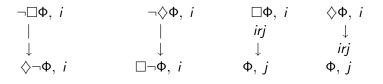
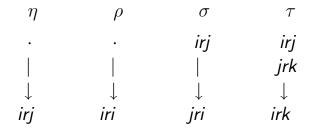
The Basic Modal Rules (for Normal Systems)

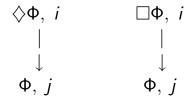


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rules for (Some) Normal Modal Logics Stronger than K (KD=K η , KT=K ρ , KTB=K $\rho\sigma$, S₄=KT4=K $\rho\tau$)



Special Rules for S₅ (=KT5 =KTB4 & others, Kv)



(As before, the *j* that is introduced by the \diamondsuit -rule must be new; the *j* used by the \Box -rule typically is not – you infer Φ in the various *j*-worlds that you already have in the tableaux.)

Rules for the Non-Normal Systems that Priest considers: N, S₂ (=N ρ), S₃ (=N $\rho\tau$), S_{3.5} (=N $\rho\sigma\tau$)

The basic system is N, which is sort of like K being the basic normal system.

The various normal rules $-\rho, \sigma, \tau$ – remain the same as before. Rules for negated modal formulas ($\neg\Box\Phi$, *i* and $\neg\Diamond\Phi$, *i* remain the same as in the normal systems, and the $\Box\Phi$, *i* rule works the same.

The only difference is in the $\Diamond \Phi$, *i* rule, and that difference is reflected *only* with regards to the status of the world *i*. The world *i* must be a *normal* world. We tell whether *i* is a normal world by looking at the branch that contains $\Diamond \Phi$, *i*. If i = 0, then *i* is normal; furthermore, if on that branch there is a formula $\Box \Psi$, *i*, then *i* must be normal. (i.e., if there is *any* \Box -formula that is supposed to be true at *i*, then *i* is normal).

Problems in Non-Normal Modal Logics: Which of these are Valid in What Systems?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\models (p \dashv q) \dashv (\neg q \dashv \neg p)
\Box \neg p \models \Box \neg (p \land q)
\models \Box p \supset \Box \Box p
\models \Box p \dashv \Box D
\models \Box (p \dashv p)
\models \Box (p \lor p)
\models \Box (p \lor \neg p)
\models \Diamond \Diamond p
\models \Box \Box p \dashv (\Box q \dashv \Box \Box q)$$