462

Notre Dame Journal of Formal Logic
Volume 31, Number 2, Spring 1990

Post’s Functional Completeness Theorem

FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN*

Abstract The paper provides a new proof, in a style accessible to modern
logicians and teachers of elementary logic, of Post’s Functional Complete-
ness Theorem. Post’s Theorem states the necessary and sufficient conditions
for an arbitrary set of (2-valued) truth functional connectives to be expres-
sively complete, that is, to be able to express every (2-valued) truth function
or truth table. The theorem is stated in terms of five properties that an ar-
bitrary connective may have, and claims that a set of connectives is expres-
sively complete iff for each of the five properties there is a connective that
lacks that property.

Everyone knows the technique whereby, given an arbitrary (2-valued) truth
table, one can construct a conjunctive (or disjunctive) normal form formula (us-
ing only connectives from {v,A,~}) which has exactly that truth table. This
proves that the set of connectives {v,A,~} is functionally complete: any (2-
valued) truth table can be constructed from them. Everyone also knows the defi-
nitions of A in terms of {v,~} and of v in terms of {A,~}. This shows that {A,~}
and {v,~] are also functionally complete sets of connectives. Everyone also
knows that the sheffer stroke functions, T and |, are each functionally complete.
Most everyone knows that {—,F} is functionally complete and that {—,v} is
functionally complete (F is the constant-false truth function, v is “exclusive or”).
Some people, having worked through Church ([1], p. 131f.), even know that
{[1,T,F} is functionally complete ([] is the ternary connective of “conditional
disjunction”: [p,q,r] means “if g, then p else r”’). However, what is not gen-
erally known is why these things are so. What is it about these particular sets of
connectives that makes them functionally complete while (say) {<,~} is not func-
tionally complete?

*Thanks are due to Errol Martin, Graham Priest, and an anonymous referee for discus-
sions and help with some of the proofs.

Received November 14, 1988, revised January 3, 1989

COMPLETENESS 463

The answer to this is due to Post [6], according to most authorities (see, e.g.,
Church [1], p. 131, note 206, and Mukhopadhyay [5], p. 13). However, the
proof, if one there be in this work, is given in a style not easily recognized as such
by modern logicians. Part of the reason for this is the baroque notation used —
a confusing adaptation of the already confusing notation of Jevons [3]. Another
part of the reason has to do with the discursive nature of this work, and the fact
that Post seems to be simultaneously pursuing several different topics. As
remarked above, few logicians know the result despite the fact that it would be
an invaluable aid in teaching elementary formal logic and is quite interesting in
its own right. The result is reported and proved in various works in computer
switching theory (e.g., Mukhopadhyay [5], p. 13f., repeated in Klir [4], pp. 54~
61, and in Friedman and Menon [2], pp. 108-112), but the results have not found
their way into the general logic literature. In any case, the proofs in these works
generally proceed by consideration of “wiring circuits” and depend on proper-
ties of such diagrams. Post’s original method is algebraic in nature, describing
classes of formulas which can be produced by a given set of generators, and the
relations that hold among such classes. We here wish to present a proof of the
theorem couched in terminology familiar to modern logicians (and teachers of
elementary logic) and which proceeds in a simple manner that all such persons
can understand. Some of the names given to various classes of connectives (and
the systems of logic generated therefrom) have become accepted (in the switching
theory literature), but others have died out. For historical interest we mention
Post’s usage below. This paper then is a description and proof of Post’s Func-
tional Completeness Theorem written with teachers of elementary logic in mind.

Post’s theorem is in terms of properties of truth functions, each one of which
is such that the proposed set of connectives must contain a connective that lacks
that property, if the set is to be functionally complete. We start with a descrip-
tion of these properties. But first, as an aid to one of the later descriptions, we
define the notion of a dummy position in a truth function. Intuitively it is a po-
sition of the truth function which never makes a difference in evaluating a for-
mula. For example, suppose we make up the truth function (p-gq) thus:

Note that this function “really” is just the negation of g—the value of p in no
way ever makes a difference, so the first position is “dummy”. More formally,
if f is a truth function of » variables and

S X BF X, X)) = (XX T X, X)

for all the possible values of the other variables, then the ith position is a dummy
position for f. That is, it never matters what the value of the ith position is.
Now let us define five classes of possible truth functions.

Type 1: Functions closed under T. [Post: “B-functions”. The set generated by
B-functions is his C,.] For an arbitrary truth function f, f is closed un-

464 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

Type 2:

Type 3:

Type 4:

der T iff f(T,T,...T) =T. A function is not closed under T therefore
if it has an F in the first row of its truth table (in the standard order-
ing of rows).

Functions closed under F. [Post: “y-functions”. The set generated by -
functions is his C;.] For an arbitrary truth function f, f is closed un-
der Fiff f(F,F,...F) =F. A function is not closed under F therefore
if it has a T in the last row of its truth table (in the standard ordering
of rows).

Counting functions. [Post: “Alternating functions”. The set of all func-
tions generated by alternating functions is his L;.] A counting function
is one in which every nondummy position always makes a difference.
That is, given any row of a truth table, if you ignore values of dummy
positions, a change in the value of one argument (holding all others con-
stant) will create a change in the value of the function. So: each posi-
tion of such a function either never makes a difference (“dummy
position”) or else it a/ways makes a difference. This means that count-
ability can be easily tested in the following way. First, delete dummy po-
sitions. Then a function is counting if one of the following two
situations occurs: (a) in every row in which the value of the function is
T, there are an even number of T’s assigned to the arguments of the
function, and in every row in which the function is F, there are an odd
number of T’s assigned to the arguments of the function; or (b) in ev-
ery row in which the value of the function is T, there are an odd num-
ber of T’s assigned to the arguments of the function, and in every row
in which the function is F, there are an even number of T’s assigned to
the arguments of the function. That this is an adequate test can be seen
by considering a simple example. We ignore any dummy positions. Now
suppose f(T,T,T) = T; then since a change in an argument must result
in a change of the function value, f(T,T,F) = F, and applying this fact
again we get f(F,T,F) = T, and so on. Here everywhere the value of the
function is T there are an odd number of T’s in the arguments and
everywhere the function is F there are an even number of T’s. Had the
value of f(T,T,T) =F, the reverse would have been the case. We call
the ones that return T exactly when an even number of arguments are
T “even functions”; those that return T when exactly an odd number
of arguments are T are called “odd functions”. A function f is non-
counting iff, after deleting dummy positions, there is at least one n-tuple
where f(x1,...,T,...,x,) =f(xq,...,F,...x,). Also note that since
this ith position of the noncounting function is not a dummy position,
there is also at least one sequence of truth values {y,...,»,) such that
ST 0,0 #f(t, ... F, ... ,y,). Note finally that the con-
stant functions T and F are each counting functions, since they do not
have any nondummy variables.

Monotonic functions. [Post: “A:a functions”. The set generated by A:a
functions is his A;.] A monotonic function is one in which the value
of the function “follows” the values of the arguments. That is, if f is
an n-adic monotonic function and {xy,...,x,) and {y;,...,¥,) are
sequences of truth values, then: if (x,,...,x,;) < ()y,...,y,) then

Type 5:

COMPLETENESS 465

f(x1y...5%,) = f(>15...,¥n). To make sense of this we note first that
we consider F < T, and so what f(xy,...,X,) <f(»1,...,¥,) rules out
is that f(x,,...,x,) =T while f(y,, ..., ¥,) =F. A sequence of truth
values {x,,...,X,) is < to another sequence {y;,...,¥,) just in case
whenever x; = T then y; = T. Pictorially we can represent this as a lat-
tice with the sequence (T,T,...,T) at the top and (F,F, ... F) at the
bottom. For example, the 3-tuple lattice is:

(T,T,F) (T,F,T) (F,T,T)
(T,F,F) (F,T,F) (F,F,T)

A sequence is < another just in case the former is below the latter along
lines in the lattice. A function f is monotonic iff applying it succes-
sively to tuples downwards along the lines never results in having a F
followed by a T. Or: is nonmonotonic iff there is at least one place
where f(xq,...,Xx,) =T while f(y,...,y,) =Fand yet {y,...,y;)
is above {x,...,xX,) in the lattice.

Self-dual functions. [Post: “Self-dual functions”. The set generated by
self-dual functions is his D3.] A truth function f is self-dual if its read-
ing from top to bottom is the same as the complement of reading it
from bottom to top (in the standard ordering of values for arguments).
So, for example, if f yields the values FTFFTTFT (reading from top to
bottom of its truth table) we can reverse the order to get TFTTFFTF
and complement this to get FTFFTTFT. This is the same as what we
started with, and so f is self-dual. The function whose truth table reads
FFTFTTFT is not self-dual. That is, a self-dual function obeys the
following condition: for every row of the truth table {x,,...,x,),
flxgy.o.00x,) = —f(—Xxy,...,—X,), where —x; is the opposite truth
value from x;. A function is not self-dual just in case there is a row of
the truth table {y,...,»,) such that f(y,...,¥,) =f(=Y1,...,—Vn).

One can easily verify the following statements of what types the usual con-
nectives are:

A,V: classes 1,2,4 v: classes 2,3
—: class 1 Ty: classes 1,3,4
~: classes 3,5 F,: classes 2,3,4
«: classes 1,3 =: classes 1,2,3,4,5

[1: classes 1,2

466 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

T, is any k-place truth function whose value is always T; Fy is any k-place truth
function whose value is always F: [] is conditional disjunction; and = is the (mo-
nadic) identity function (=p has the value that p has). One might also note that
1 and | do not fall into any of the five classes.

Having defined these classes of truth functions, we are in a position to state:

Theorem (Post’s Functional Completeness Theorem) A set X of truth func-
tions (of 2-valued logic) is functionally complete if and only if, for each of the
five defined classes, there is a member of X which does not belong to that class.

We will prove the theorem by proving it in each direction. First we will prove that
if we are given five (2-valued) truth functions which do not fall into the defined
categories, we can generate all truth functions. So we start with

f1(x1,...,x;) —which is not T-preserving
J2(x1,...,x;) —which is not F-preserving
f3(xy,...,Xx;) —which is not monotonic
Ja(xy,...,X,)—which is not counting
fs(xi,...,X,)—which is not self-dual.

These functions may be of the same or different adicity, and indeed may even
be the same functions, if some function simultaneously is not T-preserving and
not self-dual (say).

Lemma 1 Given f1, f>, and f3 we can define ~.

Proof: Let us use fT, f2, f5 to indicate the truth function just like fi, />, f5 €x-
cept that all the arguments x;, are replaced by the same sentence letter.

First note that f7(p) and f5(p) have these partial truth tables, since f; and
/> are not T-preserving and not F-preserving, respectively

p | fip) fi(p)

T F ?
F ? T

If either f7(F) = T or f5(T) = F, then we have negation immediately. So sup-
pose the contrary. In this case f(p) is the constant F and f5(p) is the con-
stant T.

Now, since f; is nonmonotonic, there must be at least one pair of k-tuples
(that is, rows of the function’s truth table) {x;,...,x;) and {yy,...,yx) where
all corresponding values of x; and y; agree (are both T or both F) except for one,
call it x; and y;, and in that case x; = T and y; = F but f3(xy,...,Xj,...,X) =
F while f3(yy,...,¥j,...yx) = T. Using these two rows of the original f3’s truth
table (there may be more than just the one pair of rows, in which case we just
pick one of the pairs), we will construct a new function f3 using a new variable
p. Recall that by assumption we have the constant functions T and F at our dis-
posal. If in this pair of rows x; (and hence y;) both take the value F, then replace
that occurrence of x; by F, and if they both take the value T replace it by T. In
the only place where they differ, replace it by the new variable p. So our new

COMPLETENESS 467

function looks like f3(zy,...,z;,...,2%) where all the 2’s except z; are either T
or F depending on whether in the rows we were looking at that position was T
or F in both. Since there is really only one variable in f3, let us call this func-
tion f3(p). What is the value of f3 (T)? Well,

f;(T) =f3'(Zl,...,T,...,Zk) =f3(x1,...,xj,. . .,xk) =F.
And the value of f3 (F)?

S3(F) =fi(z1,.. ., Foooszi) = fs(Vise - 5 Yjs o) =T
Therefore our defined f5(p) is ~p.
Lemma 2 Given f1, fa, f3, and fs, we can define both T and F.

Proof: Since by Lemma 1 we know we can define ~, all we need to do is to de-
fine one of these constants and the other will be definable as its negation. Con-
sider f5(xy,...,X,). Since it is not self-dual we know there is a row of the truth
table {zy,...,z,) such that both

fS(zl»' --azn) =)
fS(_Zl’~~-9_zn) =y

(where y is either T or F and —z; is T iff z; is F and is F otherwise). Now, in the
former row of the truth table (the one without the — marks), if z; is T replace
it by the propositional variable p and if it is F replace it by ~p (we are guaran-
teed the existence of ~ by Lemma 1). This results in the (one-place) function
f3(p). Note that if p is T, this is just the f5(z;,. . .,2,) described above which
has value y; but since f5 is not self-dual, this is also f5(—z1,...,—2z,) which it-
self has value y. However f5(—zy,...,—2,) is by definition f3(p) when p is F.
So f5(p) = f$(—p), and therefore f5(p) is a one-place constant. Whichever one
it is, we generate the other by use of ~.

Lemma 3 Given fi, f», f3, f4, and fs, we can define a two-place function
with an odd number of T’s in its truth table.

Proof: By Lemmas 1 and 2 we can define T, F, and ~, and so will use them in
constructing the relevant two-place function out of f4. Since f; is not counting
we know that there are (at least) two n-tuples {z,,...,z,> and {yy,...,¥,) such
that both

f4(zl" v o9&y ’zn) =f4(z19' AR A PR ,Zn)
f4(yl,' v Vis e °ayn) ¢f4(J’1,- ey Vis e ',yn)-

The former is known since f; is not counting and therefore a change in an ar-
gument does not always cause a change in the value of the function; the latter
is known because the ith position is not a dummy position and therefore there
is a pair of rows where a change in the ith argument value causes a change in the
function’s value.

Let us now look at each of the values in the positions of the two n-tuples
Zhs- v sZise-sZpy@and Vi, .y Vise v s Yt

468 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

(a) In all cases k except the ith position (the one picked out above):
(i) If z = y, = F, replace it with F.
(ii) If z; =y, =T, replace it with T.
(iii) If z, = F and y, = T, replace it with the variable p.
@iv) If z; = T and y, = F, replace it with ~p.
(b) In the ith position, replace it with the variable q.

This new function has two propositional variables, p and g. Call it f5(p,q).
NOte that f:(F,F) =f4(Zl; ... szi—lsF)zi+1’ e 9zn) =f4(zl’ e azi—laTszH-l,

..»2p) = f4(F,T). But also note that f3(T,F) = f4(y1,...,Yi—t,FsYix1s- - s In)
which is not equal to f4(¥1,. - ., Vi1, TsVit1s- - - s Vn) =Sf4(T,T). Thus we have:

Si(T,T) # fi(T,F)
Si(E,F) = f{(F,T)
and hence there must be an odd number of T’s in f§(p, g)’s truth table.

Theorem 1 Given f1, >, 3, f4, and fs, all (2-valued) truth functions can be
generated.

Proof: By Lemma 3 we can generate some two-place truth function with an odd
number of T’s. It must be one of the following, since these are all there are:

p gl 2 3 4 5 6 7 8
T TIT TTTTFTFTFF
T FIT FFTFTTF
F T|T FTFFTFT
F FIF FTTTTF F.

Note that columns 1-4 are just the negations of columns 5-8 respectively. Since
Lemma 1 guarantees that we have negation, anything we can generate from a
member of 1-4 could also have been generated from the corresponding member
of 5-8. Therefore we will look only at what is the case assuming that Lemma 3
has given us one of 1-4.

Now, column 1 is just v, which is well known to be functionally complete
in the presence of ~. (And therefore column 5 is also functionally complete in
the presence of ~.) Column 2 is just &, which again is obviously functionally
complete in the presence of ~. (And therefore column 6 is also functionally com-
plete in the presence of ~.) Column 3 is just — which is also functionally com-
plete in the presence of ~. (And hence column 7 is functionally complete in the
presence of ~.) The only truth function which is not obviously functionally com-
plete is column 4, (p « q), “reverse implication”. But using the definition:
(PV q) =ger (P < ~q) we can define v, which is obviously functionally com-
plete with ~. (And therefore the function in column 8 is also functionally com-
plete in the presence of ~.)

Therefore, no matter which truth function was generated from Lemma 3, we
can use the ~ guaranteed by Lemma 1 to form a functionally complete set of con-
nectives.

We now move on to prove the main theorem in the opposite direction: That
if we have a functionally complete set of connectives, then for each of the five

COMPLETENESS 469

classes there must be a connective which is not in that class. Our strategy will be
to show that each of the five properties “inherits upwards” in the sense that if
all available connectives have that property then any compound made up from
them must have it also. Having shown this, we present a truth table which has
none of the five properties, and conclude that if, for each property, there weren’t
a connective which didn’t have that property, then this truth table could not be
described. Therefore, for each of the five properties, there must be a connective
which does not have that property.

We prove the “upwards inheritedness” of each of these properties by (strong)
induction on the depth of embedding of the number of truth functions within
a given truth function. A simple sentence letter has depth of embedding O;
F(81(X1s o5 Xi)y « o« 5 8n(X1,...,X)) has depth of embedding (1 + max(depth
of embedding of g;)). As remarked above, the monadic identity function be-
longs to each of the five classes; therefore a sentence letter (i.e., a truth func-
tion with depth of embedding 0) manifests each of the properties. This will form
the basis clause of each induction, and will not be mentioned below. The point
is that the five properties were defined by what is true of a truth function’s im-
mediate constituents, and we would like to show that we could use instead the
properties of the individual atomic sentence letters making them up. Thus, for
example, a function f being closed under T was defined in terms of whether it
generated a T when its immediate constituents were all T. We would like instead
to know: If all members of the set X are truth functions closed under T, will ev-
ery function definable from members of X also be closed under T? The way to
answer this is to show that if f is definable using only members of X, then if
all atomic sentences are T so is the value of f. Since f can be arbitrarily complex
(but finite) we use induction on the depth of embedding of the sentence letters
within f.

Lemma 4 Being closed under T is upwards inherited.

Proof: We suppose we are given a class of truth functions all of whose mem-
bers are closed under T. For induction, we assume that every function made from
this class with depth of embedding <n will yield a T when all sentence param-
eters in it are assigned T. We prove that any function from this class with depth
of embedding n will also yield a T when sentence parameters in it are all T.
Any function with depth of embedding n will look like f(g;(xy,...,X;),
., &m(X1,...,Xt)), where the greatest depth of embedding of any of the g;’s
is (n — 1). Therefore, by the inductive hypothesis, each g; yields T if all the sen-
tence parameters are T. But since f itself is closed under T, then it too must yield
T in this circumstance. By induction, then, any truth function made up from
functions closed under T will itself be closed under T.

Lemma 5 Being closed under F is upwards inherited.
Proof: Exactly like that of Lemma 4, replacing T by F.
Lemma 6 Being monotonic is upwards inherited.

Proof: We suppose we are given a class of truth functions all of whose mem-
bers are monotonic. For induction assume that every function g with depth

470 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

of embedding <» made from this class has the property: if {(y;,...,¥») and
(Z1,..-,2my are rows of a truth table (= assignments of values to the sentence
parameters), then if (y,...,¥m> < (Z1,...,Zm), then g(y1,...,Ym) <
2(215---,2m). We now prove that this holds of all functions from this class with
depth of embedding n.

Any function f with depth of embedding » looks like f(g; (x1,...,X;),...,
&p(x1,...,xx)), where the greatest depth of embedding of any g; is (n — 1).
Now, suppose there are g distinct variables in this function, and that we have
two rows of a truth table (y;,...,¥,) and {zy,...,24) such that (y;,...,y,) <
{z1,...,24>. Since by induction each of the g;’s has the property that g;(yi, ...,
Yq) < 8i(21,...,24), and since f itself is monotonic, it follows that f(g; (i,
e ayj)a .o ’gp(yl’ oo ’yk)) sf‘(gl(“zla see ’zj)a s agp(zl: “ee 9zk))' SO, by in-
duction, any truth function made up from monotonic functions is itself mono-
tonic.

Lemma 7 Being self-dual is upwards inherited.

Proof: We assume we are given a class of truth functions all of whose members
are self-dual. For induction, assume that every function g with depth of em-
bedding <n made from this class is self-dual, i.e., has the property: g(—x;,
ey —Xg) = —g(xy,...,X), for assignments x; ...x; of T and F to sentence
parameters, where ‘—’ applied to T yields F and applied to F yields T. We now
prove that all functions from this class with depth of embedding »n have the
property.

Any function with depth of embedding #» made from this class will look like
S(&1(X1,...,%), . .., 8,(X1,...,X)), where the g;’s maximum depth of embed-
ding is (n — 1) and so the induction hypothesis holds for them. Assume that there
are q distinct sentence parameters in this function, and consider any arbitrary row
of the truth table {y,,...,y,>. Then we get the following pair of equalities:

S (=15 s=Y)s oo s 8 (=V1s o o= Vi)
=f(=81(V1s---3Yj)s---»—8p(V1,...,¥%)) (by induction hypothesis)
= —f(&1 (D1, > -8 (Y1,. .., 2¢)) (fis a self-dual function).

Therefore, the function applied to the negations of the assignments to the sen-
tence parameters is identical to the negation of the function applied to the un-
negated assignments to the sentence parameters. And this holds of an arbitrary
row of the truth table, and so for all. Thus by induction we conclude that self-
duality is upwards inherited.

We would now like to show that being a counting function is upwards in-
herited. In the strict sense (which is what we will prove) this is true: If g, (p;,
..,p;) and g,(qy, . ..,qx) are counting functions (which means that a change
in value of any nondummy variable in them will result in a change in value of
the function), and if f is similarly a counting function, then the composition
S(&i(p1,...,P;),8(q1,. .. ,qx)) will be a counting function in the sense that any
change in value of a nondummy variable in this formula will result in a change
in value of the function. But it does not follows that f(g;(p1,.-.,P;),&2(q1,
..»qx)) will be a counting function in the sense of having its truth value deter-

COMPLETENESS 471

mined by whether or not there are an even or odd number of T’s assigned to
P1s---»>Djs q1,- - -,k For in the process of composition some of these variables
might become dummy. Some examples: (a) p and g are themselves counting func-
tions (that is, the identity function on each of p and ¢ is a counting function),
and < is a counting function. Yet p & (p < ¢) is not, in this last sense, a count-
ing function, since when both of p and g are T this formula gives us a T, and
when p is F and g is T we also get a T. (b) Similarly, ~ is a counting function,
yet ~(peq) < (per)yields T when p=r=T and ¢ =F, and also when r =
T and p = ¢ = F. The problem in these kinds of cases is that p has become a
dummy variable in the composed function, even though it is not dummy in the
subfunctions which make it up, and even though the positions in the composed
function are not dummy positions.

We therefore will take a somewhat circuituous route here, discussing what
happens with regard to the “dummy-ness” of variables when a counting func-
tion is embedded as an argument in another counting function. We first define
what an n-adic counting function is.

Definition f™(p1,...,pn) is an n-adic counting function iff none of posi-
tions 1...n are dummy positions, there are no variables in common among
Dis- - >DPn, and either the value of f"(p,,...,p,) = T exactly when an even
number of the p;’s are T (an even n-adic counting function) or the value of
f™(pi1,...,pn) = F exactly when an even number of the p;’s are T (an odd n-
adic counting function).

Sublemma a For each adicity n there are exactly two counting functions of
that adicity: an even one (called ") and an odd one (called o").

Proof: This lemma is obvious, following from the definition of an n-adic count-
ing function. Note that if # is even and if the value of f(p;,...,p,) =T when
all of py,...,p, are T, then this is e”. And if the value of f(p,,...,p,) =Fin
this case, then it is o”. If n is odd, exactly the reverse is true. (Changing one
value among py,...,p, must change the function’s value; changing yet another
value returns the function’s value to the original one, etc. Thus there can be only
two counting functions of any given adicity.)

Sublemma b The result of substituting an m-adic counting function into an
n-adic counting function at the ith position is identical to one of the following
counting functions of adicity (n + m — 1):

(1) en(pl’”- 9em(qla-~- :qm)a--- spn)=0n+m_1(P1,--- sq1s--- ,qm’-'-)pn)
(2) e"(le--,Om((h,---,Qm),---,Pn)=€"+m_1(p1s---,(Ih-n,qm,uupn)
(3) on(pl’--"em(QI""’qm)a---’pn)=en+m—l(pl"'-’ql’“‘:qm’“',pn)
(4) 0"(1’1’“-,Om(fha---,Qm),---’pn)=0"+m_1(P1,--~,QI,-'-,Qm:-uapn)-

Proof: We are concerned to show that the two functions on either side of the =
sign yield the same output for identical inputs. Since the functions are all count-
ing functions, we need only consider cases where there are an odd or even num-
ber of T’s among the p;’s and g;’s. Still, this will yield a number of cases. We
prove the relevant cases for the first identity. The remaining identities are proved
similarly. Recall that by the definition of an n-adic counting function all of the
p,’s and g;’s are distinct.

472 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

Equation #1:

e (D1s- - €™ (q1s- - s@m)s--sPn) =0 D1y G1se s Amse - Dn)-

First we note that the adicity of the right hand side (rhs) is correct. There are
(n —1) pj’s plus m g;’s.

Case 1: Suppose that an even number of g;’s are T.

a: Suppose that an even number of the p;’s (that is, of all but the
replaced p;) are T. Then, since €™ is an even function, e™(qy,...,
qm) = T. Since there are an even number of p;’s that are T, this
yields an odd number of true arguments for e”, so the left hand side
(Ihs) of the equation is F. As for the rhs of the equation: an even
number of p;’s are T and an even number of gy, ...,q, are T, so an
even number of the arguments are T; therefore the rhs is F.

b: Suppose an odd number of the p;’s are T. Again the embedded
function is T. So now there are an even number of T’s to the e”
function and thus the lhs is T. The rhs has an odd number of T’s (an
even number of g;’s and an odd number of p;’s are T), so the rhs
is T.

Case 2: Suppose that an odd number of g;’s are T.

a: Suppose that an even number of the p;’s (that is, of all but the
replaced p;) are T. Then, since e” is an even function, ¢”(q,,.. .,
qm) = F. Since there are an even number of p;’s that are T, this
yields an even number of true arguments for €”, so the lhs of the
equation is T. As for the rhs of the equation: an even number of p;’s
are T and an odd number of q,...,q,, are T, so an odd number of
the arguments are T; therefore the rhs is T.

b: Suppose an odd number of the p;’s are T. Again the embedded
function is F. So now there are an odd number of T’s to the e” func-
tion and thus the lhs is F. The rhs has an even number of T’s (an odd
number of g;’s and an odd number of p;’s are T), so the rhs is F.

The other three equations are shown to be correct in the same manner.

Sublemma ¢ Suppose that f"(pi, .. .,Pn) is a counting function, and that
P1,- - - Dy are sentence letters. If an even number, m, of p,,...,py are in fact
one and the same sentence letter, then that sentence letter is a dummy variable
in f(p1,...,p,) and hence f(p,,...,Dp,) has the same input-output pairings as
"™ qy .. s Qnem)- [q1s...,q9,—m are the remaining sentence letters of
P1,- - - ,Dn after removing the identical p’s. Note that of course f” and /"~ are
either both even or both odd.]

Proof:

Case 1: Suppose f”~" is an even function.
a: Suppose an even number of T’s are given to f"~™ as arguments.
Then the output is T. But if the sentence letter that appeared in the
m different places of f” is assigned T, then all occurrences of it in
S" are T. And together with the even number of T’s among
q1s - - - gy, there are still an even number of T’s, so the output of "
would be T. Had this variable been assigned F, then all occurrences

COMPLETENESS 473

of it in " would be F. And therefore there would be an even num-
ber of T’s as arguments to ", namely n — m, and so f"(py,...,Dn)
would have been T.

b: Suppose an odd number of T’s are given to f”~ as arguments.
Then the output is F. But if the variable which appeared m times in
S had been assigned T, then all occurrences of it in f” would be T.
And together with the odd number of T’s among gy, .. .,g,_ there
are still an odd number of T’s, so the output of f” would have been
F. If this variable had been assigned F, then all occurrences of it in
f" would be F. And therefore there would have been an odd num-
ber of T’s as arguments to f”, and so f"(p,,...,p,) would have
been F.

Case 2: Suppose "~ is an odd function.

a: Suppose an even number of T’s are given to "~ as arguments.
Then the output is F. But if the sentence letter that appeared in the
m different places of f” is assigned T, then all occurrences of it in
f" are T. And together with the even number of T’s among g, ...,
g, there are still an even number of T’s, so the output of f” would
be F. Had this variable been assigned F, then all occurrences of it in
f" would be F. And therefore there would be an even number of T’s
as arguments to f”, namely n — m, and so f*(p;,...,p,) would
have been F.

b: Suppose an odd number of T’s are given to f”~" as arguments.
Then the output is T. But if the variable which appeared m times in
f" had been assigned T, then all occurrences of it in f” would be T.
And together with the odd number of T’s among g, .. .,q,_, there
are still an odd number of T’s, so the output of f” would have been
T. If this variable had been assigned F, then all occurrences of it in
f" would be F. And therefore there would have been an odd num-
ber of T’s as arguments to f”, and so f"(py,...,p,) would have
been T.

Sublemma 3 Suppose that f"(py,...,P,) is a counting function, and that
Dis- - ., Dy are sentence letters. If an odd number, m, of p,, . ..,p, are in fact
one and the same sentence letter, then that sentence letter is not a dummy vari-
able in f(pi,...,Dn), but this function is equivalent to one in which only one
occurrence of this variable appears: f(p.,...,p,) has the same input-output
pairings as f*™(qy,...,@u_m+1). [Here qi,...,gn_m+1 are the remaining
sentence letters of py, .. .,p, after removing all but one of the m identical p’s.
Note that of course f” and f”~™*! are either both even or both odd.]

Proof: Same as for Sublemma (c), with necessary changes being made for m’s
being odd.

Lemma 8 Being counting is upwards inherited.

Proof: Consider an arbitrary composition of counting functions: f(g;,(y; . ..
Yi)s+ 8 (¥1...Y%)). Sublemmas (c) and (d) tell us that the most deeply
embedded of these counting functions (those with only sentence letters as argu-
ments) are equivalent to certain other counting functions (depending on how

474 FRANCIS JEFFRY PELLETIER and NORMAN M. MARTIN

many of the sentence letters are identical). Replace these deeply embedded func-
tions by their equivalents; this does not change the value of f, but none of these
new most deeply embedded functions has any dummy variables. Repeated ap-
plication of Sublemma (b) now says that this new representation of the function
is equivalent to a form in which there is no occurrence of these most deeply
embedded functions. We can now repeat Sublemmas (c) and (d) to this result (if
there are now repetitions of the same sentence letter), and so on. Since the orig-
inal formula has only a finite depth of embedding, it follows by induction that
the original composition of counting functions is equivalent to a counting func-
tion applied only to sentence letters. Therefore the original f(g;(»1...7/),...,
&p(¥1-..¥%)) is a counting formula and thus the property is upwards inherited.

Examples Let us consider two simple examples. The formula p < (p © q)
is composed entirely of counting functions. Now, « is the even counting func-
tion of adicity 2, e2. Our formula can therefore be represented as e?(p,e?(p, q)).
Neither Sublemma (c) nor Sublemma (d) applies to the embedded function, so
we apply Sublemma (b); embedding an even function within an even function.
This yields 0**2~1(p,p,q), that is, 0*(p,p,q). Sublemma (c) now applies to
this, yielding o' (g). Since the odd function of adicity 1 is the identity function,
this can be represented as g. It can be confirmed that the original formula is
equivalent to g. Second, consider ~ (p <> q) « (p © r). « is again €%, and ~ is
e'; so the formula can be represented as e?(e'(e*(p, ¢)),e*(p,r)). Sublemmas (c)
and (d) do not apply to any of the most deeply embedded formulas, so we will
consider e?(p, g) being embedded within e! and apply Sublemma (b). This yields
202" (p,q),e%(p, 1)), i.e., €2(0%(p,q),e*(p,r)). Once again we apply Sub-
lemma (b), this time to 0 embedded within €2, which yields e2*>~1(p,q,e2(p,r)),
i.e., e3(p,q,e*(p,r)). Now we apply Sublemma (b) to the remaining embedding,
yielding 0**?~(p,q,p,r), i.e., 0*(p,q,p,r). Sublemma (c) says that this is
equivalent to 02(g, r). Since the odd counting function of adicity 2 is “exclusive
disjunction”, v, this formula is therefore claimed to be equivalent to (g v r).
One can verify that the original formula is indeed equivalent to this.

Theorem 2 Given a set of connectives X, if one of the five properties (listed
above) is manifested by every member of X, then X is not functionally complete.

Proof: Consider the following truth table:

r q|f(pq)
T T| F
T F| F
F T| F
F F| T

(a) Since it has a F in the first row, it is not closed under T. Hence by
Lemma 4 this truth function cannot be described by any set of connec-
tives all of whose members are closed under T.

(b) Since it has a T in the last row, it is not closed under F. Hence by Lem-
ma 5 this truth function cannot be described by any set of connectives
all of whose members are closed under F.

COMPLETENESS 475

(c) Since (for example) the first row of the function is F and the last row is
T, the function is not monotonic. So by Lemma 6 this function cannot
be described by any set of connectives all of whose members are mono-
tonic.

(d) Note that rows 2 and 3 demonstrate that the function is not self-dual.
Therefore by Lemma 7 this function cannot be described by any set of
connectives all of whose members are self-dual.

(e) Inspection will show that there are no dummy variables in this function;
furthermore, the first and second rows have only one change to the truth
assignment of the arguments but yet have the same function value.
Therefore it is not counting, and hence by Lemma 8 this truth function
cannot be described by any formula all of whose connectives are counting
functions.

From Theorems 1 and 2, Post’s Functional Completeness theorem follows
immediately.

REFERENCES
[1] Church, A., Introduction to Mathematical Logic, Princeton University Press,
Princeton, NJ, 1956.

[2] Friedman, A. and P. Menon, Theory and Design of Switching Circuits, Computer
Science Press, Woodland Hills, CA, 1975.

[3] Jevons, W., Pure Logic, London, 1864.

[4] Klir, G., Introduction to the Methodology of Switching Circuits, van Nostrand, New
York, 1972.

[S] Mukhopadhay, A., “Complete sets of logic primitives,” pp. 1-26 in Recent Devel-
opments in Switching Theory, edited by A. Mukhopadhay, Academic Press, New
York, 1971.

[6] Post, E., The Two-Valued Iterative Systems of Mathematical Logic, Annals of
Mathematics Series #5, Princeton University Press, Princeton, NJ, 1941.

Francis Jeffry Pelletier Norman M. Martin
Department of Philosophy Department of Philosophy
University of Alberta University of Texas
Edmonton, Alberta Austin, Texas 78712

Canada T6G 2E5

