



# Influences on perceived foreign accentedness: Acoustic distances and lexical neighborhoods

Vincent Porretta, Aki-Juhani Kyröläinen & Benjamin V. Tucker

## **Foreign Accentedness**

## Foreign Accent

- Non-native speakers of a language fail to reach nativelike acoustic targets for articulatory and phonological reasons (Flege, 1980; Flege & Hillenbrand, 1984)
- Non-native productions are different from native speaker productions on a variety of acoustic measures, e.g., word duration and formant values (Baker et al., 2011; Munro, 1993; Wayland, 1997)
- Native listeners can detect accent in as little as 30 ms of a burst release (Flege, 1984)

## **Foreign Accentedness**

- Acoustic distances
  - Acoustic variables predict accentedness ratings when taken as distances from native speaker acoustic values (Munro, 1993; Wayland, 1997; Porretta & Tucker, 2012)
- Lexical variables
  - Accentedness ratings affected by word frequency;
     higher frequency -> lower rating (Levi, Winters, & Pisoni, 2007)
- This study proposes that the perception of foreign accentedness is based on usage (cf. Bybee, 2003; Pierrehumbert, 2001)

#### **Questions**

- Which acoustic distance measures (relative to typical native productions) of Chinese-accented English influence accentedness ratings?
- Do lexical variables in addition to frequency (e.g., phonological connectivity between words) influence ratings?
- Do these acoustic and lexical variables interact?

#### Materials:

- Wildcat Corpus of native- and foreign-accented English (Van Engen et al., 2010)
- 40 monosyllabic words from word list
- Perception study
  - 10 male speakers (1 English, 9 Chinese)
- Acoustic reference
  - 6 separate male English speakers

#### **Acoustic Measurements:**

- Word duration
- Vowel duration
- Midpoint formant values (F1 F3)

#### **Acoustic Variables:**

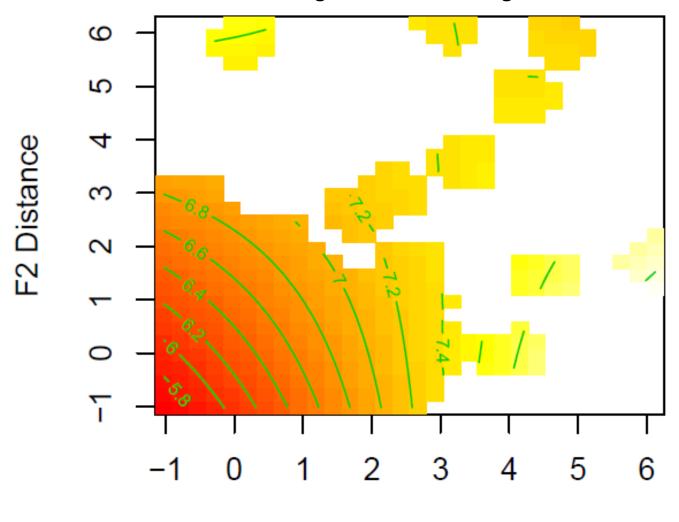
- Log normalized formant values
- Vowel-to-Word ratio
- Conversion to distance measures
  - Acoustic reference (mean measurements from 6 native speakers)
  - Absolute value of talker subtracted from acoustic reference

#### **Lexical Variables:**

- Lexical frequencies from COCA (Davies, 2008)
- Phonotactic probability (Vitevitch & Luce, 2004)
- Number of phonological neighbors from the English Lexicon Project (Balota et al., 2007)
  - Words with a one-phoneme difference, e.g., /bæt/ is neighbors with /sæt/ and /mæt/
- Clustering coefficient (cf. Chan & Vitevitch, 2009)
  - Graph theory was used to quantify the connectivity among phonological neighbors

# **Accentedness Ratings:**

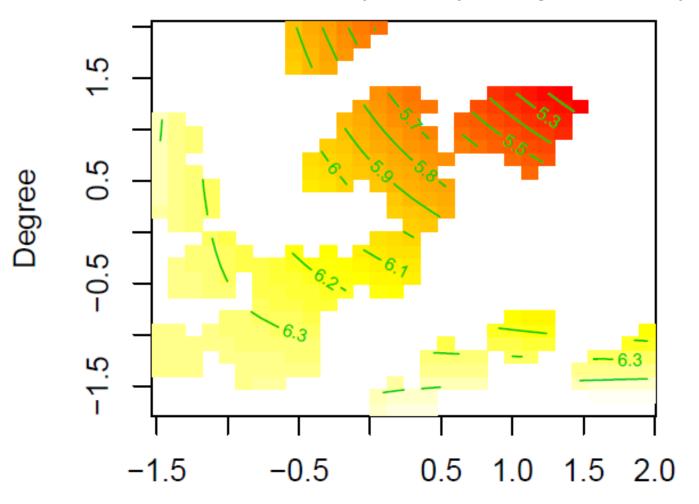
- 30 native English-speaking raters
- 400 items (40 stimuli spoken by each of the 10 talkers)
- Scale: 1 (no foreign accent) to 9 (very strong foreign accent)
- Mean item rating calculated
  - Correlated with global accent rating for each talker in the Wildcat Corpus ( $R^2$ =0.8995)


# **Analysis**

Generalized additive mixed modeling (Wood, 2006)

- Response variable
  - Mean item rating
- Predictor variables (standardized/collinearity checked)
  - Word identity
  - Vowel-to-Word ratio Distance
  - Log F1 Distance, Log F2 Distance
  - Phonotactic probability
  - Log word frequency
  - Degree (Neighborhood density)
  - Clustering Coefficient
  - Random effects for Word and Talker

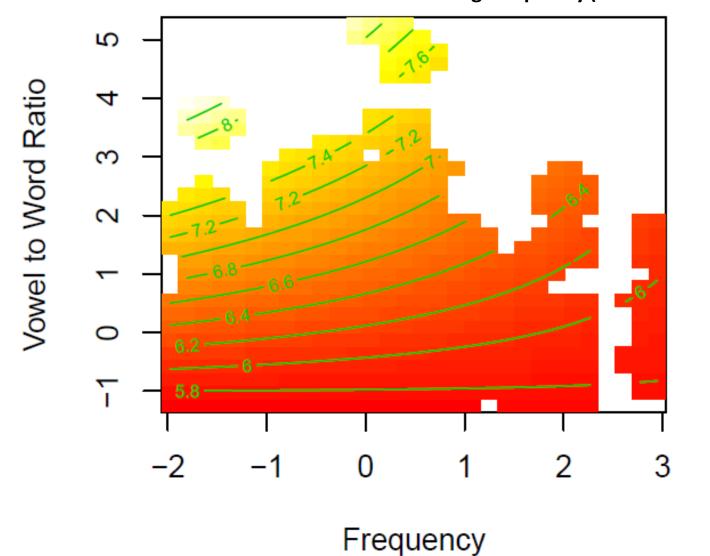
## **Results**


#### Interaction between log F1 Distance and log F2 Distance



F1 Distance

## **Results**


Interaction between Phonotactic probability and Degree (N. Density)



Phonotactic Probability

# **Results**

Interaction between Vowel-to-Word ratio Distance and log Frequency (Clust. Coef. = mean)



## **Summary of Results**

- The interaction of the First and Second Formant Distances is correlated with higher ratings
- Neighborhood Density interacts with Phonotactic Probability such that rating decreases when the phonemic sequence is probable and many neighbors exist.
- A three-way interaction emerged between Vowel-to-Word Ratio Distance (i.e., the distance of the proportion of vowel and word durations), Frequency, and Clustering Coefficient.

#### **Conclusions**

- Spectral deviations (from typical native vowel productions) lead to higher perceived accentedness
- Denser neighborhoods may provide more targets by which to match the token when the phonemic sequence is probable
- The interaction of word frequency and temporal acoustics (vowel-to-word ratio) along with the connectivity among neighbors indicates that the properties of both the lexicon and those of the token affect perceived accentedness

# Take-home message

## The model suggests:

- The lexicon is highly connected
- It contains multidimensional, probabilistic and distributional information
- Listeners are likely to use this learned information for evaluating a token's "goodness of fit" within their native language
- The perception of variation (at least at the word level) is affected by acoustic distance from native-like representations as well as connections within the lexicon

#### References

- Baker, R. E., et al. (2011). Word durations in non-native English. *Journal of Phonetics*, 39(1), 1–17.
- Balota, D. A., et al. (2007). The English Lexicon Project. Behavior Research Methods, 39(3), 445–459.
- Bybee, J. (2003). Phonology and language use. Cambridge University Press.
- Chan, K. Y., & Vitevitch, M. S. (2009). The influence of the phonological neighborhood clustering coefficient on spoken word recognition. *J EXP PSYCHOL HUMAN*, 35(6), 1934–1949.
- Davies, M. (2008). The Corpus of Contemporary American English (COCA): 400+ million words, 1990 present.
- Flege, J. E. (1980). Phonetic Approximations in Second Language Acquisition. Language Learning, 30(1), 117–134.
- Flege, J.E. (1984). The detection of French accent by American listeners. *The Journal of the Acoustical Society of America*, 76(3), 692.
- Flege, J. E., & Hillenbrand, J. (1984). Limits on phonetic accuracy in foreign language speech production. The Journal of the Acoustical Society of America, 76(3), 708–721.
- Levi, S. V., et al. (2007). Speaker-independent factors affecting the perception of foreign accent in a second language. *J ACOUST SOC AM*, 121(4), 2327–2338.
- Munro, M.J. (1993). Productions of English vowels native speakers of Arabic: Acoustic measurements and accentedness ratings. *Language and Speech*, *36(1)*, 39–66.
- Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In J. L. Bybee & P. Hopper (Eds.), Frequency effects and the emergence of lexical structure (pp. 137–157). John Benjamins.
- Porretta, V. & Tucker, B. V. (2012). Predicting accentedness: Acoustic measurements of Chinese-accented English. *Canadian Acoustics*, 40(3), 34–35.
- Van Engen, K. J., et al. (2010). The Wildcat corpus of native-and foreign-accented English:

  Communicative efficiency across conversational dyads with varying language alignment profiles. *Language and Speech*, 53(4), 510–540.
- Wayland, R. (1997). Non-native production of Thai: Acoustic measurements and accentedness ratings. *Applied Linguistics*, 18(3), 345-373.
- Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman & Hall.