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[1] The anisotropic properties of phyllosilicate rocks are investigated through the
modeling of the pore-free ‘‘intrinsic’’ elasticity of a textured muscovite aggregate. The
elastic constants were calculated for textures, as defined using orientation distribution
functions (ODFs), ranging from perfectly aligned to completely random. The ODFs were
described using a Gaussian distribution, the width of which is controlled by the standard
deviation of the orientations of the crystal c axis with respect to the sample foliation
plane under the assumption that the sample has hexagonal (transversely isotropic)
symmetry. The values were obtained using the widely used Voigt-Reuss-Hill averaging
techniques as well as the geometric mean average (GMA). The GMA is more physically
meaningful in that it requires that the elastic constants determined in either the stiffness or
the compliance domains be invertible. Comparisons between these different averages
indicate that, strictly, the Voigt and Reuss values do not necessarily provide the limiting
bounds as is expected for the isotropic case. Despite this, some characteristics of the
elastic wave P wave anisotropy are only weakly dependent on the averaging procedure
employed. The calculated elastic constants are converted to the anisotropic e, d, and g
parameters in order to allow for comparison to existing measurements in the literature.
However, these ‘‘intrinsic’’ results are not intended to provide a measure of the properties
of phyllites per se but to provide a reference against which more sophisticated models that
incorporate porosity, layering, and composition may be constructed.

Citation: Cholach, P. Y., and D. R. Schmitt (2006), Intrinsic elasticity of a textured transversely isotropic muscovite aggregate:

Comparisons to the seismic anisotropy of schists and shales, J. Geophys. Res., 111, B09410, doi:10.1029/2005JB004158.

1. Introduction

[2] Phyllosilicate minerals such as clays and micas occur
in rocks from the uppermost mantle to the Earth’s surface. A
large fraction of sedimentary basins are filled with clays.
Micas are a major component of most metamorphic rocks
and dominate in slates and schists. The mica phlogopite is
considered as an important carrier of water in both subduc-
tion zones and mantle wedges. It is seen in mantle xenoliths
in ultrahigh metamorphic materials [e.g., van Roermund et
al., 2002; Hearn, 2004; Chen et al., 2005] and is stable to
pressure and temperature (P/T) conditions expected at
depths to at least 150 km [e.g., Sudo and Tatsumi, 1990;
Tronnes, 2002]. An understanding of the anisotropy of the
upper mantle and crust requires that the role of phyllosili-
cate minerals be considered particularly with regard to the
influence of tectonic straining on texture.
[3] Ignoring anisotropy has a number of consequences. In

active seismic images estimates of both the depth and the
lateral position of a subsurface feature will be in error [e.g.,
Banik, 1984; Godfrey et al., 2002] particularly if the

symmetry axes of the rocks are tilted [Vestrum et al.,
1999; Okaya and McEvilly, 2003]. At a crustal scale,
anisotropy in such rocks will also influence the interpreta-
tion of reflection and refraction profiles and could contrib-
ute significantly to SKS shear wave splitting delay times
[e.g., Ji and Salisbury, 1993; Barruol and Mainprice, 1993;
Godfrey et al., 2000; Okaya et al., 2004; Cholach et al.,
2005] although field observations over areas in which the
crust is expected to be anisotropic have been mixed [Vergne
et al., 2003; Pulford et al., 2003]. Consequently, having
knowledge of the range of anisotropy that might be antic-
ipated from these phyllosilicate aggregate rocks would
provide a useful tool to assist in the interpretation of seismic
observations.
[4] Aside from their abundance, the large anisotropy of

the phyllosilicate single crystals and the propensity of their
aggregate to be textured both contribute to the overall
anisotropy of many rocks. In this contribution the issue of
the origin of seismic anisotropy of phyllosilicate rich rocks
is partially addressed by modeling of their intrinsic aggre-
gate elastic properties. ‘‘Intrinsic’’ here is taken to mean the
elastic anisotropy due solely to the averaging of the elastic
properties of the constituent minerals as controlled by their
texture; quantitatively described by an orientation distribu-
tion function (ODF). The geometric mean averaging (GMA)
procedure is applied to a range of axially symmetric
aggregate textures from completely random (i.e., isotropic)
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to completely aligned (i.e., anisotropy of the single crystal),
these new calculations are compared with the more tradi-
tional and normally employed Voigt-Hill-Reuss methods.
Parameterizations of the anisotropy are then compared with
existing measurements on phyllites in the literature. The
evolution of the anisotropy with texture and the comparison
to laboratory observations provides insight into some of the
factors controlling the elastic anisotropy of these rocks. This
study provides measures of the elasticity of a pore free solid
matrix that can be used as a baseline for more complex
models incorporating porosity, layering, or other mineral
phases. The paper first outlines the current state of knowl-
edge of phyllosilicate mineral elasticity, defines the ODF,
and reviews the pertinent literature before developing and
applying the GMA method for this case.

2. Elasticity of Micas and Clays

[5] Phyllosilicates are some of the most elastically aniso-
tropic crystals. X-ray diffraction studies allow the linear
compressibilities of single mica crystals to be determined
under high-pressure hydrostatic compression. The ratio
between the linear compressibilities measured parallel and
perpendicular to the silicate sheets can exceed 4 [e.g.,
Comodi et al., 2004]. The longitudinal wave anisotropy
(Ap = [Vp

max � Vp
min]/Vp

mean � 100%) in single crystal

muscovite is 56.8% [Alexandrov and Ryzhova, 1961] while
in a biotite the speed of the two birefringent shear waves
propagating parallel to the strong [001] cleavage differ by a
factor of nearly 3.7.
[6] Some of the more important phyllosilicate minerals

include the micas muscovite, phlogopite, and biotite and the
clay illite [e.g., Deer et al., 1964]. These minerals share
many of the same structural characteristics [see Vaughan
and Guggenheim, 1986; Putnis, 1992] with the basic
building block (Figure 1) consisting of sheets of linked
(Si,Al)O4 tetrahedra bounding a layer of octahedrally coor-
dinated cations (e.g., Mg in pure end-member muscovite)
with two thirds of these sites filled with trivalent cations.
The resulting lamina has a net negative charge, which is
then balanced by layers of twelvefold coordinated cations
(e.g., K in pure end-member muscovite). At the level of a
single lamina, illite differs from muscovite only by the
substitution of different elements into the atomic sites.
There are fewer interlayer cations; this leads to less struc-
tured stacking and weaker interatomic forces between the
layers. In biotite and its end-member phlogopite all of the
octahedral coordinated sites are filled with divalent cations
and these result in a different trioctahedral structure. Despite
the minor structural differences, these phyllosilicate miner-
als have similar unit cell dimensions (Table 1).
[7] The elastic properties of muscovite, phlogopite, and a

biotite have been directly measured and modeled (see
references in Table 2). This work suggests that although
these minerals usually have monoclinic symmetry, their
elasticity properties are nearly axially symmetric with
respect to the c axis and for practical purposes they may
be considered to have hexagonal symmetry. Clay crystals
typically have submicron dimensions; direct measurements
are difficult and their moduli have to date only been inferred
(Table 2). The elastic stiffnesses of illite are not yet known;
and it is often assumed that muscovite’s elastic properties
may instead be employed [e.g., Tosaya, 1982; Katahara,
1996; Sayers, 1994]. The similarity of both the moduli
between the various crystals and of their atomic structures
suggests that the elastic values of muscovite are likely
representative of those for illite. However, the minor dis-
crepancies between the different measurements for musco-
vite suggest that much experimental work still needs to be
carried out.

3. Texture and the Orientation
Distribution Function

[8] The second factor in relation to phyllite anisotropy is
that phyllosilicates are usually preferentially oriented with
respect to the rock’s textural elements; indeed, it is the
relative orientations of the phyllosilicate minerals that often

Table 1. Characteristics of Representative Mica and Clay Minerals

Phyllosilicate Stoichimetrya
Unit Cell Dimensions, Åa

Symmetryaa b c

Muscovite K2Al4[Si6Al2O20](OH,F)2 5.19 9.04 9.98 monoclinic
Illite K1-1.5Al4 [Si7-6.5Al1-1.5O20](OH)4 5.2 9.0 9.95 monoclinic
Phlogopite K2(Mg,Fe+2)6 [Si6Al2O20] (OH,F)4 5.314 9.204 10.314 monoclinic
Biotite K2(Mg,Fe+2)6-4(Fe

+3,Al,Ti)0-2 [Si6-5Al2-3O20]O0-2(OH,F)4-2 5.3 9.2 10.2 monoclinic
aDeer et al. [1964].

Figure 1. Simplified atomic view along the planes of
muscovite showing octohedrally coordinated Mg or Al
cations and 12 coordinated K cations separating silicate
sheets. The unit cell is delineated by a dashed parallelogram.
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delineate the texture. In sediments not subject to tectonic
straining, this orientation is possibly linked to the conver-
sion of smectite to illite [Sintubin, 1994a; Ho et al., 1999;
Aplin et al., 2003] or to low-grade metamorphism and
recrystallization of grains [e.g., Sintubin, 1994b; Jacob et
al., 2000]. The textures of such rocks are visually rotation-
ally symmetric with respect to the bedding or foliation
planes and they are consequently expected to be transversely

isotropic [e.g., Kaarsberg, 1959; Hornby, 1995]. Oriented
electron micrographs of a shale (Figure 2) illustrate this
overall axial symmetry with the planes of the clay platelets
primarily horizontally oriented. However, nonlithostatic
tectonic deformation produces orthorhombic texture
[e.g., Oertel, 1983; Sintubin, 1994b] consistent with long-
standing deformation models. O’Brien et al. [1987] have
found even more complex deformation in a series of X-ray

Table 2. Elastic Properties of Micas and Clays

Mineral Density, kg/m3

Bulk Modulus Ko and Stiffnesses Cij, GPa

Ko C11 C22 C33 C44 C55 C66 C12 C13 C23

Muscovitea 2844 58.2 184.3 178.4 59.1 16.0 17.6 72.4 48.3 23.8 21.7
Muscoviteb 2790 52.2 178.0 178.0 54.9 12.2 12.2 67.8 42.4 14.5 14.5
Muscovitec - - 168.0 217.2 47.8 10.2 18.2 56.9 - - -
Muscovitec - - 170.8 203.2 47.9 11.0 17.6 54.6 - - -
Muscovited - 49.0 - - - - - - - - -
Muscovitee - 54.0 - - - - - - - - -
Muscovitef - 51–58 - - - - - - - - -
Muscoviteg - 57 ± 3 - - - - - - - - -
Muscoviteh - 62 ± 2 - - - - - - - - -
Biotitei 3050 50.5 186.0 186.0 54.0 5.8 5.8 76.8 32.4 11.6 11.6
Phlogopiteb 2800 54.8 179.0 179.0 51.7 5.6 5.6 73.3 32.4 25.8 25.8
Phlogopiteb 2820 49.7 178.0 178.0 51.0 6.5 6.5 73.9 30.2 15.2 15.2
Phlogopitei - 49.7 ± 0.2 - - - - - - - - -
Phlogopitej - 58.5 - - - - - - - - -
Phlogopitek - 54 ± 2 - - - - - - - - -
Illitel 2706 60.1 - - - - - - - - -
Kaolinitem - 7.4 - - - - - - - - -
‘‘Clays’’n - 21.4 - - - - - - - - -
Smectiteo - 5.75 - - - - - - - - -
Kaoliniteo - 11 - - - - - - - - -
‘‘Clays’’n - 21.4 - - - - - - - - -
Clayp - 12.5 - - - - - - - - -
Clayq - 22.9 - - - - - - - - -
Clayr 2730 - 85.6 85.6 65.5 29.7 29.7 24.6 - - -
Clays 38.1 38.1 18.8 - 13.8 9.5 - - -

aMeasured using Brillouin scattering by Vaughan and Guggenheim [1986]. These authors note that this material has nearly hexagonal symmetry with
small monoclinic stiffness values C15 = �2.0 GPa, C25 = 3.9 GPa, C35 = 1.2 GPa, and C46 = 0.5 GPa.

bMeasured by ultrasonic pulse transmission on large single crystals by Alexandrov and Ryzhova [1961] as reported by Simmons and Wang [1971] with
C66 = (C11 � C12)/2 under the presumption of hexagonal symmetry within experimental uncertainty. See also Katahara [1996] and Nishizawa and Yoshino
[2001]. Bulk modulus Ko is the Hill average of the Voigt and Reuss bounds for an isotropic aggregate as calculated by Simmons and Wang [1971].

cDerived in atomistic simulation on KAl2(oct)Al(tet)Si3O10(OH)2 by Purton et al. [1997]. The third and fourth rows are for their hybrid and ordered
models, respectively.

dFor synthetic muscovite (Na0.07K0.90 Ba0.01)(Al1.84Ti0.04Fe0.07Mg0.04)(Si3.02Al0.98)O10(OH)2 using X-ray diffraction in diamond anvil cell by Comodi
and Zanazzi [1995]. Ko is zero-pressure bulk modulus determined from fit of third-order Birch-Murnaghan equation of state.

eFor synthetic muscovite (Na0.37K0.60)(Al1.84Ti0.02 Fe0.10Mg0.06)(Si3.03Al0.97)O10(OH)2 using X-ray diffraction in diamond anvil cell by Comodi and
Zanazzi [1995].

fFor natural muscovite (monoclinic phengite, K0.96Na0.01Al1.44Mg0.56(Si3.59Al0.41)-O10(OH1.93,F0.07)) using X-ray diffraction in a Paris-Edinburgh cell)
by Pavese et al. [1999]. The range of values of the bulk modulus arises from the comparison of a series of different finite strain equations of state to the
observed compressions.

gFor synthetic high-silica muscovite (monoclinic phengite, K(Al1.21Mg0.75Fe0.04)(Al0.19Si3.81)O22(OH1.2F0.8)) by X-ray diffraction reported by Smyth et
al. [2000]. Bulk modulus determined from fit of third-order Birch-Murnaghan equation of state.

hFor the same synthetic material as in footnote e, but with trigonal symmetry reported by Smyth et al. [2000].
iFor natural phlogopite (K0.99(1)Na0.020(3)) 1.01(Mg2.73(6)Fe0.15(1)Al0.06(1)Ti0.02(3)) 2.96(Al1.07(2)Si2.93(3)) 4O10(OH)2 by X-ray diffraction reported by

Pavese et al. [2003]. Bulk modulus determined from third-order fit of data to Birch-Murnaghan equaton of state.
jFor natural phlogopite by X-ray diffraction in a diamond anvil cell by Hazen and Finger [1978].
kFor natural phlogophite ([(K0.91Na0.02Ba0.03)(Fe0.652 + Fe0.1633 + Al0.123Mg1.81Ti0.149)Si2.708Al1.292O10OH1.725F0.175]) by X-ray diffraction in a

diamond anvil cell by Comodi et al. [2004].
lFor illite (sample IMt2) determined by measurements of density and of ultrasonic longitudinal and shear wave velocities on a series of epoxy-clay

composites by Wang et al. [1998]. Bulk modulus is the Hashin-Shtrikman average.
mFor kaolinite (dickite) with atomic force microscopy by Prasad et al. [2002]. This value is calculated from the given Young’s modulus of E = 6.2 ± 1.0

GPa measured in the C11 direction according to K = E/3(1 � 2n) with Poisson’s ratio n = 0.3.
nFor generic clays as suggested by Berge and Berryman [1995] based on the compilations of laboratory measurements by Castagna et al. [1985].
oFrom ultrasonic velocity measurements on porous clay aggregates by Vanorio et al. [2003].
pInferred from velocity measurements on a water-clay composite assuming isotropy by Marion et al. [1992].
qInferred from Marion et al.’s [1992] measurements using an isotropic self-consistent approximation by Hornby [1995].
rInferred by Vernik and Liu [1997] in their calculations of the anisotropy of shales consisting of a mix of kerogen and clay, moduli determined from

velocities and densities provided.
sEstimated by Sayers [2005] for a clay domain from the shale measurements of Jones and Wang [1981] under the assumption that his Legendre

coefficients were 60% of the maximum values possible (i.e., for a single crystal).
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goniometry measurements on metamorphic phyllites. The
degree to which these highly anisotropic minerals are prefer-
entially aligned within the aggregate rock contributes greatly
to the structure’s seismic anisotropy [e.g., Brocher and
Christensen, 1990; Kern and Wenk, 1990; McDonough
and Fountain, 1993; Burlini and Fountain, 1993;Mainprice
and Humbert, 1994; Godfrey et al., 2000;Weiss et al., 1999;
Takanashi et al., 2001;Cholach et al., 2005], and as such their
elastic anisotropy is important in seismic investigations of the
crust and upper mantle at many scales.
[9] Textures are quantitatively described with an orienta-

tion distribution function (ODF) f(g) [Bunge, 1982], where
g = {81, F, 82} is the orientation domain consisting of the
three Euler angles [cf. Morse and Feshbach, 1953]. The
angles g describe the orientation of the individual mineral’s
coordinate reference frame xi = (x1, x2, x3) (Figure 3b) with
that for the aggregate Xj = (X1, X2, X3) (Figure 3c). Three
consecutive rotations of an initially misaligned single crys-
tal coordinate system xi by Euler angles {81, F, 82} bring it

to coincide with Xj. Xj is defined such that the X1X2 plane
coincides with the foliation or bedding plane. The lineation
direction, should it exist, defines X1. Axis X3 is normal to
the foliation plane. For the transversely isotropic (i.e.,
axially symmetric around X3) aggregate studied here there
is no lineation and the X1 and X2 directions lie arbitrarily
within the foliation or bedding plane (as will be the case
here).
[10] Such information is usually obtained from thin

section microscopy or X-ray, neutron, and electron (EBSD)
diffraction techniques [e.g., Ullemeyer et al., 2000] or
estimated from analysis of micrographs [e.g., Hornby et
al., 1994]. The choice of the texture determination tech-
nique depends on the rock type and the purpose of the
investigation. Ullemeyer et al. [2000] suggested that so-
called ‘‘statistical’’ or ‘‘volume’’ type texture determination
techniques, such as X-ray or neutron diffraction, are most
suitable for bulk texture determination and calculations of
the elastic properties of rocks. Takanashi et al. [2001],

Figure 2. SEM images of Colorado Shale from the Cold Lake area of Alberta, Canada: (a) section
perpendicular to the bedding plane and (b) section parallel to the bedding plane. Observed strong
preferred orientation of clay particles directly correlates with lattice preferred orientation of clay minerals
(see text for details). Average size of clay platelets is several microns. Images are shown only to illustrate
the mineralogic textures of such shales.
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O’Brien et al. [1987], Sintubin [1994a, 1994b], and
Mainprice and Humbert [1994] give numerous examples
of phyllite ODFs in slates and shales.
[11] The number of the pole figures required to fully

describe an ODF, in general, depends on the symmetries of
both the constituent mineral and the overall rock sample.

Here, the mineral is also assumed to be transversely
isotropic and as such the f(g) depends only on the single
Euler angle F; and only one pole diagram is necessary to
describe the orientation statistics.

4. Earlier Studies on Phyllitic Rocks

4.1. Shales

[12] Since the pioneering work of Kaarsberg [1959] shale
elasticity has been extensively investigated both theoreti-
cally [Hornby et al., 1994; Sayers, 1994; Schoenberg et al.,
1996; Sayers, 1999; Jakobsen et al., 2003], and in the
laboratory [Podio et al., 1968; Jones and Wang, 1981;
Vernik and Nur, 1992; Vernik and Liu, 1997; Johnston
and Christensen, 1995; Hornby, 1998; Jakobsen and
Johansen, 2000; Wang, 2002; Domnesteanu et al., 2002].
These studies demonstrated that anisotropy is a feature of
seismic wave propagation in the majority of shales. The
anisotropic behavior of shales was also observed in a variety
of seismic field observations [e.g., Jolly, 1956; White et al.,
1983; Winterstein and Paulsson, 1990; Miller et al., 1994;
Kebaili and Schmitt, 1996; Leslie and Lawton, 1999;
Leaney et al., 1999]. The significant lithological and com-
positional variability is responsible for variations in the
magnitude of shale anisotropy [Banik, 1984; Jakobsen
and Johansen, 2000; Wang, 2002] with the coefficient of
anisotropy for compressional wave (A(Vp) = (Vp

max � Vp
min)/

Vp
mean � 100%) exceeding 40% in some cases [cf. Johnston

and Christensen, 1995]. Their work also suggests that these
rocks are axially symmetric with respect to the bedding
plane; and that they must be elastically transversely isotropic.
However, a caveat placed on the last statement is that many of
the existing measurements are simplified by beginning with
the assumption that the rock is transversely isotropic.
[13] The microstructure of shales leading to this anisot-

ropy has been considered in a variety of ways. A number of
these studies rely on the anisotropy induced by layering and
do not include the full elasticity of the platy minerals. For
example, Vernik and Nur [1992] applied Backus [1962]
long-wavelength theory to average the properties of a
composite medium consisting of isotropic layers of illite
and kerogen in an attempt to explain ultrasonic observations
of strong anisotropy in source rock shales. Hornby et al.
[1994] used the combination of the self-consistent (SCA)
[Kröner, 1958] and the differential effective medium (DEM)
[e.g., Sheng and Callegari, 1984] approximations to pro-
vide an estimate of the elasticity of a shale domain (i.e., a
perfectly aligned clay-fluid layered composite), an ensemble
of which were then averaged according to a statistical

Figure 3. (a) Example of pole figure (lower hemisphere
equal-area projection onto the foliation plane) for a mica in
a slate obtained by Sintubin et al. [1995], with permission
from Elsevier. Contour intervals are expressed in terms of
multiples of a random distribution with the dashed contour
equal to 0.5 and each continuous line contour equal to 1.
(b) Individual mineral coordinate reference frame (x1, x2, x3).
(c) Relation between mineral (x1, x2, x3) and aggregate (X1,
X2, X3) coordinate frames used to describe the orientation of a
given mineral using the Euler angles g = {�p � 81 �
p, 0 � F � p, �p � 82 � p}. X1 � X2 is the foliation or
bedding plane, and theX1 axis defines the lineation if it exists.
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measures of the relative orientation of clay platelets as
determined from electron micrographs of a shale. Despite
ignoring the anisotropic properties of the crystal itself, their
calculated elastic constants were almost identical to those
obtained from ultrasonic measurements on Cretaceous
shales by Jones and Wang [1981]. Schoenberg et al.
[1996] invoked a simplified three-parameter transversely
isotropic (TI) medium to model shale anisotropy. Their
initial model is based on the long-wavelength approxima-
tion of stiffened media consisting of two interchangeable,
infinitely thin isotropic layers [Schoenberg and Muir, 1989].
Most of the calculated elastic constants of this simplified
transversely isotropic medium, with exception of C33, are in
reasonable agreement with experimental values.
[14] Despite these advances, there remains significant

ambiguity in the models with respect to the in situ sources
of seismic anisotropy. Mineralogical texture has been semi-
quantitatively linked to shale anisotropy in a correlative
sense using diffracted X-ray intensities in only two studies
[Kaarsberg, 1959; Johnston and Christensen, 1995] and by
clay orientation statistics from electronmicroscopy in another
[Hornby, 1995]. The seismic anisotropy in shales is influ-
enced by several factors, including the preferred orientation
(texture) of clay platelets [Kaarsberg, 1959; Tosaya, 1982;
Sayers, 1994; Johnston and Christensen, 1995], alternation
of fluid-filled collinear cracks with clay platelets [Vernik and
Nur, 1992; Hornby et al., 1994], microcracks [Vernik, 1993;
Vernik andLiu, 1997], fine layering [Schoenberg et al., 1996],
fluid-filled porosity [Hornby, 1998], and stress-induced an-
isotropy [Sayers, 1999]. A combination of several of these
factors [e.g., Jakobsen et al., 2003] is required to fully
describe shale anisotropy.
[15] The only studies that have explicitly considered clay

mineral orientation statistics in shales are those of Sayers
[1993, 1994], who modeled the properties of textured
muscovite aggregates intended to identify the textural
parameters responsible for anisotropic velocity variations
in shales. Sayers [1994] assumed that Alexandrov and
Ryzhova’s [1961] value for muscovite (Table 2) appropri-
ately represent those of illite. The Voigt approximation of
uniform strain of shale aggregate was used to derive explicit
formulae for calculation of averaging elastic constants. He
showed that only two Legendre coefficients of the ODF
expansion affect the seismic anisotropy of shales with
vertical transversely isotropic (VTI) symmetry. By varying
the values of texture coefficients Sayers [1994] demonstrat-
ed that shales might develop a strong anelliptic anisotropy
the degree of which is a function of a single texture
parameter, namely, W400. More recently, Sayers [2005]
compared his ODF model as adapted using a values for
an effective clay to another that assumed the anisotropy was
controlled by variations in pore compliances between
aligned muscovite grains. The elastic values of the effective
clay domains were estimated from Jones and Wang’s [1981]
measurements (Table 2). Johansen et al.’s [2004] analysis
inserted the anisotropic clay-water layered composites of
Hornby et al. [1994] into Sayer’s Voigt-bound expressions
in order to explore the range of anisotropy that might be
produced in shales. Instead of employing specific measure-
ments of the ODF f(g), they assumed that it could be more
simply described by Gaussian, Fisher, or Bingham statistical
distributions; their Gaussian assumption further supported

by ODF observations such as those given by Sintubin et al.
[1995] is employed here also (e.g., Figure 3a).

4.2. Metamorphic Rocks

[16] There have been numerous laboratory studies of mica
containing textured rocks and much of this work has been
compiled by Babuška and Cara [1991]; but only some of the
recent contributions have addressed the anisotropy of such
rocks in detail, for example by specifying polarization
directions of shear waves. Godfrey et al. [2000] carried out
measurements on a variety of schists to determine their
elasticity up to orthorhombic symmetry. Takanashi et al.
[2001] made measurements on a biotite gneiss and a biotite
schist. Although biotite composed no more than 40% of
either of these rocks, the anisotropy was found to be primarily
due to its texture.
[17] There have been some efforts in modeling the anisot-

ropy of such rocks. Nishizawa and Yoshino [2001] calculated
the effects of crystal shape on the anisotropy expected for
biotite and muscovite aggregates using the differential effec-
tive medium theory. They embedded ellipsoidal and aniso-
tropic single crystals in an otherwise homogeneous and
isotropic matrix. While they did employ Alexandrov and
Ryzhova’s [1961] muscovite elastic constants to describe the
elasticity of their embedded elliptical crystals, they assumed
that the sample and crystal symmetry axes were parallel and
as such did not explicitly account for the orientation statistics
of the phyllosilicate grains. Shapiro et al. [2004] recently
attempted to estimate the amount of crustal thinning of the
Tibetan plateau on the basis of observed seismic anisotropy
on the basis of an ODF produced by simple axial straining of
a composite containing biotite and muscovite.
[18] Using an optically obtained ODF for one sample of a

natural axially symmetric biotite aggregate, Mainprice and
Humbert [1994] calculated its elastic phase velocity anisot-
ropy using a variety of models including the geometric
mean, the only study that has employed the geometric mean
in the context of anisotropic silicate aggregates that is
apparent in the literature. The geometric mean velocities,
plotted with respect to the inclination of the propagation
angle, fell within the more traditional Voigt-Reuss bounds.
The values were in good agreement with the Hill average at
angles close to the axis of symmetry but diverged signifi-
cantly at more oblique propagation directions. It must be
noted, however, that the geometric mean has been also used
to calculate the expected isotropic velocities of rocks on the
basis of their mineral modes [Ji et al., 2003].
[19] However, Takanashi et al.’s [2001] study is the only

complete experimental test in the literature in which the
velocities observed in the laboratory have been directly
compared to those predicted from the material’s mica ODF
obtained using X-ray goniometry. Their Voigt bound esti-
mates were in good qualitative agreement with the measure-
ments particularly with respect to the expected symmetry of
the material.

5. Texture-Based Modeling and the Geometric
Mean

[20] In this section, the theoretical background of the
geometric mean modeling employed here is described. As
noted above, there are only a limited number of studies in
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which the mineralogic texture, as represented by an ODF; has
been employed to model the elasticity of an phyllosilicate
aggregate.
[21] In our work, modeling of the intrinsic anisotropy is

based on the ODF averaging technique [Viglin, 1960;
Bunge, 1982; Roe, 1965] in combination with the concept
of the ‘‘Geometric mean’’ [Aleksandrov and Aizenberg,
1966; Morawiec, 1989; Matthies and Humbert, 1993].
The geometric mean averaging (GMA) technique aims to
provide the elasticity of a pore free aggregate. The results
obtained here could later be modified using other concepts
to include the effects of cracks or other mineral phases. In
order to carry out ODF averaging, one needs knowledge of
the volumetric fraction of the constituent mineral phases,
their elasticity, and the statistics of the textural orientation
distributions.

5.1. Classic Voigt-Reuss Averages

[22] Prediction of the elasticity of polycrystalline aggre-
gates is a classic problem in solid mechanics and rock
physics with the roots of the investigation coming from
early in the last century [e.g., Voigt, 1928; Reuss, 1929; Hill,
1952; Kröner, 1958; Kumazawa, 1969; Morris, 1970;
Thomsen, 1972; Watt et al., 1976; Ono, 1992]. In geophys-
ics, the so-called bounding estimates are well established
[Watt et al., 1976]. The simplest, most universal, and widely
applied calculations employ the Voigt [1928] upper bound
that assumes uniform strain and the Reuss [1929] lower
bound that assumes uniform stress within the isotropic
aggregate. The bounds are widely separated for aggregates
composed of highly anisotropic crystals [e.g., Mainprice
and Humbert, 1994]. The degree of texturing of the crystals
within the aggregate further influences the separation.
Effective medium schemes, such as the already mentioned
self-consistent approximation (SCA) method [e.g., Kröner,
1978], are frequently applied in the hopes of providing a
more constrained solution within the Voigt-Reuss (VR)
bounds. However, despite the fact that the SCA solution
is unique and converges within the VR bounds, the initial
effective medium developments usually require a perfectly
disordered aggregate and an absence of correlation between
grains shapes and orientations, conditions that may not
always hold for the case of a polycrystalline aggregate
[Ono, 1992]. Hill [1952] suggested that the simple arithme-
tic mean value of the two VR bounds of an isotropic
polycrystalline aggregate might be most representative of
experimental results [e.g., Chung and Buessem, 1967]. The
Hill approximation, however, has no solid physical founda-
tion and is applied as a rather simple intuitive solution.
[23] With regard to implementation, integration of the

single crystal elastic constants appropriately rotated and
weighted by the ODF over all values of g yields elastic
constants in the Voigt approximation of uniform strain
throughout the aggregate:

C
V

ijkl ¼
Z

Cijkl f gð Þdg ð1Þ

where the ODF f(g) is normalized to satisfy

Z
f gð Þdg � 1 where dg ¼ 1

8p
sinFdFd81d82 ð2Þ

In the discrete orientation space necessary for implementa-
tion on a computer, equation (1) can be rewritten in the form

C
V

ijkl ¼
XN
n¼1

Cijkl f gnð ÞDgn with
XN
n¼1

f gnð ÞDgn � 1 ð3Þ

where gn represents the discretized Euler angle space and
Dgn the corresponding increments.
[24] Equation (3) explicitly defines the elastic constants

of polycrystalline aggregate according to the arithmetic
mean of the Voigt approximation. The Reuss approximation
of constant stress throughout the textured aggregate can be
implemented through the procedure similar to equation (1)
if the elastic compliances Sijkl are instead used:

C
R

ijkl ¼
Z

Sijkl f gð Þdg
� ��1

ð4Þ

Note that the averaging procedure in equation (4) yields
elastic compliances Sijkl

R that should be inverted into the
elastic stiffnessesCijkl

R . It is particularly important to note that
averaging in either the stiffness or the compliance domains
(equations (1) and (4), respectively) yields different solutions
[see Musgrave, 1970] with Cijkl

R � Cijkl � Cijkl
V although

the results below show this not to be general in such
anisotropic materials. These limits are commonly referred
to as the Voigt-Reuss (VR) bounds.
[25] The VR bounds were originally developed for an

isotropic medium and generally accepted as the limits to the
possible elastic constants to the polycrystalline aggregate
[Hill, 1952] with the true solution expected at an interme-
diate value. In the case of the random orientation distribu-
tion (i.e., equal probability in all directions) of the
constituent anisotropic minerals, the resulting medium is
elastically isotropic. Perfectly aligned constituent minerals,
on the other hand, create a medium with properties the same
as the single anisotropic crystal.
[26] The separation of the VR bounds at this isotropic

limit depends solely on the range of values of the elastic
constants of the constituent mineral. For strongly anisotropic
single crystals as in the present case of muscovite the
isotropic Voigt and Reuss bounds of some of the elastic
constants differ substantially. For example, values of
isotropic muscovite aggregate C11 = C22 = C33 = l +
2m (where l and m are Lamé parameters) in Figure 4 in
the Voigt approximation is 160% of those calculated with
the Reuss approximation. Therefore the search for elastic
properties of highly anisotropic solids must be modified
to overcome these uncertainties.

5.2. Geometric Mean Average

[27] Aleksandrov and Aizenberg [1966] first suggested
that the invertibility between the elastic stiffnesses and the
elastic compliances ([

R
Sijkl f (g)dg]

�1 =
R
Cijkl f (g)dg), a

physical requirement for a real elastic material, be a basis
for the search for elastic constants. It is useful to look at the
simpler forms for an isotropic system. Ji et al. [2004]
recently gives a parallel discussion in the context of poly-
mineralic but isotropic aggregates in which the Voigt,
Reuss, and geometric means appear as special cases of
weighted means. The results for this limiting case are more
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directly seen as the orientation distributions are uniform in
all directions and reduce to simpler modal volume fractions
Vi with

R ¼ exp
XN
j¼1

Vj ln Rj

� �" #
¼

Y
j

R
Vij

j ð5Þ

where R here applies to the isotropic Young’s, bulk, or shear
moduli E, K, and n, respectively. The resulting GMA
moduli lie not only within the VR bounds but also within
the narrower Hashin and Shtrikman [1963] bounds.
[28] More recently, Morawiec [1989] and Matthies and

Humbert [1993] further extended the GMA method to
estimate the elastic constants of textured polycrystalline
aggregates which are expected to be anisotropic. They
calculated the Young’s modulus of a hypothetical Zn sample
and found good agreement between the GMA and the self-
consistent approaches. Mainprice and Humbert [1994] first
applied the GMA technique to less symmetric silicates as
noted earlier. Their results showed that the GMA is close to
the Hill solution for both compressional (Vp) and shear (Vs)
values except at large angles relative to the axis of symme-
try. These authors concluded ‘‘the geometric mean is the
best estimate of the seismic properties of the simple aver-
aging methods’’ Mainprice and Humbert [1994, p. 590];
however, further development of the GMA in the context
of anisotropic silicate aggregates is not reported in the
literature.
[29] There are several major factors that influence the

intrinsic anisotropy of a solid rock matrix including the
elasticity of the constituent minerals, their volumetric frac-
tion and their texture (ODF) within the aggregate. Follow-
ing Bunge [1982], the averaged elastic constants Cijkl of a
nonporous textured monomineralic polycrystalline aggre-
gate depend on the elastic constants Cijkl of the mineral, the
mineral’s symmetry, and the statistics of the orientations of
the mineral relative to the aggregates frame of reference
usually via the ODF [Musgrave, 1970]. Details are provided
in Appendix A, but, briefly, in order to understand the
solution, it is conceptually useful to consider the contribu-
tion of a single crystal with a given orientation g0. In order
to carry out the average for the rock, one must first calculate

the form of this crystal’s elastic constants C0
ijkl. rotated into

the aggregate coordinate frame. This process would then be
repeated for each crystal with different orientations in the
aggregate; the resulting rotated values may then be averaged
after being appropriately weighted by each crystal’s volu-
metric proportion. Of course, in practice, the weighting is
done statistically using the ODF. The details of this process
are summarized in Appendix A, but they do rely on
eigenvalue decomposition of the single crystal elastic con-
stants and expansion of the ODF f (g) by symmetrical
generalized spherical harmonics, the latter specially con-
structed for the problem of averaging a TI crystal into a TI
aggregate. The spherical harmonic approach is advanta-
geous as it simultaneously includes the elements of both
the crystal and aggregate symmetries and of the texture
through the ODF.

6. Results

[30] It has been mentioned above that the elasticity of an
aggregate matrix varies with the texture, and as such, one
might expect the elasticity to lie between two extreme
limiting cases of a perfectly aligned aggregate that is
indistinguishable from the single crystal and an isotropic
aggregate with completely random crystal orientations. The
resulting averaged elastic constants are, by definition,
dependent on the alignment of the crystalline xi (i = 1,2,3)
and rock coordinate systems Xj ( j = 1,2,3). For the case of
fully aligned crystallite equations (A7) and (A8) describe
this dependence and values of the textural coefficients B2

11

and B4
11 can be directly incorporated into the averaging

procedure.
[31] Investigation of the effect of the different averaging

procedures on the intrinsic anisotropy as a function of
axially symmetric textural strength would provide more
insight. If the [001] crystallographic axis of the constituent
hexagonal mineral in the TI aggregate is aligned with X3,
then the aggregate elasticity depends only on the elasticity
of the single crystal. A perfectly aligned aggregate has the
elastic properties of a single crystal; all three coefficients of
the ODF expansion (namely, B0

11, B2
11 and B4

11) are nonzero
and contribute to the averaging. As noted above, in real
shales and schists, the [001] textural distribution peak is
distributed around the X3 foliation normal. This distribution
can be approximated by the normal (Gaussian) distribution
function [e.g., Johansen et al., 2004] characterized by the
standard deviation s of F with mean value M:

f Fð Þ ¼ k sð Þ exp � 1

2

F�M

s

� �2
" #

ð6Þ

where k(s) is an appropriate scaling factor.
[32] The lower limiting value s = 0 (i.e., no variation in

the orientations of all the crystals in the aggregate) corre-
sponds to a single crystal. Increasing disorder in the
orientations results corresponds to larger values of s and
a broader Gaussian curve (Figure 5) Eventually, distribution
of the [001] axis can be treated as quasi uniform within the
aggregate with no specific preferential orientation and,
therefore, resemble a random distribution of the crystals.

Figure 4. Elastic constants of the muscovite single crystal
[after Alexandrov and Ryzhova, 1961] (see second row of
Table 2) and an isotropic polycrystalline aggregate
composed of muscovite crystals in the Voigt, the Reuss,
and the Hill approximations. Elastic constants C11 = C33 in
the Voigt approximation are 160% of those in the Reuss
approximation.
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For all practical purposes this is achieved for s = 150�. For
the random orientation distribution the only nonzero texture
coefficient is B0

11 [Bunge, 1982]. By definition B0
11 � 1 and

the averaging of this single coefficient over the elastic
stiffnesses yields the well-known isotropic solution in the
Voigt approximation [e.g., Simmons and Wang, 1971]. The
identical averaging procedure over the elastic compliances
yields the isotropic Reuss elastic compliances. Therefore
B0
11 � 1 can generally be treated as an isotropic part of

arbitrary texture that is described by the coefficients Bl
mn.

[33] The elastic stiffnesses of the aggregate with different
degrees of orientation disorder are shown in Figure 6. The
value of the elastic constants at s = 0 is that of the single
crystal limit (marked by XTL). The value for s = 150� is for
an isotropic aggregate (marked by ISO). The Voigt, Reuss,
Hill and geometric mean averaging results are all shown for
comparison. The Geometric mean averages are generally
close to, but can lie either above or below, the Hill value for
constants along the stiffness matrix’s diagonal. The behav-
ior of the off-diagonal constants is more complex. The
GMA C12 deviates from the Hill and approaches the Voigt
value as the material becomes more disordered. The GMA
C13 exceeds the values of the other averages at all measures
of disorder and does not fall within the V-R bounds. The
GMA elastic constants have values close to either the upper
or the lower bound depending on the aggregate’s texture. To
further complicate matters, proximity of the GMA solution
to either the Voigt, the Reuss or the Hill averages differs
from constant to constant in anisotropic solid.
[34] The importance of this result is that the rigid

constrains of the Hill approximation with respect to the
VR bounds might not be very suitable for accommodating
elastic behavior of anisotropic solids. Values of the elastic
constants (namely, C12 and C13) for particular range of
textural strength do not necessarily lie within the VR
bounds. Notice also that the Voigt and Reuss values
even cross for a certain range of s for C13 coefficient
(Figure 6) and therefore for this case cannot be treated as
bounds per se.
[35] The resulting qP, qSH, and qSV elastic wave phase-

slowness surfaces from isotropic to single crystal (Figure 7)

are calculated using the texturally dependent elastic stiff-
nesses (Figure 6) in Christoffel’s equation [e.g., Musgrave,
1970]. These curves display much of the general behavior
observed in anisotropic rocks, particularly shales. At s =
150 approaching randomly orientations, the slowness
curves are circular as is expected for an isotropic aggregate.
For smaller values of s indicative of preferential orienta-
tions, both the P and SV slownesses are anelliptic while
those of SH mode are always elliptical. The P and SH
vertical (X3) velocities are always less than those for the
corresponding isotropic aggregate.

7. Discussion

7.1. Anisotropic Parameter Behavior

[36] The elastic properties of the weakly transversely
isotropic medium are often characterized by a variety of
dimensionless parameters [e.g., Thomsen, 1986; Carrion et
al., 1992; Tsvankin and Thomsen, 1994; Alkhalifah and
Tsvankin, 1995]. Parameterizations are designed to simplify
the description of anisotropic elastic behavior and reduce
the number of initially unknown coefficients. It should,
however, be stressed that parameterization of anisotropic
medium should not aim to replace more fundamental elastic
constants but rather to simplify description of the elastic
behavior.
[37] For a transversely isotropic medium, Thomsen

[1986] developed approximations to the full elastic equations
and introduced three anisotropy parameters e = (C11 � C33)/
2C33, d = [(C13 +C44)

2� (C33�C44)
2]/2C33(C33�C44) and

g = (C66� C44)/2C44 the influence of the variations of which
are illustrated for an example in Figure 8. It is useful to briefly
review the effects of these parameters. e and d can be
considered as measures of the anisotropy of the longitudinal
and the SV polarization shear waves. The SH velocities
depend only on g and delineate an ellipse. Thomsen [1986]
focused on the effects of anisotropy on near-offset reflection
seismicmove out curves and interpreted his d in this light with
a rather vague physical meaning reflecting the P wave phase
velocity dependence on the direction in the vicinity of the
vertical incidence angle. Examination of his equations (16) in
the current context suggests that d can also be considered as
one measure of the anellipticity (i.e., the deviation from an
elliptical reference) of the P wave curve. Other workers
have used similar measures of annelipticity [Gassmann,
1964; Carrion et al., 1992; Sayers, 1995]. The value of
d, or more precisely its value relative to e, controls
whether the curve (Figure 8) is concave (d < e), elliptical
(d = e), or convex (d > e). The simple difference e � d
relates more directly to the anellipticity of the SV polar-
ization shear giving curves that are concave (d > e),
circular (d = e), or convex (d < e) relative to the SH
ellipse. Again, variations of h = e � d have been
employed in other contributions [Tsvankin and Thomsen,
1994; Alkhalifah and Tsvankin, 1995] but the simple
difference is retained in the analysis below in order to
minimize the uncertainties of the experimental measure-
ments. It must again be reiterated that for the full elastic
equations the P and SV curves do not, aside from the
limit of isotropy, follow ellipses or circles as do the
illustrations of Figure 8 calculated using Thomsen’s
[1986] approximations.

Figure 5. Broadening of the Gaussian function describing
f(F) with increasing values of the disorder as measured by
the standard deviation s of the orientations.
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[38] For completeness, these parameters are calculated
from the elastic constants of Figure 6 and plotted as a
function of the strength of texture over the entire range in
Figure 9; again it must be noted that these parameterizations
may not be appropriate for the higher anisotropies encoun-
tered for the strongly textured materials (i.e., small s). Both,
e and g behave similarly and decay from the maximum
single crystal value to zero for the isotropic aggregate. d has
a more complex behavior being negative for the single

crystal, but increasing to at least the same positive value
before eventually decaying toward zero for the quasi iso-
tropic aggregate. h monotonically increases toward zero as
the degree of disorder increases, h � 0 also for all textures
meaning that the P and SV curves are anelliptically concave
and convex, respectively. It is interesting to note that for a
certain range of textural strengths, d is sensitive to the
averaging method with the Voigt values several times those
for the Reuss.

Figure 6. Elastic constants of the TI muscovite matrix as a function of textural strength, defined by the
standard deviation of the Gaussian distribution s of clay platelet normals from the bedding plane normal
(see text for details). The left end of the ordinate axis for each plot represents values of fully aligned
polycrystalline aggregate with the properties of a single crystal (XTL). The right end represents quasi-
isotropic aggregate (ISO). Constant dashed lines show values of the elastic constants of the single crystal
and the isotropic Voigt and Reuss solutions.

B09410 CHOLACH AND SCHMITT: PHYLLOSILICATE ANISOTROPY

10 of 18

B09410



[39] The resulting curves of h for the Voigt, Reuss, Hill,
and GMA averages all yield nearly the same value of
anellipticity as shown on Figure 9. Despite the fact that
the various averaging procedures give different absolute
values of elastic constants, the overall behavior of the elastic
waves (especially anellipticity) predicted by these approx-
imations is similar.

7.2. Comparison of Anisotropy Parameters to
Laboratory Measurements

[40] The crossplotting of the theoretical anisotropic
parameters from Figure 9 against each other in Figure 10
provides additional insight into the anisotropic behavior of
the hypothetical muscovite aggregate and serve as a mea-
sure against which the laboratory observations may be
compared. In Figure 10, the geometric mean, the Voigt,
and the Reuss solutions are separately plotted as solid,
dashed, and dash-dotted lines, respectively. All three aver-
ages diverge from the isotropic condition (e = d = g = 0) as
the muscovite orientations become more ordered. g
increases at nearly the same rate and almost linearly with e.
The behavior of d is more complex, in the e versus d and g
versus d curves the geometric mean and the Voigt solutions
are close to one another and significantly diverge from the
Reuss predictions. The curve for the geometric mean average,
however, does show that d increases with both e and g at close
to half their rate as might intuitively be expected for an
increasingly anisotropic material. Curves for h are also
included for completeness. h increases with both e and g as
might be anticipated, but has a more complex behavior in
relation to d.
[41] There are a number of laboratory ultrasonic velocity

studies on shales and schists in which all or some of the
elastic stiffnesses have been obtained. The bulk of the work
has focused on shales [Jones and Wang, 1981; Johnston and
Christensen, 1995; Vernik and Liu, 1997; Wang, 2002] but
with some recent but less numerous measurements on
metamorphic schists [Takanashi et al., 2001; Godfrey et
al., 2002; Cholach et al., 2005] The results of these
observations are also included in the crossplots of the

Figure 7. Slowness surfaces for qP and qS (SH and SV)
waves for intrinsically anisotropic shale of TI symmetry
calculated from the elastic constants obtained by the GMA
procedure in Figure 6 with a density of 2790 kg/m3.
Slowness surfaces vary from highly anisotropic for a single
crystal to almost circular for quasi-isotropic aggregate.
Surfaces are plotted in increments of s = 10�.

Figure 8. Illustration of the influence of e, g, and d on the
phase velocities of a weakly transversely isotropic medium.
The cases of d < e, d = 0 < e, d = e (elliptical condition), and
d > e correspond each to a quadrant of the figure. The
reference ellipses are filled with light and dark grey
corresponding to the longitudinal and SH polarization shear
waves, respectively.
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anisotropic parameters in Figure 10 with shales and meta-
morphic schists represented as open circles and squares,
respectively. The focus of most of these studies were
primarily on the velocity anisotropy itself and only a few
provide detailed petrographic characterizations that included
mineralogy and, as noted earlier, only one has explicitly
provided measures of the corresponding phyllite ODF
[Takanashi et al., 2001]. Other high-quality anisotropy
determinations, notably that of Vernik and Nur [1992],
were excluded as they considered anisotropic materials
containing substantial fractions of kerogen.
[42] Experimental uncertainties are rarely provided in

such studies. Consequently, one recent measurement of
anisotropy on a layered kerogen rich but clay absent rock
(‘‘Colorado Oil Shale’’) by Mah [2005] has been included
in Figure 10 only to illustrate the levels of experimental
uncertainty that are encountered. Mah’s e and g uncertain-
ties are small and are substantially less than the size
suggested by the symbol in Figure 10a. Determination
of d, however, requires that it be calculated from a
number of the elastic constants and when the errors are
propagated d becomes highly uncertain, Mah’s [2005]
measurements suggest that the uncertainty in d is approxi-
mately 0.065, a value on the order of the magnitude of d itself.
[43] Admittedly, this crossplotting was done naively in

that none of the rocks are composed only of muscovite.
Consequently, if it is assumed that the geometric mean
average does provide the best measure of the expected
anisotropy of the muscovite aggregate, then it is the devia-

tions of the experimental results from these theoretical
predictions that are of most interest.
[44] The large scatter of the experimental results makes

definitive conclusions difficult particularly when the large
uncertainties in d are considered. However, some trends do
appear. The experimental g correlates positively with e
(Figure 10a) but the bulk of the experimental measurements
fall below the aggregate trend lines particularly for more
weakly anisotropic rocks. This may suggest that the qSV and
qSH anisotropy in these rocks is weaker than that for qP.
One should note, however, that for the metamorphic rocks,
the qS anisotropy exceeds that for the qP consistent with
Okaya and Christensen’s [2002] observations. In contrast, d
does not appear to correlate with e. The values of d in the
range e < 0.25 center near zero and even when the large
potential uncertainty in d is considered, the values lie below
the trend lines, suggesting that the qP and qSV velocities
will be more concave and convex, respectively, than their
corresponding reference ellipses. The correlation between d
and g is even weaker.
[45] The modeling presented here is based on several

assumptions that include the phyllite’s mineralogical com-
position, the elasticity of the constituent minerals and their
orientations. These assumptions may not hold in more
realistic rocks and the consequences of these approximations
leading to the divergence of the theoretical predictions and
the laboratory ultrasonic observations need to be discussed.
[46] The first and most obvious, already mentioned, is

that the real rocks are not pure muscovite aggregates. These

Figure 9. Anisotropic parameters e, g, d and h = d � e for TI medium as a function of textural strength
(same as Figure 6). All parameters approach zero for an isotropic aggregate.
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rocks include other mineral phases and in the case of many
shales, organic compounds, that both dilute and disrupt the
orientations of the phyllite minerals. Other inhomgeneities
include cracks and pores, layering at many scales, and
fluids.
[47] Second, knowledge of the true elasticity of the

constituent minerals, particularly for illite, will be essential
for proper modeling of the intrinsic elasticity and, subse-
quently, determining the seismic velocities. The elastic con-
stants of constituent minerals predefine intrinsic elasticity of
the highly textured aggregates and influence the absolute
values of the elastic constants in quasi-isotropic aggregates
with randomly oriented minerals. The presence of phases
such as quartz, feldspars, and carbonates, the modes of which
often do not correlate with anisotropy, also affect the overall
elasticity and reduce the anisotropy. The reduction is depen-
dent on the volumetric presence of each of these phases. A

substantial volumetric presence of randomly oriented and
spatially distributed silt particles in shales also interferes with
the alignment of the clay minerals [e.g.,Hornby et al., 1994].
Further, the elastic properties of more complex smectites that
can form a substantial proportion of shales are not at all
understood.
[48] Detailed examination of the compilation on phyllite

mineral elasticity in Table 2 may reveal some deficiencies in
the use of the current muscovite stiffnesses in the modeling.
To briefly summarize, the elastic constants obtained from
measurements on single crystals of mica exceed substan-
tially those estimated from measurements on clay compo-
sites or on clay containing rocks. Various authors [e.g.,
Hornby et al., 1994; Johansen et al., 2004; Sayers, 2005]
have attempted to overcome this discrepancy by employing
a clay domain in which the ‘‘effective’’ single crystal
elasticity is reduced either by cracks or layers of fluid.

Figure 10. Crossplots of the anisotropic parameters: (a) e versus g, (b) e versus d, (c) e versus e � d,
(d) g versus d, (e) g versus e� d, and (f) d versus e� d. Lines represent theoretical averages for themuscovite
aggregate: solid line, geometric mean; dashed line, Voigt average; dash-dotted line, Reuss average. Each of
these lines begins at the origin (for s = 150�) and ends at s = 0�. Symbols represent values taken from the
literature: open circles, shales [Jones and Wang, 1981; Johnston and Christensen, 1995; Vernik and Liu,
1997;Wang, 2002]; open squares, Takanashi et al. [2001],Godfrey et al. [2002], andCholach et al. [2005].
Solid diamonds with error bars are from the laboratory measurements ofMah [2005] and are shown only to
indicate the high level of uncertainty associated with d.
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[49] This discrepancy, also noticed by Vanorio et al.
[2003], is not understood and at this point in our under-
standing only some speculations are available. Some of the
differences are likely due to the variations in composition
with the values inferred from rocks being influenced by the
existence of wetting smectites. One other possible reason
arises from the large unbalanced charges that exist on the
surfaces of such minerals [e.g., Israelachvili et al., 2004];
the existence of like static negative electric charges on mica
and clay surfaces would introduce repulsive forces between
the individual crystals that may act to reduce the effective
moduli of the mineral.
[50] One final possible reason for the discrepancy between

the muscovite aggregate and the laboratory observations in
Figure 10 may relate to the assumption that many phyllitic
rocks, and particularly shales, will be transversely isotropic.
However, phyllite mineral ODFs are not necessarily axially
symmetric as indicated by Oertel [1983], O’Brien et al.
[1987], and Sintubin [1994b] with varying degrees of ortho-
rhombicity apparent in materials that have undergone some
tectonic straining. The peaks of an ODF need not even
necessarily be perpendicular to the foliation, O’Brien et al.
[1987] show a biotite [001] ODF from a mylonite that
displays a nearly Gaussian distribution the peak of which,
however, is shifted nearly 10� from X3.
[51] As has been shown the intrinsic elasticity of shales is

significantly influenced by texture. The degree of the
mineral platelet alignment (i.e., texture strength) varies
substantially in shales and depends on several factors such
as the state of compaction (i.e., function of depth) and
maturation [e.g., Vernik and Liu, 1997; Hornby, 1998] and
diagenetic processes [Ho et al., 1999]. Intrinsic elastic
anisotropy may vary from high anisotropy for perfectly
aligned clay aggregates to quasi-isotropic for the case of
almost randomly distributed clay platelets orientation. A
further assumption of no lateral preferences in the orienta-
tion of normals of the clay platelets is usually made. Under
this assumption the matrix composed of hexagonal crystals
has TI statistical symmetry. Knowledge about the hexagonal
symmetry of the constituent minerals and the TI symmetry
of the matrix allows the number of independent coefficients
in the ODF expansion to be reduced. The assumption of no
preferred lateral orientation may not hold in the presence of
additional textural features such as microfolding caused by
the tectonic stresses, which may lower the statistical intrin-
sic elastic symmetry from TI to orthotropic or lower.
[52] Finally, the overall elasticity of shales (especially in

the fluid-rich conditions) depends not only on its intrinsic
properties but also on the presence of oriented microcracks
[e.g., Vernik, 1993], the amount of the fluid-filled porosity
[e.g., Hornby, 1998] and the in situ distribution of stresses
[Sayers, 1999], i.e., factors that may significantly influence
anisotropy and cannot be ignored. Models that incorporate
these factors would, however, benefit by starting from the
intrinsically anisotropic matrix.

8. Conclusions

[53] The intrinsic elasticity of a muscovite aggregate has
been modeled by the orientation distribution function
(ODF) averaging of the elastic constants of muscovite, a
mica structurally similar to illite. The generally accepted

approximations based on the assumptions of uniform strain
and stress within the solid matrix yield, correspondingly, the
Voigt and the Reuss averaging solutions. The VR bounds
are widely separated which allows significant variation in
the values of intrinsic elastic constants of shales. To
overcome this limitation, the geometric mean averaging
(GMA) method has been incorporated into the ODF aver-
aging procedure. The GMA provides a solution fulfilling
the requirement of invertibility between aggregate stiff-
nesses and compliances. This solution lies predominantly
relatively close to the Hill average within the VR bounds for
the diagonal elastic constants.
[54] The purpose of implementation of the GMA solution

was to examine the effect of the texture strength per se on
the elasticity of phyllite matrix, the Voigt and Reuss bounds
on the individual elastic stiffnesses progressively diverge as
the crystals become more randomly oriented. The GMA
results vary with respect to the VR bounds (compare the
Hill solution). This implies that neither the Voigt, the Reuss
nor the Hill approximation uniquely define the elasticity of
highly anisotropic aggregates; the elastic constants of an
anisotropic solid obtained by GMA method may lie close to
any of these solutions depending on the values of the elastic
constants of the constituent minerals and aggregate texture.
[55] Slowness surfaces calculated from the GMA elastic

constants show significant anellipticity of P wave surface
for the highly textured aggregate. In addition, it is clear that
axial P and S wave velocities of a textured muscovite
aggregate with VTI symmetry are always slower than that
for the isotropic aggregate. Measures of the P and SH wave
anisotropy (e and g) are both positive and monotonically
decrease as the crystal orientations become more random.
The parameter d, however, reaches a peak for a highly
textured aggregate after which it smoothly decreases to
zero. Crossplots of the various parameters indicate that the
P and SH wave anisotropies e and g increase together at
nearly the same rate, d increases more slowly.
[56] A number of high-quality ultrasonic laboratory mea-

surements of anisotropy on schists and shales are compared
to the theoretical crossplots. While there is a large degree of
scatter in these experimental results, they indicate that
relative to the muscovite aggregate the S wave anisotropy
decreases more slowly with greater orientation disorder than
the P wave anisotropy. The observed d cluster near zero and
do not appear to correlate strongly with either e or g. One
should not expect the laboratory observations on real rocks
to be described exactly by the theoretical muscovite aggre-
gate curves, however, as a large number of other factors
such as layering, porosity, and fluids influence overall
elasticity and anisotropy. The GMA curves developed here
for the elastic constants and the velocity surfaces and
anisotropic parameterizations that follow should be taken
as a reference point upon which more inclusive modeling
can be carried out, although carrying out additional GMA
calculations using ODFs observed on real rocks or predicted
from strain-deformation theories would be useful also.
While the crossplotting of anisotropic parameters is useful,
the value of the experimental measurements to understand-
ing the source of anisotropy in such rocks would be
increased by more intensive material characterizations.
[57] Finally, the modeling here has assumed particular

values for the single crystal elastic stiffnesses. Examination
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of Table 2, however, shows a large degree of uncertainty as
to what the elastic properties of micas and particularly clays
actually are. Generally, the single crystal stiffnesses and
bulk moduli substantially exceed those measured on aggre-
gates. The reasons for this are not known although they may
be related to the role of water and unbalanced charges on the
mineral surfaces; and a better understanding of the behavior
of these crystals is required.

Appendix A

[58] Knowledge of both the single crystal elastic constants,
represented below as the matrix C, and of the mineral’s ODF
within the aggregate f (g) is first required. Both of these are
expanded first prior to the averaging procedure.

A1. Spherical Harmonic Expansion of f(g)

[59] In order to obtain this unique solution textural
information is incorporated via f (g) (equation (8)). Follow-
ing Bunge [1982], f (g) may be expanded into the series of
symmetrical generalized spherical harmonics referred to as a
Viglin [1960] expansion:

f gð Þ ¼
X1
l¼0

Xþl

m¼�l

Xþl

n¼�l

Bmn
l Tmn

l gð Þ ðA1Þ

where Tl
mn are generalized spherical harmonics (GSH) and

the Bl
mn are constants, representing the magnitude of the

corresponding harmonic in the expansion. The advantage of
the Viglin expansion is that the GSH in equation (A1) can
be further modified to reflect the specific rock and
constituent mineral symmetries via

f4 gð Þ ¼
X4
l¼0

XM lð Þ

m¼1

XN lð Þ

n¼1

B
mn
l
�Tmn
l gð Þ ðA2Þ

where for the case considered in this paper the �Tl
mn(g) are

symmetrical generalized spherical harmonics (SGSH)
specially constructed to fulfill both the aggregate’s trans-
verse isotropy and the single crystal hexagonal symmetry
properties. The Bl

mn are coefficients of the SGSH that carry
information about the aggregate texture and are described
below. M(l) is the number of linearly independent spherical
harmonics required for a specific symmetry. Note that f4(g)
represents truncation (to the degree l = 4) of the infinite
expansion series of f(g) (equation (A1)). The maximum
degree of the ODF expansion in equation (A2) corresponds
to the order of the tensor that describes the particular
physical properties of the rock. The elastic properties of the
solid material can be fully described by the fourth-order
elasticity tensor Cijkl (or Sijkl); consequently the coefficients
of the ODF expansion of l = 4 are sufficient for the
averaging procedure [Backus, 1970].
[60] It must be noted that Sayers’ [1994] development is

based on the Roe [1965] formalism, which differs in how
f(g) is normalized (equation (2)). In the Roe formalism, the
coefficients of the Viglin expansion must be adjusted to
accommodate the rock and the constituent crystal symme-
tries. In the Bunge [1982] formalism adopted here the
generalized spherical harmonics intrinsically reflect both
the rock and constituent crystal symmetries [Ferrari and

Johnson, 1988]. For the transversely isotropic aggregate
only five coefficients Bl

mn of the expansion (namely, B2
11,

B2
21, B4

11, B4
21, B4

31) are nontrivial. Furthermore, when the
infinite symmetry (i.e., rotational) axis of the TI medium is
aligned with the X3 axis of the right handed X1X2X3

aggregate coordinate system, the coefficients B2
21, B4

21 and
B4
31 vanish (reflecting hexagonal crystal symmetry: Bl

mn = 0,
if m 6¼ 1, [Bunge et al., 1981] and only two coefficients B2

11

and B4
11 contribute to the elasticity of the aggregate (com-

pare with W200 and W400 in Sayers development). The
additional coefficient B0

11 � 1 carries an isotropic compo-
nent in the expansion and must be taken into account.
[61] Following Bunge [1982], the coefficients of the

expansion can be written (taking into account orthonormal
properties of the SGSH)

B
mn
l ¼ 2l þ 1ð Þ

Z
f gð Þ�Tl*mn gð Þdg ðA3Þ

[62] In the case of hexagonal-TI symmetries all the SGSH
in expansion are real (m and n in equation (A1)) are even)
and the complex conjugate symbol (asterisk) may be
omitted. For the aggregate that consist of a single crystal
with specific orientation taking into account normalization
(2) equation (A3) can be simplified to

B
mn
l ¼ 2l þ 1ð Þ�Tmn

l g0ð Þ ðA4Þ

where g0 is an orientation of the aligned single crystal.
Calculation of the expansion coefficients Cl

mn can further be
simplified if one takes into account that �Tl

mn = Pl
mn for m = 1

and n = 1, where Pl
mn(cos F) are the generalized associated

Legendre functions (GALF). It should be noted that the
GALF are functions of only one Euler angle F and the ODF
of hexagonal-TI symmetry is independent of the 81 and 82.
Bunge [1982] showed that the GALF can be represented by
a Fourier series:

P
mn
l Fð Þ ¼

Xþl

s¼�l

a
mns
l eisF ðA5Þ

where al
mns are Fourier expansion coefficients. For m + n

even equation (A5) can be rewritten

P
mn
l Fð Þ ¼

Xþl

s¼0

a
0mns
l cos sFð Þ ðA6Þ

coefficients a0l
mns were tabulated by Bunge [1982] and the

coefficients of the SGSH for the ODF consistent of single
crystal can finally be written in a simple form of the
combination of cosine functions:

B11
2 ¼ 5 0:25þ 0:75 cos 2Fð Þð Þ ðA7Þ

B11
4 ¼ 9 0:140625þ 0:3125 cos 2Fð Þ þ 0:546875 cos 4Fð Þð Þ ðA8Þ

A2. Implementation of the Geometric Mean

[63] Following Matthies and Humbert [1993], C, the
matrix representing the single crystal’s elastic constants is
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decomposed intoL0, a diagonalmatrix of eigenvaluesm0, and
its corresponding the orthogonal matrix of eigenvectors W:

C ¼ WL0WT ðA9Þ

For the geometric mean average, the natural logarithms of
the eigenvalues are calculated to form the diagonal matrix
L0, which is then applied to determine the aggregate’s
elastic constant matrix hCi from the ODF averaging:

hCi ¼
Z

WL
0
WTf gð Þdg ðA10Þ

hCi may then itself be decomposed into a new set of
eigenvalues nk that make up a diagonal matrix L with
orthogonal matrix U

hCi ¼ ULUT ðA11Þ

To bring the solution back to a physically meaningful form,
L is then the diagonal matrix composed of the exponents of
the eigenvalues nk obtained from the eigenvalue decom-
position of the matrix hCi, which yields, in matrix form, the
desired geometric mean average elastic constants hCi for
the aggregate:

hCi ¼ ULUT ðA12Þ

In reduced Voigt notation and with Einstein summation
conventions [see Nye, 1990] this final result is explicitly

hCiji ¼ Uik exp nkð ÞUkj ðA13Þ

where hCiji are the geometric mean averaged elastic
constants of the polycrystalline aggregate.
[64] Equations (A9)–(A13) implement Aleksandrov and

Aizenberg’s [1966] concept for an anisotropic solid by
averaging the modified eigenvalue functions of the stiff-
nesses or the compliances rather then directly averaging
stiffnesses or compliances. The resulting matrix of elastic
constants hCi (equation (A11)) is independent of the do-
main of averaging (i.e., stiffnesses/compliances) and there-
fore is a unique solution of the ODF averaging procedure.
Cholach [2005] provides further details on the implemen-
tation of these calculations.
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