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1. Some uses of automated theorem proving.

Automated theorem proving has been seen as
having a wide variety of applications to issues of
computational interest. Perhaps one of the first uses
that comes to mind is program verification: an
automated theorem prover would mechanically prove
that a given program satisfies some specification, or
produces the same output as some another program, or
can be executed within certain time and space bounds.
To do this, there must be a formal program semantics
given for the programming language, and an automated
program verifier reduces the question of whether the
program has such-and-such a property to the question of
whether so-and-so formulas are theorems of the formal
semantics [Sterling & Bundy 1982, Dijkstra &
Scholten 1990]. Along these same lines, one might
wish to present a formal statement of an algorithm and
have an automated theorem prover generate explicit code
in a programming language; that is, develop an auto-
matic programmer {Manna & Walinger 1977]. Or even
more ambitiously, one might wish only to specify the
relations that are to hold between the input and output
variables, and to have an automated theorem prover try
to generate a proof of (Vx)(Px—(3y)Qxy)....where x
ranges over input variables to the program and P is the

predicate that the input is expected to satisfy, y ranges

over output variables and Q specifies the relation
between each input variable and its associated output
variable after execution of the desired program. Given
sufficient other axioms so that this formula is provable,
the proof of the formula can be converted into a
program by rather well-understood mechanisms. This is
program generation [Gumb 1989].

Another group of uses to which automated
theorem proving is put contains question/answer
systems. Not only can theorem provers provide answers
to yes/no questions posed to a database, but long ago it
was shown how to use theorem proving techniques to
extract answers from a declarative database [Green
1969a, 1969b]). And a slight gencralization of the
method can be used to answer ‘how’-questions that
require the specification of a sequence of actions to
perform a task [Lehnart 1977]. And this last use has
suggested how to use automated theorem proving to
automatically specify a “plan”, and this [STRIPS/
ABSTRIPS] robotic planning methodology is seen to
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apply widely to all types of mechanical generation of a
sequence of actions which will accomplish a goal which
was stated at a very high level of genérality [Fikes &
Nilsson 1971, Fikes et al 1972, Sacerdoti 1974].

A third area of application of some ideas taken
from automated theorem proving is diagnosis and
knowledge-based expert systems generally). In this area
there is generally a "background theory" which gives a
group of typical (and overlapping) causes for an
observed even or symptom. Having generated a number
of premises from which the symptom could be deduced,
the inference engine then has the task of "paring down"
the number of possible explanations of that fact by
requesting further information which would be con-
sistent with only some of these possible hypotheses.
[Sec Reiter 1987 and Shapiro 1981, for example.)

Finally there are the more “cognitive science”
applications of automated theorem proving. One area
has been the use of automated theorem provers as an aid
in mathematics (and other fields). The idea is that the
person will guide the computer, making overall
strategic suggestions and allowing the computer to
organize and prove lower level portions of the proofs
[Guard er al 1969, Bundy 1983]. In the realm of
language understanding (by humans), it has been
claimed that people engage in {(sub-conscious) theorem
proving in order to draw inferences from “what is said”
10 “what is meant”[Grice 1975, Hirst 1987]; that they
must draw inferences (again un- or sub-consciously) on
a very wide range of topics so as to be able to know (for
example) what events occur before which events in a
tale that is narrated to them; and that they draw a wide
variety of inferences based on “world knowledge”
together with what is said in order to be able just to
minimally understand what the speaker intends {Moore
& Paris 1991, Allen 1991, Schubert & Hwang 1990].
Therefore, any computer natural language understanding
system must be able to invoke a theorem prover in
order merely to attain minimal competence. Of course,
once one has this sort of information, we would perhaps
be able to construct or generate a text [Hovy I988].
Furthermore, since rational reasoning has long been
seen as what sets people apart from other animals,
investigations into computerized theorem proving has
been sometimes thought to be relevant to understanding
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human psychology [Johnson-Laird & Byme 1991
Chap. 9, Rips 1984, Boden 1977].

We thus see that automated theorem proving has
classically been viewed as having a wide range of
applications: from program verification and generation,
through question/answer systems and robotic planning
systems, through man-machine cooperative systems,
and finally to the investigation of human cognition and
natral language understanding systems.

- 2. Why a natural language *“back end” is
desirable.

Such uses of automated theorem proving would be
a great boon if they were successfully completed, but
the fact of the matter is that they are currently only
marginally acceptable; and even if a scientific
breakthrough in the field were to happen, it is surely the
case that the general population (or indeed, even the
scientific commumity) would justifiably be wary of any
such claim, and would demand some ability to
investigate whether any particular use was in fact
correct. We are all familiar with such challenges as
“Would you trust a never-tested train ronting program if
it were automatically verified?” or “Do you believe this
nuclear power plant to be safe on the basis of this
automated theorem prover’s proof that its circuitry has
the predicate ‘fail-safe’ truly applied to it And we all
recall the reaction of the computer science community
to the claim that the space lasers of the Strategic
Defense Initiative would be guided by a program too
" large to be comprehended by a person but which could
be automatically verified.

But we needn’t go to such extremes to find cases
where we would like the option of having humans be
able to inspect and understand the proofs produced by an
automated theorem prover. Certainly in the setting of a
mathematician interacting with an automated theorem
prover, it is quite certain that there should be an ability
for the mathematician to be able to inspect the “low
level” portion of any proof that the automated theorem
prover assarts is successful. In the area of program gen-
eration, if a theorem prover alleges that its program is
able to perform some task, it would be the height of
folly not to inspect the background proof. And surely
one quite often wants to be able to know how a
question-answer system arrived at its answer, especially
in those cases where it is using quite a lot of theorem
proving power in order to generate the answer. If we are
truly interested in people’s cognitive abilities, we are
not really interested in the mere assertion that a theorem
prover might make to the effect that such-and-so form-
ula is a theorem, but rather we are interested in how the
formula was proved to be a theorem and whether this
corresponds to how people do similar proofs.

‘When a natural language understanding system is
employed to represent the “underlying meaning” of a
story or other text, we certainly would like to have the
ability to inspect for ourselves whether we think the

system has hit upon the correct understanding of the
text as we know it. Along these same lines, it has long
been recognized that knowledge-based systems require a
"back end" so that the user can understand why the
system came to the diagnosis it did. (Much work has
been done in this area. Different styles of explanation
have been proposed, and different purposes to use the
explanations have been identified. For important
highlights of this area se¢ Davis 1980, Swartout 1983,
Clancey 1983, Hasling ez al 1984, Moore & Saartout
1989, Moore & Paris 1991. Many of the ideas we
apply to formal-logic proofs can be found in a
somewhat less formal setting in these works. Indeed,
the main difference seems to be the domain under
consideration: we are directly concerned with an expli-
citly-given proof, rather than with a more compre-
hensive theory that might incorporate things that look

‘like parts of proofs.)

Finally, when a robotic planning system is used
there is a special problem in that the actions might have
unforeseen side-effects. Consider the various nightmare
scenarios mentioned in the science fiction literature: a
robotic planning system is asked to solve the
overcrowding situation in some major city, and its
proof mechanism reasons that if there were fewer people
in the area then there would be less overcrowding. So it
makes the city very unpleasant to live in -- perhaps it
even explodes a nuclear device in the region. Or
consider a medical planning system which is asked to
formulate a plan to save a seriously injured person with
a very rare blood type. The system reasons that if this
person is to be saved there must be at least four quarts
of this rare blood available; and so it searches-its
databanks to find a suitable donor and arranges to have
this one donor supply the entire four quarts. This might
make the initial plan succeed, but it would have a very

- unpleasant (lo the donor) side effect -- and this might

not be a relevant consideration to the computerized
planning system. Not only are there these science-
fiction nightmares, but also it seems that the trouble
would raise its head even more insideously when the
side effects are extremely subtle. Arguably, the true
difficulty with any AI program is the recognition of
subtle unwanted behavior rather than exaggerated
unwanted behavior. In any case, though, we would like
1o be able to inspect the proof which generated the plan.

What is the best way for us to inspect a robotic
plan (or any other application of automated theorem
provers)? This of course depends upon the particular
area under investigation and upon the background of the
inspector. But for the types of examples mentioned
above we would like to be able to investigate the
background proof that is generated. We would like to be
able to see whether it really does prove the hidden
sublemma; or whether it will result in the destruction of
the city, or in the death of the donor; and in other
applications we might merely be curious as to how the
system came up with rhat answer to our query.
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if such a formula is already in the proof, one can “break
it down™ to get at the component parts of the formula;
and if it is not in the proof but (for whatever reason) we
desire it to be in the proof, there is a method for
introducing the formula.

In any of the various natural deduction systems,
these above-mentioned ways of operating with a
formula amount to saying: “if formulas @y, ®3,.... are
already in the proof, then we are entitled to add formula
¥ 10 the proof”. Such operations are called rules of
inference. More strikingly, and the feature that many
think of as defining natural deduction, is another way of
operating with formulas, subproof generation, This is
to put the main portion of the proof on “temporary
hold” while attempting to show that some other
formula is provable (provable based on what has already
gone on in the proof so far). When one starts such a
subproof one is allowed to make a temporary

assumption (the particular assumption being determined -

by what formula one is trying to prove), and is allowed
to use this assumption together with earlier parts of the
proof to try to prove the subproof’s goal formula.
When this subproof call succeeds, then the formula
which was to be proved becomes a part of the outside,
main proof; but the portion of the proof which justified
our claim that this subgoal is provable is no longer
available to the main proof. (The reason for this is that
this portion depends upon the assumption which was
made, and that assumption is no longer valid.) Since the
main conclusion to be proved is itself considered a
subproblem, the problem is solved when this main
subgoal is proved.

The method discussed in the later sections (and the
examples we present) concerns restating natural
deduction proofs as a natural language argument.
Therefore we need to give enough information about the
natural deduction system we employ sc that one can
follow the natural language explanations. The
underlying logic system used here is that of Kalish,
Montague, Mar [1980], which has been implemented as
a pregram called THINKER [Pelletier 1982, 1987). Ina
natural deduction system there are many Rules of
Inference; the retention of the “natural form™ requires
that there needs to be Rules describing what can be done
with each different type of formula. Writing a natural
deduction automated theorem proving system is in large
measure a matter of organizing the application of all
these Rules so as to efficiently generate proofs. There
are 25 Rules of Inference used in THINKER for the full
first-order logic with identity. To give their flavor but
to conserve space, we mention only five of them. Each
of these rules has some preconditions in terms of
formulas that must already be in the proof and must be
antecedent (a technical term explained below). These
preconditions are stated to the left of the ‘==>". When
these preconditions are met, the formula to the right of
the ‘==>" may be introduced inte the proof (along with
an annotation --a justification in terms of the Rule of

Inference employed and the locations [line numbers in
the proof] of the preconditions).

RULE NAME

(@-¥),d=>¥ MP (Modus Ponens)
(P—-YV), ¥ => O MT (Modus Tollens)

Voyd => @~ UI (Universal Instantiation)
O ==> Qx)d EG (Existential Generalization)
do,o=p => B LL (Leibniz’s Law)

In the quantifier rules, &~ is the result of replacing all
free occurrences of o in @ (that is, the ones that are
bound by the quantifier phrase in (V)@ or Ja)d)
with some term (constant or variable) in such a way
that if it is a variable it does not become bound by any
other quantifier in ®°. Furthermore, in the case of EI,
the new term must be a variable, and this variable must
be entirely new o the proof as thus far constructed.

An argument in general has premises and a
conclusion. Premises can be entered into a proof at any
time (with the annotation PREM). What makes natural
deduction systems distinctive is the idea of subproofs --
“smaller” or “simpler” subproblems which, if proved,
can be “put together” to constitute a proof of the main
problem. Quite obviously, a major factor in natural
deduction theorem proving {whether automated or not)
is the timely selection of appropriate subproofs to be
attempted. In Kalish, Montague, Mar, one indicates
that one is about to attempt a subproof of formula & by
writing “show @™, (This is called “setting a (sub)goal”,
and the line in the proof which records this is called a
show-line). Since the main conclusion to be proved, C,
is itself considered a subproblem, the first line of a
proof will be “show C”. One is allowed to write “show
@™ for any @ at any further stage of the proof.
Intuitively, one is always “working on” the most
recently set subgoal -- although one can of course set a
further sub-subgoal (and then “work on™ that newly-set
sub-subgoal). The formula following the “show” on one
of these lings which initiates a subproof is not really a
part of the proof proper (until it has been proved), The
technical term for this is that it is not antecedent, and
the effect of being not antecedent is that this formula is
unavailable for use in the Rules of Inference.

Setting a subgoal allows one to make an
assumption. The form of the assumption depends on the
form of the formula whose proof is being attempted,
and these assumptions can only be made on the line
immediately following a show line. (They are annotated
ASSUME). There are three types of assumptions
allowed:

show (D—'F) show —® show @
¢ ASSUME & ASSUME 0 ASSUME

The final concept required here is that of (sub)proof
completion -- the conditions under which a (sub)goal
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For the majority of these uses, it is insufficient
that a printout of the generated, background proof be
available. Perhaps such a document would be useful to
some logician or to the creator of the system; but what
is desired is that the immediate user be able to know the
“reasoning” or “logic behind” the answer. And given
that such users are unlikely to be formal logicians with
a computer background, a detailed formal proof will be
of very limited use. Rather, we want something which
captures all the background reasoning involved in the
application, but which presents this information to the
user at the user’s own level of understanding and in a
language that the user can understand. The most

plausible candidate for a representation of the proof .

(which is being used by the system) would be one that
is presented in natural language. This would obviate
the need for any special understanding of the problem on
the part of the user. Of course, the user must still be
able to follow the presentation of the proof; but we
presume that some things would be much more striking
when presented in natural language. For example, were
the robotic planning system to say that the traffic
problem would be lessened if there were fewer
automobiles on the roads, and that this could be
achieved if there were fewer roads, and that could be
achieved by placing two tonnes of dynamite at every
intersection, even the most naive user would recognize
that this solution was not something that they had in
mind when the problem was presented to the system.
This is the sort of work alluded to earlier that is carried
out in the explanation literature of knowledge-based
expert systems, when the goal is to produce believable
justifications for system behavior--and often this invol-
ves tracing the “reasoning” being used by the system.

It therefore seems that the ability to re-present a
proof which was generated by an automated theorem
prover into a natural language representation would be
useful.Or at least, having this ability would alleviate
some of the qualms that people have in trusting
automated proof generation. (Of course, it would have
to do the re-presentation in an explicit and careful
manner. Unless they were convinced of the presence of
this feature no one would trust it even if the explanation
were carried out in natural language.) We call this
ability of a computational system to “explain itself” or
to “justify itself” by means of a natural language
representation of the internal proof generated and used, a
natural language back end. (It is not a front end, since
it is not for use in communicating with the system so
as to set goals or tasks, but rather it is used by the
system in explaining what it has concluded.)

As we can see from the variety of different uses to
which such a back end might be put, there oughtto be a
variety of different styles in which the natural-language
presentation of the proof can be given. The system to

ral language versions of formal logical proofs can be
mechanically generated from a well-established proof
system. The other direction is our theoretical discussion

‘about the various dimensions of explanation style that

be described in the following pages is interesting in at .

least two distinct directions. One is merely the
demonstration that (reasonably) easy-to-understand natu-
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can be relevant to the natural language presentation of a
proof. Due t0 space limitations we will not-be able to
demonstrate in any detail the first of these two
directions. We present only one example at the end. For
a series of detailed examples, including the output of the
EXPLAIN program applied to a wide variety of proofs,
see Edgar [1991]. For the present, more theoretically-
oriented paper, our discussion of the dimensions of
explanation style can be found in Section 4. We think

‘that these dimensions will show up in any natural

langnage back end to a formal logic engine. Each of the
dimensions corresponds to certain interests that some
users of such a system will have, and therefore each of
the dimensions will be required if the system is 0 be of
any use. Of course, some of this discussion has already
taken place within the expert systems literature, where
there is interest in constructing explanations of this
knowledge-based system behavior. The construction of a
natural language back end for logic proofs seems to
have a small literature: Chester 1976, Felty & Hager
1988, Huang 1989, McDonald 1985,

The rest of this paper is an investigation into the
topic of natural language explanations of proofs that
were automatically generated.

3. Natural deductior theorem proving.

Although resolution-based inference is perhaps the
industry standard in automated theorem proving, there
have always been systems that employed a different
format. Even in the late 50’s and early 60’s there were
different systems: the Logic Theorist [Newell ez al
1957] produced proofs using an axiomatic method, and
the actual output of the program would be considered
legitimate axiomatic proofs; Wang’s systems [Wang
1960a,b] employed a Genizen-sequent proof strategy
[Genizen 1934/35]; Beth’s systems [Beth 1958]
employed his semantic tableaux method; and Prawitz’s
systems [Prawitz 1960, Prawitz et al .1960] seem to
employ a natural deduction format.

There are many differences between a natural
deduction style of logic and a resolution style. One
difference that immediately strikes anyone is that natural
deduction does not convert formulas to any normal form
{c.g., negated-conclusion clause form) but instead works
with them in their original, “natural” form. (But this is
not such an important difference since resolution-like
strategies can and have been developed which also do
resolution on “natural form” formulas. And in any case,
sequent proof strategies and semantic tableaux methods
both operate on “natural form” formulas). More
important is the method of developing a proof in natural
deduction systems. The fundamental idea is that for each
type of (“natural”} connective there are two ways (o
operate with a formula that has it as a main connective:




can be considered to have been proved. The following is
a summary of all the ways to complete a subproof. We
suppose that the last portion of the proof so far
constructed has the form:

show &
X1

Xs

Then we can change this part to (“complete the
subproof”, alternatively called “box and cancel”):

* show @
X1

| ..
| Xn

if (a) There are no “uncancelled shows™ amongst
X1...Xp, and (b) one of the following situations hold:
(b1) ® occurs “unboxed” amongst X1...Xp, (b2) both
© and —8 occur “unboxed™ amongst X...Xy, for some
formula @, (b3) ® has the form (¥1—'¥2) and ¥2
occurs “unboxed” amongst Xj...Xn, or (b4) @ has the
form (Vo)®a, o occurs “unboxed” amongst Xj...
Xy, and & is not free in any line antecedent to this
show line. :

When this happens, the lines Xj...Xy are said to
be boxed (indicatéd by the vertical scope line) and are
thus no longer antecedent (in the technical sense}), while
the “show™ is said to be cancelled (indicated by the *-
sign) and the formula ¢ is now antecedent (in the
technical sense). The boxed lines X)... Xy, constitute a
proof of &, but having been used in establishing this
goal, they are no longer valid to use (i.e., no longer
antecedent in the technical sense) -- the reason being
that they may have “depended upon” an assumption
made in the course of that subproof and this assumption
is no longer in force now that the goal has been
proved.!

A proof of & from a set of premises T is a
sequence of lines of formulas and scope lines
constructed in accordance with the above, in which ¢
occurs unboxed and in which there are no uncancelled

1 Two things here should be noted. First, when a subgoal
is proved, all lines after the show line are boxed -- even
if the "reason for the cancelling” is not the lasi line of
the proof as thus far constructed. (This is required for
soundness.) Secondly, although it is common and
expected that the method of proof completion will
"match” the type of assumption made -- e.g., assuming
the antecedent of a conditional should allow one fo
cancel because of generating the consequent of the
conditional -- this is not required.
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show lines. We present here four example proofs to
show what proofs look like in the Kalish, Montague,
Mar system:

1. *show (VX)(Fx—Gx)((Vy)Fy—(v2)Gz)

2, (VxXFx—Gx) ASSUME
3. *show (Vy)Fy — (V2)Gz

4. (Vy)Fy ASSUME
5. l *show(Vz)Gz

6. | f Fz—Gz 2,Ul

7. ! | Fz 4,U1

8. E ! Gz 6,7MP

1. *show (Pv——P)

2, —~(P v ——P) ASSUME
3. *show —P

4. | P ASSUME
5. | ®v—P) 4,ADD

6. l —1(P v —r-ﬁP) .2,R

7. —P 3,DN

8. ® v —P) 7,ADD

1. *show (P-Q)—(—Q->—F)

2. P-Q) ASSUME
3. *show (—Q->—P)

4. -0 ASSUME
5. -P 24 MT
1. *show (Faaa & a=b)—Fbab

2. | Faza & a=b ASSUME
3. | Faza 2.8

4. | a=b 2,8

5. i Fbab 2,3LL

There are many more technical details, both about the
Kalish, Montague, Mar system and about THINKER's
adaptation of this system, which could be mentioned.
However, space limitations prevent us from getting into
these exciting details. Interesied readers can consult
Pelletier [1982, 19871

4. Explaining proofs: dynamics, represent-
ations, levels, and methods.

There are four fundamental dimcnstons along
which different types of natural language explanations
of natural deduction proofs (of the sort outlined in the
preceding section) might vary. These four dimensions
seem 1o us to be independent of one another, and the
different varieties of one dimension can pretty freely co-
occur with any variety from any of the other
dimensions.

The first dimension is a measure of how much one
is to explain the strategy behind the construction of the
proof vs. a simple recounting of the proof as it stands.
That is, this dimension has a dynamic account of the
proof construction process at one end and a static
account of the generated proof at the other end. (This is
akin to the idea of explaining the “control structure” of




a knowledge based expert system’s behavior. In that
literature, it is strongly argued that we want a
“dynamic™ explanation of the behavior. See Swartout
1983, Clancey 1983, Moore & Paris 1991, Moore &
Swartout 1989). This dimension is particularly salient
in natural deduction systems, and especially when it
comes to setting subgoals. At the dynamic side of this
dimension we would expect the natural language
explanation to say such things as “At this stage of the
proof we set the subgoal on line 6 because we notice
that line 4 has such-and-such property and if we could
prove line 6 then we could do so-and-so o lines 4 and
6. Furthermore it looks like we probably can prove line
& because of blah-blah....” At the static side of this
dimension we would see such explanations as “At line 6
such-and-so subgoal was set and was proved by blah-
blah. Once linc 6 was proved it was used with line 4 to
do so-and-so.”

The thrust of our program is to the static side of
this dimension. The task that we set ourselves was to
examine the proof which was produced by THINKER,
and to give an explanation of it Our natural langnage
generator had no private information about THINKER s
internal proof development strategies, and therefore was
not in a position to try to give a dynamic account of
proof construction. To add this ability, we would have
to somehow be able to read off of the final proof the
actual heuristic THINKER used at a particular point;
and then it would need to have some insight into
THINKER’s author’s mind in order to see why this or
that heuristic was thought to be useful at the particular
place in the proof where it was employed. As the
writers mentioned earlier in this section are at pains to
point out, this is probably the most imporiant aspect of
an explanation. It is, however, onc that was not
implemented here.

A second dimension has to do with the
representation of the lowest level items being explained.
In the sample proofs of the last section, the item on any
line was an uninterpreted formula -- a string of
symbols. And an explanation could simply refer to
these formulas: “ *q” then would follow from our earlier
‘p—>q’ and ‘p* .” We call this erd of the second
dimension “the abstract representation”. However, the
connectives in these formulas are usvally taken to
represent certain well-known English phrases: ‘if—-then’,
‘or’, ‘and’, ‘for every’, and the like. It might
sometimes be useful to state the various formulas on
lines of a proof as asserting these kinds of relationships
amongst (uoninterpreted) predicates. In such an
explanation we might find: “The ‘q’ on line 15 is
generated because it is the consequent of the conditional
on line 10, and this conditional’s antccedent is on line
4.” Or perhaps we would see “Line 7 says that
something has the property of being both an F and a G,
so on line 12 we will introduce an arbitrary thing -- call
it rg -- and say that it is both F and G.” We call this
position along the present dimension “the representation
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of the connectives.” Finally along this dimension, we
note that quite a few of the applications mentioned in
Section 1 above actually inject a particular meaning
into the abstract predicates that arc found in the
formuias of a proof. That is, although the formal proof
is carried out with just abstract symbols, in the specific
application these predicate symbols have a definite
meaning or representation....they stand for such things
as “clear wraffic off of---" or “drop__on---" and the like.
And it might sometimes be of particular interest --for
example when having a robotic planner explain its
proof-- to have an explanation of the proof-where the
connectives and the predicates are fully represented as
natural language. We call this position on the second
dimension “the representation of predicates™. At this
position on the second dimension we might have
presented to us such proof parts as: “if there is mass
destruction there will be less affic; and if an atomic
bomb explodes over the downtown there will be mass
destruction. I therefore can achieve the top-level goal of
having less traffic by implementing this plan: Drop
atomic bomb on Vancouver.”

The third dimension has t© do with the level at
which an explanation is to take place. One level, the
lowest level, would be to parrot the exact proof: “line
43 follows from lines 39 and 27 by an application of
Modus Ponens™. But one can imagine higher levels of
explanation in which not every detail in the proof will
be explained. For example, in most proofs there are a
few major subgoals which need to be solved in order to
justify or explain the top level goal. So a very high
level of explanation would just refer to them, and would
not further explain how they were generated. Instead,
they are just asserted to be “low-level provable” and
won'’t be explained. More generally, one can imagine
setting a variable that marks the “level of explanation™
and then to have the natural language generator explain
only those lines which are “above” this level. (As a
detail, it might turn out that although certain lines are
themselves above this level, they are used only to
justify a line which is below this level, And therefore
they also would not be mentioned, even though they are
above the level)) Such a higher-level explanation would
give the human an overview of how the proof is done
without “completely” explaining it. But this raises the
question of what we should use as a measure of the
“level”. It is here that one of the advantages of natural
deduction theorem proving comes to the fore; for we can
get a very good approximation to what humans would
mean by this concept when we measure depth of
embedded subgoals. The main goal is the least
embedded; the justifications for this are (usually) at the
first level of embedding, and the justifications for these
are (usvally) at the next level of embedding, etc. A
proof which is explained by having the level set to a
few embeddings truly gives a high-level overview of the
proof.....an “executive summary”, as it were,




The fourth and final dimension along which we
can vary explanations of proofs is what we call the style
of explanation. And by this we mean a dimension
which at one end is “top-down” and at the other end is
“bottom-up”. The middle is taken with various “mixed
explanations”. To explain a proof bottom-up one would
search the proof for lines which do not depend on other
lines of the proof—premises or assumptions, for
example, (But recall that if the third dimension has the
level of explanation set higher, then those lines to be
explained will be ones that are considered not to depend
on other lines.) These are just asserted to be facts or
assumptions, in the explanation. Further lines of the
proof are mentioned only when all the lines they depend
upon have been explained. So this style develops by
explaining simple lines first and then those lines
derivable from simple lines, etc. Top-down explanations
state the main thing to be proved and then to state the
formulas upon which it depends. And this explanation
is carried out recursively until the bottom-level
formulas (assumptions, premises, etc.) are reached.
Having done this for the formulas upon which the top
level goal depends, we then explain how these formulas
generate the top level goal.

Each of these styles of explanation has advaniages
and has disadvantages. One advantage to the bottom-up
style is that the easy-to-understand lines are dealt with
first -- these being the lines which have no further
explanation. And after these are explained, the lines that
are “next hardest™ are mentioned: those that depend on
the just-explained lines. In other words, the proof
explanation goes from simple to complex. But a
disadvaniage to this style of explanation is that the goal
(or a subgoal) which is being explained is not
mentioned at the beginning, and so the reader of the
explanation never knows why something is being cited
or where the proof is going. To help with this problem,
our bottom-up method first states the main goal of the
proof as an introductory sentence at the beginning of the
explanation, for otherwise this main goal would not
appear in the explanation until the final sentence.

One advaniage of the top-down explanation is that
the goal (or subgoal) to be explained is staied at the
beginning of its explanation; and this leads to a much
easier-to-understand, “goal-driven™ explanation. Along
these same lines another reason that these explanations
are easier to follow is that, in the initial portion of the
explanation, the subgoals that the main goal requires are
stated immediately after the main goal. And for
whatever reason, people seem to like this sort of
explanation. But a disadvantage is that the simplest
lines of the proof are not explained uniil the end....and
so the hearer is expected to be able to understand why
certain high-level goals are set without knowing what
their bases are nor whether they are reasonable to expect
a proof of.

Two technical details ought to be mentioned here,
First, in either of these methods it is possible that there

will be redundancy in explanation. For, in a natural
deduction proof, a given line might have more than one
use -- it might be used to justify more than one line.
But we would not wish to burden the listener with two
explanations of the same line. Therefore, we need to
keep track of whether a line has already been explained,
and just remind the hearer of the previons explanation of
that line. Secondly, there is a special problem about the
order of introduction of free variables by existentially
guantified formulas. The restriction in a proof is that
such variables be new to the proof when they are
introduced, and it is only after this introduction that
other formulas (such as universally quantified ones)
should be instantiated to these variables. The point is
that variables introduced from existentially quantified
formulas have to be arbitrary, and that means they
cannot be already in the proof. But the explanation of a
proof does not proceed in the same order as the proof
itself did. If we are doing a top-down explanation then
we are doing some sort of depth-first look at the proof--
and this does not respect the order of lines introduced in
the proof. Therefore, the English explanation might
have the effect of mentioning these “arbitrary variables™
before it is actually explained how they got into the
proof. And this in fact has the effect of making the
proof seem to be invalid when it is really valid. We
therefore introduced a check to see whether any variable
being appealed to in the explanation came from an
existential instantiation which has not”yet been
mentioned. If so, then at that time there is added a side
explanation of this introduction.

As mentioned before, it is possible to combine the
top-down and bottom-up styles. This combination
would explain part of the proof in a top-down fashion
and other parts in a bottom-up fashion. Our

_ implementation of this combined method is to require a
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stipulation by the user for a “major style” and a “minor
style”. The major style is the type of explanation used
to state the high level goals and subgoals of the proof,
while the minor style is used to explain the lower
levels, There is a variable which can be set s0 as to
state when to change from one style to the other (as a
function of the depth of embedding of the subgoal
level). Any show line above that level will be
explained by the main style and anything below that
level will be explained by the minor style. (But keep in
mind that there is also the dimension of “level”, and
that a proof need not be explained “all the way to the
bottom™,) Thus something like “major: top-down;
minor: bottom-up; depth 3” is a style. And this being
s0, it can be a major or minor style. This allows for
(what is admittedly only a curiosity) the change back
and forth of top-down and bottom-up styles as one gets
deeper and deeper into the proof. Combined
explanations try to retain the good points of both the
top-down and the bottom-up styles. If the top level is
explained bottom-up, and then there is a change to top-
down, then the subgoals will be like simple lines in a




proof and will quickly lead to the primary goal. When
top-down is used as the main method, the combined
explanation states the primary goal at the beginning, so
that the reader has a sense of the direction the proof is to
take. For small subproofs the bottom-up method is
advantageous since the simple lines will be explained
first and will quickly lead to the subgoal; but since it is
a short subproof, the reader is not lost because the goal
comes quickly.

5. Summary and Examples,

We have explained some uses of automated
theorem proving and tried to motivate (from the point
of such uses) the idea that there are times at which it
would be desirable to have a natural language
explanation of these proofs. We then explained one
type of proof theory, natural deduction, and showed
what sort of considerations are relevant to explaining
proofs in this theory. We outlined four dimensions
along which explanations of proofs might vary
(independently of one another), and we picked out two
variants along dimension 1 (the dynamic/static
dimension), three variants along dimension 2 (the
representations), and an arbitrarily large number of
variants along both of dimensions 3 (levels of
explanation depth) and dimension 4 (styles of
explanation). If we hold dimension 3 to just two levels
(“explain everything” vs. “cut off explanation at some
point™) and hold dimension 4 to four styles (top-down,
bottom-up, top-down/bottom-up, bottom-up/top-down),
then there are 96 different kinds of explanation under
discussion here. As mentioned, our system does not do
the dynamic explanation, and so we are able to give
examples of only 48 of the possible explanation types.
But space considerations limit us even further. What
follows are a few examples of explanations. The proof
as produced by THINKER is displayed and then some
different kinds of explanations are shown.
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EXPLANATION AT THE LEVEL OF THE CONNECTIVES

The goal of the proof is 1o prove {there is no constant ¥, that gives us {bath 8{y) and

(for every constant x;, we get (P{x;x,) follows from (Plz.c ) is false) and vice versa)))).

Now, let’s suppose (there is 2 conseant ¥, that gives us (8¢} and (for each constant r,. (if .

we have £ {y;.0,) we get (P (x,.r;) is not true) and vice versa)})). We replace v, by & new
constant ry in (both 8¢ry) and {for any constant x.. (we get. £(e,.c,). if and only if we have,
(P, xy) is false)))). We pet (if we have Piryr) we get (P{r,r,) is false) and vice versa)
by substituting r, (or x; in the statemnent {for any consmant z,. {we oL P (i1, if and oaly
if we have, (£(r,.r,) is not mue))). Now, ler's suppase (Pir,r;} is false). As we saw ear
lier (i (P{rys ) is false), then £(rr1)) is Tue. And using the lag: two formulas. since bath
the antweedent and the conditional are true we can derive the consequent of £(r,ry). Ear-
lier in the proof we proved (Ptr,r)) follows from {Pir.r:) is not oue) and viee versa).
From the previous two. we can get (F(r,r;) i5 nos Tue) since one side of the equaliry is
tue. We have generated a contradicton (Périri)) and {(P () is not Tue)) and therefore
we can conclisde thar (there is no constant x; thar gives us (both By and {for any con-
smnth. (we geL A (xy.zy), if and only if we have, (P (z,.x,) is false)}))).

EXPLANATION AT THE LEVEL OF THE PREDICATES

The main goal is to peove it is false that somebody is a barber and he shaves all and
only shase people wha don't shave themselves. Now, let's suppose someone is a barber
and he shaves all and only those people who don’t shave themselves. Let's select some-
body arbitrarily and call him Fred. Fred is a barber and he shaves all and only those peo-
ple who don‘t shave themselves would follow from the fact that somebody does this and
Fred is arbigary. We can get that Fred shaves himself if and only if Fred docsn ™t shave
himself by paricularizing the earfier claim that Fred shaves all and only those people
who don't shave themseives. Now, et’s suppose Fred doesn™t shave himself. It was
proved before thas Fred is shaved by himself follows from Fred doesn’t shave himself.
And from these two we derive that Fred shaves himself because the antecedent being true
implies that the congequent is also true, We proved carlier in the proof that Fred shaves
himself if 2nd ocly i Fred doesn’t shave himself. It follows from these two since one

side is rue and the equaley is rue we can derive the consequent of Fred doesn™ shave
himself. We have geverared a coomadiction (Fred is shaved by bimself) and (Fred
dozsn’t shave himself) and therefore we can conclode thar it s not true that somebody is
2 barber and he skorecs all and oaly those people who don't shave themselves.

A Flow Chart for EXPLAIN

Set parameters (from command line)

If predicate explanation READ lexical file

Remove unused lines from the linked list of the proof

If bottom-up explanation call pick_rule_BU

If top-down explanation call pick_rule_TD

pick_rule_BU

If the current line is the first line state it as the main goal

If current line’s level is the cumrent switching level call
pick_rule_TD with current line and set the current
switching level to the next level where switching is to
take place

If current fine’s level is the cut-off level explain it as
provable

If justification 1 exists call pick_rule_BU with justif.]

If justification 2 exists call pick_rule BU with justif. 2

Call Jine to explain current line’s inference rule

Set current line as explained at time X

pick_rule_TD

If current line's level is the current switching level call
pick_rule_BU with current line and set the current
swilching level to the next level where switching is to
take place

If current line’s level is the cut-off level explain it as
provable

Call line to explain current line’s inference rule

Set current line as explained at time X

BU inference rule functions

Produce the linking phrase (depending on when the
Jjustifications were explained)

Produce the explanations of the formulas to be nsed

Pick an explanation phrase for the inference rule

TD inference rule functions

If the line has been explained previously restate the line
and return

Produce the explanations of the formulas to be used

State the current line as the goal

State the subgoal 1o be proved

Call pick_rule_TD with the justification lines
(optional) Explain how the justifications are combined to
get the goal
Formula Explanation
If to the level of the inference rules return as is
If to the level of the connectives
+ Call fen 1o explain the main connective (if it e.xuts)
+ Explain the left subformula (if it exists)
+ Explain the right subformula (if it exists)
* Pick a connective phrase W combine left and right
explanations :
» If no main conmective return the predicate as is
I to the level of the predicates
* Call fen w explain the main connective (if it exists)
+ If Universal of Existential quantifier
« Make an eniry in the constant list for the variable
with a suitable phrase such as “everybody™ or
“someone”
+ Explain the right subformula
= Explain the left subformula (if it exists)
» Pick a cormective phrase o combine left and right
explanations
+ If no commective call predicate explanation
Predicate explanation
If one argument
+ Should the negative phrase be used? (set by —
connective explanation)
+ Can a pronoun be used?
+ Is the phrase w be plural or singular?
If 2 arguments
* Get the object phrase
* Get the subject phrase
= Check if self referral (i.e.; Fred shaved himself)
= Positive or negative?
* Any pronouns?
* Singular or plural?
+ Active or passive? (randomly chosen)
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