Trigonometry Exploration 1

Use the triangles provided for you and the two new ones that you created to fill out the charts below. You will need to use a protractor to measure the angles.

Chart 1

Triangle ABC	Triangle DEF	Triangle GHI	
< A	< D	< G	
< B	< E	< H	
< C	< F	<1	
Side a	Side d	Side g	
Side b	Side e	Side h	
Side c	Side f	Side i	

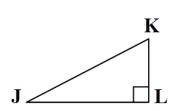
How do the side-lengths of triangles DEF and GHI compare to those of triangle ABC?

How do the angles of triangles DEF and GHI compare to those of triangle ABC?

<u>Chart 2</u> Calculate the following:

Ratio	Fraction	Decimal	Percentage
a/c			
b/c			
a/b			

What do you notice about the results found in these charts?


Ratio	Fraction	Decimal	Percentage
d/f			
e/f			
d/e			

How would you explain these results to a classmate?

Ratio	Fraction	Decimal	Percentage
g/i			
h/i			
g/h			

Compare your answers with a classmate.

If I created another triangle and labelled it JKL (see diagram below) and this triangle was a different size but exactly the same shape as ABC, what would the the following ratios be?

