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Influence of elastic deformations on the inner core wobble
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S U M M A R Y
The Earth’s longest free mode of nutation, the inner core wobble (ICW), consists of a prograde
precession of the tilted figure of the inner core with respect to a fixed mantle. The dynamics
of the ICW is controlled by coupling at the inner-core boundary (ICB) and by the torque
exerted by the rest of the Earth on a tilted inner core. This mode has not yet been observed
either directly or indirectly, though theoretical estimates suggest its period should be 2410
solar days or 6.6 yr. However, these estimates were based on models that did not properly
take into account elastic deformations associated with a tilted inner core. In this work, we
incorporate these elastic deformations in a model of free nutations that rests on an angular
momentum formalism. We find that based on an elastic, oceanless and dissipationless earth
model corresponding to PREM, elastic deformations within the inner core contribute to a
lengthening of the period of the ICW from 2410 to 2715 solar days. The internal forcing
caused by the misalignment between surfaces of constant density and centrifugal potential is
the most important contribution to elastic deformations.

Key words: Earth rotation variations; Core, outer core and inner core; Elasticity and
anelasticity.

1 I N T RO D U C T I O N

The Chandler wobble (CW) is the most well known of the Earth’s
free modes of nutation. It involves an offset between the rotation
axis and the axis of symmetry of the oblate geometric figure of the
solid Earth (Fig. 1a). As a result of this misalignment, a torque is
applied on the elliptical Earth, leading to a gyroscopic effect and
to a prograde precession of the rotation axis around the figure axis
(e.g. Lambeck 1980). In a mantle reference frame, the observed pe-
riod of the CW is approximately 433 solar days (Gross 2007). Were
the Earth a single rigid body with an identical mass distribution,
its CW period would be closer to 300 d (e.g. Smith 1977; Smith &
Dahlen 1981). The Earth departs from a rigid body because it has
a fluid core, which to a good approximation does not participate
in the CW. In addition, elastic deformations of the solid Earth take
place during the CW, effectively reducing the misalignment between
the rotation axis and mantle figure axis, thus leading to a reduced
gyroscopic effect and to a lengthening of the period of the wobble.

The presence of the fluid core also allows for a second free
mode, the free core nutation (FCN), also referred to as the nearly
diurnal free wobble (NDFW; e.g. Lambeck 1980). This mode is
characterized by a misalignment between the rotation axes of the
mantle and core (Fig. 1b), resulting in a latitudinal pressure gradient
on the elliptical core–mantle boundary (CMB) and to an internal
torque between them. The gyroscopic effect from this torque leads
to a precession between the rotation vectors of the core and mantle,
the latter remaining nearly in alignment with the geometric figure

axis of the mantle. As observed from a mantle-fixed perspective,
the precession of the core rotation axis is retrograde at a nearly
diurnal period. From a reference frame fixed in space, the observed
period of this mode is close to 430 solar days, in a retrograde
direction (Herring et al. 1986; Mathews et al. 2002). For this reason,
this mode is also referred to as the retrograde free core nutation
(RFCN).

The presence of the solid inner core gives rise to two additional
free modes. In the first, the rotation axis and the geometric figure
axis of the oblate inner core are aligned together and both are offset
with respect to the figure axis of the rest of the Earth (Fig. 1c). As is
the case for the RFCN, the fluid pressure acting on the elliptical inner
core boundary (ICB) results in an internal torque and to a precession.
Gravitational forces on the tilted inner core also contribute to the
internal torque and the sum of these effects gives rise to a second
nearly diurnal retrograde mode, when observed from a mantle-fixed
frame. In a space-fixed frame, contrary to the RFCN, the motion of
this new mode is prograde and is thus referred to as the prograde free
core nutation (PFCN) or alternately as the free inner core nutation
(FICN) (de Vries & Wahr 1991; Mathews et al. 1991a; Dehant et al.
1993). Inferences from the resonance of this mode with the forced
nutations of the Earth suggest that its period should be close to
∼1000 d (Mathews et al. 2002; Koot et al. 2008).

The second free mode associated with the inner core is also char-
acterized by an offset of the geometric figure axis of the inner core
from that of the mantle, though for this mode, the rotation vec-
tor of the inner core remains nearly aligned with the mantle figure
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Figure 1. Schematic description of the free nutations: (a) CW; (b) RFCN; (c) PFCN and (d) ICW. ω, ωf and ωs are the rotation vectors of the whole Earth,
fluid core and inner core, respectively, and ê′

3 represents the direction of the tilted figure axis of the inner core. All modes are shown with respect to a frame
fixed to the mantle (with figure axis ê3). See text for further details. Not drawn to scale.

(Fig. 1d). As is the case for the CW, the offset between the rotation
and figure axes of the inner core leads to a gyroscopic effect and to
a prograde precession between the two. For this reason, this mode
has been referred to as the Chandler wobble of the inner core (Smith
1977), or more simply as the inner core wobble (ICW) (Mathews
et al. 1991a). From a mantle fixed frame, this mode consists essen-
tially of a slow prograde precession of the tilted figure of the inner
core.

The period of this last mode is the main topic of this paper. It
depends crucially on the internal coupling dynamics taking place
at the ICB and on the torque exerted by the rest of the Earth on a
tilted inner core. For a rigid body with a dynamic ellipticity equal
to that of the inner core, the gyroscopic effect alone should result in
a ICW period of approximately 400 d. However, because the inner
core is immersed in the fluid core, the period of the ICW is reduced
by a factor involving the density contrast at the ICB (Busse 1970;
Kakuta et al. 1975). An additional dynamic effect that contributes
to the ICW is the gravitational torque from the rest of the Earth,
acting on the tilted figure of the inner core (Mathews et al. 1991a).
When all these internal couplings are taken into account, the period
of the ICW, based on the reference earth model PREM (Dziewonski
& Anderson 1981), is predicted to be approximately 2410 solar days
(6.6 yr; Mathews et al. 1991a,b; Dehant et al. 1993; Xu & Szeto
1998).

However, in modelling the period of the ICW, the above stud-
ies did not properly take into account elastic deformations that
accompany a tilt of the inner core. As is the case for the CW, elas-
tic deformations within the inner core during the wobble should
lead to a reduced effective gyroscopic effect and to a lengthening
of the period of the ICW. Indeed, in a recent study of the long
period wobbles by Rochester & Crossley (2009), elastic deforma-
tions were found to increase the period of the ICW from 6.6 to
7.5 yr.

The recent results of Rochester & Crossley (2009) provided the
motivation for this paper. Their theoretical model is based on a
Lagrangian description, where particle displacements from both
rotation and elastic deformation are allowed to vary as a func-
tion of radius. In contrast, the model of Mathews et al. (1991a) is
based on an angular momentum approach, where the free modes
of nutation are computed from the coupled angular momentum
equations of the whole Earth, fluid core and inner core. The rota-
tion vector within each of these regions is by definition uniform,
and elastic deformations are modelled in terms of perturbations
in the moments of inertia. Here, we show that a lengthening of
the ICW period similar to that found by Rochester & Crossley
(2009) is retrieved when elastic deformations associated with a
tilted inner core are incorporated into the model of Mathews et al.
(1991a).

2 T H E O RY

2.1 Free nutations of the Earth

To determine the free nutations of the Earth, we follow the proce-
dure outlined in Mathews et al. (1991a) and updated in Mathews
et al. (2002). We give here only a brief description of their model
and refer the interested reader to these papers. The model describes
the free and forced nutations taking place in response to external
torques from the Sun and the Moon (and to a smaller extent from
other planets) acting on the equatorial bulge of the Earth. It as-
sumes an axisymmetric, oceanless, dissipationless, rotating Earth,
comprised of a mantle, fluid core and inner core. The reference
equilibrium state is one of uniform rotation "o = !o ê3 with re-
spect to a reference frame fixed to the mantle. The nutations are
the departures from this reference state and are found by solving
a system of four equations, the first three describing respectively
the evolution of the angular momentum of the whole Earth (H),
the fluid core (H f ) and the inner core (H s), and a fourth for the
kinematic relation governing the tilt of the inner core relative to the
mantle,

d
dt

H + " × H = 0 , (1)

d
dt

Hf − ωf × H f = −#CMB − #ICB , (2)

d
dt

Hs + " × Hs = #s + #ICB , (3)

d
dt

ns = ωs × ê3 . (4)

In these equations, " = "o + ω = !o + !om is the instantaneous
rotation vector of the Earth with respect to the mantle, ωf = !omf

and ωs = !oms are vectors describing, respectively, the departure in
the rotation of the fluid core and of the inner core with respect to ".
The tilt of the inner core ns is defined as the difference between the
unit vectors ê′

3 and ê3 pointing in the directions of the geometrical
figure axis of the inner core and the mantle, respectively. The four
rotation variables m, mf , ms and ns are the unknowns to be solved
for and are expressed in complex notation (m̃ = m1 + im2, etc.)
where the directions 1 and 2 refer to the two equatorial directions
in the mantle reference frame.

The angular momentum vectors H , H f , H s are expanded in
terms of the four rotation variables. They involve the equatorial
moments of inertia and dynamic ellipticities of the whole Earth
(A and e, respectively), the fluid core (Af , ef ) and the inner core
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(As, es). The vector #s represents the torque exerted by the rest
of the Earth on a tilted inner core. An expansion of this torque
in terms of the four rotation variables is presented in Mathews
et al. (1991a); in the next section we show how the inclusion of
elastic deformations associated with a tilted inner core affects this
expression. The torque "CMB contains the influence from surface
tractions acting on the mantle at the CMB and, equivalently, "ICB

contains surface tractions on the inner core at the ICB. These include
the effects of Maxwell stresses (e.g. Buffett 1992; Buffett et al.
2002) and/or viscous friction (e.g. Mathews & Guo 2005; Deleplace
& Cardin 2006). They can be expressed in terms of dimensionless
coupling constants K CMB and K ICB (Buffett et al. 2002)

K CMB = "̃CMB

i!2
o Af m̃f

, K ICB = "̃ICB

i!2
o As(m̃s − m̃f )

. (5)

In the forced nutation problem, an external torque is prescribed
on the right-hand side of (1). Our focus is on the free modes of
nutation, which involve no external torque; the angular momentum
of the whole Earth is conserved. To solve for the free modes, a time-
dependence of the form eiσ!ot is assumed, where σ is the frequency
of nutation in cycles per sidereal day. The eqs (1)–(4) can then be
written in a compact form as

M · x = 0 , (6)

where x = [m̃, m̃f , m̃s, ñs]T . The elements of matrix M involve σ ,
A, Af , As, e, ef and es, as well as elastic compliances and other
coupling parameters. The free modes, with eigenvalues σ , are the
eigensolutions of (6).

2.2 Influence of elastic deformations on #s

The dynamics that govern the ICW and the PFCN is crucially de-
pendent on #s. We follow Mathews et al. (1991a), and separate #s

into the following contributions

#s = N + P + Q , (7)

where

N =
∫

V
r × ρ∇φf

c dV , (8)

P =
∫

V
r × (φg + φf

c )∇ρ dV , (9)

Q =
∫

S
(ρf − ρs)(φg + φf

c )r × dS , (10)

and where V is the volume occupied by the solid inner core with
surface S, r is the coordinate vector from the origin, φg is the
gravitational potential, φf

c is the centrifugal potential associated
with the angular velocity of the fluid core, ρ is the density within
the inner core and ρ s and ρ f are the densities on the solid and fluid
side of the ICB, respectively. Expressions for these torques were
developed in appendix B of Mathews et al. (1991a),

Ñ = −i!2
o Ases(m̃ + m̃f − ñs) + i!2

oc̃s
3 , (11)

P̃ = i!2
o Ases

(
ρs

ρf
α1 − 1

) [
−m̃ − m̃f + (1 + αg)ñs

]
, (12)

Q̃ = −α1

(
ρs

ρf
− 1

) [
Ñ + i!2

o Asesαgñs
]

. (13)

Here, we have written the torques in terms of the conventional com-
plex notation and have not included the contribution from external
lunisolar forces. In these expressions, α1 is defined as

α1 = A′e′

Ases
, (14)

where A′ is the mean equatorial moment of inertia of a body of
inner core shape but with uniform density ρ f , and e′ is the dynamic
ellipticity of this body. The coefficient αg captures the effect of
gravitational coupling from the rest of the Earth on a tilted inner
core and is defined as

αg = 8πG
5!2

o

[∫ ae

as

ρ(a′)
dε(a′)

da′ da′ + ρfεs

]
, (15)

where a s and a e are the mean radii of the inner core and the whole
Earth, respectively, G is the gravitational constant and ε is the
geometrical ellipticity of the surfaces on which density is constant
(ε s is the geometrical ellipticity at the ICB). The variable c̃s

3 =
cs

31 + ics
32 represents the off-diagonal contribution to the moment

of inertia of the inner core that are caused by elastic deformations.
The sum of Ñ , P̃ and Q̃ yields a total torque on the inner core of
(eq. 17 of Mathews et al. 1991a)

"̃s = i!2
o Ases [−α1(m̃ + m̃f ) + α2ñs] + i!2

oc̃s
3 , (16)

where a factor [1 − α1(ρ s/ρ f − 1)] multiplying c̃s
3 has been ap-

proximated to 1.
In the work of Mathews et al. (1991a), c̃s

3 included the effects
from changes in the centrifugal force associated with changes in
m̃, m̃f and m̃s. The contribution to c̃s

3 from elastic deformations
consequent to a tilted inner core were not included. In addition, as
an inspection of (11)–(13) reveals that elastic deformations were
only considered in modelling the Ñ -part of the torque, the part
that involves the centrifugal potential φf

c; they were not included in
modelling the gravitational torque on a tilted inner core by the rest
of the Earth, nor in the part of P̃ involving the centrifugal potential.

The second of these two omissions is easily addressed. The torque
P̃ involves the rigid part of the torque Ñ multiplied by a factor.
Therefore, elastic deformations from the centrifugal potential part
of P̃ can be taken into account simply by writing

P̃ =
(

ρs

ρf
α1 − 1

) [
Ñ + i!2

o Asesαgñs
]
, (17)

with the understanding that Ñ is given by (11). The total torque
associated with the centrifugal potential, which we write "̃c

s , is
obtained by adding Ñ to the centrifugal contributions of P̃ and Q̃
and is

"̃c
s = α1 Ñ = −i!2

o Asesα1(m̃ + m̃ f − ñs) + i!2
oα1c̃s

3 . (18)

We now need to add elastic deformations in the part of the torque
associated with the gravitational potential, "̃g

s . The rigid component
of this torque is given by the sum of the gravitational parts of P̃ and
Q̃ and is

"̃g
s = −i!2

o Asesα3αgñs , (19)

where α3 = 1 − α1. The contribution to this torque from elastic
deformations can be separated in two parts. The first is from elastic
deformations taking place within the inner core. As above, these are
modelled in terms of their contribution to the off-diagonal elements
of the moment of inertia tensor of the inner core. To include this
part, one must replace Asesñs in (19) by Asesñs+c̃s

3. The second part
results from elastic deformations taking place outside the inner core,
thereby altering the geometry of the elliptical surfaces of constant
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density and modifying the parameter αg. This parameter is akin to
a moment of inertia and the effect of elastic deformations can be
modelled in terms of an off-diagonal contribution. We write this
off-diagonal contribution as α̃g = αgñε ; so, ñε is equivalent to a
rigid rotation the whole of the elliptical fluid core and mantle with
respect to a stationary inner core. Since the gravitational torque on
the inner core produced by ñε should be equal and opposite to the
gravitational torque exerted by the rest of the Earth on an inner core
tilted by the same amount, it is given by (19), but replacing ñs by
−ñε . The total torque associated with the gravitational potential,
including elastic deformations, can be written as

"̃g
s = −i!2

o Asesα3αgñs − i!2
oα3αgc̃s

3 + i!2
o Asesα3αgñε . (20)

The total torque on the inner core is then the sum of the centrifugal
and gravitational parts and is

"̃s = i!2
o Ases

[
−α1(m̃ + m̃ f ) + α2ñs

]
+ i!2

oα2c̃s
3

+ i!2
o Asesα3αgñε , (21)

where

α2 = α1 − αg + α1αg . (22)

A comparison of the expression for "̃s in (21) versus that in (16)
reveals that, as a result of including elastic deformations in "̃s, the
term involving c̃s

3 is now multiplied by a factor α2. Additional differ-
ences are from the inclusion of elastic deformations consequent to a
tilted inner core. This includes ñε and also additional contributions
to c̃s

3, which are presented in the next section.

2.3 Elastic compliances

The remaining task is to express c̃s
3 and ñε in terms of the variables

m̃, m̃f , m̃s and ñs to close the system (6). Eqs (1) and (2) involve c̃3

and c̃f
3, which represent the contributions from elastic deformations

to the moment of inertia of the whole Earth and the fluid core,
respectively. These too must also be expressed in terms of m̃, m̃f , m̃s

and ñs. Following Mathews et al. (1991a), this is done by writing

c̃3 = A
[
κm̃ + ξ m̃f + ζ m̃s + Sg

14ñs + Sp
14(ñs − m̃ − m̃s)

]
, (23)

c̃f
3 = Af

[
γ m̃ + βm̃f + δm̃s + Sg

24ñs + Sp
24(ñs − m̃ − m̃s)

]
, (24)

c̃s
3 = As

[
θm̃ + χm̃f + νm̃s + Sg

34ñs + Sp
34(ñs − m̃ − m̃s)

]
, (25)

ñε = Sε1 m̃ + Sε2 m̃f + Sε3 m̃s + Sg
ε4 ñs + Sp

ε4 (ñs − m̃ − m̃s) . (26)

The three sets of centrifugal compliances (κ , ξ , ζ ), (γ , β, δ), (θ , χ , ν)
characterize elastic deformations of the whole Earth, the fluid core
and the inner core, respectively, which arise through independent
rotation of these three regions. They were calculated in Mathews
et al. (1991b) and Buffett et al. (1993), and their numerical values
are presented in Table 1 when using PREM. The calculations re-
ported in these studies pertain to diurnal timescale deformations,
as appropriate for nutation studies. We have recalculated the com-
pliances for when the timescale of deformation is long enough that
the inertial contribution is negligible and deformations can be con-
sidered static, as is more appropriate for the long period wobbles
(CW and ICW). These static compliances are also presented in
Table 1. Their numerical values differ very little from the diurnal
case because inertial contributions to the mechanical force balance
are already small at diurnal frequencies (e.g. Saito 1974) and both
calculations are based on the same earth model and, thus, the same
elastic moduli. In PREM, the elastic moduli are representative of

Table 1. Elastic compliances calculated using PREM.

Compliance Diurnal value Static value

κ 1.039 × 10−3 1.038 × 10−3

ξ 2.222 × 10−4 2.219 × 10−4

ζ 4.964 × 10−9 5.134 × 10−9

γ 1.965 × 10−3 1.962 × 10−3

β 6.160 × 10−4 6.151 × 10−4

δ −4.869 × 10−7 −4.865 × 10−7

θ 6.794 × 10−6 7.024 × 10−6

χ −7.536 × 10−5 −7.529 × 10−5

ν 7.984 × 10−5 7.984 × 10−5

Sg
14 9.732 × 10−8 1.092 × 10−7

Sg
24 3.406 × 10−7 3.412 × 10−7

Sg
34 −1.722 × 10−6 −1.813 × 10−6

Sp
14 −4.140 × 10−8 −1.683 × 10−8

Sp
24 1.641 × 10−6 1.639 × 10−6

Sp
34 −2.687 × 10−4 −2.686 × 10−4

Sε1 5.254 × 10−1 5.247 × 10−1

Sε2 1.779 × 10−1 1.777 × 10−1

Sε3 1.733 × 10−5 1.339 × 10−5

Sg
ε4 5.281 × 10−3 5.328 × 10−4

Sp
ε4 −5.722 × 10−5 −4.396 × 10−5

Note: The diurnal values for (κ , ξ , ζ ), (γ , β, δ) and
(θ , χ , ν) are those given in table 1 of Mathews et al.
(1991b). The sum of static values of Sg

i4 and Sp
i4 are

equal to the values presented in Dumberry (2008).

deformations occurring with a period of 1 s. Ideally, the diurnal and
static compliances should each be calculated on the basis of earth
models where the elastic moduli have values that are more appropri-
ate for these deformation timescale. However, such earth models are
not available. We will return to this point in the discussion.

Elastic deformations arising as a result of a tilted inner core
were first considered by Buffett et al. (1993), where three addi-
tional compliances were introduced, (S14, S24, S34), to characterize
the deformations of the whole Earth, the fluid core and the inner
core, respectively. Their study focused on whether these additional
compliances, as well as further corrections to the centrifugal com-
pliances, could explain some of the discrepancies between the ob-
served and predicted forced nutations. Elastic deformations caused
by a tilted inner core were also considered in a different context in
the study of Dumberry (2008), where the aim was to obtain a pre-
diction of the gravity variations associated with decadal timescale
changes in the tilt of the inner core. In both of these studies, how-
ever, the consequence of these additional compliances on the free
nutations was not considered.

To investigate their effect on the free nutations, we found neces-
sary to split each compliance Si4 into two separate contributions,
Sg

i4 and Sp
i4, to reflect the different contributions to the forcing on

the inner core, when the latter is in a tilted state. To model this
forcing, we follow the study of Dumberry (2008), in which the
displacement field from a tilted oblate inner core is modelled as
an equivalent radial deformation 2r s of a spherically symmetric
reference earth model. This deformation is responsible for local
density variations ρ s and the latter leads to global variations in the
gravitational potential φ s . The forcing on the inner core is given by

ft = −∇(ρogo2rs) − ρo∇φs − ρs∇φo , (27)

in which ρ o, φo and go = ∂φo/∂r are, respectively, the density, grav-
itational potential and gravitational acceleration of the spherically
symmetric reference earth model. The second and third terms on the
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right-hand side of (27) represent the ‘gravitational’ forcing, arising
from the misalignment of elliptical surfaces of constant density and
gravitational potential. There is also an additional contribution to
the gravitational forcing caused by the displacement of the den-
sity jump at the ICB; this latter contribution enters the formulation
through the boundary conditions (see Dumberry 2008 for details).
Elastic deformations caused by this combined gravitational forcing
account for the compliances (Sg

14, Sg
24, Sg

34) in (23)–(25).
The second contribution, characterized by the compliances (Sp

14,
Sp

24, Sp
34) in (23)–(25), is that resulting solely from the first term on

the right-hand side of (27). This term represents the forcing caused
by a misalignment between the oblate inner core and the elliptical
surfaces of constant centrifugal potential. This results in an equiv-
alent ‘pressure’ force acting everywhere inside the inner core to
reestablish the alignment. The torque on the inner core produced
by this force is analogous to the torque on the mantle that sustains
the CW. We note that this forcing should not be confused with the
centrifugal force associated with the centrifugal compliances. The
latter involves perturbations in the rotation vectors alone and would
occur even if the reference undeformed Earth were spherical. The
forcing described here is entirely a consequence of the rotated el-
liptical shape of the inner core described through 2r s and would
vanish for a spherical Earth. This forcing would also vanish if the
tilt (ñs) and rotation vector of the inner core (m̃ + m̃s) are in align-
ment; the compliances (Sp

14, Sp
24, Sp

34) in (23)–(25) are then factors
of this difference. Numerical values for the compliances Sg

i4 and Sp
i4

are presented in Table 1 for static and diurnal timescale deforma-
tions, following the method described in the appendix of Dumberry
(2008). Differences between the static and diurnal compliances are
small.

In the study of Dumberry (2008), where forced decadal variations
of inner core tilt were considered, it was assumed that the rotation
vector of the inner core remained aligned with the geometric axis
of the mantle (m̃ + m̃s = 0). In this case, Sg

i4ñs + Sp
i4ñs = Si4ñs;

the numerical values for Si4 presented by Dumberry (2008) are
equivalent to Sg

i4 + Sp
i4. Although the assumption m̃ + m̃s = 0

may be appropriate for that scenario and although this may also
appropriately describe the ICW, it is clearly not appropriate when
considering the PFCN for which m̃ + m̃s ≈ ñs. This is the reason
why splitting Si4 into Sg

i4 and Sp
i4 is necessary when considering the

free modes of nutations.
Finally, the five new compliances S ε1, S ε2, S ε3, Sg

ε4 and Sp
ε4 intro-

duced in (26) capture the relative changes in gravitational coupling
parameter αg as a result of elastic deformations in the fluid core
and mantle caused by changes in the rotation variables. Their nu-
merical values for both static and diurnal timescale deformations
are presented in Table 1.

2.4 Changes in matrix M

Substituting (25) and (26) in (21) and in the left-hand side of (3),
the terms on the third row of matrix M in (6) become

M(3, 1) → σ (1 + θ − Sp
34) + (θ − Sp

34)(1 − α2) − esα3

− esα3αg(Sε1 − Sp
ε4) , (28)

M(3, 2) → σχ + χ (1 − α2) + esα1 − esα3αg Sε2 − K ICB , (29)

M(3, 3) → 1 + σ (1 + ν − Sp
34) + (ν − Sp

34)(1 − α2)

− esα3αg(Sε3 − Sp
ε4) + K ICB , (30)

M(3, 4) → (1 + σ − α2)(es + Sg
34 + Sp

34) − esα3αg(Sg
ε4 + Sp

ε4) .(31)

The introduction of the compliances Sg
14, Sg

24, Sp
14 and Sp

24 also leads
to changes in the following matrix elements

M(1, 1) → σ + (1 + σ )(κ − Sp
14) − e , (32)

M(1, 3) → (1 + σ )
(

As

A
+ ζ − Sp

14

)
, (33)

M(1, 4) → (1 + σ )
(

Asesα3

A
+ Sg

14 + Sp
14

)
, (34)

M(2, 1) → σ (1 + γ − Sp
24) , (35)

M(2, 3) → σ (δ − Sp
24) − As

A f
K ICB , (36)

M(2, 4) → −σ

(
Asesα1

Af
+ Sg

24 + Sp
24

)
. (37)

3 R E S U LT S

The free modes of nutations are the eigensolutions of the system (6).
Their frequencies, measured in cycles per sidereal day (cpsd) in the
rotating mantle reference frame, are given in Table 2 for four dif-
ferent models of elastic deformations. We also give the associated
period in solar days, following the usual convention of reporting the
periods of the CW and ICW with respect to a mantle-fixed frame
and the periods of the RFCN and PFCN with respect to a space-
fixed frame. In the first model (RIGID), all compliances are set to
zero; this corresponds to a rigid Earth. The second model (ELAS-
TIC1) is equivalent to the one presented in Mathews et al. (1991b),
where the diurnal values of the centrifugal compliances are used,
all compliances related to the inner core tilt are set to zero (i.e.
Sg

i4 = S p
i4 = S εi = 0); and the elements of matrix M are as given

in eq. (26b) of Mathews et al. (1991a). In the third model (ELAS-
TIC2), the values for all compliances are equivalent to those of the
ELASTIC1 model, but the matrix M now includes the corrections
in (28)–(37) that arise from considering the elastic deformations
in the torque #s. Finally, in the last model (FULL), we have used
the numerical values for all compliances as given in Table 1, as
well as the correction to matrix M in (28–37). For this last model,

Table 2. Frequencies and periods of free modes based on PREM.

Model CW RFCN PFCN ICW

Frequency (cpsd)
RIGID 0.003663 −1.002882 −0.997984 0.0004138
ELASTIC1 0.002489 −1.002189 −0.997903 0.0004138
ELASTIC2 0.002489 −1.002189 −0.997917 0.0004138
FULL 0.002490 −1.002191 −0.997916 0.0003674
APPROX 0.002493 −1.002178 −0.997924 0.0003669

Period (solar days)
RIGID 272.3 −346.1 494.7 2410
ELASTIC1 400.6 −455.7 475.5 2410
ELASTIC2 400.6 −455.7 478.7 2410
FULL 400.5 −455.2 478.6 2715
APPROX 400.1 −457.8 480.5 2718

Note: The frequencies are in cycles per sidereal days (cpsd). The periods
are given in solar days, with respect to a mantle-fixed frame for the CW
and ICW and with respect to a space-fixed frame for the RFCN and PFCN.
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Table 3. Eigenvectors of the free modes.

CW RFCN PFCN ICW

ELASTIC1
m̃ 8.823 × 10−1 −2.476 × 10−4 6.680 × 10−7 −1.123 × 10−4

m̃f −2.189 × 10−3 1.000 −3.621 × 10−3 5.252 × 10−8

m̃s −2.489 × 10−3 6.113 × 10−1 9.979 × 10−1 −4.138 × 10−4

ñs 1.000 6.100 × 10−1 1.000 1.000

FULL
m̃ 9.426 × 10−1 −2.478 × 10−4 4.353 × 10−7 −4.266 × 10−5

m̃f −2.340 × 10−3 1.000 −4.591 × 10−3 2.181 × 10−8

m̃s −2.490 × 10−3 5.983 × 10−1 9.979 × 10−1 −3.674 × 10−4

ñs 1.000 5.970 × 10−1 1.000 1.000

Note: The amplitudes of m̃, m̃f , m̃s and ñs are normalized such that the largest of them equals unity.

the static compliances have been used to calculate the frequencies
and periods of the CW and ICW reported in Table 2, whereas the
diurnal compliances have been used to calculate those of the RFCN
and PFCN. The numerical values for all other parameters entering
matrix M are taken as those in Table 1 of Mathews et al. (1991b)
for PREM. The eigenvectors of the free modes of the ELASTIC1
and FULL models are presented in Table 3. To focus on the effects
introduced by elastic deformations involved with a tilted inner core,
we have set K ICB and K CMB to zero in all four models.

A comparison between the periods of the modes for the ELAS-
TIC1 and ELASTIC2 models reveals that the corrections to matrix
M introduced by the revised expression of "̃s makes very little
difference when elastic deformations associated with a tilted inner
core are not included. When they are (FULL model), the periods
of the CW, RFCN and PFCN remain similar, but the period of the
ICW is significantly different. The basic nature of the ICW remains
unchanged: to first order, it is still a simple precession of ñs (see
the eigenvector in Table 3), though there are changes in the relative
amplitude of the rotation variables. We note that the eigenvectors
of the other modes are also slightly modified. The compliances S ε1,
S ε2 and Sp

24 are the most important contributions to the changes in
the CW, RFCN and PFCN, respectively.

The role of elastic deformations in the free modes can be fur-
ther understood with the help of simple algebraic expressions that
closely approximate their frequencies. These were first developed
by Mathews et al. (1991a); with the inclusion of elastic effects
associated with the inner core tilt, the approximate frequencies are

σcw = A
Am

(e − κ) , (38)

σrfcn = −1 −
(

1 + A f

Am

) (
e f − β

)
, (39)

σpfcn = −1 +
(

1 + As

Am

) [
α2

(
es + ν + Sg

34

)]
, (40)

σicw = (1 − α2)(es + Sg
34 + S p

34) . (41)

The frequencies and periods of each mode based on these approxi-
mations is also given in Table 2 (APPROX). From these expressions,
it is clear that it is the rotation-induced elastic deformations through
the compliances κ , β and ν that are responsible for modifying the
frequencies of the CW, PFCN and RFCN between the RIGID and
ELASTIC models. The ICW is not influenced by rotation-induced
elastic deformations; its period is unchanged between the RIGID
and ELASTIC models, as was found by Rochester & Crossley

(2009). The difference in the frequency of the ICW between the
FULL and ELASTIC models is almost entirely a consequence of
elastic deformations taking place within the inner core as a re-
sult of its tilt through the compliances Sg

34 and Sp
34. Setting Sg

14 =
Sp

i4 = Sg
24 = Sp

24 = 0 and also all of the parameters S εi to 0 results in
differences smaller than 0.1 per cent in the frequency of the modes.

The parameters Sg
34 and Sp

34 are both negative; so, their combined
effect in (41) is to reduce the frequency of the ICW. The approximate
expression for the ICW is now similar to that of the CW: both involve
a factor that contains a dynamic ellipticity reduced by a compliance.
Since Sp

34 ( Sg
34, elastic deformations in the ICW are predominantly

caused by the internal pressure gradient that develops as a result of
the misalignment between the oblate inner core and its rotation
vector. Based on (41), the period of the ICW is increased by a factor
(1− k̃s

ε)−1 = 1.126, where we have defined k̃s
ε = −(Sg

34 + Sp
34)/es =

0.1117. This corresponds to an increase from 2410 to 2715 solar
days. This is similar to the results of Rochester & Crossley (2009):
they find ICW periods of 2764, 2749 or 2732 days, depending on
whether the fluid core is treated as an incompressible, compressible
or neutrally stratified fluid, respectively. Based on their ICW periods
for an incompressible and compressible fluid core when assuming
a rigid inner core, respectively, 2428 and 2414 days, the inclusion
of elastic deformations in the work of Rochester & Crossley (2009)
results in an increase by a factor 1.139.

The slight difference with the factor 1.126 we have found, may
be explained, in parts, by different parameter values. More likely,
they are caused by a difference in modelling approach. In the angu-
lar momentum approach adopted in the present study, the rotation
vector is assumed uniform within each region. Similarly, although
variations with radius are taken into account in the calculation of the
compliances, their values represent an integrated average of elastic
deformations distributed equally within a given region. Adopting
these approximations allows to investigate the free nutations with
a simple set of equations, though at the price of introducing er-
rors, which can be significant if departures from uniform rotation
within a region are important. In contrast, in the Lagrangian for-
mulation used by Rochester & Crossley (2009), rotation and elastic
deformations are allowed to vary radially. The fact that we have re-
covered a similar ICW period signifies that the departures from uni-
form rotation within each region are small, though not completely
negligible.

Elastic deformations as a result of a tilted inner core also result in
a lengthening of the period of the PFCN (see eq. 40). However, con-
trary to the ICW, only those caused by gravitational forces through
the compliance Sg

34 play a role. This is because the rotation vec-
tor and geometric figure axis of the inner core remain essentially
in alignment, as can be verified by the eigenvector of the PFCN
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in Table 3. With no misalignment between surfaces of constant
density and centrifugal potential, there is no internal ‘pressure’
torque and no contribution from Sp

34. Since Sg
34 ) ν, elastic de-

formations induced by a tilted inner core only contribute to a very
small change in the period of the PFCN, an increase from 475.5
solar days (ELASTIC1 model) to 478.6 solar days (FULL model).

The PFCN period that we have found is slightly longer than
473.9 sidereal days (472.6 solar days), the value found in the study
of Rogister (2001) based on a Lagrangian approach. In this latter
study, it is clearly shown that the total motion in the PFCN involves
important departures from uniform rotation in the fluid core, an
aspect that cannot be captured by our angular momentum approach.
Since the amplitude of the motion within the fluid core in the PFCN
is only a small fraction of the motion of the inner core (see Table 3),
the assumption of uniform rotation within each region that we adopt
in our study does not lead to large differences in the computed PFCN
period. Undoubtedly though, the differences that remain between
our value of the PFCN period and that computed by Rogister (2001),
are caused by departures from uniform rotation.

Finally, we note that the changes in the matrix M also bring
small changes in the results of the study of Dumberry (2008). In
this study, predictions of the decadal changes in gravity resulting
from time-dependent variations in inner core tilt were presented.
The historical variations in inner core tilt were inferred directly
from the observed decadal polar motion, according to two different
scenarios. In the second of these, the inner core tilt results from
a torque applied by the fluid core at the ICB. The relationship
between the polar motion m̃ and the tilt angle of the inner core
ñs is obtained by solving (6) with this applied torque on the right-
hand side; this relationship is thus dependent on the elements of M.
Elastic deformations accompanying a tilted inner core were included
in the definitions of c̃3, c̃f

3 and c̃s
3, but the appropriate changes in "̃s,

as done here in (21), were not. When the elements of the matrix M
are changed according to (28)–(37), the approximate relationship
between m̃ and ñs for slow variations (eq. 61 of Dumberry 2008)
must be changed to

ñs ≈ − A(e − κ)

Asesα3
[
αg − k̃ε −

(
1 + αg

)
k̃s

ε

] m̃ , (42)

where k̃ε = 0.9736. With this correction, the relationship be-
tween the polar motion and gravity (eq. 62 of Dumberry (2008))
becomes

m̃ =
√

5
3

Ma2
e [αg − k̃ε −

(
1 + αg

)
k̃s

ε]

A(e − κ)(1 + k̃ε)
(2C21 + i2S21) , (43)

where 2C 21 and 2S21 are Stokes coefficients of gravitational po-
tential and M is the mass of the Earth. The factor difference between
this new expression and the equivalent expression for the first sce-
nario (eq. 52 of Dumberry 2008) is then changed from −1.63 to
−2.32, and the predicted gravity signal shown by the dashed-lines in
Fig. 4 of Dumberry (2008) should have a slightly larger amplitude.
Besides these relatively small changes, none of the conclusions in
the study of Dumberry (2008) are altered.

4 D I S C U S S I O N A N D C O N C LU S I O N

Elastic deformations in the whole Earth in response to a tilted inner
core do not affect the periods of the CW, the RFCN and the PFCN.
However, the period of the ICW is changed significantly, principally
by elastic deformations taking place within the inner core. The mis-
alignment of the geometric figure of the inner core with surfaces of

constant gravitational potential and with surfaces of constant cen-
trifugal potential are both sources of elastic deformations, though
the latter of these two contributions is the most important. We find
that based on an elastic, oceanless and dissipationless earth model
corresponding to PREM, the predicted period for the ICW is now
2715 solar days or 7.4 yr, a lengthening by 12.6 per cent from its
period of 2410 solar days computed by Mathews et al. (1991b), and
in agreement with the recent prediction by Rochester & Crossley
(2009).

Several factors not considered in our study can influence the ICW.
First, the dynamic ellipticities e, ef and es that we have used are
based on the assumption that the Earth is in hydrostatic equilibrium.
Non-equilibrium processes such as mantle convection contribute to
small deviations in their values. Indeed, the observed period of the
RFCN, inferred through its resonance with the forced nutations,
is approximately −430 solar days (Herring et al. 1986; Mathews
et al. 2002), shorter than the prediction of −456 days found in
Table 2. This is usually attributed to a non-equilibrium modification
of ef (e.g. from 0.002548 to 0.0002665, Mathews et al. 1991b),
corresponding to a change of approximately 500 m in the elliptical
shape of the CMB at the equator (Gwinn et al. 1986; Mathews
et al. 2002). Since the period of the ICW depends on es, we can
expect that non-equilibrium processes similarly affect the period of
the ICW. For a change in es in similar proportion as the change in
ef suggested by Mathews et al. (1991b), the ICW period would be
shortenned to 2581 solar days.

The second factor is the effect of surface tractions at the ICB. The
observed period of the PFCN, also inferred through its resonance
with the forced nutations, is approximately a factor 2 longer than the
theoretical estimate of ∼475 d in Table 2. Since the PFCN involves a
differential rotation at the ICB, non-zero surface tractions can affect
this mode significantly and possibly explain the difference between
the observed and predicted period. The effect of surface tractions
are modelled through the coupling constant K ICB, modifying the
frequency of the PFCN to (Mathews et al. 2002)

σpfcn = −1 +
(

1 + As

Am

) (
α2

(
es + ν + Sg

34

)
− K ICB

)
. (44)

A value of Re [KICB] = (1.11 ± 0.10) × 10−3 has been reported
by Mathews et al. (2002) in order to match the period of the PFCN
of ∼1025 solar days. A more recent estimate by Koot et al. (2008)
gives a slightly lower value of Re[KICB] = (1.00 ± 0.16) × 10−3 (and
thus a period of the PFCN closer to ∼915 days). Surface tractions
at the CMB, through the coupling parameter K CMB play a similar
(though less dramatic) role in the period of the RFCN (Mathews
et al. 2002).

However, surface tractions are not likely to affect the period
of the ICW greatly. This is because, unlike the PFCN, the torque
sustaining the wobble is not from a differential rotation at the ICB
but is instead distributed over the volume of the inner core. If we
include surface tractions in the matrix M as prescribed in Buffett
(1992) and Mathews et al. (2002), the approximate frequency of the
ICW is modified to

σicw = (1 − α2)(es + Sg
34 + Sp

34)
(1 + K ICB)

. (45)

For Re[KICB] of the order of 10−3, this would involve a lengthening
of the ICW period of at most a couple of days. The influence of
surface tractions on a precessing tilted inner core alone (i.e. no
differential rotation at the ICB) were not considered in Mathews
et al. (2002); these may not affect the period of the ICW greatly but
may be effective at attenuating the wobble motion.
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A third factor that can alter the theoretical estimate of the pe-
riod of the ICW, and potentially the most important, is the effect of
anelastic deformations. The elastic moduli from which our elastic
compliances are calculated (those of PREM) are appropriate for a
timescale of deformation of 1 s. If anelastic deformations are im-
portant, their values should depend on the frequency of the imposed
forcing. For instance, it is well known that the discrepancy between
the predicted period of the CW based on an elastic, oceanless Earth
(∼400 solar days) and its observed period of ∼433 solar days is
caused by ocean tides (increasing the CW period from ∼400 to
∼425 d) and mantle anelasticity (responsible for the remaining dis-
crepancy of ∼8 to 10 days) (e.g. Smith & Dahlen 1981). Anelastic
deformations within the inner core should similarly lengthen the
period of the ICW. A proper prediction is difficult without a priori
knowledge of the elastic properties of the inner core at a timescale
of several years. As an order of magnitude estimate, for an increase
of the compliances Sg

34 and Sp
34 by 5 per cent, identical to the rel-

ative change of in the compliance κ required to explain a 10 day
change in the CW, the ICW period would be lengthened to 2732
solar days, a relatively small increase. However, anelastic defor-
mations inside the inner core over a timescale of several years are
likely more important than those in the mantle over a 14 months
timescale. Indeed, geodynamic models of the seismically observed
inner core superrotation suggest that viscous deformations within
the inner core may take place with a typical timescale of the order
of a few years or less (Buffett 1997; Dumberry 2007). Therefore,
we expect that anelastic deformations should lengthen the period
of the ICW to a value larger than the above crude estimate of 2732
solar days.

An observation of the ICW would provide an important constraint
on the combined parameters that govern its frequency, including the
ellipticity of the ICB and elastic properties of the inner core. An
attempt by Guo et al. (2005) to extract the ICW from polar motion
data did not prove successful, though their search was focused on
a signal with a period of 6.6 yr. As we saw here, confirming the
results Rochester & Crossley (2009), a more appropriate period for
the ICW may be closer to 7.5 yr. If the dynamic ellipticity of the
inner core departs from equilibrium in a similar proportion to that of
the fluid core we expect a slight decrease in its period. Conversely, if
anelastic effects are important, we expect the period of the wobble to
be slightly longer, though the associated dissipation in the amplitude
of the wobble would also decrease the chance of its detection.
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