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Introduction: Semantic tableaux are a method for
determining validity of arguments in a certain class of
logics. The methed is perhaps not so well-known to the
antomated theprem proving commumnity as reselutiou,
but it has long been present in the logic community.?
As its name suggests, the method uses semantc facts
about the language in an aftempt to generate a counter-
model for the arsument at hand {or to show that there is
no such counter-model and that the argumeut is
therefore valid). In this, the method bears a strong
similarity to Resolution, but it does not require any
cenversion to a normal form. The method is also
different in being an analyric system: each non-initial
formuola in zny proof is a subformula of some earlier
formula in the proof Natural deduction is not analytic
in this sense, nor is any Resolution method cther than
Unit Resclution:

There are various different formats for stating the
method of semantic tableaux. Participants in this AAAT
Symposium are doubtless familiar with the form given
by Fitting (1988). The method he uses is quite similar
te the method T wish to employ, and there should be no
difficuity in transforming the one into the other. In this
nete, I am interested in extending my method to a
certain class of medal logics. In this extension we will
only consider propositicnal logics — a fact that lends
some considerable simplification to the description of
the tableaux method. (By not needing to describe
quantification rules and their difficult integration into
modal logics. See Garson 1988 for a survey of the
difficulties).

T will first 1ay out the tabieaux method that I prefer,
Iestricting my attention to classical propositional logic.
I then show how it is extended to a certain class of
modal logics, the nommal modal logics. The idea of

1 The method goes back explicitly to Beth (1952,1958),
and has been popularized by such elementary logic
textbooks as Smullyan (1968}, Jeffrey (1968), Bonevac
(1987), Bergmann et a! (1980). As has been noted by
various researchers (e.g. Fittiug 1983:4-6, Fitting 1988:
191), there is a strong analogy between the tableaux
method and Gentzen’s {1934/5) consecution methed,
(Although most people would wish to maintain a
distinction between the two methods.)
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such an extension is not particularly new; it is already
mentioned in Figling (1983, 1988}, although naturally I
believe that the particular medifications I make to the
basic method makes the extension considerably easier to
understand. After developing a method for the basic one
of these logics 1 turn my attention to logics which
contain the B(rowerische) axiom. Of these logics,
Firzing (1983:192; 1988:203) says that the style of
tableaux he presents does not lend itself to logics where
the accessibility relaticn Involves symmetry. And it is
implied that it would be very difficult to construct
reascnable tableaux methods for such logics. I show
that the alteration I make avoids this difficuity and
allows for a semi-analytic tableaux system. After this I
consider modifications to the basic system so as to yield
a tableaux method suitable for systems containing the
G{each) axiom. This axicm is wvnusual in that it
involves embedded modal cperators in both iis
antecedent and its consequent, and this 10 turn raises
interesting challenges for tableanx systems. Once again
we see that a semi-analytic tableaux system will work.

Classical Propositional Semantic Tableaux:
Semaniic tableaux, when done in the method I prefer,
are in fact trees; and the method of making a tableau is
in fact a method of tree construction, Like Resclution,
it is a refutation method; and therefore it starts with a
“negaied conclusion” form of an argument to be tested.
(Unlike Resolutien, there is no further pre-processing of
formulas, such as conversion to a normal form.) The
root of the tree contains all the premises and the
negation of the conclusion. The construction of the rest
of the tree is govermned by “branching rules”, which
operate (by decomposition} on formulas already in the
treg,

For the propositienal logic, formulas are defined in
the usual way, using senience letiers (A,B,C....) and the
connectives —, &, v, —», <». For describing the methed,
it is convenient to divide formulas into four classes: (i}
literals (sentence letiers and their negations), (ii)
formulas which are double negations (i.e., start with
two —-signs), (iii) formulas which have some binary
connective (&,v,—,<>) as their main connective, and
{iv) formulas which are negations of type (ii1) formulas.
To each formula which is not a literal, exactly one of
the following nine branching rules is applicabie:
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[for type (ii) formulas]:

——d
i
A
ifor type (iii} formnlas]:
{AVB) {A-->B) (A&B) {A<-->B)
PN /N | FAREEAN
A B -A B A A A
B B -B
[for type (iv) formulas]:
—{AvB) —(A->B) —-(A&B) —(A<-->B)
I 1 /N 4N
—B —-B --B B

Since the construction of a tablean proof in this system
is really the coustruction of a tree, to define a proof
formally requires defining various notions relevant o
trees -- such as ‘dominates’, ‘branch’, ‘leaf’,
‘immediately dominates’, and the like. For the present
audience it is best just to allow one’s background
knowledge of irees come into play; and I will therefore
just presuppose such notions. One terminological
point: If a formula and its negation are on a branch, we
say that the branch is closed; otherwise it is open.

One begius the tree construction with the set of
premises and negated conclusion at the toot. One may
close a branch as soon as one notices that it containg
complementary formulas (ie., any formula and-also its
negation on the same branch). Otherwise one chooses a
complex formula (of type (ii), (iil), or (iv) above) from
some node on an open branch and applies the relevant
branching mle to it, placing the resunlt at the bottom of
all open branches dominated by that node. (Done by
exiending each such open branch in the manner indicated
by the rule.) When this is done, the initial formula is
“checked off” (by placing a ‘N’ mark next fo it),
indicating that it needs to be considered no further. This
lends itself to the foliowing algorithm: Continue the
_ following two steps until either all branches are closed
or else there are no un-checked complex formulas in the
tree. (i) determine whether any just-altered branches
close; if so, close the branch by placing an ‘x’ at the
bottom of the branch. (ii) choose an un-checked
complex formula from an open branch, apply the
relevant branching rute to it, and check off the formula.

The two halting conditions in the above algorithm
correspond to whether the initial argument is valid or is
invalid, respectively. A proof of the completeness and
soundness of the algorithm depends on Konig’s Lemma,
and can be found in Jeffrey (1968:56). Here are two
simple examples of a proof/disproof in this system.
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Example 1. Given PvQ)&(P—-Q}, does it follow
that (Pv(Q&—P)) ?

v PvQ&(Q—3-P)
Y ﬁ{Pvi(Q&—LP))

¥ (PvQ)
v (Q=—P)
i
P
—(Q&-P)
/ \
P Q
X / \
— =P
X x

Example 2; Given —(A<»B), dees —~(B—A) follow?

¥ —(AeB)
Y ——{AoB)
|

v (BoA)

/ \

-B A
/N /A
A —A A =—A
-B B -B B

X X

The first example is valid, as evidenced by all the
branches closing, while the second example is invalid,
as evidenced by branches remaining open yet all
complex formulas being checked off. It is pretty clear in
these examples which branches were the result of
working with which previously-appearing formulas;
other examples may not be s0 clear, and so some
textbooks employ a bookkeeping method to record this
information, It should be noted that a branching rule
operates on a formula at a node in the tree, and the
result of applying the rule is to extend every {open)
branch in the tree that the node dominates by adding
new node(s) as called for by the particular rule being
used, The formula to which the rule has been applied is
then checked off, to indicate that it never need be
considered again. (Propositional tableaux systems are
therefore decision procedures: they always terminate
when all complex formulas have been checked off or
when the tree is closed). In the classical propositional
calculus it does not matter, logically speaking, in which
order formulas are chosen in the proof construction
algorithm (although it certainly matters for efficiency of
tree constructon). This aspect will change in the modal
propositional calculus. It shonld also be noted that the
this method of proof is analyic: no formula appears in
the tree unless it is a subformula of some previousky-
appearing formula. Thus all formulas in any proof are
subformulas of the initial set of negated-conclusion
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From the semantic point of view, a standard model
M is a triple <W R.P> where W is a (non-empty) set of
indices ("possible worlds"), R 1s a binary relation on W,
and P is a total function on WxL A (where LA is the set
of atomic sentences of the language) into {true,false}.
{That is, P says which atomic sentences are true/false at
which possible worlds). A truth-functionally compound
sentence P is true 1n the model at possible world « in
just the "normal way", viz.:
if & =Y, then & is true at ox iff ¥ is false at o
if @ = (P&T), then @ is true at ¢ iff efther ¥ is
trueaiaorl"is true at ¢
= (W—-I), then @ is true at ¢ iff, 1f‘{-’ 1§ true
ata then I is true at ¢t -
and s0 on for any truth funchonal connective we happen
to have. Modally compound sentences are true in the
model at a possible world o in a way that makes use of
the "accessibility relation”, R:
if @ =LY, then @ is true at o iff ¥ is true at all
[ such that Reep
if @ = MY, then @ is true at ¢ iff ¥ is true at
some f§ such that Reef3

A formula is true in the model M iff it is true ar every

possible world in M. A formula is logically true in M
Uf it is oue at every possible world in each model
<W,R.,P">, where P’ might differ from F as to which
alomic sentences are true at which possible worlds. A
formula is valid iff it is logically true in every model
<W R’ P> That is, a sentence is valid iff for all R*
and for all P* the sentence is true at every world in each
<W R P>,

The just-defined notion characterizes validity in
system K. Each other system defines validity with
Tespect to some restricted set of R7-models. For
example, these R” relations might be required to be
reflexive, or they might be required to be serial, etc. As
it turns out, each of the axioms which we have
considered adding to system K gives rise to its own
requirement on what kind of refation R must be. The
requirements are stated:

(d) [seriality] (Vx)(xeW — @y)ye W & Rxy))
() {reflexivity] (Vx)(xe W — Rxx)
(b} Isymmetry] (Vx)(Vy)(x,ye W — (ny—>RYX))
(g) lincestuality] (Vx)(Vy)(vz)(x,y,ze W —
(Rxy&Rxz-»(3w)(we WE&Ryw&Rzw)))
(4) [transitivity] (Vx)(Vy)(Vz)(x.yze W —
{(Rxy&Ryz — Rxz))
(5) [euclidean] (Vx)}(Vy)(Vz)(x,y ze W —
{Rxy&Rxz — Ryz))
In the modal system KD, for example, a formula @ is
valid just in case it is Togically true in every model in
which R obeys (d), that is, in which R is serial (= con-
nected), @ is valid in KD45 just in case it is logically
true in every model in which R obeys (d), (4), and (5),
that is, in which R is serial, transitive, and euclidean.

It can be noted that, just as in the case of the
axioms, certain conditions imply others and various
combinations are equivalent. In particular, () implies
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(d), (b implies (g). and (5) implies (g). Furthermore,
the combination (b) and (4) is equivalent to the
combination (b) and (5). And the following
combinations are all equivalent to one another: of (d),
(B), (4); of (d), (b}, (3); of (1), (4), (5); of (0 (), (4%
and of (1), (b), (5)-

The matenal of the preceding paragraphs can be
summarized by the chart in Fig, Z (adapted from Chelias

‘1580, p.164) given at the end of this article. Let us

abbreviate the notion of @ being valid, with restrictions
X placed upon R, as Ex®. Then Fig. Z reports
completeness and soundness theorsms for all the modal
logics we have discussed, saying

Fx®iff kx®
where X is come collection of ‘K’ plus any of the
letlers ‘D, *G7, ‘B’, *T7, *4’, *5" -- thus forming one of
the syntactic (axiomatic) systems mentioned earlier --
and x is the corresponding collection chosen from
amongst ‘d’, ‘g’, ‘b7, Y, ‘47, *5" given immediately
above. These soundness and completeness theorems -
assure us that the results of any correct proof procedure
for a normal modal system X can be mirrored by the
results of any correct semantic evaluation procedure.
And since each of these systems has the finite model
property, it follows that there is a decision procedure for
each of the logics,

Tableaux Methods for Propositional Modal
Logics: In this section we give tableaux methods for
any normal modal system containing B and G. Our
strategy will be to give a method suitable for system K,
and then fo explain what new rules or modifications are
called for by each of these axioms. Hence to produce a
tablezux argument for KBG, for example, one proceeds
as with system K but adds on the modifications relevant
to (b) and (g). (The same method can be used to give
tableaux methods for all the 21 systems, but that more
general method is saved for a different occasion).

The rules considered above for classical logic are
just that: classical. This means that they are relevant to
any one world at a time, but are inappiicable when
considering more than one world. For example, were
formula A to be true in one world and formula —A to be
true in another (even if it be an accessible world), that
does not allow us to assert that any branch is or isn’t
closed. This suggests that we divide our rules into
different sorts:

Type I rules ("World-Bound Rules”): This sort of rule
contains the classical rules we have already introduced—
rules that operate only within a specified possible
world. In addition to the (classical) world bound rules
we have already come across, we have two more new
ones that involve the modal operators. These new Type
1 rules are common te all normal modal systems. After
applying the rule, we check off the initial fonnula

LA -MA )

] !
M-A L-A




formulas. In this, classical semantic tableaux stand in
sharp contrast with Natural Deduction proof metheds
and with Resolution proof methods, which allow
formulas to be generated that are not subformolas of
previously-generated formulas. This aspect of classical
tableaux systems will also change with the modat
logics mentioned in the title of this article.

Intuitively speaking, branching a formula indicates
that the formula is true if and ouly if at least one of
these newly-created sub-branches is true (i.e., all the
formulas on the new node of that branch are true).
Hence, the initial toot node is true exactly if at least one
branch remains open -- and the initial argument is valid
just in case no branch remains open. One can even read
off a counterexample to an invalid argument {In {erms
of assignments to atomic sentences) by traversing an
open branch and assigning True to (atomic) unchecked
sentences which appear unncgated and False to those
wiich appear negated.

Normal Modal Propositional Logies: Modal
propositional logics are formed from classical
propositional logic by adding two new (interdefinable)
sentence operators: L ("necessarily”) and M
("possibly™). In this section, 21 modal propositional
systems are described. They form a subset of the so-
called normal modal logics, and include most of the
well-known modal systems. The technique used here to
describe these systems is that of Chellas (1980).
Starting with a fundamental system, K, various axioms
are intreduced (called such names as ‘D’, “T°, ‘B’, 'G",
‘4' *5"y and more complex systems are named in
accordance with which axioms are added to K. Thus,
the modal system KD45 results from adding axioms D,
4, and 5 to system K. As it turns out, some axioms
imply others, some combinations of axioms are
equivalent 1o each other, and some combinations are
known by other names. Attention will be called to
these cases as they arise.

So, syntactically speaking, the various modal
systems of interest are seen as being built upon K.
System K can be axiomatized as follows:

1. Classical Propositional Logic (formulated with

modus ponens as a rule of inference)

2. 4 L0 & —M-®)

3. % L@—=¥)» Lo—-LY)

4. if |—x® then | L@

Typical theorems of system K are
M(p—sq)+{p—>Ma)
L{p&q)e>(Lp&La)

But such familiar formulas as

Lp—p

Lp—LLp

Lp—Mp
are not theorems of K. To build upon K, we consider
the following six axioms:

D. LO—SMD

T. L0
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G. MLOSLMQ
B. ®»-»LMd

4, L@—-LLO

5. MO-SLMED

Starting with K (which adds O of these axioms), there
are 64 differsnt combinations of these six-axioms, and
so one might expect 64 different modal systems.
However, there are certain implications bétween axioms
and equivalences amongst groups of axioms. The
relevant implications are:

T=>D

B=>G

S5=>G
and there are the following equivalences

KB4 <=> KB5S

KDB4<=>KTB4«=>KT45<=>KT5<=>KTB%
¢and any other implications and equivalences entailed by
these). This leaves us with the 21 modal systems
pictured in Figure 1 (adapted from Chellas 1980 p.132)
presented at the end of this article. The lines between
systems indicate proper inclusion: all theorems of the
weaker systemn are also theorems of the stronger systerm,
but not conversely.

One interesting fact about these systems is that
they have a semantics which can be described by a
binary relation (called the "accessibility relation”, R) on
"normal possible worlds". The intuition is that a
sentence is (not just simply true but rather) true af a
possible world, and when the sentence has one of the
modal operators as a main connective then it is true ata
particular world just in case the demodalized formula is
true- atgvery (or some -- depending on the modal
operator involved) accessible possible worid. For
example, L& is true at possible world w just in case @
is true at every possible world that is accessible to w.
In a norma! modal logic, to say that a sentence is
semantically valid is to say that it is tue at every
possible world in every model in which R obeys ceriain
constraints, Obviously these definitions put a lot of
weight on just what the relation R is.

It is well-known what the relevant requirements on
R are for the modal systemns under consideration here.
In system K, R has no special requirements; therefore, a
sentence & is valid in K (which we represent as Ex®)
just in case for any relation R, @ is true at every

possible world (under that accessibility relation, R). (It

is because there are ro special requirements placed upon
R that systemn K is "the minimal normal modal logic").
Other logics add conditions upon R, for example that it
must be reflexive or that it must be connected. Each of
the axioms to be considered gives rise to its own
particular requirement on R, and thus a logic described
as KD45 (for example) will impose vpon R the
requirements relevant to D and to 4 and to 5. And a
formula @ is valid in KD45 ( kxgas®) iff for any
relation R which obeys the restrictions relevant to D, 4,
and 5, ¥ is true at every possible world (under that
accessibility relation, R).




Type 2 Rules ("World-Creating Rules”): This type of
rule is distinctive and new to modal logics. When
_evaluating a modalized formula, the semantic rules
given above direct us to determine whether a certain
subformuia of the modatized formula is true in some
other possible world. Type 2 rules detect when this
situation occurs and directs us how to extend the
semantic tree $o as to encompass new worlds, and how
_ these new worlds are to be initialized. This conception
is so that we will nse a double line (rather than a single
line) to indicate how the proof tree is extended when
these rules are applied. The mule can be put like this:

MA;
|
MA>
!

MAp

Aq A2 Az .. A

The way to understand this rule is: given a group of M-
formaulas {formulas with ‘M’ as their main operator) all
on the same (open) branch, then simoitaneously start a
collection of new branches in which each new double-
line branch is iniiated by a different one of these
formulas (without their "M’ operator).

Type 3 Rules ("Imterworld Copy Rules"). Given an

open branch in a world which already has been extended

by a double line (50 that there are new worlds created off
that branch), then if this branch contains the L-formulas
LBj, LB3,..LBy, copy By, Ba, ... By, into each of the
new worlds that the L-formnla dominates.

Application of the Type 1, 2, and 3 rules:

The order of application of the roles in the classical
logic made no logical difference~any order of application
would yicld the same final answer {valid/invalid) as any
other. This is no longer the case, because of the
introduction of differing possible worlds within the tres
structure. Intnitively, the addition of a double-line
branch to an already-existing branch amounts to
constructing a new possible world accessible from the
world in which we are currently working. Given this
understanding of the double-line branch, it is clear that
we need some restricdon on how formulas above the
double line can be interact with those below the double
line. For instance, were the formula --A to be found
above the donble-line branch (that is, in the earlier
possible world), the appearance of A below the double-
line branch ¢in the new possible world) should not
allow us to cancel that branch. Our ruling will be that
no formula above the double-line branch can interact
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with.any below the double-line branch, except insofar as
permitted to do so by Type 3 Interworld Copy Raules.

A side effect of the our decree that no formula in
one world can interact with a formula of another world
(except via Type 3 Rules) is that all Type 1 Rules
must be appiied within a given world before
any Type 2 Rule can be applied in that
world. If we do not have this requirement then it
would be possible for a contradiction to be present in a
world but to go unnoticed because the relevant Type 1
rule was not applied to the complex formula which
would make the contradiction manifest. OQur algorithm
for medal logic therefore says that we apply only Type
1 mles in whatever world we happen to be investigating
until either (a) all branches are closed in that world (and
thus that world has been declared to be impossible), or
(b) there is an open branch on which all formulas are
either literals, or are checked off, or else have a modal
operator as their main connective. In case (b}, if there
are any of the last-mentioned sort of formutas, then we
¢an apply Type 2 rules.

To apply the Type 2 mie: each M-formula within a
given world creases a new world under at the end of each
open branch that it dominates, and initializes that world
with the de-modalized formula (.e., the formula without
the main M-connective). Having done this with a given
M-formula, it can be checked off (although for ease of
use of some of the Type 3 rules there should be a
different style of check-mark, since the Type 3 rules
sometimes need to make reference to these formulas that
have been decomposed by Type 2 rales). One continues
to apply the Type 2 rules to every M-formula on an
open branch in the tree at the given world. Only after
there are no more applications of Type 2
rules in a given world can one proceed to
apply the Type 3 rules. (Bach of the new worlds
introduced by an application of the World Creating
Rules is independent of the other, and each of them is
(as 1t were) self-contained, once the Type 3 Interworld
Copy Rules are applied. This means that all of the
branches below the double-lines can be investigated in
parallel.}

After the Type 2 Rules have been applied in a
given possible world, one can apply the Type 3 rules,
copying the de-modalized formula into each of the
already-existing possible worlds dominated by the L-
formula. When a L-formula has had each of the relevant
Type 3 rules applied to it [in some of the more complex
logics a formula can satisfy the preconditions of more
than one ;Lype 3 rule, and each of them needs to be
applied] then it can be checked off. (Although again we
employ a different type of checkmark than with the
Type 1 rules). After each of the L-formulas has been
dealt with by all the Type 3 rules that are relevant to it,
one is in a position to move to a different possible
world and deal with the formulas that are in that world
by constructing another tree—this time within the new
possible world. In this new world, one again starts with
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the Type 1 rules, then moves on to the Type 2 rules,
eic.

The closing of trees, and of worlds: :

Within each world, one uses the World-Bound
Rules. If all branches of the tree that represents a
possible world close, then the double-line into that
world (and hence out of the previous world) closes —
indicating that it was not a possible world after all. If
any one of the double-line branches leading outward
from a branch within some possible world closes, then
that leaf is marked as closed. (Note that this requires
only that one of the many double-line branches
emanating from a leaf needs to close in order to close
the leaf. Intuitively, from the point of view of the
initial possible world, the branch asserts the existence
of such-and-so possible worlds, If it ums out that one
of them does not exist, then that initial branch is
impossible — regardless of what occurs in the other
possible worlds.)

The goal remnains as in the classical logic:
determine whether the tree that represents the initial
world contains an open branch. If it does, then the
argument is invalid; otherwise it is valid.

Tableanx Rules for B and G: The preceding set of
rules describes sysitem K. All and only the valid
arguments of K will be declared so by the above
tableaux method. And since the method operates only
by decomposition of formulas inte subformulas (it is
analytic), the algorithm will detect this in a finite time.
So it is a decision procedure. As mentioned at the
outset, the point of this paper is to describe how to add

tahleaux rules for complex rules such as B and G2Zwe -

will see that the resulting method is not analytic. The
tableanx rules for both B and G are new Type 3 rules.

Tableaux Rule for B:

The syntactic axiom for B says that if a formula is
true in a world, then it is necessary that it be possible.
That is, if it is actually true then it is possibly true in
every accessible world. The semantic condition on
accessibility for B is symmetry. But int a tableaux
seiting this raises serious difficulties since it apparently
implies that when we create a new world from a Type 2
rule, and then in that new world wish to create yet
another new world, ihat the newly created world has io
‘either be or somehow include the initial starting
world...otherwise it would not be a symmetric
accessibility relation.

2 A full version of this paper contains tableaux rules for
each of the six axioms, and hence for the 21 different
systems indicaled in Figs. 1 and 2.
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_ This requirement can be satisfied in the following
manner’; After applying all the rules as indicated for
system K (thereby constructing new worlds by Type 2
rules and copying formulas into them by the Type 3
rules) also copy over the following formela into these
new worlds w: )
(B-formula): M(A] & Ar & ... & Ap)
where the A; are all the formulas on the branch leading
to world w that do not have the check-off marks relevant
to the Type 1 rules. (So they may have been checked off
by Type 2 or 3 rules, but not by Type ! rules). This
new rule will be applied to each of the worlds
constructed in the earlier world, The effect of this will
be to place the B-formula into each world j that is
constructed from world 1. But then it follows that when
branches in world j are expanded, it is guaranteed that
one of the worlds that can be reached will be the one
initialized by the de-modalized B-formula. However, that
is just world i — and thus we have simulated symmetry.
As an example we will show that the B axiom is
validated by this nule:

+ —(p—LMp)

from Type 2 rule
2| M(p&M-Mp) from B rule
|

L—|p
Il
l
- p&M-Mp  from Type 2 rule
—p from Type 3 mile
P
X

The contradiction of p and —p in the third world makes
that world impossible, which gets "pushed back” into
the second world, into the only branch of that world.
This shows that the second world is impossible, and
this gets "pushed back” into the only branch of the first
world. Thus the first world is impossible and the

3 The general theorem being appealed to here is known
as the Bulldozer Theorem: any formula that is
unsatisfiable in a (possible worlds) model where the
accessibility relation is reflexive or symmetric or
transitive is also unsatisfiable in an irreflexive,
asymmetric, and non-transitive model. See Segerberg
(1971 BOfE}).




argument is valid: (p—LMp) is validated by the B
tableanx method. Note thai the B-formula is not
necessarily a subformula of any formula in the tree up
to the point of its intreduction. So this tableaux method
for systems containing the B axiom is not analytic. But

since the B-formula can be algorithmetically constructed

from the formulas in the tree, we might call the system
semi-analytic,

Tableaux Rule for G:

The syntactic axiom for G says that if a formula is
possibly necessary, then it is necessarily possible. That
is, if it is necessary in any accessible world, then it
must be possible in every accessible world, The
semantic rule for G is incestuality: if world 1 leads to
worlds 2 and 3, then there is a world 4 that both 2 and 3
lead into. The effect of this relation can be gotten by the
following methed. We consider any tree which has been
constructed 50 as to have new worlds wi, wo,...w
already in existence at the end of some branch. In these
new worlds we apply all the relevant Type 1 rules. But
now before applying whatever Type 2 rules inight apply
in these worlds, we apply this new sort of Type 3 rule:

If LA;, LB;... are formulas in an open branch of
wi, and LA;, LB;... are formulas in an open branch
of wj, then add M(A;&Bi&...& Aj&B;&...) to the
end of those open branches in each of wj and wj.
Do this for all open branches in each of the pairs of
worlds of wi, wa,...wg
Note that each pair of worlds in.wy, w2,...wp, are now
guaranteed (0 have a common descendant, and that this
descendant will have tue all the formulas that were
necessarily true in its parents. So we have simulated
incestuality, A simple example is to prove the G
axiom;

ﬁ(MLpii}LMp)
MLp
—LMp
M"“IMp
i A\
type 2 rule: Lp -Mp :type Zrnule
i |
the G rule: M(p&—p) M{p&—p) :Grule
I I
type 2 ule: p&—p p&—p :type 2
| i
P p
—p —Pp
X X

The closure of at least one of the two worlds at the
bottom of the tree will "push back” the impossibility of
that world into the preceding world. Thus each of the
previous worlds (the ones which are initialized with Lp
and with —Mp) will get an x at their bottom. And since

this is the only branch in each of these worlds, they too
are each impossible, and this "pushes back” the

impossibility into the initial world. (As mentioned, it

is only necessary that one of the two double-line
branches exiting from the initial world be impossible.)
This shows that the only branch in the initial world
closes, and thus that the argument is valid...the
unnegated formula is a theorem in G.

Once again we note that this method is not analytic
because the formulas constructed by the G rule is not
necessarily subformulas of anything in the tree up to
that point. Yet since the relevant formulas can be
algorithmically constructed from the tree, we can call it
a semi-analytic system of proof,
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Figure 1: 21 normal modal systems. Arrows indicate proper inclusion

conditions on R

sysiem serial | reflexive | incesmal | mansitive | symmetric | euckdean

K

XD T

XT (=) -

KG .

K4 .

KR (] d

K< I5) C

K4G . .

Kab [ . .

KBL *) ) . .

) . . {=}

KDG . .

D4 . .

KB L] =) -

Kns . ()] N

KNG . - -

KD45 . {) . .

TG (O] v 0

K14 (o; . [

KTB [0 . (+) -

K146 O] - . .

KTS =) . (=} {1 (+} *
{«) . (+} - . (=}
. f=) {s} - . 3]
. g.\ (=) (-\ . .

TABLE 1: The semznric requirements on R for 21 norma! modal
Sysicms. - = a required property, {+) = property enmiled by
required propertics. KB4 and KT3 are shown with different
(equivalent) combinations of required vs. entailed properties.
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