale parameters:

e = 0.55

d = 0.16

g = 0.71

Shale parameters:

e = 0.55

d = 0.16

g = 0.71

Figure 4.7: Normalized phase velocity surfaces (qP and qS (SH and SV)) and polarization
directions of the modelled intrinsically anisotropic shale matrix compared with phase
velocity surfaces of the Chattanooga Shale that have been calculated from the elastic
constants obtained from the laboratory measurements at confining pressure of 50 MPa
(see Johnston and Christensen (1995)).

low value of the modelled C44 elastic constant.

The modelling presented here is based on several assumptions that include the shales

mineralogical composition, the elasticity of the constituent minerals and their orienta-

tions. These assumptions may not hold in more realistic shales and the consequences

of these approximations must be discussed. First, knowledge about the true elasticity

of the constituent clay minerals (i.e. illite, chlorite, kaolinite and montmorillonite) will

be essential for proper modelling of the intrinsic elasticity and, subsequently, determin-

ing the seismic velocities of shales. Elastic constants of constituent minerals predefine

intrinsic elasticity of the highly textured aggregates and influence the absolute values of

the elastic constants in quasi-isotropic aggregates with randomly oriented minerals. Sec-

ond, various clay minerals will have different elastic behaviours and levels of anisotropy

(cf. differences between the elasticity of the micas biotite and muscovite) and should

be treated separately in the calculations. Furthermore, the clay only assumption is vio-

lated, as considerable amounts of less anisotropic mineral phases (silt) are present in real
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shales. Substantial amounts of randomly oriented quartz, calcite or pyrite grains (as can

be seen on Figure 4.1b) first affect the clay mineral distribution by interfering with their

alignment and second increase the volumetrically weighted isotropic components in the

matrix. The presence of additional phases with different physical properties in shales

would only enhance fluctuations of both stress and strain within solid making the solu-

tion further deviate from either of the VR bounds. The assumptions of either uniform

strain or stress are violated in such aggregates and the solutions obtained on their basis

are erroneous.

As has been shown the intrinsic elasticity of monomineralic muscovite aggregate is

significantly influenced by texture. The degree of the clay platelet alignment (i.e. tex-

ture strength) varies substantially in shales and depends on several factors such as the

state of compaction (i.e. function of depth) and maturation (e.g. Vernik and Liu, 1997;

Hornby, 1998) and diagenetic processes (Ho et al., 1999). Intrinsic elastic anisotropy may

vary from high anisotropy for perfectly aligned clay aggregates to quasi-isotropic for the

case of almost randomly distributed clay platelets orientation. A further assumption of

no lateral preferences in the orientation of normals of the clay platelets is usually made.

Under this assumption the matrix composed of hexagonal crystals has TI statistical sym-

metry. Knowledge about the hexagonal symmetry of the constituent minerals and the TI

symmetry of the matrix allows the number of independent coefficients in the ODF ex-

pansion to be reduced. The assumption of no preferred lateral orientation may not hold

in the presence of additional textural features such as microfolding caused by the tectonic

stresses, which may lower the statistical intrinsic elastic symmetry from TI to orthotropic

or lower.

Finally, the overall elasticity of shales (especially in the fluid-rich conditions) depends

not only on its intrinsic properties but also on the presence of oriented microcracks (e.g.

Vernik, 1993), the amount of the fluid-filled porosity (e.g. Hornby, 1998) and the in situ dis-

tribution of stresses (Sayers, 1999), i.e. factors that may significantly influence anisotropy

and cannot be ignored. Models that incorporate these factors would, however, benefit by

starting from the intrinsically anisotropic matrix.
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4.4 Conclusions

The intrinsic elasticity of shales has been estimated by the Orientation Distribution Func-

tion (ODF) averaging of the elastic constants of muscovite, a mica structurally similar

to illite. The generally accepted approximations based on the assumptions of uniform

strain and stress within the solid matrix yield, correspondingly, the Voigt and the Reuss

averaging solutions. The VR bounds are widely separated which allows significant vari-

ation in the values of intrinsic elastic constants of shales. To overcome this limitation,

the Geometric Mean Averaging (GMA) method has been developed and appklied for first

time for aggregate of TI-hexagonal symmetry and incorporated into the ODF averag-

ing procedure. The GMA provides a solution fulfilling the requirement of invertibility

between aggregate stiffnesses and compliances. This solution lies predominantly rela-

tively close to the Hill average within the VR bounds for the diagonal elastic constants

(Figure 4.4). The purpose of implementation of the GMA solution was to examine the

effect of the texture strength per se on the elasticity of solid matrix. In case of textured

muscovite aggregate, the Voigt and Reuss bounds progressively diverge as the crystals

become more randomly oriented. The GMA results vary with respect to the VR bounds

(cf. the Hill solution). This implies that neither the Voigt, the Reuss or the Hill approxima-

tion uniquely define the elasticity of highly anisotropic aggregates; the elastic constants

of an anisotropic solid obtained by GMA method may lie close to any of these solutions

depending on the values of the elastic constants of the constituent minerals and aggre-

gate texture. The GMA solution is constrained by physically meaningful requirement of

the invertibility of stiffnesses to compliances.

Results of different volume averaging techniques (viz. the Voigt, the Reuss, the Hill

and the GMA) show that absolute values of elastic constants of textured muscovite ag-

gregate, and, consequently, shales depend on the averaging assumptions. Unexpectedly,

however, anisotropic parameters are less influenced by the choice of the averaging tech-

nique (Figure 4.5), i.e. GMA solution is close to the VRH results. Consequently, while the

choice of the averaging technique is essential for proper estimation of the absolute val-

ues of the elastic constants (and, eventually, wave velocities), it is less significant when

describing the behaviour of the elastic velocities. Slowness surfaces calculated from the
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GMA elastic constants show significant anellipticity of P-wave surface for highly tex-

tured muscovite aggregate. In addition, it is clear that axial P- and S- velocities of tex-

tured aggregate with VTI symmetry are always slower than those of isotropic one.
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Chapter 5

Discussion and Conclusions

This thesis deals with elastic properties of different types of intrinsically anisotropic

rocks. Both experimental measurements and modelling techniques are considered here.

Three Chapters of the thesis consider different types of rocks that exhibit intrinsic aniso-

tropy. Each Chapter has Discussion and Conclusions section that addresses specific is-

sues related to particular rock type. Conclusion sections of each Chapter cover topics of

laboratory measurements of intrinsic elastic properties of rocks, modelling elastic con-

stants and anisotropic parameters as a function of rock’s texture, and discussion of ad-

vantages of application of the GMA technique, developed in the thesis, for specific rock

symmetries.

In this concluding part of the thesis the main implications of the above studies to

the understanding of the overall elasticity of intrinsically anisotropic rocks are discussed

along with related problems. Conclusions and general outlook on the topic of intrinsic

elasticity of rocks with directions for future research are‘also provided.

5.1 Some aspects of experimental measurements

Results of experimental laboratory measurements of ultrasonic elastic velocities of meta-

morphosed rocks are discussed in details in Chapter 2. Two collections of rocks from

the Flin Flon Belt (FFB) of Trans-Hudson Orogen (THO) were investigated and results of

this study are summarized in the Chapter 2. Rocks were selected alone two profiles that

correspond on the surface to the strong inclined reflections of the LITHOPROBE THO

seismic profile 9. Outcrop samples classified as metavolcanics and metasediments, dis-
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play strong, in most cases visible texture. Samples of plutonic rocks were also selected

for this study. Core samples were cut from the hand specimens following their visible

textural properties.

Ultrasonic velocity measurements of P- and two S-waves reveal velocity anisotropy

and shear-wave splitting. Metasediments and metavolcanics exhibit strong anisotropy

(up to 24%) while plutonic rocks were characterized as quasi isotropic.

Implementation of the ’time of flight’ type of laboratory velocity measurements (see

Appendix A for more details and discussion on different experimental techniques) suf-

fers on directional dependency of velocity measurements, which led to determination

of only the diagonal constants of the elasticity matrix. Even though incomplete, this

set of elastic constants provide useful insights on the symmetries of investigated rocks.

Two anisotropic parameters ε and γ were calculated from the elastic constants and listed

for comparison. Based on the values of obtained elastic constants and the pattern of

shear wave splitting, both transversely isotropic and orthorhombic elastic symmetries

were identified. Rocks with weak or inconsistent variations in velocities (mainly plu-

tonic rocks) were considered as quasi isotropic. In addition to anisotropy, heterogeneity

(on the scale of laboratory measurements) was observed.

Ultrasonic velocities were measured for confining pressure of up to 300 MPa. Mea-

sured anisotropy was attributed to intrinsic rocks properties, i.e. texture. This conclusion

is inferred from the weak and almost linear dependency of measured velocities on con-

fining pressure. At confining pressure exceeding 100 MPa most of the rock’s fluid-free

cracks and micropore voids were assumed to be closed and have no significant effect on

measured velocity values. Observation of weak (if any) changes in anisotropy and shear

wave splitting for investigated rocks suggest no strong effect of cracks on measured ve-

locities at higher pressures. Results of this study demonstrate that metamorphosed rocks

of the FFB exhibit strong intrinsic P-wave anisotropy and shear-wave splitting. Whether

this anisotropy can be considered in broader content as a source of observed reflectivity

in the FFB remains to be seen. Plot of velocity versus density for investigated rocks sug-

gest some separation of impedances for the plutonic rocks and metasediments. Upscaled

seismic experiments (e.g. vertical seismic profiling) are needed to overcome laboratory

uncertainties due to heterogeneities and statistical uncertainties of sample representa-
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tions.

This study has demonstrated advantages as well as drawbacks of the currently used

experimental technique. Robustness and reliability of this type of laboratory measure-

ments allow for high accuracy of the determination of elastic constants to be achieved

and infer intrinsic origin of observed anisotropy. The directional dependence of the mea-

surements, however, imposes requirements that a sufficient number of core samples be

used to obtain full set of elastic constants.

Advantages and disadvantages of different experimental techniques currently used

to obtain full set of elastic constants are discussed in the Appendix A. The choice of suit-

able experimental technique to study intrinsic elasticity of rocks also depends on rock

type, and volumetric abundance, homogeneity and physical conditions of available spec-

imens.

5.2 Some aspects of modelling techniques

The purpose of the modelling techniques employed in the thesis Chapters 3 and 4 is to

investigate elastic properties of selected rocks as a function of texture. In Chapter 3 the

Voigt and the Reuss averaging techniques were developed to employ the ODF function

for specific case of orthotropic-orthorhombic symmetry applied to an olivine aggregate.

This new development was further extended to incorporate the GMA method. Chapter

3 deals mainly with the effect of different averaging techniques on elastic properties of

textured aggregate with application to olivine aggregate of orthotropic symmetry.

In Chapter 4 the same techniques are employed to phyllosilicate aggregates. Simpler

aggregate texture reflected by transversely isotropic elastic symmetry allowed not only

investigate effect of the averaging techniques (the Voigt, the Reuss, and the GMA) on val-

ues of elastic constants but also fully investigate effect of strength of the aggregate texture

on the overall elasticity. This investigation was implemented by developing hypothetical

textures and calculating elastic properties of muscovite aggregate from isotropic (ran-

domly oriented) to highly aligned aggregate with the properties of single aggregate. Re-

sults of this study were implemented to discuss the effect of intrinsic anisotropy on the

elasticity of shales.
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In all three studies intrinsic anisotropy plays an essential role in rocks elastic proper-

ties. These properties can be estimated by means of forward modelling, i.e. employment

of available information on the elasticity of constituent minerals and textural (spatial)

distribution of crystals within aggregate to calculate its elastic properties. In order to

complete information needed for forward modelling, distribution of stress and strain

within the aggregate is also required. It can be obtained with certain level of accuracy by

numerical calculations of stresses considering orientations, shapes of grains and bound-

ary conditions. Although applicable for specific cases and geometries, this approach is

too computationally expensive for most practical purposes. Alternatively, the state of

stress or strain in aggregate may be assumed, e.g. Voigt’s assumption of uniform strain

or Reuss’s of uniform stress. One of the main objectives of this study was to estimate

effect of these assumptions on results of modelling intrinsic elasticity. It has been shown

that in the case of textured olivine aggregate the averaging assumption has no signifi-

cant effect on the aggregate elastic constants (variations are within few percent). Textural

information in this case has a much stronger effect on the calculated aggregate elasticity.

Conversely, in the case of modelling elasticity of phyllosilicate aggregates (Chapter 4)

the averaging assumptions have very significant effect on the values of elastic constants.

This effect can be as strong as the influence of the texture on the aggregates elasticity.

Therefore, special consideration is needed on the choice of assumptions for the averaging

techniques to model intrinsic elasticity of a phyllosilicate aggregate. The GMA technique

was developed and applied for first time to the rocks with different symmetries. The

GMA is recommended to be used as it does not depend on the assumptions about stress

or strain. Instead, in the GMA the averaging operator is modified by mathematical ma-

nipulations to reflect essential requirement of invertibility of modelled physical property.

Implying elasticity this means that averaging of either stiffnesses or compliances provide

identical result.

This improvement achieved in the GMA through the implementation of a more so-

phisticated averaging operator. Application of the GMA averaging operator, however,

has its drawbacks. Most importantly, the averaging operation in the GMA is realized

in the logarithmic domain, i.e. the exponents of the eigenvalues of the elasticity ma-

trix are averaged instead of direct averaging of the elastic constants. This modification,

108



5.2. SOME ASPECTS OF MODELLING TECHNIQUES

providing identical solution for stiffnesses and compliances, makes, however, the GMA

more sensitive to the values of averaging coefficients obtained in turns from the aggre-

gate textural properties (the ODF). In other words, the accuracy of textural information

(obtained experimentally or by modelling) becomes essential for accurate modelling of

elastic constants using the GMA.

Comparing application of averaging techniques on investigated two types of rocks

it is obvious that the same assumptions have different effect on the rocks elasticity. For

the olivine aggregate the different averaging techniques provide similar results, and the

elasticity is mainly affected by the textural properties of the aggregate. In contrast, for

the phyllosilicate aggregate the different averaging techniques produce distinct results

and have a significant effect comparable with textural one. For rocks composed pre-

dominantly of phyllosilicate minerals, e.g. shales, justification of appropriate averaging

technique become critically important in order to obtain reliable modelling accuracy. The

GMA technique, independent of the assumptions on the state of stress or strain within

aggregate, appears to be preferable in this case as it provides a unique solution.

It has been previously discussed in the thesis that different methodologies can be used

to model elasticity of rocks. Techniques based on volume weighted averaging remains

the most popular and widely used for practical applications. Besides being straightfor-

ward in implementation they generally provide results with the acceptable level of accu-

racy for the most geophysical cases. This can be due to the rock type, as was discussed

in Chapter 3 when textural properties have stronger effect on the elasticity of olivine

aggregate than the choice of the averaging technique.

The averaging techniques are widely applied in Geophysics despite criticism with

regard to the lack of model complexity and limited flexibility for inputs of model pa-

rameters (i.e. lack of considerations for local (on grain scale) stress and strain distribu-

tions and absence of explicit implementation of the boundary conditions). One of the

reasons for this persistent use of averaging techniques (e.g. the Voigt and the Reuss)

in Geophysics might be a limitation of the accuracy of model due to remote nature of

geophysical measurements. Even laboratory samples are difficult to properly character-

ize. Even though the elasticity of rocks is a forward modelling problem with a unique

solution that may, in theory, be calculated with any order of accuracy, if necessary de-
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tailed description of model is provided (Kröner, 1977), it has never been accomplished

in reality for complex multiphase textured rocks. Although the desired accuracy of the

experimental measurements or forward modelling results may be achieved for a spe-

cific rock sample, assumptions usually made on implementations of these results due

to the fact that geophysicists deal with complex geological media that are not uniform

and homogeneous, and eventually requires some level of generalization (i.e. averaging).

An example of complexity of this problem is comparison of laboratory measurements to

seismological observation know also as the scaling problem. Complications such as statis-

tical representability of laboratory results, seismic wave dispersion and heterogeneities

introduce an error much greater than that of averaging results on a sample level. There-

fore effort for ultimate accuracy of modelling techniques should also reflect the need for

more accurate representation of the complex geological medium. There is no particu-

lar reason to believe that calculated high accuracy properties of a rock sample will not

reflect a localized effect of the geological medium and lead to erroneous assumption if

extended to greater scale without detailed statistical justification. Furthermore, due to

band-limited nature of useful signal recovered in seismological studies, the seismic wave

itself is sensitive only to the impedance contrast of certain adjacent layers of the medium

and resolves specific features depending on predominant frequency. For instance, elastic

wave resolution is limited even for high frequency ultrasonic laboratory experiments.

5.3 Directions for future research

The elasticity of solid materials is a mature and well developed area of Solid State Physics

and application of its methods in Rock Physics is becoming increasingly popular with

the growing demand for accuracy in determining elastic properties of investigated rocks

and in better understanding the causes of seismic anisotropy. This demand originates

from increasing need for more realistic and accurate description of geological medium

as some old assumptions, e.g. isotropy, no longer satisfy these needs. The significant

interest in anisotropy of seismic waves is one of many examples of present day efforts

to provide more sophisticated descriptions of complex geological media and developed

new methodologies of remote sensing of their physical properties. Dealing with the in-
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trinsic anisotropy of rocks the scope of this thesis covers only a small fraction of the wide

range of topics described by the term elastic waves anisotropy. Furthermore, there are va-

riety of topics within intrinsic anisotropy that need more detailed investigation in future.

The biggest one is an extension of algorithms developed for monomineralic polycrys-

talline aggregates to multiphase polycrystalline aggregates as more realistic model for a

majority of rocks.

Application of similar studies on modelling intrinsic elasticity to wider range of rocks

in combination with results of laboratory measurements will provide further insights on

complicated and challenging topic of the elasticity of rocks.

Overall, it has been shown that intrinsic anisotropy significantly affects the elastic

properties of textured rocks and is a major source of observed velocity anisotropy for the

types of rocks investigated in the thesis.

Present day experimental techniques allow determination of the full set of elastic

constants. Pressure dependent measurements allow discrimination between different

sources of seismic anisotropy, and estimation of the effect of intrinsic anisotropy.

Forward modelling provides insights on elastic behaviour as a function of texture.

Complicated justification of the choice of the averaging assumption of particular averag-

ing technique can be avoided by using the GMA. However, further research on extended

range of intrinsically anisotropic rocks and experimental confirmations are required to

justify its wider application.

111



Bibliography

Ahrens, T. J., 1995, Rock Physics & Phase Relations: a handbook of physical properties, vol. 3 of
AGU Reference Shelf , AGU, Washington, D.C.

Aki, K., and P. G. Richards, 2002, Quantitative Seismology, second ed., University Science
Books, Sausalito, California.

Aleksandrov, K., and G. Prodayvoda, 1994, The study of elastic symmetry and anisotropy
of elastic body waves in gneiss, Geophys. J. Int., 119, 715–728.

Aleksandrov, K. S., and L. A. Aizenberg, 1966, Method of calculating physical constants
of polycrystalline materials, Dokl. Akad. Nauk SSSR, 167, 1028–1031.

Aleksandrov, K. S., and T. V. Ryzhova, 1961, The elastic properties of crystals, Sov. Phys. -
Cryst., 6, 228–252.

Alexandrov, K. S., and T. V. Ryzhova, 1961a, The elastic properties of rock-forming min-
erals. Pyroxenes and amphiboles, Bull. (Izv.) USSR Acad. Sci., Geophys. Ser., 9, 871–875.

Alexandrov, K. S., and T. V. Ryzhova, 1961b, Elastic properties of rock-forming minerals.
ii. Layered silicates, Bull. (Izv.) USSR Acad. Sci., Geophys. Ser., 12, 1165–1168.

Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media,
Geophysics, 60, 1550–1566.

Arts, R. J., P. N. J. Rasolofosaon, and D. E. Zinszner, 1991, Complete inversion of the
anisotropic elastic tensor in rocks: experiment versus theory, in 61st annual International
Meeting SEG, Expendet Abstracts, pp. 1538–1541.

Arts, R. J., P. N. J. Rasolofosaon, and B. E. Zinszner, 1996, Experimental and theoretical
tools for characterizing anisotropy due to mechanical defects in rocks under varying
pore and confining pressures, in Seismic anisotropy, edited by E. Fjaer, R. M. Holt, and
J. S. Rathore, pp. 384–432, SEG, Tulsa.

Ashton, K., K. Wheatley, K. H. Wilcox, D. Paul, D. Moser, and J. de Taube, 1988, Geology,
Wildnest Lake area, Saskatchewan, Geological survey of Canada, Open file.

Auld, B., 1990, Acoustic fields and waves in solids, John Wiley and Sons, Inc., New York.

Ave’Lalliemant, H. G., and N. L. Carter, 1970, Syntectonic recrystallization of olivine and
modes of flow in the upper mantle, Geol. Soc. Am. Bull., 81, 2203–2220.

112



BIBLIOGRAPHY
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Appendix A

Experimental techniques of
measuring elastic constants and
anisotropy

Several techniques are currently in use for the experimental determination of the elastic

constants of the solid materials. Some have a long history as, for example, static tech-

niques, which have been known for several hundred years. The simplest 1D implementa-

tion is known as the determination of the single elastic constant k of a spring in Hooke’s

Law, F = −kx. This requires measurement of the displacement as a linear response

to applied force. Using present-day technology, the method of speckle interferometry (e.g.

Shareef and Schmitt, 2004) may be applied to precisely determine the surface displacement

of the block of solid material. By inverting observed interferometric fringes, the elastic

moduli of the investigated material may be obtained.

One method to determine the full set of the elastic constants is based on detection of

the natural resonant frequencies of sample with known dimensions. The methos is called

resonant ultrasound spectroscopy (RUS). RUS has emerged during the last few decades as a

powerful tool to study the elasticity of solid materials (Maynard, 1996; Migliori and Sarrao,

1997; Leisure and Willis, 1997). The full set of the elastic moduli may be obtained from a

single scan through various frequencies in order to find a number of the sample’s normal

modes. The main advantage of this technique is the ability to measure elastic constants

of samples as small as few millimeters in dimension (Migliori and Fisk, 1993). The mea-

surements can be repeated for different pressure and temperature (P-T) conditions to
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investigate pressure and temperature derivatives of the elastic moduli (e.g. Migliori and

Fisk, 1993; Isaak et al., 1998). The dissipation of the resonant energy, however, increases

linearly with pressure because of impedance and viscous effects at the boundary between

the sample and pressurizing medium (Zhang et al., 1998; Sorbello et al., 2000). This is the

main obstacle to this technique at even modest pressure let alone at the high-pressure

regime of crucial importance in investigations of elastic properties of the Earth’s interior.

RUS was initially considered to be applied for the investigation of anisotropy of rocks in

this study but eventually was abandoned due to resonant frequency energy dissipation

at higher pressure.

The most popular and widely used technique in geophysics is based on the elastic vi-

brations of a solid. Simple ultrasonic measurement of elastic wave transit times through

the sample are accomplished by variations known as either time-of-flight or pulse-echo

techniques. It has been important in studies of rocks elasticity (Schreiber et al., 1973) and

was employed in Chapter 2 to obtain partial set of elastic constants. In fact, almost all

existing full sets of elastic constants for crystals and rocks were obtained by using such

methods. Among notable examples are Alexandrov and Ryzhova (1961a,b), and compila-

tion by Simmons and Wang (1971) The published results of time-of-flight measurements

are used as a primary reference source in geophysical investigations. The time-of-flight

yield the most accurate characterizations of solid elasticity but suffer several problems

including transducer coupling, directional dependency, and scale dispersion.

Experimental techniques based on the ultrasonic measurement of elastic wave prop-

agation yield a set of measured wave traveltimes with different polarizations and direc-

tions of propagation. Velocities calculated from traveltimes must, therefore, be inverted

for elastic moduli (Neighbours, 1954; Neighbours and Schacher, 1967). Mah and Schmitt

(2001b, 2003) provided a review of these methods. To obtain the full set of elastic con-

stants of linearly elastic anisotropic solid (i.e. twenty one for the most general case of tri-

clinic symmetry) both the velocity and the polarization orientation should be measured

in at least 6 different directions (Van Buskirk et al., 1986). Ditri (1994) has shown that up

to 15 elastic constants can be uniquely determined if a series of measurements are taken

in different direction within a single plane. Additional 5 elastic constants (making it 20

out of 21) can be determined if measurements are taken within two planes. For instance,
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measurements within the single X1X2 plane of the X1X2X3 cartesian coordinate system

assigned to the sample allow determination of the following 15 elastic constants:

Cij =




C11 C12 − C14 C15 C16

C22 − C24 C25 C26

− − − −
C44 C45 C46

C55 C56

C66




(A.1)

It is easy to note that none of elastic constants with an index ′3′ can be retrieved

from the data acquired solely in the X1X2 plane. Here, it should also be noted that any

number of direction of measurements can be taken, and all three modes of elastic wave,

compressional and two shear waves must be considerate (see Appendix B for details on

elastic wave velocities in anisotropic solid). A severe limitation of Ditri’s analysis is that

the polarization need to be found. While this can be done approximately (see Mah and

Schmitt, 2001a, 2003), it is very difficult to do in practice.

The time-of-flight method, constrained by directionality, usually makes measurements

on cylindrical samples (e.g. technique discussed in details in Chapter 2) and requires a

number of core samples be cut in different directions from the hand specimen (Birch,

1960). Providing high accuracy of velocity measurements and absence of practical lim-

itations on investigation of pressure and temperature dependencies within the scope of

geophysical interest, this technique suffer from ambiguity imposed by variation in min-

eralogy and textural properties from core to core even within one specimen. Further-

more, the physical dimensions of hand specimen should, naturally, be adequate to core

the necessary number of samples.

Pros and Babuška (1967) and Pros et al. (1998a) introduced a method of measurement of

elastic constants on spherical rock samples. Providing sufficient capability on the choice

of measurement direction (velocities in 132 independent directions per sample have been

reported) this technique allows the velocity anisotropy and pole figures of velocity dis-

tribution to be directly plotted from the experimental results. The method may be ap-

plied to investigate pressure dependence of elastic velocities up to 400MPa and show

direct correlation of observed velocity distribution pattern with the textural properties of

constituent minerals and oriented microcracks (Pros et al., 1998b). Drawback of measure-
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ments on spherical samples is that the group, not the phase velocity, is usually measured

(see Vestrum, 1994). For details on difference between the phase and the group velocities

in anisotropic medium refer to Appendix B. Group velocity surfaces are more complex

(i.e. may contain singularities) and, in general, no analytical solution is provided to cal-

culate elastic constants directly from ultrasonic measurements. Elaborate inversion tech-

niques such as one presented by Every and Sachse (1990) for materials of cubic symmetry

are needed to retrieve elastic constants. Group velocity inversion algorithms, in addition,

must deal with instabilities that originate in directions of group velocity singularities for

shear waves (Jech, 1991; Vestrum, 1994). The problem of numerical stability in the forward

modelling (raytracing) in the vicinity of singular direction in an anisotropic medium has

been recently addressed by Vavryčuk (2001).

For composite material of orthorhombic symmetry the full set of elastic constants was

calculated from the measured elastic velocities in 6 predefined directions on specially

shaped sample by Cheadle et al. (1991). Measurements were taken along three principal

directions of symmetry inferred from the shear wave behavior and the visible textural

features of composite, and three directions at 45◦ to the principal directions within the

symmetry planes. Assuming orthorhombic symmetry analytical expressions have been

derived to invert observed velocities for elastic constants. Arts et al. (1991, 1996) intro-

duced a method which yields a full set of elastic constants for material of arbitrary elastic

symmetry. In this technique, measurements along 9 independent directions on a faceted

sample shaped as truncated cube with 18 faces are needed. The inversion of the exper-

imentally measured velocities allows all 21 elastic constants of investigated material to

be obtained without prior knowledge of its symmetry. Aleksandrov and Prodayvoda (1994)

and Prodayvoda (1995) reported full sets of elastic constants of anisotropic rocks with dif-

ferent symmetries by employing a similar technique.

Most recently, Mah and Schmitt (2001b, 2003) reported method of the determination

of full set of elastic constants. A block of a composite material of rectangular shape was

used in these investigations. Observed P- and S-wave traveltimes obtained from arrays

of sources and receivers were inverted by employing plain wave decomposition (also known

as τ − p transformation, e.g. Kebaili and Schmitt, 1996) to obtain the elastic constants.
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Appendix B

The Christoffel equation and elastic
velocities of anisotropic solids

The review of elastic wave propagation through anisotropic media presented here fol-

lows mainly the development in Musgrave (1970).

During seismic wave propagation a solid body changes its shape as a result of applied

stress. To the extent that a strained body stays within the elastic limit, the strain is recov-

erable and the body returns to its original shape. The homogeneous stress and strain are

specified as a second-rank tensors σij and εkl, respectively. The magnitude of the strain

is proportional to the applied stress. In cases where elastic limit condition holds, linear

to first order relation between the six component of the stress tensor σij and the six com-

ponent of the strain tensor εkl known as the generalized Hooke’s Law may be written in the

form:

σij = Cijkl εkl (B.1)

where Cijkl is a fourth-order tensor having 81 elements known as elastic stiffnesses.

Tensor Cijkl fully describes elastic properties of anisotropic crystals or solids. Fortunately,

this tensor has symmetry (the symmetry of stress and strain tensors imply that there are

six independent choices for the pair of suffixes ij and kl):

Cijkl = Cjikl = Cjilk = Cijlk

which reduces the number of independent elements to, at most, 36. Moreover, the

135



condition that the strain energy ∆Φ, where Φ is a potential energy function, must always

be positive (i.e. work must be done to impose strain) leads to additional symmetry of

elastic tensor such that:

Cijkl = Cklij

and further reduces the number of independent constants to 21. The number of inde-

pendent elastic constants depends on the elastic symmetry of investigated material and

may vary between one elastic constant (usually defined as bulk modulus K) for fluids,

two elastic constants (Lamé parameters, λ and µ) for isotropic solids and up to twenty one

independent elastic constants for most general case of triclinic symmetry. Knowledge of

the elastic constants plays an essential role in the calculation of longitudinal P and two

shear waves S1 and S2 velocities of elastic wave propagating in anisotropic solids.

Following Musgrave (1970) the equation of motion (EOM) for a unit volume element of

solid has the form:

∂σij

∂xj
+ ρXj = ρ

∂2ui

∂t2
(B.2)

where ui - is the linear particles displacement, ρ - the density of material, and the

t - time. Employing the conventional Einstein suffix notation (Nye, 1990), EOM may be

written:

σij,j + ρXj = ρ üi (B.3)

where a comma represents partial differentiation and a dot denotes a derivative with

respect to time. If body forces, represented by term ρXi, are excluded, the equation of

motion reduces to form:

σij,j = ρ üi (B.4)

Equation (B.4) is the general constitutive equation for a linear elastic anisotropic medium.

The relationship between the strain and displacement in elastic medium has form:

εij =
1
2

(ui,j + uj,i) (B.5)
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Combination of equations (B.1), (B.4) and (B.5) enables one to write:

σij = Cijkl uk,l (B.6)

Expression (B.6) may be rewritten in a form of linear partial differential equation of

the second order:

Cijkl uk,jl − ρ üi = 0 (B.7)

The equation of the particle displacement u for elastic wave propagating in the direc-

tion of a wave normal defined by the unit vector n̄ = n̄1î + n̄2ĵ + n̄3k̂ has the form:

u(xi, t) = a0 ei(ωt−kixi) (B.8)

where a0 is the maximum amplitude of particle oscillation, xi are components of the

particle position, ki are components of a wave vector k which has magnitude k = 2π/λ

known also as a wave number, λ - wavelength, and ω - angular frequency, ω = 2πf . For the

monochromatic monotropic wave the phase velocity can be introduced in the form v = ω/k

(this relationship between the wave number and the angular frequency is also known as

the dispersion relation) and equation (B.8) can be rewritten:

u(xi, t) = a0 e
i 2π

λ(ni)
(v(ni)t−nixi) (B.9)

where v is the phase velocity along the real vector n̄ of the complex wave normal,

ni = ki/ω, (i = 1, 2, 3) are components of the vector which is an inverse of the phase

velocity and known as slowness. The plane wave assumption of constant phase factor

φ = (ωt − kixi) = const (i.e. constant amplitude) and substitution of equation (B.9) into

equation (B.7) leads to an equation:

(Cijklnjnl − ρv2δik)uk = 0 (B.10)

where δij is the Kronecker delta (Nye, 1990). The nonzero value of displacement ui are

obtained as characteristic (eigen) vectors corresponding to the characteristic (eigen) values

of velocities v2 which are the roots of the standard eigenvector-eigenvalue problem:
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det | Cijklnjnl − ρv2δik |= 0 (B.11)

Solution of equation (B.11) in all directions represents the velocity surface of an infi-

nite number of plane waves. It is convenient to rewrite equation (B.11) by introducing

the notation

Γik = Cijklnjnl (B.12)

where Γik is the symmetric Christoffel matrix 1. Then equation (B.11) becomes:

(Γik − ρv2δik)uk = 0 (B.13)

Equation (B.11) well known as Christoffel equation and the standard eigenvalue-eigen-

vector problem may be now rewritten in the form:

det | Γik − ρv2δik |= 0 (B.14)

The solution of the cubic equation (B.14) for any specific slowness direction n̄ yields

three positive eigenvalues of the squared phase velocity v2, which correspond to a P-

wave and two S-waves (strictly, the ”quasi-P” wave and ”quasi-S” wave). Two quasi-shear

waves usually distinguished by their magnitude as fast or S1 and slow or S2 shear wave.

The difference S1 − S2 = δS is known in the geophysical literature as shear-wave splitting

(Crampin, 1981). The eigenvectors corresponding to three eigenvalues are the polariza-

tion directions of the three modes. The polarization directions are always orthogonal to

one other in an anisotropic medium, but none is necessarily parallel or perpendicular to

phase velocity front normal n̄ as is seen for isotropic case where pure P-mode is always

polarized parallel to n̄ and two coinciding pure S-modes transverse to n̄.

An additional complication of wave propagation in anisotropic media is the discrep-

ancy between the phase (normal or plane wave) and the group (also known as ray or

wave) velocities (Musgrave, 1970; Auld, 1990; Helbig, 1994). Helbig (1984b) demonstrates

that, in the non-dispersive anisotropic medium, phase velocity vector v is independent
1named after the German mathematician Elwin Bruno Christoffel (1829-1900), a student of Dirichlet, who

contributed significantly to the development of the numerical integration, conformal mappings, the theory
of invariants and the tensor calculus
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of magnitude of the wave vector k but depends on its direction (anisotropy). Following

Helbig (1994), the phase velocity v is the velocity of propagation of the front of constant

phase, i.e. the velocity of the carrier wave, and defined as a vector in the general disper-

sion relation:

v =
ω

(k · k)
k

with components:

vi =
ωki

kjkj

Velocity of amplitude factor, i.e. the velocity of energy transport, in anisotropic non-

dispersive medium is called group velocity g and is defined as:

g = gradk ω

with components:

gi =
∂ω

∂ki

Knowing that ω = kivi the relationship between phase and group velocities can be

written as:

g = v + kgradk v

The phase (velocity) surface can be defined as the surface that connects the end points

of the infinite number of phase velocity vectors v that originate from a single point and

pointing in all directions. The surface connecting the end points of group velocity vectors

g is known as wave (velocity) surface. The geometrical relationship between the phase and

the wave surfaces is discussed in detail by Musgrave (1970); Helbig (1994). Here, for pur-

pose of illustration, the vertical section through the phase and the group (wave) surfaces

of quasi S - wave of highly anisotropic hexagonal muscovite crystal is plotted on Figure

B.1 (a). The cusps on the group velocity surface (i.e. sharp discontinuous end points) are

a distinctive feature of quasi shear wave propagation in highly anisotropic materials. On
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Figure B.1 (b) a single direction has been chosen to demonstrate relationship between the

phase velocity vector v and the group velocity vector g. The phase velocity angle β is

defined as an angle from the vertical direction to phase velocity vector. Corresponding

to this phase velocity group velocity vector is defined by group angle γ. If angles α and

γ are known then simple geometrical relationship allows one to calculate group velocity

from the phase velocity and vice versa:

v(β) = g(γ) cos(γ − β) = g(γ) cos(α)

In non-dispersive anisotropic media, the group velocities are always larger than or

equal to the corresponding phase velocity (Helbig, 1994).

a)

g

a

b

g

v

b)

Figure B.1: Relationship between the phase and the group velocity surfaces.
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Appendix C

Voigt and Reuss averaging

The theoretical developments describing the elasticity of a polycrystalline aggregate have

a long history (see Chapter 1). The original idea of averaging the elastic properties of con-

stituent minerals to obtain the elastic properties of their polycrystalline aggregate was

introduced in the beginning of the XX century by Voigt (1928) and Reuss (1929). Despite

their respectful age, the Voigt and the Reuss averages are today the most frequently ap-

plied averaging techniques in geophysics. In this Appendix some aspects of the Voigt

and the Reuss averaging are presented.

The elastic constants of isotropic (randomly oriented) aggregate in the Voigt approxi-

mation of constant strain can be calculated by formulas (e.g. Simmons and Wang, 1971):

KV = (A + 2B)/3 (C.1a)

GV = (A−B + 3C)/5 (C.1b)

where KV is the bulk modulus and GV is the shear modulus of an isotropic aggregate,

and

3A = C11 + C22 + C33 (C.2a)

3B = C12 + C13 + C23 (C.2b)

3C = C44 + C55 + C66 (C.2c)

where the C11, C22, C33, C44, C55, C66, C12, C13, C23 are elastic stiffnesses of the con-

stituent mineral in Voigt notation (see Section 2.2 for more details). Note that only nine
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elastic constants are incorporated into the Voigt averaging procedure. This implies that

for constituent minerals with symmetry as high as orthorhombic all the elastic constants

are required by the averaging procedure. For lower symmetry crystals (monoclinic and

triclinic) only the above mentioned elastic stiffnesses contribute to elastic properties of

isotropic aggregate according to the above formulation.

Similarly, the Reuss approximation of constant stress leads to the set of equations:

KR =
1

(3a + 6b)
(C.3a)

GR =
5

(4a− 4b + 3c)
(C.3b)

where

3a = S11 + S22 + S33 (C.4a)

3b = S12 + S13 + S23 (C.4b)

3c = S44 + S55 + S66 (C.4c)

where S11, S22, S33, S44, S55, S66, S12, S13, S23 are elastic compliances of the con-

stituent mineral. It has been shown in Section 2.2 that properties of isotropic aggregate

can be described by Lamé parameters λ and µ (λ + 2µ = C11 = C22 = C33 , µ = C44 =

C55 = C66 , and λ = C12 = C13 = C23):




λ + 2µ λ λ 0 0 0
λ + 2µ λ 0 0 0

λ + 2µ 0 0 0
µ 0 0

µ 0
µ




Taking into account relationship between Lamé parameters and bulk and shear mod-

ulus:

KV = λ + 2
3µ

GV = µ

averaging procedure (C.1)−(C.2) can be rewritten in the matrix form:
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C11

C22

C33

C44

C55

C66

C12

C13

C23




=




3/15 3/15 3/15 4/15 4/15 4/15 2/15 2/15 2/15
3/15 3/15 3/15 4/15 4/15 4/15 2/15 2/15 2/15
3/15 3/15 3/15 4/15 4/15 4/15 2/15 2/15 2/15
1/15 1/15 1/15 3/15 3/15 3/15 -1/15 -1/15 -1/15
1/15 1/15 1/15 3/15 3/15 3/15 -1/15 -1/15 -1/15
1/15 1/15 1/15 3/15 3/15 3/15 -1/15 -1/15 -1/15
1/15 1/15 1/15 -2/15 -2/15 -2/15 4/15 4/15 4/15
1/15 1/15 1/15 -2/15 -2/15 -2/15 4/15 4/15 4/15
1/15 1/15 1/15 -2/15 -2/15 -2/15 4/15 4/15 4/15







C11

C22

C33

C44

C55

C66

C12

C13

C23




(C.5)

Equation (C.5) now can be written in matrix notation:

C
V = a V C (C.6)

where C is [9 × 1] vector composed of independent elastic constants of the single

crystal, a V is the Voigt averaging matrix and C
V is the resulting [9×1] vector composed of

the elastic constants of the aggregate in the Voigt approximation. Similarly, the procedure

can be repeated to represent the Reuss averaging:




S11

S22

S33

S44

S55

S66

S12

S13

S23




=




3/15 3/15 3/15 1/15 1/15 1/15 2/15 2/15 2/15
3/15 3/15 3/15 1/15 1/15 1/15 2/15 2/15 2/15
3/15 3/15 3/15 1/15 1/15 1/15 2/15 2/15 2/15
4/15 4/15 4/15 3/15 3/15 3/15 -4/15 -4/15 -4/15
4/15 4/15 4/15 3/15 3/15 3/15 -4/15 -4/15 -4/15
4/15 4/15 4/15 3/15 3/15 3/15 -4/15 -4/15 -4/15
1/15 1/15 1/15 -1/30 -1/30 -1/30 4/15 4/15 4/15
1/15 1/15 1/15 -1/30 -1/30 -1/30 4/15 4/15 4/15
1/15 1/15 1/15 -1/30 -1/30 -1/30 4/15 4/15 4/15







S11

S22

S33

S44

S55

S66

S12

S13

S23




(C.7)

and

S
R = a R S (C.8)

where S is [9 × 1] vector composed of independent elastic compliances of a single

crystal, a R is the Reuss averaging matrix and S
R is [9 × 1] vector composed of elastic

compliances of aggregate in the Reuss approximation. The apparent difference in an

averaging matrix in (C.5) and (C.7) is attributed to the difference in the definition of
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the Voigt notation for stiffnesses and compliances (see Nye, 1990). One can employ a

transformation matrix T to obtain the Reuss averaging matrix from the Voigt averaging

matrix:

a R = T ∗ a V (C.9)

where

T =




1 1 1 1/4 1/4 1/4 1 1 1
1 1 1 1/4 1/4 1/4 1 1 1
1 1 1 1/4 1/4 1/4 1 1 1
4 4 4 1 1 1 4 4 4
4 4 4 1 1 1 4 4 4
4 4 4 1 1 1 4 4 4
1 1 1 1/4 1/4 1/4 1 1 1
1 1 1 1/4 1/4 1/4 1 1 1
1 1 1 1/4 1/4 1/4 1 1 1




In equation (C.9) ’∗’ stands for array multiplication (element by element) not for ma-

trix multiplication. Note that to compare the averaging results either the Voigt stiffnesses

or the Reuss compliances in the matrix form have to be inverted, e.g. C
R
m = (SR)−1

m .

It has been noted by Hill (1952) that neither the Voigt nor the Reuss approach can

strictly be accepted as solution for elastic properties of isotropic polycrystalline aggre-

gate. According to Hill, a true solution lies between: C
V

> C > C
R. Hill suggested the

simple arithmetical average of the Voigt and the Reuss elastic constants provided a more

accurate representation of elastic properties of isotropic aggregate (CH = (CV + C
R)/2).

See Section 4.2 for discussion on the limitations of Hill’s approach and averaging proce-

dure called ’Geometric Mean Averaging’ (GMA) that allows more physically meaningful

solution to be introduced.

Solutions (C.5) and (C.7) are special cases of more general approach that incorporates

textural properties of the aggregate and described in Appendix D. If a polycrystalline

aggregate has a random orientation distribution then it is elastically isotropic and the

generalized case of Appendix D reduce to the Voigt and the Reuss solutions presented

here.
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Appendix D

Quantitative texture description:
ODF of orthotropic symmetry

In this Section, the derivation of the orientation distribution function (ODF) of orthotropic-

orthorhombic symmetry is described. Additional objective of this Appendix is to provide

all necessary details for calculation of the aggregate elasticity employing the ODF. This

information is usually incomplete in the literature produced over the last two decades

and requires researcher go back to the original sources for understanding.

In order to derive the ODF two frames of references must be introduced. The first

corresponds to the crystal symmetry (xyz). The second relates to the symmetry of the

aggregate specimen (XY Z). The first order elastic properties of an anisotropic crystal in

a reference crystal coordinate system xyz can fully be described by the forth-order tensor

Cijkl (e.g. Nye, 1990). In the specimen coordinate system XY Z crystal elastic proper-

ties are obtained when the xyz crystal reference frame is rotated to coincide with the

specimen coordinate system XY Z. This may be accomplished by a series of consecutive

rotations through the Euler angles ϕ1, Φ, ϕ2 (e.g. Morse and Feshbach, 1953) as defined in

Figure D.1. The reorientation of the crystal coordinate system xyz into the sample coor-

dinate system XY Z can then be unambiguously defined when the three Euler angles are

combined into an orientation domain g = {ϕ1,Φ, ϕ2}. In the constrained three dimen-

sional ϕ1−Φ−ϕ2 Euler space (0 ≤ ϕ1 ≤ 2π, 0 ≤ Φ ≤ π, 0 ≤ ϕ2 ≤ 2π) a single orientation

g is represented by a point as shown in Figure D.2.

In order to quantitatively describe the orientations of the constituent minerals in tex-

tured rock the orientation distribution function (ODF) f(g) may be employed (e.g. Bunge,
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1982). f(g) is probabilistic function defined by the volume fraction of crystals having ori-

entation g within a certain infinitesimal orientation range dg:

dV

V
= f(g)dg (D.1)

where dV is volume of crystalline with orientation g and V - total volume of the

nonporous aggregate. By employing a harmonic method, this ODF can be expanded

into a series of generalized spherical harmonics, also known as a Viglin expansion (Viglin,

1960):

f(g) =
∞∑

l=0

+l∑

m=−l

+l∑

n=−l

Cmn
l Tmn

l (g) (D.2)

where Tmn
l (g) are the generalized spherical harmonics (GSH) and Cmn

l are coefficients,

representing the portion of the corresponding harmonics in the expansion and reflecting

the textural properties of the particular ODF.

Due to the symmetrical properties of the forth-rank elastic stiffnesses tensor Cijkl (see

Section 2.2 and Appendix B for more details on symmetry of Cijkl) only the even parts of

the ODF expansion to the maximum degree l = 4 is required in the averaging procedure

(Backus, 1970) as will be described below in details. This implies, that only the ”long

wavelength” components of the ODF that reflect the strongest trend and smooth textural

features contributes to the averaging of the elastic properties of the textured aggregate

(e.g. Diz and Humbert, 1992).

The generalized spherical harmonics Tmn
l are defined through the generalization of the

associated Legendre functions (GALF) Pmn
l (see Bunge, 1982):

Tmn
l (ϕ1, Φ, ϕ2) = eimϕ2Pmn

l (cosΦ)einϕ1 (D.3)

where

Pmn
l (cosΦ) = Pmn

l (x) =
(−1)l−m in−m

2l(l −m)!

[
(l −m)! (l + n)!
(l + m)! (l − n)!

]1/2

×

× (1− x)−
n−m

2 (1 + x)−
n+m

2
dl−n

dxl−n

[
(1− x)l−m (1 + x)l+m

]

146



y

Y

X

x

z
Z

j1

F

F

j2

Figure D.1: Definition of the Euler angles (after Bunge, 1981).

For the ODF expansion to maximum degree l = 4, there are 165 GALFs (85 pure real

and 80 pure imaginary functions). Due to the fact that the Pmn
l are symmetrical only 55

of these 165 functions are truly independent.

j2

F

j1
0° 360°

360°

180°

0°

(j1, F, j2)

j2

F

j1
0° 360°

360°

180°

0°

(j1, F, j2)

Figure D.2: Representation of the single orientation in the Euler space (after Bunge, 1981).

One important advantage of the harmonic method, frequently exploited in textural

analysis, is that it is possible to introduce a set of functions Ṫ mν
l and ˙̇T µn

l that account
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separately for the specimen and the crystal coordinate systems symmetries, respectively:

Ṫ mν
l (g) =

+l∑

n=−l

Ȧnν
l Tmn

l (g) (D.4a)

˙̇T µn
l (g) =

+l∑

m=−l

˙̇Amµ
l Tmn

l (g) (D.4b)

where Ȧnν
l , ˙̇Amµ

l are the coefficients of symmetry that reflect the specimen and crystal

symmetries, respectively, derived to incorporate symmetrical properties. Consequently,

the symmetric generalized spherical harmonics (SGSH) ˙̈T µν
l (g) can be constructed from the

GSH, as follows:

˙̈T µν
l (g) =

+l∑

m=−l

+l∑

n=−l

˙̇Amµ
l Ȧnν

l Tmn
l (g) (D.5)

For the case of a textured specimen of orthorhombic symmetry composed solely of

orthorhombic olivine crystals the SGSH reflects both the orthorhombic olivine crystal

symmetry and the orthorhombic specimen symmetry. Bunge (1982) shows that number

of independent SGSH required to describe aggregate texture is a function of the symme-

tries of the crystal and aggregate, and the ODF expansion degree l. For orthorhombic

symmetry this dependence has a form M(l) = l/2+1. Application of ’selection rules’ en-

sures proper definition of new indexes ν and µ which enumerate the number of linearly

independent spherical harmonics for specimen and crystal symmetry, respectively. For

orthorhombic-orthorhombic symmetry considered in this appendix the Viglin expansion

(equation D.2) can be re-written:

f4(g) =
4∑

l=0

M(l)∑

µ=1

N(l)∑

ν=1

C µν
l

¨̈T µν
l (g) (D.6)

Note that f4(g) is a truncated part of an infinite expansion series (equation D.2. The

SGSH, ¨̈T µν
l (g), in this case exhibit symmetry with respect to all three Euler angles. Con-

struction of functions with such properties can be accomplished by summation over

certain GSHs by the formulas derived here and listed in Table D.2. Symmetrical gen-

eralized spherical harmonics for orthorhombic specimen symmetry and orthorhombic
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Table D.1: Orthorhombic symmetrical generalized spherical harmonics
¨̈T µν
l (g) ν

l µ 1 2 3
0 1 T 00

0 ≡ 1
2 1 T 00

2

√
2

2 (T 02
2 + T 0−2

2 )
2

√
2

2 (T 20
2 + T−20

2 ) T 22
2 + T−22

2

4 1 T 00
4

√
2

2 (T 02
4 + T 0−2

4 )
√

2
2 (T 04

4 + T 0−4
4 )

2
√

2
2 (T 20

4 + T−20
4 ) T 22

4 + T−22
4 T 24

4 + T−24
4

3
√

2
2 (T 40

4 + T−40
4 ) T 42

4 + T−42
4 T 44

4 + T−44
4

olivine crystal symmetry with even l degree (0 ≤ l ≤ 4) were calculated using formulas

from Table D.1 and the resulting SGSH of the order l = 2 and 4 are represented by the

volume isosurfaces in Euler space (Fig. D.3).

The coefficients C µν
l of the symmetric generalized spherical harmonics in equation

(D.6) carry information on texture and are essential for calculation of elastic constants of

a textured aggregate. In texture analysis techniques, these coefficients may be calculated

from the intensity of the pole figures of crystallographic axes of constituent minerals re-

sulted from X-ray, neutron, and electron (EBSD) diffraction techniques (e.g. Ullemeyer

et al., 2000). If the individual orientation of each mineral are known then the C µν
l may

be obtained from the formula for individual orientations (e.g. Wagner et al., 1981). When

texture consists of many crystals of different orientation gi and volume Vi, then the coef-

ficients C µν
l may be calculated as volume weighted averages:

C µν
l = (2l + 1)

∑
i Vi

¨̈T ∗µν
l (gi)∑
i Vi

(D.7)

In the current development all the SGSH in our expansion are real and the complex

conjugate symbol ’*’ may be omitted. The coefficients C µν
l obtained from equation (D.7)

are used in the averaging procedure described below.

The problem of determination of the elastic stiffnesses C̃ijkl of textured polycrys-

talline aggregates is discussed in details in sections 4.2 and 4.2. The purpose of this

appendix is to more fully describe the techniques and the assumptions behind an aver-

aging approximation. If the elastic constants Cijkl of the single crystal are known, then

the C̃ijkl can be approximated by mean value Cijkl. For the Voigt constant strain assump-
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Figure D.3: Symmetric generalized spherical harmonics of order l = 2 and 4 represented
by volume isosurfaces in the Euler ϕ1 − Φ− ϕ2 space.

tion (see appendix C for more details on the Voigt approximation) the elastic constants of

the textured aggregate are calculated by integration of the ODF over all possible orienta-

tions g (e.g. Mainprice and Humbert, 1994):

C
V
ijkl =

∮
Cijklf(g) dg (D.8)

The ODF f(g) in equation (D.8) is a weighting function. In a similar fashion one

could perform the averaging procedure with the elastic compliances tensor Sijkl. The

resulting elastic compliances Sijkl would satisfy the requirement of the Reuss assumption

of constant stress throughout the textured aggregate.
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The fourth order elastic tensor of single crystal Cmnpq can be transformed from the

crystal coordinate system xyz into sample coordinate system XY Z using the tensor

transformation law (e.g. Nye, 1990):

C ′
ijkl = aim ajn akp alq Cmnpq (D.9)

where the aim, ajn, akp, alq are components of the transformation matrix that contains

directional cosines. The signs of the four summations over indexes m, n, p and q are

omitted as the Einstein summation convention is employed (e.g. Nye, 1990). The product of

directional cosines can also be expressed as a series of generalized spherical harmonics

(Bunge, 1982) according to:

aim ajn akp alq =
4∑

l=0

+l∑

m=−l

+l∑

n=−l

amn
l (ijkl; mnpq) Tmn

l (g) (D.10)

where the amn
l are constants that depend on the crystal and sample symmetry. Sub-

stituting the directional cosines in (D.9) by expansion (D.10), the elastic stiffnesses of the

single crystal in the sample coordinate system XY Z may then be obtained by the for-

mula:

C ′
ijkl =

4∑

l=0

+l∑

m=−l

+l∑

n=−l

amn
l (ijkl;mnpq) T ∗mn

l (g) Cmnpq (D.11)

where ’*’, in general, indicates the complex conjugate of Tmn
l .

Averaging the elastic coefficients C ′
ijkl in equation (D.11) over all orientations g in

the sample coordinate system XY Z as defined by equation (D.8), leads to the elastic

properties of the polycrystalline aggregate in the Voigt approximation:

C
V
ijkl = ā(ijkl;mnpq) Cmnpq (D.12)

where ā(ijkl; mnpq) are coefficients defined by equation:

ā(ijkl; mnpq) =
4∑

l=0

M(l)∑

µ=1

N(l)∑

ν=1

ā µν
l (ijkl;mnpq) C µν

l (D.13)
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Figure D.4: Flow chart of the calculation of the elastic constants Cijkl of the polycrys-
talline aggregate

The coefficients C µν
l contain the textural information required for the averaging. The

coefficients ā µν
l (ijkl; mnpq) are mathematical quantities, defined as:

ā µν
l (ijkl; mnpq) =

+l∑

m=−l

+l∑

n=−l

amn
l (ijkl; mnpq) ˙̇Amµ

l Ȧnν
l (D.14)

The coefficients ā µν
l (ijkl; mnpq) incorporate information about both the specimen

and the crystal symmetries. The set of coefficients ā µν
l (ijkl; mnpq) defined in (D.14) for

symmetries up to orthorhombic was calculated and published by Morris (1969), and has

been employed here. With the help of (D.13) the coefficients ā(ijkl; mnpq) can be cal-

culated for the case of orthorhombic crystal and orthorhombic sample symmetry. The

coefficients ā(ijkl; mnpq) for this case may be represented as 9 × 9 matrix. The con-

sequent substitution of these coefficients into equation (D.12) allows calculation of the

elastic constants of an olivine aggregate under the Voigt assumption. The flow chart of

the calculations of the elastic constants of the aggregate in the Voigt approximation is

shown on Figure D.4.
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The elastic properties of an orthotropic material (or medium) are fully described by 9

independent elastic constants (see Section 2.2 and equation (2.4)). In the Voigt notation

these constants are:




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66




The assumption of orthotropic symmetry allows equation (D.12), which is written for

the most general case, to be rewritten more explicitly in matrix form:

C
V = a V C (D.15)

where a V is [9 × 9] averaging matrix composed of coefficients ā(ijkl; mnpq), C is

[9 × 1] vector composed of the independent elastic constants of a single olivine crystal,

and C
V is [9 × 1] vector composed of the elastic constants of the aggregate in the Voigt

approximation. If the olivine aggregate has a random orientation distribution then the

only non-trivial C µν
l coefficient is C 11

0 ≡ 1. In this case the averaging matrix a V is

reduced to the Voigt solution discussed in Appendix C (equation (C.5)).
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