
Measurement of the speed and attenuation of the Biot slow wave

using a large ultrasonic transmitter

Youcef Bouzidi1,2 and Douglas R. Schmitt1

Received 15 August 2008; revised 10 April 2009; accepted 21 May 2009; published 1 August 2009.

[1] Two compressional wave modes, a fast P1 and a slow P2, propagate through fluid-
saturated porous and permeable media. This contribution focuses on new experimental
tests of existing theories describing wave propagation in such media. Updated
observations of this P2 mode are obtained through a water-loaded, porous sintered glass
bead plate with a novel pair of ultrasonic transducers consisting of a large transmitter and a
near-point receiver. The properties of the porous plate are measured in independent
laboratory experiments. Waveforms are acquired as a function of the angle of incidence
over the range from �50� to +50� with respect to the normal. The porous plate is fully
characterized, and the physical properties are used to calculate the wave speeds and
attenuations of the P1, the P2, and the shear S waves. Comparisons of theory and
observation are further facilitated by numerically modeling the observed waveforms. This
modeling method incorporates the frequency and angle of incidence-dependent
reflectivity, transmissivity, and transducer edge effects; the modeled waveforms match
well those observed. Taken together, this study provides further support for existing
poroelastic bulk wave propagation and boundary condition theory. However, observed
transmitted P1 and S mode amplitudes could not be adequately described unless the
attenuation of the medium’s frame was also included. The observed P2 amplitudes could
be explained without any knowledge of the solid frame attenuation.
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1. Introduction

[2] It is now over 50 years since Biot [1956a, 1956b]
predicted a second, or slow, compressional wave that exists
in addition to the normal ‘‘fast’’ compressional and the
shear waves in saturated porous and permeable media. It is
nearly 30 years since Plona [1980] experimentally verified
its existence. Despite this and also despite a large theoretical
literature, there are still only a few definitive observations of
the slow wave. The mode is highly attenuated; and it is not
clear if it has yet been seen outside of the laboratory.
However, our inability to find the slow wave directly does
not mean that it does not affect overall seismic and sonar
observations [e.g., Allard et al., 1986; Rasolofosaon, 1988;
Pride et al., 2002; Rubino et al., 2006]. Even if the slow
wave is difficult to detect it still demands a portion of the
total wavefield energy available; and it affects the amplitudes
and phases of the more readily detectable compressional and
shear waves transmitted through or reflected from a satu-
rated formation. The degree to which the existence of the
slow compressional wave influences seismic observations

and the subsequent interpretations, which are made under
the elastic paradigm, remains unclear; and continued study
of such slow wave propagation is warranted.
[3] In this contributionwe provide new experimental results

of the transmission of waves through a well-characterized,
saturated porous medium. The overall geometry of our
experiments mimics those of Plona [1980] but with a newly
developed ultrasonic transmitter-receiver pair that allows the
transmitted amplitude time series to be recorded and ana-
lyzed with no correction permitting more accurate determi-
nation of both wave speed and attenuation [Bouzidi and
Schmitt, 2006]. The reliability of the analysis is further
supported by modeling of the full ultrasonic wavefield to
account for the fact that the experiments were conducted not
with hypothetical plane waves but with transducers of finite
dimensions, these geometric effects are important particu-
larly past critical angles where hypothetical plane wave
behavior fails. Below, the background section first includes
brief reviews of wave propagation phenomena in poroelas-
ticity. The modified experimental acoustic goniometer, the
manufacture and characterization of our artificial sample,
and the data analysis strategy are then described. The
observed wave forms transmitted through a water-saturated
plate are presented, modeled, and interpreted, and compared
to observations through a viscoelastic plate; and this con-
tribution reiterates support for poroelastic theory. More
importantly, however, it also prepares the way for the study
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of even more complex real rocks where other mechanisms
are likely to be present.

2. Prior Work

[4] It is worth noting that many ultrasonic laboratory
studies, while not describing an observation of the slow
wave, have focused on the application of high-frequency
Biot [1956b] theory to the normal fast longitudinal P1 wave
[e.g., Ogushwitz, 1985; Gist, 1994a; Williams et al., 2002;
Mayr and Burkhardt, 2006; Sebaa et al., 2006]. Many other
studies [e.g., Beamish et al., 1983; Thomsen, 1985; Gist,
1994b;Mavko and Nolenhoeksema, 1994; King et al., 2000;
Han and Batzle, 2004] attempt to reconcile laboratory
studies with the low-frequency Biot-Gassmann limit [Biot,
1956a].
[5] Direct experimental observations of the slow P2 mode

itself are still not common. Smeulders [2005] has recently
provided a comprehensive review of this topic providing a
history of possible observations of the slow wave and the
early development of concepts prior to Biot’s formulation
and Plona’s detection. Plona [1980] observed the P2 con-
verted wave in a series of porous plates constructed by
sintering glass beads. His capability to change the angle of
incidence of the insonifying pulse allowed for observation
of the converted P1, P2, and S modes at a variety of angles;
this allowed him to convincingly argue that the P2 arrivals
could not be experimental artifacts. This discovery led to a
flurry of theoretical analyses of his P2 wave velocities
[Berryman, 1980; Dutta, 1980] and transmitted amplitudes
[Hovem, 1981] and was followed by further experimental
tests of low-frequency behavior [Chandler, 1981; Chandler
and Johnson, 1981], and of the influence of the porous
frame modulus and tortuosity [Johnson and Plona, 1982;
Johnson et al., 1982]. Subsequent studies showed the slow
wave could exist and propagate in a wide range of air- or
water-saturated porous materials including bone [Lakes et
al., 1983], sintered metallic filters [Jungman et al., 1989],
aluminum foams [Ji et al., 1998], textiles [Gomez Alvarez-
Arenas et al., 1994], soils [Nakagawa et al., 1997], xero-
graphic developer mixtures [Stearns, 1992] and anisotropic
composites [Castagnede et al., 1998]. Despite early con-
jectures that it could not exist in rock [Klimentos and
McCann, 1988], the P2 mode has also been observed in
real sandstones under air-saturated [Nagy et al., 1990; Nagy,
1993; Nagy et al., 1995] and water-saturated [Kelder and
Smeulders, 1997; Smeulders, 2005] conditions. However,
the high porosity and open pore networks afforded to
experimentalists with sintered glass beads make this mate-
rial popular in studies of the P2 wave [Rasolofosaon, 1988;
Wu et al., 1990; Kurashige et al., 1992; Johnson et al.,
1994; Geerits and Kelder, 1997; Gurevich et al., 1999;
Kurashige et al., 1999; Zhu et al., 1999; Derible, 2004,
2005].
[6] To be clear at the outset, this contribution focuses on

the observation and analysis of ultrasonic wave propagation
in a highly permeable and porous material within the high-
frequency regime of Biot theory, a regime in which both the
P1 and P2 modes propagate as waves. This behavior differs
from that of many real rocks in which crack-like porosity
further complicates the problem with wave induced local

flow mechanisms [e.g., O’Connell and Budiansky, 1974;
Mavko and Nur, 1975; Klimentos and McCann, 1988;
Dvorkin et al., 1995; Diallo and Appel, 2000]; and this
related and important issue is not relevant to this study on a
highly porous, sintered glass-bead media.

3. Theoretical Considerations

3.1. Wave Modes in Saturated Porous Media

[7] The theoretical literature describing poroelastic wave
propagation in fluid-saturated porous solids is large and
need not be rehearsed in detail here. Both extensive [e.g.,
Johnson, 1984; Bourbié et al., 1987; Stoll, 1989; Allard,
1993] and concise [e.g.,Haire and Langton, 1999; Smeulders,
2005] descriptions may be found.
[8] Essentially, the theory considers an isotropic porous

frame of porosity b and permeability K constructed of
mineral grains of density rs and solid bulk modulus Ks that
are organized into a structure with a dry (or drained) frame
bulk modulus Kd and frame shear modulus md. The frame’s
pore network will also be characterized by the tortuosity
x = L/L0, where L and Lo are the tortuous and the straight
path lengths, respectively. The fluid filling the connected
pore space has shear viscosity h, mass density rf, and bulk
modulus Kf. The most intriguing result is that this satu-
rated frame can support two longitudinal wave modes
which are usually called the fast P1 and slow P2 modes
that approximately correspond to the cases in which the
fluid and solid portions are nearly in or out of phase,
respectfully, with one another. The P2 mode is often also
called the Biot slow wave. A third mode, the familiar shear
wave S, also exists.
[9] It is worth reiterating that, broadly, the wave phe-

nomenon may be separated into low- and high-frequency
regimes. Viscous effects dominate at the low frequencies
with the result that the motion of the fluid and solid
components of the P1 mode are locked with its speed equal
to that in Gassmann’s [1951] [Johnson, 1984] relations
while the propagation of the P2 mode is better described
by a diffusion equation than by a wave equation. In contrast,
inertial effects are important in high-frequency regimes; the
motions of the fluid and the solid are not as tied to one
another and in such cases wave equations govern both P1
and P2 mode propagation. The relative size of the viscous

skin depth d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h=wrf

q
to the typical pore radius ro is

generally assumed to control the boundary between low-
and high-frequency behavior. Low-frequency viscous cou-
pling occurs for d > ro, while high-frequency inertial effects
conduct when d < ro. This study is well within the high-
frequency regime with all three modes propagating; low-
frequency effects will hereafter be ignored.
[10] For the sake of brevity, the final expressions are

reported in terms of their angular frequency w dependent
and complex wave numbers kl in order to emphasize that
both velocity and attenuation are important in this study.
The dispersive phase velocities (VP1, VP2, and VS) and the
attenuation coefficients (aP1, aP2, and aS) may be obtained
from the real and imaginary parts via kl(w) = (w/Vl) + ial f
assuming a linear attenuation model in the bandwidth of the
wavefield generated by a source in a laboratory experiment.
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The complex wave numbers for the two longitudinal wave
modes are given by

kl ¼ w
V l 1� bð Þrs þ brf

V l Aþ 2mdð Þ þ Rþ Q

� �1=2
ð1aÞ

where the subscript l = P1 or P2 denotes either of the
longitudinal modes, A, R, and Q are the Biot parameters
[Biot and Willis, 1957; Green and Wang, 1986; Kumpel,
1991; Hickey et al., 1995] but modified here, and z l is a
frequency-dependent parameter that primarily connects
the solid and the fluid components (see Appendix A for
derivation); these parameters are all defined in Appendix A
and Table 1. The complex wave number for the single
transverse shear wave S is similarly

k3 ¼ w
V3 1� bð Þrs þ brf

V3md

� �1=2
ð1bÞ

where again z3 describes the fluid-solid relationship.
[11] The different particle motions of the fluid against the

solid that are possible require the z terms that account for
both viscous and inertial drag effects. The former is impor-
tant to attenuation and here the tilted Poisseuille flow
assumption given by Johnson et al. [1987] is used. Too,
the latter requires the introduction of an induced mass r12

(see Appendix A). Using the physical properties of the
sample given in Table 1, the velocities and attenuations are
calculated from equations (1a) and (1b) and given in Table 2.

3.2. Modeling of Reflection and Transmission

[12] A full description of porous media behavior cannot
be understood without knowledge of wave reflection, con-
version, and transmission effects at the interface of a porous
medium. In a practical sense, such knowledge is necessary
to properly interpret laboratory observations [Dutta, 1980;
Wu et al., 1990; Santos et al., 1992; Johnson et al., 1994;
Aknine et al., 1997; Gurevich et al., 1999; Derible, 2005]
particularly if amplitudes and attenuation are considered.
The problem is also of obvious consequence to seismic and
sonar studies [e.g., Stoll and Kan, 1981; Krebes, 1984;
Delacruz et al., 1992; Yang and Sato, 1998; Yang, 1999;
Denneman et al., 2002; Carcione and Helle, 2004; Tajuddin
and Hussaini, 2005] as the field observations of the varia-
tions of seismic amplitudes with angle of incidence become
an increasingly important geophysical tool.
[13] The solution to this problem is, relative to that for a

fluid (with only the compressional P wave allowed) over an
isotropic elastic solid (with only P1 and S allowed),
complicated by the fact that it is highly sensitive to the
boundary conditions employed [e.g.,Deresiewicz and Skalak,
1963; Rasolofosaon, 1988; Gurevich and Schoenberg,
1999], by the existence of three distinct waves, and because

Table 1. Required Physical Properties of Fluid, Solid, and Porous Frame

Symbol Name Value Units Comment

Kf Fluid bulk modulus (water) 2.209 (1%) GPa rfVw
2

Ks Mineral bulk modulus 43.7 (5%) GPa Bass [1995]
VPd Dry compressional wave speed 2450 (2%) m s�1 Measured by pulse transmission at 780 kHz
VSd Dry shear wave speed 1555 (2%) m s�1

Vw Water wave speed 1490 (0.5%) m s�1

aP Dry compressional wave attenuation 6 (10%) m�1

aS Dry shear wave attenuation 27 (10%) m�1

Kd Frame (drained, dry) bulk modulus 4.826 GPa rDVPd
2 � 4md/3

Kun Frame unjacketed bulk modulus 43.7 (5%) GPa Assumed = Ks

md Frame shear modulus 3.614 GPa rDVSd
2

b Porosity 0.391 (2%) dimensionless Direct measure
x Tortuosity 1.44 (10%) dimensionless Indirect measure from electrical conductivitya

K Permeability 19.9 (3.5%) m�2 � 10�12 Direct measure
ro Pore radius (average) 23 (20%) mm Hg porosimetry
g Coefficient of fluid content 0.202 GPa�1 Equation (4) � 1.2 (see text)
h Dynamic shear viscosity 0.001 Pa s Watson et al. [1980]
rs Solid density 2445 (1.5%) kg m�3 Direct measure
rf Fluid density 995 (0.5%) kg m�3 Direct measure
rB Saturated bulk density 1878 kg m�3 brf + (1 � b)rs
rD Dry bulk density 1489 kg m�3 (1 � b)rs
r12 Induced inertial mass �170.8 kg m�3 Equation (2)
aCalculated from measured electrical conductivities (see Bouzidi [2003] for procedure).

Table 2. Comparison of Calculated and Observed Wave Velocities and Attenuations at 780 kHz

Symbol Name Units PMMA

Calculated Observed

Low Frequencya High Frequency Saturated Dry

VP1 Fast P1 wave speed m s�1 2675 ± 30 2667 2700 2700 ± 55 2540 ± 50
VS S wave speed m s�1 1390 ± 10 1389 1500 1500 ± 50 1555 ± 30
VP2 Slow P2 wave speed m s�1 - - 1030 1010 ± 20 -
aP1 P1 attenuation m�1 9.4 ± 0.9 - 6 7 ± 1 6 ± 1
aS S attenuation m�1 26.5 ± 2.7 - 36 44 ± 2 27 ± 3
aP2 P2 attenuation m�1 NA - 75 69 ± 4 -
aCalculated using Gassmann’s [1951] relations.
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of the frequency dispersion of both wave speeds and
attenuation. To carry out the modeling described below
the solution for the transmitted conversions P-P1, P-S, and
P-P2 as well as P1-P, P2-P, and S-P must be available, and
the mathematics describing this problem as developed by
Deresiewicz and Skalak [1963] is relegated to Appendix A.
[14] An example set of such plane wave reflection and

transmission coefficients are shown in Figures 1a–1d for
the four possible cases. The transmitted P in Figures 1b–1d
is what is actually detected by the receiver. These are
calculated at the peak frequency of the transducer which
is �780 kHz versus the angle of incidence. It should be
noted that these coefficients are frequency-dependent. The
calculations employ the actual measured physical properties
given in Table 1 that are discussed in section 4. There are

some aspects of the coefficients that are worth pointing out
as they will be relevant to the later data.
[15] In each case, four reflected and transmitted modes are

generated. Figure 1a shows the coefficients for the water-
borne incident P wave onto the saturated porous medium.
Defining the amplitude in a medium consisting of two
independent phases must be done carefully, and it is
important to mention that all reflection-transmission coef-
ficients displayed in Figures 1a–1d are given for the
average amplitudes in the fluid and the solid within the
porous medium following the average procedure used by
Deresiewicz and Skalak [1963]. For each wave mode in the
porous medium the average amplitude is given by

Aaver ¼ b þ 1� bð Þz l½ 	Af ð2Þ

where Af is the amplitude in the fluid which is related to that
in the solid via z1.
[16] In Figure 1a, only the P-P1 critical angle qP1

c = 33.8�
exists; as expected the transmitted P1 amplitudes rapidly
decay past this point with a step increase in the transmitted
S wave. The transmitted P2 mode is strong at all angles of
incidence.
[17] For the incident fast P wave from the porous water

interface no critical angles exist as all scattered waves have
speeds smaller than that of the incident wave (Figure 1b).
[18] The coefficients for the incident P2 mode (Figure 1c)

are the most complex as three critical angles exist (qP2�P1
c =

22.3�, qP2�S
c = 43.2�, and qP2�P

c 
 qP2�S
c ). The transmitted

P amplitude declines rapidly past qP2�P
c which may make

observation of the P2 mode problematic at higher angles of
incidence, but such high angles cannot be observed with the
current experimental configuration.
[19] The amplitude of the slow P2 is dominated by fluid

motion. Consequently, the transmitted P wave is larger than
unity as the incident slow P wave is normalized with respect
to the average amplitude. Finally, when a shear wave within
the saturated medium is incident on water (Figure 1d), there
is also only one critical angle for the S to P1 reflection
(qS�P1

c = 33.8�), and this is close to qP�P1
c due to the

similarity in the speeds of P and S. The S to P transmission
is particularly strong past this critical angle. At vertical
incidence here, there are strong P1 and P2 reflections with
P1 amplitude decaying with increasing angle of incidence.
[20] Most analyses proceed using these plane wave sol-

utions only. However, as noted by others [e.g., Rasolofosaon,
1988; Wu et al., 1990], real transmitting and receiving trans-
ducers are subject to diffraction. As such, the analysis of
observed waveforms is confused by beam dimensions and
by counterintuitive nonspecular effects [e.g., see Bouzidi
and Schmitt, 2008]. Despite the fact that the amplitudes
along the beam axis are stable the novel transmitter-receiver
pair employed here is not immune to these effects; and a
more complete modeling of the experiment that incorporates
the transducer geometry was required. Indeed, this modeling
eliminated the risk of misinterpretation of the observed
waveforms as will be mentioned again later. No further
assumptions or corrections are required to properly interpret
the observed wave forms.
[21] The numerical modeling for the pulse transmission is

already described [Bouzidi and Schmitt, 2006] and only a
brief overview is necessary. The procedure begins by

Figure 1. Modeled Plane wave reflected or transmitted
amplitudes versus the angle of incidence at 780 kHz for
the water saturated porous medium described in Table 1
for (a) P wave in water incident on the porous medium. (b) P1
(fast) wave in the porous medium incident on water. (c) P2
(slow) wave in the porous medium incident on water. (d) S
wave in the porous medium incident on water. In Figures 1a–
1d, the incident wave has an amplitude of unity for the
average amplitude between the solid and the fluid compo-
nents according to equation (2). Consequently, the trans-
mitted P wave is larger than unity.
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propagating the experimentally obtained transmitter
bounded pulse wavefield by Fourier domain phase-shifting
methods that have been long employed in seismic modeling
and migration algorithms [Gazdag, 1978]. Each wave
number component is appropriately modulated at the inter-
face by the complex reflection or transmission coefficients
just mentioned. As such, each conversion and reflection
must be individually considered; and the method should not
be considered as a full wavefield modeling where the
boundary conditions at interfaces would be implicitly
accounted for. Consequently, individual modes can be
modeled separately making event identification and inter-
pretation simpler.
[22] The measurements from an acrylic (polymethyl

methacrylate or PMMA) glass plate of the same dimensions
are provided for purposes of comparison. This material
serves as a foil to the porous media in that, while it is a
nonporous solid with no possible P2 mode, its P1 and
S wave speeds and attenuations are comparable (Table 2).
The precursory study [Bouzidi and Schmitt, 2006] contains
detailed information on its characterization and modeling.

4. Required Physical Properties of Sample

[23] The sample plate (22.0 cm � 22.0 cm � 2.46 cm)
was manufactured by sintering glass beads by slowly
increasing temperature to 700�C in a controlled glass shop
oven for 4 h followed by a long cooling period to allow for

slow stress release. This procedure follows a recipe similar
to Sen et al. [1981]. The soda-lime glass beads are those
typically used for sand blasting with diameters ranging
predominantly between 150 and 212 mm, a SEM of a
portion of the sample shows the details of the resulting
structure (Figure 2a) while the results of Hg porosimetry
(Figure 2b) provide an indication of the rather narrow
distribution of pore throat diameters (2ro) centered near
45.5 mm. The ‘‘grain’’ density rs of the glass beads and the
porosity b were determined by a standard water immersion
technique (Table 1).
[24] Biot’s formulation requires that a large number of

parameters be determined (Table 1); the details of the
measurements of these various parameters are given by
Bouzidi [2003], and only a brief mention is given here.
The distilled water density rf was directly measured using
an Archimedean densitometer, the bulk modulus Kf is
inferred from a direct measurement of the wave speed in
the fluid, while the water viscosity h and the bulk modulus
of the glass ‘‘mineral’’ grain Ks are taken from literature.
The Permeability K was measured directly with water in a
modified falling head permeameter. The tortuosity x was
determined from a specially designed electrical conductivity
measurements [Johnson et al., 1982] directly on the block
that were then interpreted according to the theoretical
assumptions of Johnson et al. [1982]. The frame bulk Kd

and shear md moduli were obtained from ultrasonic mea-
surements of the compressional and shear wave speeds
under open air ‘‘dry’’ conditions [e.g., Johnson et al., 1987;
King et al., 2000]. It is important to note that the attenuation
of these waves was also measured in independent experi-
ments under dry conditions because, although the frame
attenuation is not included in the standard poroelastic
theory, this extra attenuation was necessary to reconcile
the modeled and the observed experimental waveform as
indicated in earlier work [Wu et al., 1990]. The observed dry
frame wave speeds and attenuations are provided in Table 2.
A first-order frequency dependence is used to account for
the losses in the dry frame. Within the frequency bandwidth
source signal used in the experiments the losses are nearly
linear. These losses in the dry frame can be explained by the
fact that glass beads within the sample are not sintered
completely. Therefore the glass beads have, to some extent,
some compressional and rotational relative movement
resulting in energy losses. The attenuation for the S wave
is larger that for the P wave which can be explained by the
fact that the beads have more freedom to rotate relative to
each other than they have in the compressional mode.
[25] A number of additional parameters are not so directly

obtained, these are the dynamic mass transfer r12, the
coefficient of fluid content g, and the viscosity correction
factor F(w). These factors influence the final observed
amplitudes; and they warrant some additional mention.
[26] One special aspect of poroelastic theory is that the

negative inertial influence due to solid-fluid coupling must
be considered. To complete the set of parameters given
above that are needed for modeling wave propagation in
fluid-saturated porous media the dynamic mass transfer r12
and the viscosity correction factor, denoted F(w) by Biot
[1956b] must be determined. It is possible to infer r12 from
the measurement of the S wave velocity. However, r12 is
very sensitive to small variations of the S wave velocity.

Figure 2. (a) Scanning electron micrograph image of
sintered glass beads. (b) Cumulative (highlighted by filled
region) and incremental (black line) volumes of Hg
versus pore throat diameter as measured by Hg injection
porosimetry.
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According to Johnson et al. [1987] this coefficient is
independent of the mechanical properties of the solid and
the fluid but it is always proportional to the fluid density
and porosity. This coefficient is defined by

r12 ¼ � x � 1ð Þbrf ð3Þ

where x is the tortuosity, b is the porosity, and rf is the fluid
density. As the two latter parameters are relatively well
known, x contributes the greatest uncertainty to r12.
[27] The correction factor F(w) involves complex pro-

cesses involved in the fluid-solid interactions as a wave
propagates through a porous medium. Workers have sug-
gested a variety of pore configurations beginning with
Biot’s [1956a, 1956b] initial model with Poiseuille flow
through straight tubes. Johnson et al. [1987] employed a
porous medium made of canted cylindrical tubes of radius
r0 (see Appendix A). F(w) relies on knowledge of the rf, h,
and the pore throat radius ro, a value of 23 mm in agreement
with the average pore throat diameter of 45.5 mm given by
Hg porosimetry was used in the calculations below.
[28] One final factor included in the theory is the coeffi-

cient of fluid content g that for a homogeneous and isotropic
medium is [Biot and Willis, 1957; Hickey and Sabatier,
1997]

g ¼ b
1

Kf

� 1

Ks

� �
ð4Þ

Equation (4) assumes that Kun = Ks. Many workers have
commented that equation (4) may only apply under highly
restrictive circumstances [see, e.g., Hickey and Sabatier,
1997]. In the later modeling it was found that a value 20%

greater than that predicted by equation (4) yielded the best
matches with the data. However, other factors might be in
play for this discrepancy. For example, the porosity and the
stiffness might not be uniform at the surfaces relative to the
center of the sample. The stiffness might be slightly higher
near the surfaces relative to the center of the sample.

5. Experimental Configuration

[29] The experimental configuration, including a detailed
characterization of the specially constructed transducers
employed, is already provided [Bouzidi and Schmitt,
2006] and only a brief overview is necessary here. The
configuration (Figure 3) is similar to many other porous
transmission studies that follow Plona [1980], but with the
important difference that the current study employs a large
transmitter and a near-point receiver combination. This
arrangement simplifies the analyses in that the small receiver
(1.9 mm � 1.9 mm) essentially senses the transmitted wave
pressures at a point eliminating consideration of transducer
aperture effects. The large transmitter was constructed using
a sheet of piezoelectric ceramic (10.16 cm � 7.62 cm) to
ostensibly provide a near-planar wavefront within the
dimensions of the experiment. This ideal situation was not
achieved completely, hence necessitating the wavefield
modeling, but one unexpected benefit was a significant
improvement in the transmitted signal quality abetted by a
combination of lower beam spreading, directivity and in-
creased pulse energy.
[30] During a series of measurements, the sample is

placed vertically on the rotating table goniometer and
between the immobile transmitter-receiver pair. The trans-
mitter was activated using a �200 V step producing an
acoustic pulse in the water that propagated through the
sample to the receiver. The receiver voltage was recorded at
a rate of 5 ns per sample using a digital oscilloscope
(Tektronix TDS 420A) to obtain the observed waveform.
The sample was rotated in order to change the effective
incidence angle of the pulse; a waveform was acquired every
1� over the range of �50� to +50�. The direct waveforms
from the transmitter to the receiver were also obtained with
the sample removed both before and after the sample mea-
surements in order to monitor pulse consistency and to
obtain the wave speed of the water in the experiment tank.

6. Results and Discussion

6.1. Character of Observed Waveforms and Wave
Speeds

[31] The set of waveforms obtained in the nonporous
viscoelastic acrylic (Figure 4a) [Bouzidi and Schmitt, 2006]
are compared to those for the saturated sample (Figures 4b
and 4c) (see the auxiliary material).1 There are a number of
features worth pointing out beginning with the PMMA plate
which clearly shows the direct P1 and S refracted waves
with wave speeds of 2665 and 1390 m s�1, respectively.
The low uncertainties are a consequence of being able to
make numerous transit time measurements with both the
direct refractions and the multiple reflections. Note that the

Figure 3. (a) Cartoon illustrating conversions and trans-
mission of the water-borne P wave obliquely incident to
the sample into the fast P1 (large dashes), the slow P2
(small dashes), and the shear S modes in the sample.
(b) Photograph of experimental setup with large transmit-
ting transducer T, small receiving transducer R, porous plate
sample S, and goniometer G all submerged in water tank.

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/jb/
2008jb006018. Other auxiliary material files are in the HTML.
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P1 arrivals disappear at angles greater than its critical angle
and that past this angle the strength of the transmitted
S wave increases substantially as suggested by of the mod-
eling of Figure 1. The P1 and S travel times versus angle of
incidence curves agree with the P1 and S wave velocities
measured independently on the PMMA plate by a standard
contact pulse transmission measurement.
[32] An important point here is that there is a third arrival

denoted by a question mark that could easily have been
misinterpreted as a bulk mode through the sample. However,
earlier transducer modeling [Bouzidi and Schmitt, 2006]
demonstrated this to be only an artifact of the experimental
geometry related to transducer edge effects. This further
shows the utility of the large transmitter in that if smaller
transducers are used this edge effect would be buried with the
main arrival itself and could adversely influence measure-
ments of attenuation. The event is clearly separated from the
true direct body wave modes through use of this large
transmitter. A number of multiple reverberations may also
be detected. These can be interpreted on the basis of
knowledge of P1 and S velocities for the PMMA using
straightforward Snell’s law arguments.
[33] The waveforms for the porous plate are similar to

those for the PMMA but also include the additional P2
mode (Figures 4b and 4c). In contrast to S which, as
expected, is weak or nonexistent near q = 0�, the P2 mode

exists at all angles of incidence covered as expected (Figure 1).
It must be noted that the input waveform character changed
between the time those traces acquired at negative and those
at positive incidence angles were acquired. In later quanti-
tative analyses here, only positive incidence traces were
fully reliable as the input waveform character was known
well for these. Consequently, the negative waveforms were
normalized with respect to the positive waveforms using the
first arrival amplitudes.
[34] An independent measurement of these saturated

wave speeds does not exist and the wave speeds (Table 2)
are obtained by analysis of the travel time curves of Figure 4b.
The numerous waveforms available together with the fact
that the travel path lengths also vary with angle of incidence
allow the frequency-dependent phase velocities and attenu-
ations to also be determined using Fourier domain methods
[e.g.,Molyneux and Schmitt, 2000]. The plots of wave speeds
versus frequency for each of the three modes (Figure 5)
exhibit little evidence for dispersion across the relatively
narrow frequency band of [0.5–1. MHz]. These wave speeds
were further checked by using them to calculate the expected
arrival times as a function of the angle of incidence, these
times agreed with those from the observed waveforms of
Figure 4b.
[35] The calculated wave speeds (Table 1) agree well with

those measured. It is noticed that the induced mass r12

Figure 4. (a) Interpreted observed transmitted waveforms in normalized variable area for the nonporous
acrylic PMMA plate shown for purposes of comparison. (b) Uninterpreted observed transmitted and
unnormalized waveforms in false color amplitude image for the saturated porous plate. (c) Same as
Figure 4b but with event interpretations applied. (d) Porous plate waveforms modeled using phase
advance method.
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influences the velocity of both the slow P wave and the
S wave whereas the fast P wave is not sensitive to this
parameter. The phase shift modeling resulted in a very good
agreement with the observations both in amplitude and
phase as the real amplitude displays shows (Figure 4d).

6.2. Attenuation

[36] The theoretical attenuation curves a(f) inclusive of
any additional frame attenuation are calculated for the P1,
P2, and S modes (Figure 6) using the parameters of Table 1
and the imaginary parts of equations (1a) and (1b). In order
to obtain a simpler expression for comparison with the
observed data, these theoretical curves are empirically fit by
an exponential function. Following Courtney and Mayer
[1993] a function of the form ao f

Nwhere ao is the frequency-
independent attenuation coefficient constant, f is the fre-
quency, and N is an exponent that varies in general from 2 to
0.5 was used. Of course, this formula has no inherent
physical basis but it does describe well the attenuation
curves with values of 0.9 (i.e., nearly linear) for the P1
and S modes and 0.5 for the P2 mode (Figure 6).
[37] Determination of attenuation is always problematic.

Initially, standard spectral ratio methods [e.g., Molyneux
and Schmitt, 2000] were applied, but the results were not
satisfactory due to this technique’s sensitivity to noise and
interference between the various modes and their multiples.
A different approach was used where the attenuation of a
given mode is estimated by a direct waveform analysis
guided by the empirical exponential functions just de-
scribed. Briefly, this analysis consists of the following:
[38] 1. First, modulate the observed waveforms, after they

are normalized with respect to the known incident pulse, by

their appropriate angle of incidence transmission coeffi-
cients at each boundary. Over the limited bandwidth [0.5–
1.0 MHz] the change in the value of these coefficients was
small for a given angle of incidence. The transmission
coefficients at the peak frequency, calculated as a frequency-
dependent coefficient was used. However, in the modeling
procedure the transmission coefficients used are still frequency-
dependent. This gives the amplitudes that would be expected
in the case with no attenuation whatsoever.
[39] 2. This signal is then further modulated, but on this

occasion within the frequency domain, by a trial value of ao

(as defined above) for the particular mode studied and using
the appropriate mode-dependent exponent N as discussed
above. This result is inverse transformed to the time domain
to obtain a trial waveform.
[40] 3. The trial waveform is compared directly to that

observed. We have found that comparison is facilitated by
examining the absolute value of the analytic signals (i.e., the
amplitude envelope).
[41] 4. This procedure is repeated until the best match

between the calculated and the observed curves is reached;
the ‘‘observed’’ attenuation is then calculated from the best
value of ao.
[42] The results of this analysis are shown for attenuation

versus frequency in Figures 7a–7c as the dark gray strip
whose vertical width of which represents the uncertainty of
the analysis method above (see uncertainties of input
parameters in Table 1). Ideally, in the absence of the frame
attenuation this dark gray strip would match the theoretical
prediction of equations (1a) and (1b) shown as a dashed line

Figure 5. Comparison of calculated and observed phase
velocities versus frequency for (a) the P1 wave, (b) the P2
wave, and (c) the S wave. Gray area represents zone of
possible calculated solutions, while the dark area is the
observed values including uncertainty.

Figure 6. Calculated attenuation versus frequency for the
case of a Biot porous medium and excluding frame
attenuation (thick gray line) on the basis of the physical
properties of Table 1 for the (a) P1, (b) P2, and (c) S waves.
Corresponding empirical fits using the exponential expres-
sion and the best exponent N for each case are shown as a
dark line.
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in Figure 7. It is important to point out that the observed and
the ideal predicted curves differ substantially for the P1 and
S modes but are in good agreement for the P2 mode.
[43] To further examine this discrepancy, the observed

attenuation for the dry frame is shown as a solid line in
Figure 7. The dry frame attenuation has little influence on
the P2 mode but that for the dry P1 wave already plotted in
Figure 7a is repeated for comparative purposes. The dry
attenuation of the P1 wave is much less than that for the
S wave, the reason for this is not known but it may be
associated with the weak bonding of the glass beads during
the light sintering process.
[44] Only once the attenuation of the dry frame is

included are the observed P1 and S attenuations in good
agreement with those observed. The P1 and S mode
attenuations are dominated by the frame’s intrinsic dry
attenuations. It is also worth noting that a linear model
(N = 1) was used to describe the frame attenuation included
in the theoretical calculations.
[45] The frame attenuation does not appear to significantly

influence the observed attenuation of the P2 wave. Indeed,

Figure 7. Comparison of the observed saturated (dark
gray area), the dry frame (solid line) attenuations with those
calculated assuming that the frame does (light gray region)
and does not (dashed line) influence the overall attenuation
of the Biot porous medium for (a) the P1 wave, (b) the
S wave, and (c) the P2 wave.

Figure 8. Fully modeled incident P, reflected P, trans-
mitted fast P, and transmitted slow P as time snapshots at
(a) 44 ms, (b) 60 ms, (c) 70 ms, and (d) 84 ms. Note that high
amplitudes particularly those of the incident and transmitted
fast waves are clipped in order to better visualize lower-
amplitude events. (See Animation S1 in the auxiliary
material.)
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the theoretically expected and the observed P2 attenuation
match within the uncertainty without additional correction.

6.3. Modeling and Final Amplitudes

[46] As noted in section 6.1, Figure 4d shows the set of
waveforms modeled using the phase advance technique and
the physical values in Tables 1 and 2, these agree well with
those observed in Figure 4b. The fully modeled reflected and
transmitted fast and slow P waves are shown in Figure 8 as
snapshots at 44, 60, 70, and 84 ms. The attenuation is
noticeable for the slow P wave as the amplitude decays
away from the first water-porous interface in Figures 8b and
8c. The theoretically expected and observed waves speed
and attenuations are, too, in good agreement. One final and
perhaps more sensitive test, however, is a direct comparison
of the observed wave amplitudes with those fully modeled
including transducer diffractions, transmission losses, and
attenuations either excluding (Figure 9b) or including via
the complex md and Kd (Figure 9a) the frame losses. The
amplitudes reported (Figure 9) are those of the peak
magnitude of the analytic signal (i.e., the peak value of
the amplitude envelope or the magnitude of the analytic
signal as described by Bouzidi and Schmitt [2006]). The
observed results are shown as discrete symbols while those

calculated appear as lines. When the frame attenuation is not
considered the modeled amplitudes for the P1 and the
S modes exceed those observed (Figure 9a), the discrepancy
of the S wave is particularly large. Again, the differences are
reduced once frame attenuation is included. The problem of
frame attenuation had previously been mentioned as one
possible reason for the lack of agreement between the
expected and observed amplitudes of Wu et al. [1990] and
Rasolofosaon [1988] although neither of these authors
included the transmission and transducer diffraction effects
in their analysis.
[47] The effects of the wave amplitudes [e.g., Mavko,

1979; Johnston and Toksoz, 1980; Mashinskii, 2006] have
not been considered in this analysis. While this may play a
role at higher wave intensities, the relatively good agree-
ment between the observations and theory here suggest that
amplitude-dependent mechanisms are not necessary at the
current signal strengths.

7. Conclusions

[48] A novel ultrasonic goniometer system that employs a
large transmitter was used in the acquisition of waveforms
transmitted through a water-saturated porous sample at a
range of angles of incidence. The Biot slow P2 wave was
observed at all angles. The porous medium, consisting of
sintered glass beads, was fully characterized allowing the
saturated fast P1, the slow P2, and the shear S wave speeds
and attenuations to be predicted to those extracted from the
observed waveforms. Forward modeling of the waveforms
incorporated the predicted waves speeds and attenuations,
transducer effects, and wave transmissivity and conversion.
The modeled waveforms agree well with those observed.
Consequently, these tests lend further support existing
poroelastic theory as begun by Biot [1956a, 1956b] and
modified by later workers [Johnson et al., 1982, 1987] in
general. Most critically, the consistency between the final
observed and modeled amplitudes for the three waves
supports the use of open flow boundary conditions in such
cases. A further important conclusion is that the attenuation
of the porous frame does not measurably affect the trans-
mission of the slow P2 wave.
[49] Three parameters are difficult to constrain because

their definitions remain incomplete and are to a large degree
developed using phenomenological arguments. These in-
clude the induced mass coefficient r12, the coefficient of
fluid content g, and the frequency-dependent viscous cor-
rection factor F(w). Best matching of the modeled to the
observed waveforms required that the value of g be adjusted
modestly relative to a direct application of the theory.
Despite this, direct application of the theory gave results
that differed from the observations by only a few percent.
[50] In summary, on one hand the Biot theory appears to

adequately describe the wave propagation through and the
transmissivity of the interfaces of a liquid filled porous
medium, at least for such highly porous samples and at
ultrasonic frequencies: a positive result. On the other hand,
one might ask why such a theory should work at all given
the rather simple phenomenological nature of the tube-like
pores of Biot [1956b] and for that matter Johnson et al.
[1987]. Such tubes are at best a crude description of real
tortuous pore networks. It would be useful to continue these

Figure 9. Comparison between fully modeled (lines) and
observed (symbols) peak ultrasonic waveform amplitudes
for cases that (a) include and (b) ignore the frame
attenuation. Observed amplitudes for P1, P2, and S modes
represented by black circles, open diamonds, and open
squares, respectively. Corresponding calculated amplitudes
for the P1, P2, and S modes are represented by continuous,
dashed, and dotted lines, respectively.
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studies on lower-porosity materials and in materials with
more complex pore structures to see at which point the Biot
descriptions will fail.
[51] Forthcoming work will examine the first surface

ultrasonic reflectivity of this porous sample. The character-
ization of the sample described here is a necessary step
toward this goal.

Appendix A: Theory Detail

[52] This appendix provides a new approach in looking at
the Biot theory. It will emphasize on the dynamic drag
factors that link the solid and the fluid for each wave mode
that can propagate in a fluid-saturated porous medium.
Extensive explanation may is given by Bouzidi [2003,
chapter 4 and appendices].

A1. Longitudinal Wave Propagation

[53] The equation of motion for longitudinal waves in
terms of potential fields f(s) and f(f) in the solid and fluid,
respectively, are given by

1� bð Þrs
@2

@t2
f sð Þ � r12

@2

@t2
f sð Þ � f fð Þ

� �
þ F wð Þ hb

2

K

@

@t

� f sð Þ � f fð Þ
� �

¼ r2 Aþ 2mdð Þf sð Þ þ Qf fð Þ
h i

brf
@2

@t2
f fð Þ þ r12

@2

@t2
f sð Þ � f fð Þ

� �
� F wð Þ hb

2

K

@

@t

� f sð Þ � f fð Þ
� �

¼ r2 Qf sð Þ þ Rf fð Þ
h i

ðA1Þ

where the material properties required are described in
Table 1 above. A, Q, and R are the Biot parameters and F(w)
is a viscosity correction factor. Let the solid/fluid ratio be
z l = f(s)/f( f ) where l = 1,2 for the fast and slow waves,
respectively, and let ~r12 = r12 + iF(w)(hb2/Kw). For plane
waves, equations (A1) lead to

k2l Aþ2mdð Þ�w2 1�bð Þrs � ~r12ð Þ
� �

f sð Þ þ k2l Q� w2~r12
� �

f fð Þ ¼ 0

k2l Q� w2~r12
� �

f sð Þ þ k2l Rþ ~r12w
2 � w2brf

h i
f fð Þ ¼ 0

ðA2Þ

Eliminating kl from (A2) we obtain a quadratic equation in z l

az2 þ bz þ c ¼ 0 ðA3Þ

where a, b, and c are given by

a ¼ � Aþ 2md þ Qð Þ~r12 þ Q 1� bð Þrs ðA4aÞ

b ¼ Aþ 2md � Rð Þ~r12 � Aþ 2mdð Þbrf þ R 1� bð Þrs ðA4bÞ

c ¼ Qþ Rð Þ~r12 � Qbrf ðA4cÞ

which can easily solved for z l.

[54] The parameter kl can be easily derived from either
equation (A4a) or (A4b). It can be also obtained in a
compact form by adding equation (A1) which lead to

kl ¼ w
V l 1� bð Þrs þ brf

V l Aþ 2mdð Þ þ Rþ Q

� �1=2
ðA5Þ

The combined solid-fluid coupling drag terms incorporate
both inertial and viscous drag forces; z1 and z2 are
determined from the two zeros of the quadratic formula
(A3).
[55] The Biot parameters here are

A ¼ Ks � Ksb � Kdð Þ2

Ks þ gK2
s � Kd

þ Kd �
2

3
md

Q ¼ bKs Ks � Ksb � Kdð Þ
Ks þ gK2

s � Kd

R ¼ b2K2
d

Ks þ gK2
s � Kd

ðA6Þ

and g, the coefficient of fluid content, is given by

g ¼ b
1

Kf

� 1

Ks

� �
ðA7Þ

The coefficient of fluid content assumes that Kun = Ks. If
this is not true then this coefficient might be calculated as
follows [Hickey and Sabatier, 1997]:

g ¼ b
1

Kf

� 1

Ks

� �
þ 1� bð Þ 1

Kun

� 1

Ks

� �
ðA8Þ

A2. Rotational Wave Propagation

[56] Rotational wave propagation the Biot equations of
motion in terms of potential fields ~y (s) and ~y ( f ) in the solid
and fluid components, respectively, are given by

1� bð Þrs
@2

@t2
~y sð Þ � r12

@2

@t2
~y sð Þ � ~y fð Þ

� �

þ F wð Þ hb
2

K

@

@t
~y sð Þ � ~y fð Þ

� �
¼ mdr2~y sð Þ

brf
@2

@t2
~y fð Þ þ r12

@2

@t2
~y sð Þ � ~y fð Þ

� �

� F wð Þ hb
2

K

@

@t
~y sð Þ � ~y fð Þ

� �
¼ 0

ðA9Þ

For plane wave solutions and using ~r12 as defined above
(A9) lead to

k23md � w2 1� bð Þrs þ ~r12ð Þ
� �

~y sð Þ � w2~r12~y
fð Þ ¼ 0 ðA10aÞ

~r12~y
sð Þ þ brf � ~r12

h i
~y fð Þ ¼ 0 ðA10bÞ
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Equation (A10a) gives the solid-fluid ratio

z3 ¼ �
brf � ~r12

~r12
ðA11Þ

Equations (A9) can be combined to obtain the shear wave
number

k3 ¼ w
V3 1� bð Þrs þ brf

V3md

� �1=2
ðA12Þ

The viscosity correction factor as given by Johnson et al.’s
[1987] canted tube formulation

F wð Þ ¼
�2ixJ1 4 ixð Þ1=2

h i

2 ixð Þ1=2J0 4 ixð Þ1=2�J0 4 ixð Þ1=2
�h i ðA13Þ

where x = r0
2r fw/16h and J0 and J1 are Bessel functions

was used in the calculations. It is important to note that
equation (A13) does not depend on the tortuosity nor on the
slanting angle [Johnson et al., 1987] when defined as x =
1/cos a2. The measured tortuosity by pure electrical
conductivity experiment would lead to an angle a = 33.6�
for the slanted tube model given in (A13).

A3. Plane Wave Solution Reflection and Transmission
Coefficients

[57] The reflection and transmission boundary value
problem between a fluid and a fluid-saturated porous
material is solved using the Deresiewicz and Skalak
[1963] boundary conditions that are (1) the normal total
stress on the bulk material of the porous medium and the
stress in the fluid medium must be continuous at the
boundary, (2) the tangential stress in the porous medium
must vanish at the boundary, (3) the fluid pressure must be
continuous across the boundary, and (4) the normal com-
ponent of the averaged particle velocity over the bulk
material in medium b and the normal fluid particle velocity
in medium a must be continuous at the boundary. which

may be mathematically represented as

szz þ sf gb¼ �p fð Þ
n o

a

sxzf gb¼ 0

�p fð Þ
n o

b
¼ �p fð Þ

n o
a

1� bð Þv sð Þ
z þ bv fð Þ

z

n o
b
¼ v fð Þ

n o
a

ðA14Þ

where szz is the normal stress, sxz is the tangential stress, s is
the stress in the fluid, p(f) is the pressure, nz is the vertical
component of the particle velocity, and n is the fluid velocity.
For the first case shown in Figure 1a of a P wave in water
incident on the saturated medium four waves are generated at
the boundary: a reflected P wave, and transmitted fast P1,
slow P2, and S waves. Let the superscripts ( f ) and (s)
represent the potentials and coefficients for the fluid and the
solid portions, respectively, and the subscripts 1, 2, and 3 for
the P1, P2, and S modes, respectively. The potentials are for

Incident P

f fð Þ
inc ¼ ei wt�kxx�kzzð Þ ðA15aÞ

Reflected P

fref ¼ Eei wt�kxxþkzzð Þ ðA15bÞ

Transmitted P1

f fð Þ
1 ¼ B fð Þei wt�k1xx�k1zzð Þ;f sð Þ

1 ¼ z1B
fð Þei wt�k1xx�k1zzð Þ ðA15cÞ

Transmitted P2

f fð Þ
2 ¼ C fð Þei wt�k2xx�k2zzð Þ;f sð Þ

2 ¼ z2C
fð Þei wt�k2xx�k2zzð Þ ðA15dÞ

Transmitted S

~y fð Þ
1 ¼ D fð Þei wt�k3xx�k3zzð Þ; ~y sð Þ

1 ¼ z1D
fð Þei wt�k3xx�k3zzð Þ ðA15eÞ

where E, B( f ), C( f ), and D( f )are the respective reflection
or transmission coefficients to be determined and plotted
in Figure 1. These may be written as a vector X =
[B( f ) C( f ) D( f ) E]. Application of the boundary conditions
to the potentials eventually results in a solution that may be
distilled to a matrix form

TX ¼ G ðA16Þ

where T is a 4 � 4 matrix of known physical parameters

T ¼

2mMz1k
2
1z þ Az1 þ Qð Þk21 þ k21 Qz1 þ Rð Þ 2z1k1xk1z

k21 Qz1 þ Rð Þ
b

1� bð Þz1 þ b½ 	k1z

2mMz2k
2
2z þ Az2 þ Qð Þk22 þ k22 Qz2 þ Rð Þ 2z2k2xk2z

k22 Qz2 þ Rð Þ
b

1� bð Þz2 þ b½ 	k2z
2mMz3k3xk3z z3 k23x � k23z

� �
0 1� bð Þz3 þ b½ 	k3x

�rf w
2 0 �rf w

2 kz

2
6666664

3
7777775

ðA17Þ

G is also a known vector that depends on the incident wave
considered and is explicitly for the case of P incident onto a
saturated medium:

G ¼ rf w
2 0 rf w

2 kz

h i
ðA18aÞ

For the other three cases with P1, P2, and S waves within
the porous medium being reflected and with only the P
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wave in the liquid being transmitted X = [B( f ) C( f ) D( f ) E]
and G becomes

Case with incident P1

G ¼

�2mMz1k
2
1z � Az1 þ Qð Þk21 þ k21 Qz1 þ Rð Þ

�2z1k1xk1z

� k21 Qz1 þ Rð Þ
b

� 1� bð Þz1 þ b½ 	k1z

2
66664

3
77775 ðA18bÞ

Case with incident P2

G ¼

�2mMz2k
2
2z � Az2 þ Qð Þk22 þ k22 Qz2 þ Rð Þ

�2z2k2xk2z

� k22 Qz2 þ Rð Þ
b

� 1� bð Þz2 þ b½ 	k2z

2
66664

3
77775 ðA18cÞ

Final case of incident S

G ¼

�2mMz3k3xk3z
�2z2k2xk2z

0

� 1� bð Þz3 þ b½ 	k3x

2
664

3
775 ðA18dÞ

[58] Acknowledgments. This work was supported through NSERC
Discovery and Equipment Grants, and the Canada Research Chairs program
to D.R.S. The assistance of G. Lachat, T. Paget, L. Tober, and P. Zimmerman
in the development of the experimental apparatus was crucial. Discussions
and insight from J. Beamish, V. de la Cruz, C. Hickey, E. Krebes, R. J.
O’Connell, and T. J. Spanos were invaluable. The suggestions of two
reviewers were also greatly appreciated.

References
Aknine, A., B. Castagnede, and C. Depollier (1997), Reflection/refraction
of acoustic waves on an interface fluid/porous material, C. R. Acad. Sci.,
Ser. B, 324, 501–511.

Allard, J.-F. (1993), Propagation of Sound in Porous Media: Modelling
Sound Absorbing Materials, 284 pp., Elsevier Sci., London.

Allard, J. F., C. Depollier, and A. Lesperance (1986), Observation of the
Biot slow-wave in a plastic foam of high flow resistance at acoustical
frequencies, J. Appl. Phys., 59, 3367–3370, doi:10.1063/1.336801.

Bass, J. D. (1995), Elasticity of minerals, glasses, and melts, in Mineral
Physics and Crystallography: A Handbook of Physical Constants, edited
by T. J. Ahrens, AGU Ref. Shelf, 2, 45–63, AGU, Washington, D. C.

Beamish, J. R., A. Hikata, and C. Elbaum (1983), Sound-velocity in helium-
filled porous Vycor glass, Phys. Rev. B, 27, 5848–5851, doi:10.1103/
PhysRevB.27.5848.

Berryman, J. G. (1980), Confirmation of Biots theory, Appl. Phys. Lett., 37,
382–384, doi:10.1063/1.91951.

Biot, M. A. (1956a), Theory of propagation of elastic waves in a fluid-
saturated porous solid. 1. Low-frequency range, J. Acoust. Soc. Am., 28,
168–178, doi:10.1121/1.1908239.

Biot, M. A. (1956b), Theory of propagation of elastic waves in a fluid-
saturated porous solid. 2. Higher frequency range, J. Acoust. Soc. Am.,
28, 179–191, doi:10.1121/1.1908241.

Biot, M. A., and D. Willis (1957), The elastic coefficients of the theory of
consolidation, J. Appl. Mech., 24, 594–601.
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Naturforsch. Ges. Zuerich, 96, 1–23.

Gazdag, J. (1978), Wave equation migration with phase-shift method,
Geophysics, 43, 1342–1351, doi:10.1190/1.1440899.

Geerits, T. W., and O. Kelder (1997), Acoustic wave propagation through
porous media: Theory and experiments, J. Acoust. Soc. Am., 102, 2495–
2510, doi:10.1121/1.420304.

Gist, G. A. (1994a), Fluid effects on velocity and attenuation in sandstones,
J. Acoust. Soc. Am., 96, 1158–1173, doi:10.1121/1.410389.

Gist, G. A. (1994b), Interpreting laboratory velocity measurements in par-
tially gas-saturated rocks, Geophysics, 59, 1100–1109, doi:10.1190/
1.1443666.

Gomez Alvarez-Arenas, T. E., E. Riera-Franco de Sarabia, and F. R.Montero
de Espinosa-Feijo (1994), Observation of a very slow ultrasonic bulk
compressional wave in an inhomogeneous porous material, Ultrasonics,
32, 131–140, doi:10.1016/0041-624X(94)90021-3.

Green, D. H., and H. F. Wang (1986), Fluid pressure response to undrained
compression in saturated sedimentary rock, Geophysics, 51, 948–956,
doi:10.1190/1.1442152.

Gurevich, B., and M. Schoenberg (1999), Interface conditions for Biot’s
equations of poroelasticity, J. Acoust. Soc. Am., 105, 2585 –2589,
doi:10.1121/1.426874.

Gurevich, B., O. Kelder, and D. M. J. Smeulders (1999), Validation of the
slow compressional wave in porous media: Comparison of experiments
and numerical simulations, Transp. Porous Media, 36, 149 – 160,
doi:10.1023/A:1006676801197.

Haire, T. J., and C. M. Langton (1999), Biot theory: A review of its
application to ultrasound propagation through cancellous bone, Bone,
24, 291–295, doi:10.1016/S8756-3282(99)00011-3.

Han, D. H., and M. L. Batzle (2004), Gassmann’s equation and fluid-
saturation effects on seismic velocities, Geophysics, 69, 398 –405,
doi:10.1190/1.1707059.

Hickey, C. J., and J. M. Sabatier (1997), Choosing Biot parameters for
modeling water-saturated sand, J. Acoust. Soc. Am., 102, 1480–1484,
doi:10.1121/1.421037.

Hickey, C. J., T. J. T. Spanos, and V. Delacruz (1995), Deformation para-
meters of permeable media, Geophys. J. Int., 121, 359–370, doi:10.1111/
j.1365-246X.1995.tb05717.x.

B08201 BOUZIDI AND SCHMITT: BIOT SLOW WAVE

13 of 14

B08201



Hovem, J. M. (1981), Transmission of sound through a porous disk, Appl.
Phys. Lett., 39, 590–591, doi:10.1063/1.92834.

Ji, Q., L. H. Le, L. J. Filipow, and S. A. Jackson (1998), Ultrasonic wave
propagation in water-saturated aluminum foams, Ultrasonics, 36, 759–
765, doi:10.1016/S0041-624X(97)00161-3.

Johnson, D. L. (1984), Recent developments in the acoustic properties of
porous media, in Frontiers in Physical Acoustics, Varenna on Lake
Como, Villa Monastero, 10–20 July 1984, edited by D. Sette, Proc.
Int. Sch. Phys. Enrico Fermi, 93, 255–290.

Johnson, D. L., and T. J. Plona (1982), Acoustic slow waves and the con-
solidation transition, J. Acoust. Soc. Am., 72, 556–565, doi:10.1121/
1.388036.

Johnson, D. L., T. J. Plona, C. Scala, F. Pasierb, and H. Kojima (1982),
Tortuosity and acoustic slow waves, Phys. Rev. Lett., 49, 1840–1844,
doi:10.1103/PhysRevLett.49.1840.

Johnson, D. L., J. Koplik, and R. Dashen (1987), Theory of dynamic
permeability and tortuosity in fluid-saturated porous-media, J. Fluid
Mech., 176, 379–402, doi:10.1017/S0022112087000727.

Johnson, D. L., T. J. Plona, and H. Kojima (1994), Probing porous media
with first and second sound. II. Acoustic properties of water-saturated
porous media, J. Appl. Phys., 76, 115–125, doi:10.1063/1.358438.

Johnston, D. H., and M. N. Toksoz (1980), Thermal cracking and amplitude
dependent attenuation, J. Geophys. Res., 85, 937–942, doi:10.1029/
JB085iB02p00937.

Jungman, A., G. Quentin, L. Adler, and Q. Xue (1989), Elastic property
measurements in fluid-filled porous materials, J. Appl. Phys., 66, 5179–
5184, doi:10.1063/1.343753.

Kelder, O., and D. M. J. Smeulders (1997), Observation of the Biot slow
wave in water-saturated Nivelsteiner sandstone, Geophysics, 62, 1794–
1796, doi:10.1190/1.1444279.

King, M. S., J. R. Marsden, and J. W. Dennis (2000), Biot dispersion for
P- and S-wave velocities in partially and fully saturated sandstones, Geo-
phys. Prospect., 48, 1075–1089, doi:10.1046/j.1365-2478.2000.00221.x.

Klimentos, T., and C. McCann (1988), Why is the Biot slow compressional
wave not observed in real rocks?, Geophysics, 53, 1605 – 1609,
doi:10.1190/1.1442443.

Krebes, E. S. (1984), On the reflection and transmission of viscoelastic
waves—Some numerical results, Geophysics, 49, 1374 – 1380,
doi:10.1190/1.1441765.

Kumpel, H. J. (1991), Poroelasticity—Parameters reviewed, Geophys. J.
Int., 105, 783–799, doi:10.1111/j.1365-246X.1991.tb00813.x.

Kurashige, M., S. Imaida, and Y. Goto (1992), Phase velocity measure-
ments for three bulk waves in water-saturated sintered glass beads, in
Proceedings of the International Symposium on Impact Engineering,
November 2–4, 1992, Sendai, Japan, vol. 2, edited by I. Maekawa,
pp. 508–513, Int. Symp. on Impact Eng., Sendai, Japan.

Kurashige, M., T. Hayashi, and K. Imai (1999), Simulated effective elastic
moduli and wave velocities in water-saturated sintered glass-beads, Acta
Mech., 132, 177–194, doi:10.1007/BF01186966.

Lakes, R., H. S. Yoon, and J. L. Katz (1983), Slow compressional wave
propagation in wet human and bovine cortical bone, Science, 220, 513–
515, doi:10.1126/science.6836296.

Mashinskii, E. I. (2006), Nonlinear amplitude– frequency characteristics of
attenuation in rock under pressure, J. Geophys. Eng., 3, 291–306,
doi:10.1088/1742-2132/3/4/001.

Mavko, G. M. (1979), Frictional attenuation: Inherent amplitude depen-
dence, J. Geophys. Res., 84, 4769–4775, doi:10.1029/JB084iB09p04769.

Mavko, G., and R. Nolenhoeksema (1994), Estimating seismic velocities at
ultrasonic frequencies in partially saturated rocks, Geophysics, 59, 252–
258, doi:10.1190/1.1443587.

Mavko, G., and A. Nur (1975), Melt squirt in asthenosphere, J. Geophys.
Res., 80, 1444–1448, doi:10.1029/JB080i011p01444.

Mayr, S. I., and H. Burkhardt (2006), Ultrasonic properties of sedimentary
rocks: Effect of pressure, saturation, frequency and microcracks, Geo-
phys. J. Int., 164, 246–258, doi:10.1111/j.1365-246X.2005.02826.x.

Molyneux, J. B., and D. R. Schmitt (2000), Compressional-wave velocities
in attenuating media: A laboratory physical model study, Geophysics, 65,
1162–1167, doi:10.1190/1.1444809.

Nagy, P. B. (1993), Slow-wave propagation in air-filled permeable solids,
J. Acoust. Soc. Am., 93, 3224–3234, doi:10.1121/1.405707.

Nagy, P. B., L. Adler, and B. P. Bonner (1990), Slow-wave propagation in
air-filled porous materials and natural rocks, Appl. Phys. Lett., 56, 2504–
2506, doi:10.1063/1.102872.

Nagy, P. B., B. P. Bonner, and L. Adler (1995), Slow-wave imaging of
permeable rocks, Geophys. Res. Lett., 22, 1053–1056, doi:10.1029/
95GL00906.

Nakagawa, K., K. Soga, and J. K. Mitchell (1997), Observation of Biot
compressional wave of the second kind in granular soils, Geotechnique,
47, 133–147.

O’Connell, R. J., and B. Budiansky (1974), Seismic velocities in dry and
saturated cracked solids, J. Geophys. Res., 79, 5412–5426, doi:10.1029/
JB079i035p05412.

Ogushwitz, P. R. (1985), Applicability of the Biot theory. I. Low-porosity
materials, J. Acoust. Soc. Am., 77, 429–440, doi:10.1121/1.391863.

Plona, T. J. (1980), Observation of a second bulk compressional wave in a
porous medium at ultrasonic frequencies, Appl. Phys. Lett., 36, 259–261,
doi:10.1063/1.91445.

Pride, S. R., E. Tromeur, and J. G. Berryman (2002), Biot slow-wave
effects in stratified rock, Geophysics, 67, 271 – 281, doi:10.1190/
1.1451799.

Rasolofosaon, P. N. J. (1988), Importance of interface hydraulic condition
on the generation of second bulk compressional wave in porous media,
Appl. Phys. Lett., 52, 780–782, doi:10.1063/1.99282.

Rubino, J. G., C. L. Ravazzoli, and J. E. Santos (2006), Reflection and
transmission of waves in composite porous media: A quantification of
energy conversions involving slow waves, J. Acoust. Soc. Am., 120,
2425–2436, doi:10.1121/1.2354464.

Santos, J. E., J. M. Corbero, C. L. Ravazzoli, and J. L. Hensley (1992),
Reflection and transmission coefficients in fluid-saturated porous-media,
J. Acoust. Soc. Am., 91, 1911–1923, doi:10.1121/1.403702.

Sebaa, N., Z. E. A. Fellah, M. Fellah, E. Ogam, A. Wirgin, F. G. Mitri,
C. Depollier, andW. Lauriks (2006), Ultrasonic characterization of human
cancellous bone using the Biot theory: Inverse problem, J. Acoust.
Soc. Am., 120, 1816–1824, doi:10.1121/1.2335420.

Sen, P. N., C. Scala, and M. H. Cohen (1981), A self-similar model for
sedimentary-rocks with application to the dielectric-constant of fused
glass-beads, Geophysics, 46, 781–795, doi:10.1190/1.1441215.

Smeulders, D. M. J. (2005), Experimental evidence for slow compressional
waves, J. Eng. Mech., 131, 908 – 917, doi:10.1061/(ASCE)0733-
9399(2005)131:9(908).

Stearns, R. G. (1992), Measurement of a multicomponent granular system
using acoustic slow waves, J. Appl. Phys., 71, 606–611, doi:10.1063/
1.350413.

Stoll, R. D. (1989), Sediment Acoustics, Springer, New York.
Stoll, R. D., and T. K. Kan (1981), Reflection of acoustic waves at a water-
sediment interface, J. Acoust. Soc. Am., 70, 149–156, doi:10.1121/
1.386692.

Tajuddin, M., and S. J. Hussaini (2005), Reflection of plane waves at
boundaries of a liquid filled poroelastic half-space, J. Appl. Geophys.,
58, 59–86, doi:10.1016/j.jappgeo.2005.04.003.

Thomsen, L. (1985), Biot-consistent elastic moduli of porous rocks: Low-
frequency limit, Geophysics, 50, 2797–2807, doi:10.1190/1.1441900.

Watson, J. T. R., R. S. Basu, and J. V. Sengers (1980), An improved
representative equation for the dynamic viscosity of water substance,
J. Phys. Chem. Ref. Data, 9, 1255–1290.

Williams, K. L., D. R. Jackson, E. I. Thorsos, D. J. Tang, and S. G. Schock
(2002), Comparison of sound speed and attenuation measured in a sandy
sediment to predictions based on the Biot theory of porous media, IEEE
J. Oceanic Eng., 27, 413–428, doi:10.1109/JOE.2002.1040928.

Wu, K. Y., Q. Xue, and L. Adler (1990), Reflection and transmission of
elastic waves from a fluid-saturated porous solid boundary, J. Acoust.
Soc. Am., 87, 2349–2358, doi:10.1121/1.399081.

Yang, J. (1999), Importance of flow condition on seismic waves at a saturated
porous solid boundary, J. Sound Vibrat., 221, 391–413, doi:10.1006/
jsvi.1998.2036.

Yang, J., and T. Sato (1998), Influence of viscous coupling on seismic
reflection and transmission in saturated porous media, Bull. Seismol.
Soc. Am., 88, 1289–1299.

Zhu, G. Z., X. F. Zhu, and L. Liu (1999), Examination of the existence of
slow wave in fluid saturated porous medium with the optical method,
Chin. J. Acoust., 18, 304–310.

�����������������������
Y. Bouzidi, Divestco Processing, Divestco Inc., Suite 500, 440 2nd

Avenue S.W., Calgary, AB T2P 5A9, Canada.
D. R. Schmitt, Institute for Geophysical Research, Department of

Physics, University of Alberta, Edmonton, AB T6G 2G7, Canada.
(doug@phys.ualberta.ca)

B08201 BOUZIDI AND SCHMITT: BIOT SLOW WAVE

14 of 14

B08201


