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Decadal variations in gravity caused by a tilt of the inner core
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S U M M A R Y
A tilt of the geometric figure of the inner core with respect to the mantle results in a global
internal mass displacement. This comprises two parts: the redistribution of mass from the
rigid equatorial rotation of the elliptical inner core; and that from global elastic deformations
that occur to maintain the mechanical equilibrium. This global mass reorganization leads to
changes in the moment of inertia tensor and, equivalently, to changes in the degree 2 component
of the gravitational field. In this work, we compute the predicted changes in both gravity and
in the moment of inertia tensor as a function of inner core tilt. We show that the inclusion of
elastic deformations increases the amplitude of the gravity change at the surface by a factor
1.97. The Stokes coefficients that are the most affected are C 21, S21: a tilt angle of 0.05◦ leads
to a change in these coefficients of ∼4 × 10−11, while leading to changes in other coefficients
of degree 2 that are three orders of magnitude smaller. Observed changes in C21, S21 and
in polar motion contain decadal variations of undetermined origin; in an effort to determine
whether these could be caused by temporal changes in inner core tilt, we compute the changes
in C 21, S21 based on the observed polar motion and compare this prediction against observed
variations as determined by satellite laser ranging (SLR) between 1985 and 2005. We show that
observed decadal changes in C 21, S21 and in polar motion suggest that both are predominantly
driven by variations in the moment of inertia tensor. The source of these variations cannot be
unambiguously determined, nor can we confirm whether they are of internal or surficial origin.
Changes in inner core tilt are then not necessarily the cause of these variations, though if they
are, our results show that motion in the fluid core must not play a significant role in the global
angular momentum balance.
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1 I N T RO D U C T I O N

Changes in the Earth’s gravitational field occur in response to re-

distribution of mass in its interior and on its surface. The largest

changes are caused by internal processes such as postglacial rebound

and mantle convection (e.g. Mitrovica & Forte 2004; Tamisiea et al.
2007). These contribute to long-term variations, appearing as a sec-

ular trend over a timescale of a few years or decades. Over seasonal

timescales, gravity variations are dominantly the result of mass dis-

placements in the atmosphere, oceans and the hydrosphere (Chen &

Wilson 2003). A mass exchange between the oceans and continental

ice sheets also occurs on seasonal timescales, and in recent years this

has also contributed to the secular trend in gravity (e.g. Ramillien

et al. 2006).

There is also evidence of gravity changes taking place at interan-

nual to decadal timescales. These can be inferred from variations in
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the Earth’s rotation: changes in the degree 2 spherical harmonic com-

ponent of gravity are indicative of changes in the Earth’s moment

of inertia, which, because angular momentum of the whole Earth

must be conserved, are accompanied by variations in the Earth’s

rotation vector. The latter can then be used to monitor changes in

Stokes coefficients C20, C21 and S21, provided the angular momen-

tum carried by fluid regions of Earth can be effectively modelled

(e.g. Chen et al. 2000). Changes in C21 and S21 predicted from

models of mass redistribution in the atmosphere, ocean and hydro-

sphere agree very well with the prediction determined from rota-

tional variations at seasonal and intraseasonal timescales (Chen &

Wilson 2003). This agreement persists partially at interannual to

decadal timescales, though an important residual signal of ampli-

tude ∼2–4 × 10−11 remains (Chen et al. 2005), suggesting that a

part of the gravity signal cannot be explained by surface processes.

A consistent result is obtained when one proceeds in reverse: mod-

els of motion and redistribution of mass at the Earth’s surface are

incapable of generating the polar motion observed at interannual

to decadal timescales (Gross et al. 2005). This may be simply be-

cause the decadal mass variations caused by the ensemble of surface

precesses are not modelled properly. Alternately, it may indicate
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that a part of the decadal gravity signal is caused by internal mass

variations.

Fluid motion with decadal timescale variations are known to oc-

cur in the Earth’s core (e.g. Jault et al. 1988; Jackson et al. 1993;

Zatman & Bloxham 1997). The convective mass anomalies dis-

placed by these motions must be very small (Stevenson 1987) and

this is unlikely to produce the observed gravity signal. However,

decadal fluid motions may have the ability to imprint an equatorial

torque on the inner core, leading to a tilt of its geometric figure

with respect to that of the mantle (e.g. Dumberry & Bloxham 2002;

Dumberry 2007). An equatorial rotation of the elliptical inner core

displaces the density discontinuity between the fluid and solid inner

core, and variations in inner core tilt may be an important source

of gravity variations. Based on a recent calculation by Greiner-Mai

& Barthelmes (2001), a tilt of ∼ 0.1◦ would be sufficient to explain

the required variations of ∼2–4 × 10−11 in C 21, S21.

Variations in inner core tilt may then account for the observed

decadal variations in polar motion and in the coefficients C21, S21.

If this is the case, the change in C21, S21 is directly related to the

change in the moment of inertia tensor associated with the tilted

inner core. The resulting polar motion is likewise a function of

the change in the global moment of inertia, but depends also on

the angular momentum carried by fluid motion in the core. This is

because an inner core tilt can only result from an equatorial torque

acting on it, and the latter must invariably involve motion that carry

angular momentum in the fluid core (Dumberry & Bloxham 2002).

This suggests that further clues on the origin of the decadal vari-

ations in polar motion and gravity, whether caused by inner core

tilt variations or not, can be obtained by a comparison between the

observed decadal variations in C 21, S21 and a prediction of these

changes based on the observed polar motion. This should clarify

whether the changes in both are predominantly caused by changes

in the moment of inertia alone, or whether angular momentum car-

ried by fluid motion in the core, or in any other fluid region, is

important in the decadal angular momentum balance.

The first objective of this work is to re-evaluate the change in the

degree 2 gravity and in the moment of inertia caused by a tilt of

the inner core. The recent calculation of Greiner-Mai & Barthelmes

(2001) considered the gravity change due to the mass redistribution

associated with the rigid equatorial rotation of the inner core alone.

Once the inner core is no longer aligned with the geometric figure

of the mantle, global elastic deformations occur in order to maintain

the mechanical equilibrium. These elastic displacements result in a

global mass reorganization that also contributes to gravity changes.

We will show that elastic deformations are important, leading to an

increase in the gravity change at the surface by a factor of almost 2.

The second objective is to attempt to determine whether tempo-

ral changes in the tilt of the inner core can consistently explain the

observed decadal variations in C21, S21 and in polar motion. To do

so, we compare observed variations in C21, S21 as determined by the

technique of satellite laser ranging (SLR) with predictions based on

the observed polar motion. These predictions are based on whether

the equatorial angular momentum of the fluid core participates or

not in the decadal timescale balance. As we will see, this compar-

ison does not permit to identify the source of the decadal changes,

and thus whether they are caused by inner core tilt variations or by

a different mechanism. However, it clarifies the nature of the equa-

torial angular momentum balance at decadal timescale. Our results

suggest that decadal changes in both the polar motion and in C21,

S21 are predominantly caused by changes in the moment of inertia.

The possibility of large inner core tilt variations occurring at decadal

timescale is then re-assessed in the light of this result.

2 G R AV I T Y P E RT U R B AT I O N S C AU S E D

B Y A R I G I D RO TAT I O N O F T H E I N N E R

C O R E

2.1 Density displacement

We represent the density structure of the undeformed Earth in terms

of surfaces on which the density is constant. These surfaces are

defined as

r (a, θ, φ) = a

(
1 + εY 0

2 +
∞∑

l=1

l∑
m=−l

εm
l Y m

l

)
, (1)

where (a, θ , φ) are spherical coordinates with a being the mean

radius, Y m
l = Y m

l (θ , φ) are fully normalized spherical harmonic

functions (e.g. Edmonds 1960; Dahlen & Tromp 1998), ε = ε(a)

is the amplitude of the elliptical flattening, and εm
l = εm

l (a) is the

amplitude of the density deformation at degree l and order m.

The largest non-spherical density structure is the ellipticity in-

duced by Earth’s rotation, and we expect ε � εm
l . As a result, the

change in the density structure produced by a tilt of the inner core

in an equatorial direction should be dominated by the equatorial ro-

tation of the elliptical part of the density. The rotation of the other

non-spherical components contributes a small correction to the lo-

cal change in density, but to simplify, we neglect this contribution.

Thus, we consider the reference undeformed density structure of the

inner core to be purely ellipsoidal,

rs = a
(
1 + εY 0

2

)
. (2)

An equivalent definition of the elliptical density surfaces is given

by

r = a

[
1 − 2

3
ε̄P2(cos θ )

]
, (3)

where P2(cos θ ) is the Legendre polynomial of degree 2. This later

definition is sometimes more convenient to relate our results to fa-

miliar quantities in geodesy. ε̄ = ε̄(a) represents the flattening, or

geometrical ellipticity, defined positive for an oblate spheroid, such

that the difference between the equatorial and polar radius is aε̄

(Mathews et al. 1991). The ellipticity coefficients defined in (2) and

(3) are related through

ε = −2

3

√
4π

5
ε̄. (4)

An equatorial rotation of the inner core by an angle β towards

a longitudinal direction α, as pictured in Fig. 1, leads to a rotation

of the above defined surfaces within the inner core. In its tilted

configuration, the inner core’s surfaces of constant density are given

by

r̃s = a

(
1 +

2∑
m=−2

ε̃m
2 Y m

2

)
, (5)

where the coefficients ε̃m
l = ε̃m

l (a) are functions of the ellipticity

ε and the rotation angles β and α. These coefficients can be deter-

mined from the rules that govern the rotation of spherical harmonics

(e.g. Dahlen & Tromp 1998, section C.8.2). Our specific case is de-

scribed by 2 successive rotations; first an equatorial rotation of angle

β in the direction of longitude φ = 0, followed by an axial rotation

of angle α. Any spherical harmonic function ψ = cm
l Y m

l subject to

two such successive rotations, described symbolically by operators

Dβ and Dα , is transformed according to

ψ̃ = DαDβcm
l Y m

l (6)
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Figure 1. Equatorial rotation of the inner core of a tilt angle of θ = β in the

longitudinal direction φ = α.

= cm
l

l∑
N=−l

P N
lm(cos β) e−i NαY N

l , (7)

where PN
lm(cos β) are generalized associated Legendre functions de-

scribed by Edmonds (1960) and used in a geophysical context by

Phinney & Burridge (1973). For our specific case, where the origi-

nal spherical harmonic function only comprises a Y 0
2 term, the inner

core’s rotated surfaces of constant density are described by

r̃s = a

[
1 + ε

2∑
N=−2

P N
2 0(cos β) e−i NαY N

2

]
, (8)

and the relevant generalized associated Legendre functions are

P0
2 0(cos β) = 1

2
(3 cos2 β − 1),

P2
2 0(cos β) = P−2

2 0 = 1

2

√
3

2
(1 − cos2 β),

P1
2 0(cos β) = −P−1

2 0 = −
√

3

2
sin β cos β. (9)

The displacement of the density structure inside the inner core can

thus be conveniently separated into a sum of all orders of the degree

2 harmonic, and can be written as


rs = r̃s − rs

=
2∑

m=−2

δm
βαaεY m

2 , (10)

where

δ0
βα = 3

2
(cos2 β − 1), (11)

δ±1
βα = ∓

√
3

2
sin β cos βe∓iα, (12)

δ±2
βα = 1

2

√
3

2
(1 − cos2 β)e∓i2α. (13)

2.2 Changes in gravitational potential

The gravitational potential of a slightly non-spherical body whose

surfaces of constant density are defined according to (2) is well

known (e.g. Jeffreys 1970). Inside the inner core (a ≤ as), the grav-

itational potential caused by the density structure of the inner core

alone is

�s(a, θ, φ) = −4πG

(
1

a

∫ a

0

ρa′2 da′ +
∫ as

a
ρa′ da′

)

−4πG

5

[
1

a3

∫ a

0

ρ
∂

∂a′ (a′5ε) da′ + a2

∫ as

a
ρ

∂ε

∂a′ da′
]

Y 0
2 , (14)

where G is the gravitational constant and ρ is density. Let us rep-

resent the change in the gravitational potential everywhere in the

Earth by


�(a, θ, φ) =
∑
l,m

δϕ̂m
l (a)Y m

l . (15)

An equatorial rotation of the inner core involves only the coeffi-

cients of degree 2, δϕ̂m
2 . Inside the inner core, these coefficients are

obtained by substituting ε by δm
βαε in (14), and are given by

δϕ̂m
2 (a) = δm

βα Uε(a), (16)

where

Uε(a) = −4πG

5

1

a3

∫ a

0

(ρ − ρ ′
f )

∂

∂a′ (a′5ε) da′

−4πG

5
a2

∫ as

a
(ρ − ρ ′

f )
∂ε

∂a′ da′. (17)

In the above expression, ρ ′
f is a constant equal to the density of the

fluid core at the inner core boundary (ICB). Its presence accounts

for the forced displacement of the fluid at the ICB by the equatorial

rotation of the inner core.

For the region outside the inner core (a > as), the gravitational

potential due to density displacements within the inner core satisfies

Laplace’s equation. The coefficients of degree 2 are given by

δϕ̂m
2 (a) = δm

βα Uε(as)

(
as

a

)3

, (18)

where

Uε(as) = −4πG

5

1

a3
s

∫ as

0

(ρ − ρ ′
f )

∂

∂a′ (a′5ε) da′. (19)

2.3 Changes in the moment of inertia

The axial and mean equatorial moments of inertia of the undeformed

elliptical Earth are given, to the first order in ellipticity, respectively,

by

C = 8π

3

∫ ae

0

ρ

[
a′4 + 2

15

∂

∂a′
(
a′5ε̄

)]
da′, (20)

A = 8π

3

∫ ae

0

ρ

[
a′4 − 1

15

∂

∂a′
(
a′5ε̄

)]
da′. (21)

The moments of inertia of the inner core (C s , As), fluid core (C f ,

A f ) and mantle (C m , Am) are defined similarly by changing the

limits of integration in (20)–(21) to, respectively, 0–as , as–a f and

a f –ae, where a f and ae are the mean radii at the core–mantle

boundary (CMB) and the Earth’s surface, respectively.

An equatorial rotation of the inner core leads to the following

changes in the axial and mean equatorial moments of inertia

δC = 2

3
δ0
βα(Hs − H′

s), (22)
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δA = −1

3
δ0
βα(Hs − H′

s), (23)

where

Hs = 8π

15

∫ as

0

ρ
∂

∂a′ (a′5ε̄) da′ , (24)

H̃′
s = 8π

15
ρ ′

f a5
s ε̄s . (25)

The definitions of Hs,H′
s and of U ε(as) in (19) imply the following

relationship between them,

Uε(as) =
√

4π

5

G

a3
s

(Hs − H′
s). (26)

We also note that, with respect to the notation used in the study

of forced nutations of Mathews et al. (1991),

Hs = Ases, H′
s = A′e′, Hs − H′

s = Asesα3, (27)

where

α3 = 1 − A′e′

Ases
, (28)

and where es = (C s − As)/As is the dynamic ellipticity of the

inner core, A′ is the mean equatorial moment of inertia of a body of

inner core shape but with uniform density ρ ′
f , and e′ is the dynamic

ellipticity of this body.

3 G R AV I T Y P E RT U R B AT I O N S C AU S E D

B Y E L A S T I C D E F O R M AT I O N S

3.1 Elastic density displacement

The global change in gravitational potential described in the previ-

ous section leads to a global change in the gravitational force. In

addition, the displacement of inner core particles within the ellip-

tical hydrostatic stress field leads to a change in the local pressure

force. Thus, the mechanical equilibrium between the hydrostatic

stress field and the combined gravitational and centrifugal forces

(the equilibrium that describes the reference undeformed Earth) is

perturbed. The sum of these induced forces leads to deformations,

which then produce further changes in the gravitational force and

tractions. In this paper, we make the approximation that the defor-

mations are static; the final deformed state is that which allows the

global mechanical equilibrium to be maintained.

We note that solutions to the static deformation problem do not

exist in general (e.g Denis et al. 1998). However, solutions do exist

for the special case of incompressible displacements in the fluid

core. This is an approximation that we adopt in this paper, and the

elastic deformations that we report are subject to it.

Inside the inner core, we express the total displacement of the

density surfaces induced by an equatorial rotation of the inner core

as


rs =
2∑

m=−2

δm
βα a ε (1 + h̃ε) Y m

2 , (29)

where the radially variant coefficient h̃ε = h̃ε(a) is a compliance

factor that accounts for elastic deformations. Such a compliance is

often referred to as a Love number (Love 1909). In the fluid core

and mantle (a > as), the displacement is solely that due to elastic

deformations,


r f,m =
2∑

m=−2

δm
βα a ε h̃ε Y m

2 . (30)

3.2 Changes in gravitational potential and moments

of inertia

The total change in gravitational potential is the sum of that asso-

ciated with the density displacement of the inner core rotation in

(15) and that due to elastic deformations. Inside the inner core, the

coefficients of gravitational potential expressing this total change

are

δϕm
2 (a) = δϕ̂m

2 (a) (1 + k̃ε)

= δm
βα Uε(a) (1 + k̃ε), (31)

whereas in the fluid core and mantle,

δϕm
2 (a) = δm

βα Uε(as)

(
as

a

)3

(1 + k̃ε). (32)

In these expressions, k̃ε = k̃ε(a), is a gravitational Love number,

and it is related to h̃ε through

k̃ε(a) = −4πG

5

1

Uε(a) a3

∫ a

0

ρ
∂

∂a′ (a′5ε h̃ε) da′

−4πG

5

a2

Uε(a)

∫ ae

a
ρ

∂

∂a′
(
ε h̃ε

)
da′. (33)

This definition of k̃ε is valid inside as well as outside the inner core,

though when a > as , U ε(a) must be replaced by U ε(as) (as/a)3.

To express the contribution of elastic deformations to the change

in the moments of inertia, it is convenient to define the following

quantity,

Hε = 8π

15

∫ ae

0

ρ
∂

∂a′ (a′5ε̄h̃ε) da′ . (34)

Using this definition, the total change in the axial and mean equa-

torial moments of inertia are then

δC = 2

3
δ0
βα(Hs − H′

s + Hε), (35)

δA = −1

3
δ0
βα(Hs − H′

s + Hε). (36)

Following the definition of Hε in (34), it is related to the value of

k̃ε at the surface by

k̃ε(ae) =
√

4π

5

G

a3
e

(
ae

as

)3 Hε

Uε(as)
, (37)

and using (26), we also have(
Hs − H′

s

)
k̃ε(ae) = Hε . (38)

This means that the total change in gravitational potential of degree

2 at the surface can be written as

δϕm
2 (ae) = δm

βα Uε(as)

(
as

ae

)3

[1 + k̃ε(ae)], (39)

or, alternately, as

δϕm
2 (ae) =

√
4π

5

G

a3
e

δm
βα(Hs − H′

s + Hε),

=
√

4π

5

G

a3
e

δm
βα(Hs − H′

s)[1 + k̃ε(ae)]. (40)
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Eq. (40), relating changes in the moment of inertia to changes in

degree 2 of the gravitational potential, is an expression of the gen-

eralized MacCullagh’s formula (Chao & Gross 1987).

4 R E S U LT S

4.1 Changes in Stokes coefficients as a function

of inner core tilt

Given a 1-D model of the Earth where the density and elastic pa-

rameters are only dependent on radius, the geometrical ellipticity

as a function of radius can be determined using the assumption of

hydrostatic equilibrium and Clairaut’s equation (Jeffreys 1970). The

quantities Hs,H′
s can thus be readily calculated. To determine the

quantities Hε and k̃ε(ae), we need to evaluate the elastic displace-

ments h̃ε taking place under a tilt of the inner core. The procedure

to do so is documented in Appendix A. Here, we simply present

their numerical values, which are found in Table 1, along with the

numerical values of all the other relevant parameters for subsequent

calculations. All parameters are calculated based on the seismic

model PREM (Dziewonski & Anderson 1981).

The parameter k̃ε(ae) in (40) expresses the contribution of global

elastic deformations to the gravity change at the surface. To simplify

the notation, from here onward we refer to this parameter simply as

k̃ε . Its numerical value is 0.9736. This means that elastic deforma-

tions contribute almost as much to the gravity change as the mass

redistribution from the inner core tilt; they increase the gravity signal

by almost a factor 2.

We follow the usual convention in geodesy and express the

changes in degree 2 gravitational potential at the surface in terms

of changes in the Stokes coefficients, 
Clm and 
Slm. These are

related to the our coefficients defined in eqs (39)–(40) by


C20 = − 1√
4π

ae

G M
δϕ0

2 (ae), (41)

Table 1. Values of the parameters defined in the text and used in

the calculations. All the calculated numerical values are based on

PREM.

General parameters

G = 6.672 × 10−11 N m2 kg−2

M = 5.974 × 1024 kg

Radii (m)

as = 1.222 × 106 a f = 3.480 × 106

ae = 6.371 × 106

Moments of Inertia (kg m2)

C = 8.037 × 1037 A = 8.012 × 1037

As = 5.853 × 1034 A′ = 5.539 × 1034

Hs = 1.418 × 1032 H′
s = 1.342 × 1032

Hε = 7.397 × 1030 Hε
f = 1.794 × 1031

Hε
s = −1.583 × 1031

Dynamic ellipticities

e = 3.247 × 10−3 es = 2.422 × 10−3

e′ = 2.422 × 10−3

Coupling constants

α1 = 0.9463 α2 = 0.8294

α3 = 0.0537 αg = 2.1752

Elastic compliances

k̃ε (ae) = k̃ε = 0.9736 κ = 1.039 × 10−3

S14 = 9.247 × 10−8 S24 = 1.981 × 10−6

S34 = − 2.705 × 10−4

Table 2. Change in Stokes coefficients as a function of inner core tilt.

Coefficient β = 0.05◦ β = 0.1◦ β = 1.0◦


J 2 −7.07 × 10−14 −2.83 × 10−13 −2.83 × 10−11

‖
C20‖ 3.16 × 10−14 1.27 × 10−13 1.27 × 10−11

‖
C̃21‖ 4.19 × 10−11 8.37 × 10−11 8.37 × 10−10

‖
C̃22‖ 1.83 × 10−14 7.31 × 10−14 7.31 × 10−12


C2m = − (−1)m

2
√

4π

ae

G M
Re

[
δϕm

2 (ae) + (−1)mδϕ−m
2 (ae)

]
, (42)


S2m = − (−1)m

2
√

4π

ae

G M
I m

[−δϕm
2 (ae) + (−1)mδϕ−m

2 (ae)
]
, (43)

where M is the mass of the Earth. Writing the Stokes coefficients


C2m directly in terms of the angles β and α of inner core tilt,


C20 = − 3

2
√

5
H̄ (cos2 β − 1), (44)


C21 + i
S21 = 
C̃21 = −
√

3

5
H̄ sin β cos β eiα, (45)


C22 + i
S22 = 
C̃22 = 1

2

√
3

5
H̄

(
1 − cos2 β

)
ei2α, (46)

where

H̄ = (Hs − H′
s + Hε)

M a2
e

= 6.186 × 10−8 . (47)

The elliptical component of gravity is often given in terms of the

quantity J 2 = (C − A)/Ma2
e . The changes in J 2 are given by


J2 = δC − δA

Ma2
e

= −
√

5 
C20. (48)

We present in Table 2 the variations in Stokes coefficients that

are expected for a change in the tilt of inner core of 0.05◦, 0.1◦ and

1◦. A change of 4.2 × 10−11 in C 21, S21, of the same order as the

observed decadal variations, can be readily produced by an inner

core tilt of 0.05◦. For the same angle of tilt, the change in C 20, C 22

and S22 is three orders of magnitude smaller.

We have also included in Table 2 the expected variations in J 2.

With respect to the linear trend caused by tidal dissipation and post-

glacial rebound, the scale of the typical observed variations in J 2

is of the order 5 × 10−11 (e.g. Cox & Chao 2002), and in order to

explain such variations with a tilt of the inner core, a tilt in excess of

1◦ is required. Such large variations in inner core tilt are clearly not

happening, as this would imply variations in C 21, S21 of the order of

10−9, an order of magnitude larger than the observed variations. It

can be safely assumed that, for inner core tilt variations that do not

lead to variations in C 21, S21 in excess of the observed amplitudes,

the associated change in J 2 is negligible.

4.2 Variations in Stokes coefficients predicted

from polar motion

Predictions of the time-dependent variations in the Stokes coeffi-

cients of degree 2 from the mechanism described in the present

study require the knowledge of the changes in amplitude and orien-

tation of the inner core tilt as a function of time. Unfortunately, this

information is not known directly, but only through indirect means.

One can use the variations in the position of the Earth’s rotation

axis, or polar motion, as a proxy for the variations in inner core
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tilt. Variations in polar motion m̃ = m1 + im2, where subscripts 1

and 2 refer to the two principal equatorial directions (m1 is in the

direction of Greenwich and m2 is in the direction of 90◦E), must

obey (e.g. Lambeck 1980)

i

σr

d

dt
m̃ +

(
1 − κ

e

)
m̃ = ψ̃mass + ψ̃motion, (49)

where e = (C − A)/A is the dynamic ellipticity, κ is a compliance

factor characterizing elastic deformations that take place under polar

motion, and σ r is the Eulerian nutation frequency, or the Chandler

wobble frequency of the rigid Earth (=e�, where � is the frequency

of Earth’s rotation). ψ̃motion is the excitation function due to motion

that carry angular momentum, while ψ̃mass is the excitation function

due to redistribution of mass. The latter can be expressed in terms of

changes in the non-diagonal elements 
I 13 and 
I 23 of the moment

of inertia tensor, which are themselves related to changes in Stokes

coefficients of degree 2 through the generalized MacCullagh’s for-

mula (Chao & Gross 1987),

ψ̃mass = 
I13 + i
I23

(C − A)
= −

√
5

3

Ma2
e

(C − A)
(
C21 + i
S21). (50)

Slow variations in polar motion (d/dt → 0) are thus related to

changes in C21 and S21 by

m̃ = −
√

5

3

Ma2
e

A(e − κ)
(
C21 + i
S21). (51)

Under the assumption that the decadal changes in C21 and S21 and

in polar motion are both consequent to variations in inner core tilt,

using (45) we obtain the following relationship between the polar

motion and the tilt of the inner core,

ñs = A(e − κ)

(Hs − H′
s + Hε)

m̃ = A(e − κ)

Asesα3(1 + k̃ε)
m̃, (52)

where ñs = (ns)1 + i(ns)2 = βeiα , and where we have assumed

β � 1. Though we have used a different notation, this relationship

is equivalent to that obtained by Greiner-Mai & Barthelmes (2001),

except that our expression also includes the effect of elastic de-

formations accompanying the inner core tilt through the parameter

k̃ε . The inclusion of elastic deformation reduces by a factor 2 the

amplitude of the required inner core tilt for a given polar motion

amplitude. For example, using the numerical values of the param-

eters listed in Table 1, a polar motion of 10 mas requires an inner

core tilt of 0.065◦ if elastic deformations are not included, but only

0.033◦ if they are.

Thus, under the assumption that polar motion can be used as a

proxy for inner core tilt, changes in C21, S21 are obtained directly

from (51). It is important to note, however, that (51) is valid for any

internal mass reorganization that leads to a change in the moment of

inertia. Eq. (51) simply expresses the consistent changes in gravity

and polar motion that occur as a consequence of an internal mass

change, regardless of its source.

In Fig. 2, we show the predicted changes in C21 and S21 based

on (51) and the observed variations in polar motion since 1975. We

have used the polar motion time-series EOP-C04 of the International

Earth Rotation Service (IERS), removed a linear trend, and applied

a low-pass third order Butterworth filter to remove changes that

occur faster than a threshold periodicity of 5 yr. This is to remove

variations in polar motion at interannual timescales and shorter that

are known to be caused principally by surface processes (Chen et al.
2005; Gross et al. 2005). As a reference, the amplitude of the polar

motion that produces the changes in C21 and S21 of the order of

5 × 10−11 shown in Fig. 2 is approximately 10 mas. Assuming these
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Figure 2. Predicted variations in Stokes coefficients C21 and S21 based on

polar motion according to eq. (51) (solid lines) and eq. (62) (dashed lines).

Variations in polar motion are from time-series EOP-C04 of the IERS, on

which a third order Butterworth low-pass filter with a period threshold of

5 yr has been applied.

variations reflect changes in the tilt of the inner core, the associated

variations in the tilt amplitude are approximately 0.06◦.

The study of Dumberry & Bloxham (2002) suggests that the

relationship between the inner core tilt and polar motion may be

more complex than the simple mass reorganization implied by (52).

The reason, they argue, is because one must take into account the

torque that gives rise to the inner core tilt in the first place. If this

torque is from surface tractions at the ICB, the angular momentum

dynamics of the fluid core must be consistent with the generation of

this torque. To obtain the relationship between m̃ and ñs , one must

solve a system of four coupled equations, which in matrix notation

is given as

M · x = b. (53)

The vector x, defined as [m̃, m̃ f , m̃s, ñs]T where m̃ f and m̃s repre-

sent the individual rotation of the fluid and inner core, respectively,

is the solution of the equations and b includes the applied torque

on the inner core and its reaction on the fluid core. The elements

of matrix M are given in Dumberry & Bloxham (2002) and also in

Mathews et al. (1991), though these do not include the elastic defor-

mations caused by a tilted inner core that we have calculated in the

present study. The inclusion of these in (53) can be accomplished

through the changes in the moment of inertia of the whole Earth, of

the fluid core, and of the inner core that enter the elements of matrix

M,


I13 + i
I23 = A
(
κm̃ + ξ m̃ f + ζ m̃s + S14ñs

)
, (54)


I f
13 + i
I f

23 = A f

(
γ m̃ + βm̃ f + δm̃s + S24ñs

)
, (55)
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I s
13 + i
I s

23 = As

(
θm̃ + χm̃ f + νm̃s + S34ñs

)
. (56)

The three set of compliances (κ , ξ , ζ ), (γ , β, δ), (θ , χ , ν) characterize

elastic deformations of the whole Earth, the fluid core, and the inner

core, respectively, which arise through independent rotation of these

three regions. These are already included in M. The parameters Sj4

are the additional compliances describing the elastic deformations

accompanying a tilted inner core, and follow the notation introduced

by Buffett et al. (1993). These can be expressed as

S14 = Hε

A
, S24 = Hε

f

A f
, S34 = Hε

s

As
, (57)

where the quantities Hε
s and Hε

f are defined as in (34) but with

integration limits changed to, respectively, 0 to as, and as to a f .

Numerical values for S14, S24, S34,Hε
s and Hε

f are given in Table 1.

With the inclusion of these new compliances, the following 3 ele-

ments of the matrix M must be changed to

M(1, 4) → (1 + σ )(Asesα3/A + S14), (58)

M(2, 4) → −σ (Asesα1/A f + S24), (59)

M(3, 4) → (1 + σ − α2 + σ S34), (60)

where σ is the frequency of oscillation and parameters α1 and α2

are defined in Mathews et al. (1991).

Solutions of (53) are obtained for an applied torque on the inner

core of a given amplitude and periodicity. If we exclude the free

oscillations from the solution, the relationship between m̃ and ñs

for slow variations (σ → 0) is well approximated by

ñs ≈ − A(e − κ)

(Hs − H′
s)(αg − k̃ε)

m̃ = − A(e − κ)

Asesα3(αg − k̃ε)
m̃, (61)

where the factor αg represents the ability of the rest of the Earth to

exert a gravitational torque on the inner core (Mathews et al. 1991).

In this case, the inclusion of elastic deformations lead to an increase

of the amplitude of the inner core tilt for a given polar motion: a

polar motion of 10 mas requires an inner core tilt of 0.054◦ (in the

reverse direction) if elastic deformations are included, but 0.030◦ if

they are not.

The inclusion of the dynamics associated with the fluid core leads

to a very different relationship between m̃ and ñs than the one pre-

dicted by (52). The reason is because the fluid core contributes to

the global Earth angular momentum balance and enters through

ψ̃motion in (49). If this contribution is neglected in the system (53),

we retrieve (52) exactly.

Assuming that the polar motion resulting from a tilted inner core

must satisfy (61), the change in gravity caused by an inner core tilt

can be computed directly from polar motion with

m̃ =
√

5

3

Ma2
e (αg − k̃ε)

A(e − κ)(1 + k̃ε)
(
C21 + i
S21). (62)

We show in Fig. 2 the predicted changes in C21 and S21 based on

(62). This prediction is different from that based on eq. (51) by factor

−(1 + k̃ε)/(αg − k̃ε) ≈ −1.63.

4.3 Observed variations in gravity

Under the assumption that decadal changes in polar motion and

gravity are caused by temporal variations in the tilt of the inner core,

variations in C21 and S21 should follow (51) or (62), depending on

whether the fluid core participates or not in the global angular mo-

mentum balance. To determine whether the actual variations in C21

and S21 that have taken place in the last few decades are compatible

with either (51) or (62), we need measurements of the variations in

C21 and S21 that are independent from the polar motion. We present

in Fig. 3 the temporal variations in C21 and S21 as determined by SLR

tracking (C. M. Cox, personal communication, 2006). This model

is an updated version of the one presented in Cox et al. (2004), and

after a correction for the IB-NCEP atmospheric gravity series. Data

for satellite Starlette prior to 1984 are sparse, and we show only the

variations between 1985 and 2005. A linear trend between 1985 and

2005 has been removed.

A clear annual signal is visible in both 
C21 and 
S21. This

annual signal is driven by a combination of atmospheric, oceanic,

and hydrological seasonal mass variations (Chen & Wilson 2003).

Interannual and decadal variations in both 
C21 and 
S21 are also

visible in Fig. 3. Interannual variations of up to a few years are

also caused predominantly by mass variations at the surface of

the Earth, though variations at longer timescale, such as the 10-yr

timescale variations visible in Fig. 3 do not appear to be related to

surface processes (Chen et al. 2005). To extract the variations in

C21 and S21 at timescales longer than a few years, we applied a third

order low-pass Butterworth filter with a period threshold of 5 yr

to the SLR time-series. These ‘decadal’ variations in C21 and S21

are shown by the red lines on Fig. 3 and are of the order of 5 ×
10−11.

In principle, decadal gravity variations in Fig. 3 do not rely on any

a priori assumptions about a relationship between 
C 21, 
S21 and

m̃. These can then be compared with the predictions of the gravity

variations determined by (51) or (62) (Fig. 4). The SLR-derived

changes in C21 agree generally well with the prediction from (51).

Similarly, changes in S21 from 1995 onward are also correlated with

the variations predicted by (51). Though the changes in S21 prior

to 1995 do not follow (51) well, there is no clear indication that

(62) provides a better prediction. Thus, gravity variations predicted

on the basis of (51) are in general agreement with the observed

variations determined by SLR tracking.

Part of the differences between the observed and predicted varia-

tions in C 21, S21 are undoubtedly caused by the limited quality of the

SLR gravity model and polar motion observations. However, that a

reasonable correlation exists between SLR-derived variations in C21

and S21 and the prediction from polar motion is reassuring. It indi-

cates that the recovered decadal variations in these two independent

signals are likely robust, at the very least after 1995.

The connection between the polar motion and changes in grav-

ity field through the relation (51) applies for any internal mass re-

distribution that causes a change in the moment of inertia tensor.

Therefore, this does not constitute a demonstration that the decadal

polar motion and changes in C 21, S21 are both caused by variations

in the tilt of the inner core. In fact, based on Fig. 4, it is even un-

clear whether the mass change is internal rather than occurring at

the surface of the Earth. A surface mass reorganization loads the

Earth, and involves a load Love number in the relationship (51).

This would increase the amplitude of the polar-motion-predicted


C21 and 
S21 by a factor 1.43. This clearly would provide a better

fit to the SLR-derived 
C21 after 1990, though it is less clear that

this is also the case for 
S21 (see grey lines on Fig. 4). To address
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Figure 3. Changes in C21 and S21 determined by SLR tracking (black lines)

after removal of the IB-NCEP atmospheric gravity series. A linear trend has

also been subtracted. The red lines correspond to the decadal variations in

C21 and S21 obtained by applying a third order Butterworth low-pass filter

with a period threshold of 5 yr to the SLR signal.

this point in more detail, the known interannual contribution from

surface processes should be removed from the polar motion and

to the observed 
C 21, 
S21. The comparison between the resid-

ual of each should allow to determine more accurately whether the

remaining decadal mass reorganization is internal or surficial.

Though Fig. 4 does not allow to determine the source of the mass

change, it nevertheless clarifies the role of the fluid core on decadal

timescales. In view of the reasonably good agreement based on (51),

changes in equatorial angular momentum of the fluid core must

remain small on decadal timescales. The primary global angular

momentum balance simply involves a polar motion in reaction to

a change in the moment of inertia tensor. Thus, if decadal changes

in both polar motion and 
C21 and 
S21 are caused by temporal

changes in inner core tilt, this can only be the case if the temporal

change in angular momentum of the fluid core remains small.

5 D I S C U S S I O N A N D C O N C L U S I O N

The largest variations in gravity caused by a tilt of the elliptical

inner core are in the coefficients C21 and S21. In order to explain

observed decadal variations in C 21, S21 of ∼4 × 10−11, a tilt of the

inner core of 0.05◦ is required. Slightly more than half of the mass

redistribution is from the rigid equatorial rotation of the inner core,

while the remaining part is from the accompanying global elastic

deformations.

A prediction of the decadal changes in C21, S21 for the past 20 yr

based on the observed polar motion agrees generally well with ob-

served changes in C21, S21 as determined by SLR tracking measure-

ments. This is especially true after 1995. This prediction assumes

no contribution from the angular momentum of the fluid core or
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Figure 4. Decadal (>5 yr) changes in C21 and S21 derived from SLR track-

ing measurements (red lines), and the predictions based on (51) (solid black

lines) and (62) (dashed black lines). The solid grey lines represent the pre-

diction based on (51) but multiplied by a factor 1.43, as appropriate for a

surface mass change.

any other fluid regions. This suggests that the decadal variations in

the moment of inertia tensor, which are induced by the mass redis-

tribution that causes the change in C21, S21, represent the leading

contribution to polar motion at decadal timescales.

By itself, this result does not prove or disprove that temporal vari-

ations in inner core tilt are the cause of the observed decadal changes

in gravity and polar motion; any mass redistribution can accomplish

both. Nor are we able to determine whether the source of the decadal

mass change is predominantly internal or occurring at the surface

of the Earth. To do this would require a more thorough treatment of

the known contributions to both polar motion and gravity changes

from surface processes.

However, in the light of this result, the likelihood that inner core

tilt variations are indeed responsible for these decadal variations can

be assessed through dynamical arguments. On the one hand, if mass

variations are shown to be internal, it is difficult to conceive of a

different mechanism that can generate the required decadal mass

fluctuations. Mass changes in the mantle through convection and

postglacial rebound can be significant, but occur on much longer

timescales [O(106) and O(103) yr, respectively]. Motions in the

fluid core are known to occur at decadal timescales, however the

amplitude of the moving density anomalies are very small. The

existence of these decadal fluid motions is however important, as

it provides mechanisms to generate the required decadal equatorial

torques on the inner core (Dumberry & Bloxham 2002; Dumberry

2007). As the observed changes in gravity and polar motion can be

accomplished by relatively small variations in the tilt of the inner

core (of the order of 0.05◦), one may argue that this remains the

most plausible explanation.

On the other hand, the very requirement of a decadal torque on

the inner core by fluid motion can be used as the counter argument
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for the occurrence of inner core tilt variations of 0.05◦. The study

of Dumberry & Bloxham (2002) argues that if the torque is due

to surface stresses at the ICB, the reverse torque must be applied

on the fluid core, and the angular momentum carried by the latter

contributes significantly to the global angular momentum budget.

The results presented here suggest that this is not the case. The

implication is that the fluid core does not have the ability to generate

a large enough torque on the inner core such that the required mass

reorganization from its tilt can be achieved.

A possible way out of this last argument is if the fluid core also ex-

erts a torque on the mantle which approximately balances the torque

that the fluid exerts on the inner core. In this way, the total torque

on the fluid core remains small, and so does its angular momentum

variation. However, attempts at evaluating the equatorial torque at

the CMB suggest that the latter is too small to provide the balance

(Greff-Lefftz & Legros 1995; Hide et al. 1996; Hulot et al. 1996).

Another possibility is if the torque on the inner core is not from

surface stresses but from a gravitational volume force. In this case,

the torque applied on the fluid core may remain small. Such a sce-

nario was presented by Dumberry (2007), though the amplitude of

the torque was found to be insufficient to generate the required tilt

variations.

Considering the difficulty of generating the required inner core tilt

without involving large variations in the angular momentum of the

fluid core, it is perhaps more likely that decadal variations in polar

motion and in C21, S21 may not result from inner core tilt variations.

However, if they do, our results imply that the process governing

the temporal variations of inner core tilt must be associated with a

small changes in the angular momentum carried by the fluid core.
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A P P E N D I X A : E L A S T I C

D E F O R M AT I O N S

The density displacement associated with an inner core tilt results in

a global change in the gravitational force. Inside the inner core, the

displacement of particles within the elliptical hydrostatic stress field

results in a further forcing from the change in pressure. The combi-

nation of these forces perturb the mechanical equilibrium and leads

to additional deformations. If we assume that a static equilibrium

is maintained in the deformed state, these additional deformations

must be such that the changes in the gravitational potential and

stress tensor that they induce are exactly those required to maintain

the mechanical equilibrium.

The goal of this appendix is to evaluate the amplitude of these ad-

ditional deformations, which we assume to be elastic. To do so, we

follow the standard procedure of integrating throughout the whole

Earth the elastic-gravitational equations associated with small dis-

placements produced by a known forcing. This procedure is well

documented in the literature (e.g. Alterman et al. 1959; Dahlen

1972, 1974), and here we only provide the details that are relevant

to our specific problem. We closely follow the procedure outlined in

Dumberry & Bloxham (2004), where more details on the approxi-

mations can be found as well as further references to the literature.

Results of similar calculations have been previously published by

Buffett et al. (1993) in the context of the forced nutations of the

Earth, and were derived assuming a diurnal periodicity for the forc-

ing and deformations. Here, we are interested in the deformations

resulting from a forcing that varies on a much longer timescale, so

much that we approximate this forcing to be static.

A1 Undeformed reference Earth

The displacement associated with the tilt of the inner core and

its accompanying elastic deformations are taking place with re-

spect to an undeformed reference Earth. In Section 2, we expressed

this undeformed Earth in terms of elliptical surfaces of constant

density. These surfaces were defined according to the hydrostatic

equilibrium that prevails for a self-gravitating Earth under steady

rotation.

Here, however, it is more convenient to define the equilibrium

undeformed reference Earth to be purely spherically symmetric.

This is because the geometrical ellipticity is O(10−3) and is a small

perturbation of an otherwise spherical Earth. Thus, to the first or-

der in ellipticity, the mechanical equilibrium in the deformed state

is achieved solely by deforming the spherical Earth. We retain the

effect of the ellipticity only in the evaluation of the forces that per-

turbs the equilibrium. Proceeding as such simplifies the formulation

of the problem while only introducing an error of the order of the

geometrical ellipticity on the elastic deformations.

Since the ellipticity is entirely a consequence of the effect of the

Earth’s rotation, neglecting it amounts to eliminating the centrifugal

potential in the hydrostatic equilibrium. The hydrostatic equilibrium

of the spherically symmetric undeformed Earth is given by

0 = − ∂

∂r
po(r ) − ρo(r )go(r ), (A1)

where po is the hydrostatic pressure, ρ o is density, go is the gravita-

tional acceleration defined as go = ∂φo
∂r , and where the gravitational

potential φo(r) satisfies Poisson’s equation,(
∂2

∂r 2
+ 2

r

∂

∂r

)
φo(r ) = 4πGρo(r ). (A2)

Throughout this appendix, the variable r describes the spherical

radius. It may still be viewed as describing surfaces of constant

density, as in (2), but which are here defined to be purely spherical.

The values of ρ o, po, φo, go as a function of radius are obtained from

models of the Earth’s interior inferred by seismic observations. In

this study, we use the model PREM (Dziewonski & Anderson 1981),

although we neglect the presence of oceans at the surface.

A2 Rigid rotation of the inner core

Elastic deformations with respect to the above spherical reference

equilibrium arise as a result of the forcing associated with the

tilt of the inner core, and are function of the density displace-

ment inside the inner core and at the ICB. As we have defined our

reference undeformed Earth to be spherically symmetric, we need to

determine the radial displacement of the spherical density surfaces

that produce the equivalent change in density. To first order, it is

given by (10),


rs =
2∑

m=−2

δm
βαrε(r )Y m

2 . (A3)

This displacement causes a local density change of

ρs = −
rs
∂ρo

∂r
. (A4)

The gravitational potential inside the inner core (r ≤ as) associated

with this perturbation in density is

φs =
2∑

m=−2

δm
βαφεY m

2 , (A5)

where

φε = 4πG

5

(
1

r 3

∫ r

0

ε
∂ρo

∂r ′ r ′5 dr ′ + r 2

∫ as

r
ε
∂ρo

∂r ′ dr ′
)

. (A6)

Outside the inner core, it is

φs =
2∑

m=−2

δm
βαφε(as)

(
as

r

)3

Y m
2 . (A7)

Similarly, the displacement of the density discontinuity at the ICB

leads to a change in gravitational potential inside and outside the

inner core given, respectively, by

φ′
s =

2∑
m=−2

δm
β φ′

εY m
2 , (A8)

and

φ′
s =

2∑
m=−2

δm
β φ′

ε(as)
(as

r

)3

Y m
2 , (A9)

where

φ′
ε = 4πG

5
r 2ε(as)

[
ρ f

o (as) − ρs
o(as)

]
, (A10)

and where ρ f
o (as) and ρs

o(as) are, respectively, the density of the

fluid core and the inner core at the ICB.
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The rotation of the elliptical inner core within the elliptical hy-

drostatic pressure field leads to a change in the local pressure.

With respect to our reference hydrostatic pressure defined to be

spherically symmetric, the equivalent pressure change is, to first

order,

ps = ρogo
rs . (A11)

A3 Elastic deformations in the inner core

We seek to determine the elastic deformations u inside the inner

core in response to a specified forcing. We assume that a static

equilibrium is maintained in the deformed state. In other words,

we neglect all inertial accelerations in the momentum balance. We

also assume that the rotation does not influence the deformations

in the sense that we neglect their associated Coriolis acceleration.

The static equilibrium is governed by an ensemble of conditions that

comprise the momentum equation which determines the mechanical

equilibrium,

0 = ∇ · T − ∇(ρou · ∇φo) − ρo∇φ1 − ρ1goer + ft , (A12)

an elastic constitutive relation,

T = λoI(∇ · u) + μo(∇u + (∇u)T ), (A13)

an equation for continuity,

ρ1 = −ρo∇ · u − u · er
∂ρo

∂r
, (A14)

and Poisson’s equation, which determines the changes in the gravity

field

∇2φ1 = 4πGρ1. (A15)

The above set of four coupled equations are known as the linearized

elastic-gravitational equations for small displacements u. The in-

cremental Cauchy stress tensor T involves the second rank identity

tensor I, the Lamé parameter λo and the modulus of rigidity μo. The

latter two define the elastic state of the reference undeformed Earth.

The density perturbation ρ 1 is solely a consequence of the elastic

displacements u. The change in gravitational potential φ1 includes

two parts: the change due to elastic deformations inside the inner

core φu, which satisfies Poisson’s equation ∇2φu = 4 πGρ 1; and the

change due to mass displacement outside the inner core. This latter

part satisfies Laplace’s equation which can be added to Poisson’s

equation for φu to form (A15).

Neither φ1 nor ρ 1 include the effect of mass redistribution asso-

ciated with the equatorial rotation of the inner core. This is included

in the vector ft, the forcing induced by the inner core tilt. It is given

by

ft = −∇ps − ρo∇φs − ρs∇φo ,

= −ρo∇(φs + 
r er · ∇φo), (A16)

where ρ s , φ s and ps are given, respectively, in (A4), (A5) and (A11).

This forcing does not include the change in potential from the dis-

placement of the density jump at the ICB: this contribution enters

our formulation through the boundary conditions.

Solutions of the above system are found by an expansion of the

perturbation variables and the forcing vectors in terms of fully nor-

malized surface spherical harmonics of degree 2,

u =
2∑

m=−2

[
U m

2 (r )Y m
2 er + V m

2 (r )∇1Y m
2

]
,

φ1 =
2∑

m=−2

�m
2 (r )Y m

2 ,

er · T =
2∑

m=−2

[
Rm

2 (r )Y m
2 er + Sm

2 (r )∇1Y m
2

]
,

ft =
2∑

m=−2

( f t
2 )m

2 Y m
2 er + ( f t

4 )m
2 ∇1Y m

2 , (A17)

where ∇1 represents the gradient operator on the unit sphere. Using

the above decomposition, eqs (A12)–(A15) are written as a system

of 6 coupled first order ODE’s in radius for each harmonic order m,

∂

∂r
ys = A · ys − ft , (A18)

where the vector ys = [ys
1, ys

2, ys
3, ys

4, ys
5, ys

6]T contains the following

elements

ys
1 = U m

2 ,

ys
2 = Rm

2 = λo

(
∂

∂r
U m

2 + 2
U m

2

r
− 6

V m
2

r

)
+ 2μo

∂

∂r
U m

2 ,

ys
3 = V m

2 ,

ys
4 = Sm

2 = μo

(
∂

∂r
V m

2 − V m
2

r
+ U m

2

r

)
,

ys
5 = �m

2 ,

ys
6 = ∂

∂r
�m

2 + 3

r
�m

2 + 4πGρoU m
2 , (A19)

The elements of matrix A are given in Dumberry & Bloxham (2004).

The elements of the force vector ft = [0, ( f t
2)m

2 , 0, ( f t
4)m

2 , 0, 0]T are

(
f t
2

)m

2
= −δm

βαρo
∂

∂r
φε − δm

βαρo
∂

∂r
(rεgo),

(
f t
4

)m

2
= −δm

βαρo
φε

r
− δm

βαρoεgo. (A20)

A4 Elastic deformations in the mantle

The perturbations in the mantle are treated in an similar manner as

those in the inner core. The forcing ft associated with the inner core

tilt is equal to −ρ o∇(φ s +φ′
s), where φ s and φ′

s are specified in (A7)

and (A9), respectively. As both these potentials satisfy Laplace’s

equation in the mantle, they can be added to Poisson’s equation.

Thus, we can recast our formulation into one where ft equals zero but

where the potential is redefined to also include the contribution from

φ s and φ′
s . The latter two enter the system through our specification

of the boundary conditions. The system of equations can be written

as

∂

∂r
ym = A · ym, (A21)

where ym is the solution vector in the mantle.

A5 Deformations in the fluid core

We assume that the fluid core is inviscid and remains in hydrostatic

equilibrium in the deformed state. Thus, tangential stresses vanish

everywhere. As a result, surfaces of constant density, constant fluid
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pressure and constant gravitational potential always coincide. The

displacement of individual fluid particles is undetermined, and we

only seek to determine the radial displacement ur of the equipoten-

tial surfaces. The static equilibrium in the core is governed by the

linearized first order perturbations in the hydrostatic balance,

0 = −∇p1 − ρo∇φ1 − ρ1goer, (A22)

from which one can deduce that p1 = −ρ oφ1 and ur = − φ1

go
.

Thus, the perturbation in pressure p1 and the radial displacement of

equipotential surfaces can be determined uniquely from the pertur-

bation in gravitational potential φ1. The latter satisfies the linearized

first order Poisson’s equation,

∇2φ1 = 4πGρ1. (A23)

and an equation for continuity

ρ1 = −ur
∂ρo

∂r
= φ1

go

∂ρo

∂r
, (A24)

in which we have used the divergence-free condition, ∇ · u = 0.

As for the mantle, ft does not appear explicitly in (A22) because we

have defined the potential φ1 such that it includes φ s and φ′
s.

By inserting (A14) into (A23), we write Poisson’s equation as a

coupled set of ODE’s, written in matrix form as

∂

∂r
yc = B · yc, (A25)

where yc = [yc
5, yc

6]T and

yc
5 = �m

2

yc
6 = ∂yc

5

∂r
− 4πGρo

go
yc

5 + 3

r
yc

5, (A26)

The elements of matrix B are given in Dumberry & Bloxham

(2004).

A6 Boundary conditions

The solution of (A18), (A21) and (A25) require a total of 14 con-

stants of integration, which represent as many degrees of freedom.

These are determined by a set of boundary conditions at the origin,

the ICB, the CMB and the Earth’s surface.

The conditions near the origin are determined by the requirement

that the solution remains finite as r → 0. These conditions are found

by expanding the variables in power-series of r near the origin r =
ξ (Crossley 1975), and can be written as

ys(ξ ) = C1yξ1 + C2yξ2 + C3yξ3, (A27)

where the coefficients C 1, C 2 and C3 are three constants of inte-

gration. The elements of the vectors yξ1, yξ2 and yξ3 are given in

appendix C of Dumberry & Bloxham (2004).

At the top of the mantle (r = ae), in the absence of any external

load, the radial stress, the tangential stress and the gravitational flux

all vanish, which specifies 3 additional conditions:

y2(ae) = y4(ae) = y6(ae) = 0. (A28)

At the CMB (r = a f ), the gravitational potential and the gravi-

tational flux er · (∇φ + 4πGρ ou) must be continuous. The radial

displacement is also continuous, but a discontinuity in tangential

displacement is allowed. The normal traction force must be contin-

uous, and since an inviscid fluid cannot support shear the tangential

traction on the solid side of the boundary must vanish. The complete

set of boundary conditions at the CMB is

ym
1 (a f ) = − yc

5(a f )

go(a f )
+ C5,

ym
2 (a f ) = C5go(a f )ρc

o(a f ) ,

ym
3 (a f ) = C4,

ym
4 (a f ) = 0,

ym
5 (a f ) = yc

5(a f )

ym
6 (a f ) = yc

6(a f ) + 4πGρc
o(a f )C5, (A29)

The constant C4 is the arbitrary tangential displacement at the base

of the mantle. The constant C5 represents the ‘apparent’ jump be-

tween the radial displacement of material particles on the mantle

side of the CMB and the radial displacement of equipotential sur-

faces in the fluid core. At static equilibrium, once all oscillations

have decayed, these two different quantities do not have to coincide

at the fluid–solid boundaries. This is because adopting divergence-

free displacements in the fluid core necessarily implies a neutrally

stratified core. The radial displacement of the solid boundary also

displaces fluid particles, but the density of the latter can adjust adi-

abatically. Thus the radial displacement of the CMB does not re-

quire an equivalent displacement of density surfaces in the core

(e.g. Dahlen 1974; Dahlen & Fels 1978, and references therein).

A similar set of conditions applies at the ICB. However, here we

must also introduce the gravitational potential that results from the

displacement of the tilted elliptical density discontinuity, φ′
s . In our

formulation, it does not introduce an additional displacement y1:

we have specified the effect of the displacement 
r inside the inner

core in terms of a forcing applied on an undeformed Earth and we

follow the same philosophy at the boundaries. Instead, it enters the

condition on y6. Additionally, the gravitational potential φ1 in the

fluid core and mantle have been defined to contain the part due to

the displacement of the density surfaces within the inner core, φ s.

Outside the inner core, this potential satisfies Laplace’s equation and

its effect is included by adding it to the boundary conditions at the

ICB. The set of conditions at the ICB are then

ys
1(as) = − yc

5(as)

go(as)
+ δm

βαφε(as)

g(as)
+ A1,

ys
2(as) = A1go(as)ρc

o(as) ,

ys
3(as) = A2,

ys
4(as) = 0,

ys
5(as) = yc

5(as) − δm
βαφε(as),

ys
6(as) = yc

6(as) + 4πGρc
o(as)A1 + δm

βα

5φ′
ε(as)

as
. (A30)

The 21 boundary conditions are specified in terms of seven con-

stants. Once these are known, it removes 7 degrees of freedom in

the system and allows a unique solution for the whole problem.

A7 Solutions

All the variables in the above equations are non-dimensionalized.

Solution are found by numerically integrating the system of equa-

tions in each region, from a small r to the surface, and applying the

appropriate boundary conditions between each region. The integra-

tion is iterated by varying the constants until all boundary conditions

are simultaneously satisfied.
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Figure A1. Solution of the radial elastic displacement y1 and change in

gravitational potential y5 as a function of radius resulting from a tilt of the

inner core. All values are dimensionless with respect to the scales defined

in our numerical integration. The solution of y1 does not include the rigid

displacement associated with the inner core tilt. Likewise, the gravitational

potential from the rigid displacement has been removed from the solution of

y5, so that the value plotted is only that due to elastic deformations.

We compute the solution for a forcing normalized such that the

change in gravitational potential from the rigid rotation of the inner

core equals 1 at the surface. In other words, such that δm
βαφ̄(ae) = 1,

where φ̄(ae) = (as/ae)3(φε(as)+φ′
ε(as)). The solution for the radial

elastic displacements and the change in gravitational potential is

presented in Fig. A1. The values shown do not include the rigid part

of the displacement of the inner core nor the gravitational potential

associated with it. As a reference, at the ICB, the rigid displacement

and its associated gravitational potential are equal to −9847 and

140.7 in the non-dimensional units of Fig. A1. The elastic displace-

ment near the ICB is, therefore, slightly larger than 10 per cent the

value of the rigid displacement. At the ICB, the additional gravita-

tional potential is about 7 per cent the value of the potential from the

rigid deformation. However, at the surface, they are almost equal.

To get the dimensional value, one must multiply the solutions of y5

by δm
βαφ̄(ae) and the solution of y1 by δm

βαφ̄(ae)/go(ae). For example,

a tilt of the inner core by an angle of 0.1◦, leads to a degree 2 order

1 rigid deformation at the ICB of approximately 7 m and an elastic

deformation of approximately 0.7 m. The rigid and elastic deforma-

tions of degree 2 order 0 at the ICB for the same inner core tilt are,

respectively, 14 and 1.4 mm.

The quantities Hε,Hε
f and Hε

s are computed from the solution

displayed in Fig. A1. In Section 3, these were defined in terms of

displacement of density surfaces aεh̃ε . It is only within the fluid

core that our solutions for y1 correspond to these displacements.

In the inner core and mantle, the surfaces of constant density are

displaced by y1 as in the fluid core, but a local change in pressure

also contributes to the change in density (see eq. A14). To calculate

the parameters Hε
j , we instead use the following transformation∫ a2

a1

ρ
∂

∂a′
(
a′5εh̃ε

)
da′ =

∫ a2

a1

ρ1a′4da′ −
∑

i

[ρo]i a
4
i y1i , (A31)

where a1 and a2 delineate the region of integration, ρ 1 is obtained

from (A14), and the second term on the right-hand side is the con-

tribution from the displacement y1 at all density discontinuity of

amplitude [ρ o] within the region. The final values for Hε
j are ob-

tained by converting ε to ε̄ and multiplying by the appropriate di-

mensional constants. Their numerical values are given in Table 1 of

Section 4.

Our choice of normalization allows to write the change in the

coefficients of the gravitational potential as

δϕm
2 (a) = [

1 + k̃ε(a)
]
δm
βαφ̄(a), (A32)

where the coefficient k̃ε(a) is the elastic compliance defined in

Section 3. At the surface, its value is given directly by the solu-

tion of y5 at r = 1. We obtain k̃ε(ae) = 0.9736. This value can

be used to test our solution of Hε , as according to (38) we should

have

Hε = (
Hs − H′

s

)
k̃ε(ae). (A33)

We have verified that our results agree to within four parts in ten

thousand.
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