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TALK OUTLINE

Background, motivation and objectives
Review on different control architectures: Distributed predictive control

Proposed distributed control architecture for integrating distributed energy
resources and loads to the electrical grid

¢ Elements and challenging issues

Supervisory control of an integrated wind/solar/RO system

¢ Stand-alone operating mode

¢ Electrical grid-connected operating mode

¢ RO is the load of the system (associated with a tank to store ‘energy’)

¢ Simulation results

Distributed supervisory control of distributed wind and solar systems
¢ Different distributed supervisory controller communication strategies

¢ Simulation results

Conclusions



INTRODUCTION
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o Slow response to power quality issues ﬁ st

Generation

v.s. real-time, automated, interactive technologies

¢ Difficult for distributed energy resources interconnection

v.s. easy to integrate distributed energy resources

e Renewable energy
¢ Rising rate of energy consumption
¢ Environmental issues

¢ Solar energy and wind energy
> Natural resources > No carbon emission

> Reduced investment risk

e Distributed predictive control framework for smart grid develop-

ment



PREVIOUS WORK AND OBJECTIVES

e Previous work on control of wind/solar energy generation systems

¢ Control of wind energy generation (novak et. al., CSM, 1995; Thiringer and Linders, TEC, 1993

Valenciaga et. al., IJER, 2000; Chinchilla et. al., TEC, 2006)

O Contr()l Of SOlaI‘ enel‘gy genel‘ation (Johansen and Storaa, Automatica, 2002; Coito et. al., IJACSP,

1997; Hamrouni et. al., RE, 2008; Yoshida et. al., EPEJ, 2007)

o Control of stand-alone hybrid wind /solar energy generation (vaienciaga et. al., cTa,

2000; CTA, 2001; Valenciaga and Puleston, TEC, 2005; Ahmed et. al., EPCS, 2009)
¢ Centralized /distributed supervisory predictive control of wind/solar/RO/grid
energy generation systems (Qi et al.,, TCST, 2011; 2012; JPC, 2011)
e Objectives

¢ Propose a distributed control architecture for integrating distributed energy
resources and loads to the electrical grid

& Supervisory control of a wind/solar/RO system connected to the grid

¢ Distributed control of distributed wind and solar energy generation system



CENTRALIZED VS. DISTRIBUTED CONTROL
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Centralized process control architecture
¢ Computational complexity ¢ Organization and maintenance
¢ Fault tolerance

Move towards distributed control architecture

Issues need to be addressed when moving to distributed control
¢ Coordination of controllers for stability and performance
¢ Communication strategy between distributed controllers

Model Predictive Control (MPC): a natural framework for distributed control system



CENTRALIZED, DECENTRALIZED AND DISTRIBUTED

e Different control architectures
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e (lassified by communication between different controllers

¢ Decentralized control system

> No communication between controllers

¢ Distributed control system

> Different controllers exchange information to coordinate their actions

¢ Non-cooperative vs Cooperative distributed control systems

> Depending on the cost functions used in the controllers



NON-COOPERATIVE DMPC

e Non-Cooperative DMPC Review

¢ DMPC for a class of decoupled systems with the distributed controllers

evaluated in Sequence (Richards and How, International Journal of Control, 2007)

O DMPC fOI' a ClaSS Of dlSCI'ete—tlme linear SystemS (Camponogara et al., IEEE Control

Systems Magazine, 2002)

o DMPC for systems with dynamically decoupled subsystems (kevicaxy et al.,

Automatica, 2006)
¢ DMPC scheme for linear systems coupled through the state (sia and krogh, acc, 2001)
¢ Application to supply chain optimization (punbar and Desa, NMPC, 2005)

¢ Application of iterative DMPC scheme together with a distributed Kalman

ﬁltel‘ tO a quadruple tank SyStem (Mercangoz and Doyle, Journal of Process Control, 2007)



COOPERATIVE DMPC

e Cooperative DMPC Review
¢ Idea of cooperative DMPC was first introduced in 2005 (venkat et a1., cpc, 2005)

O COOperative DMPC Of lineal‘ SyStemS (Rawlings and Stewart, Journal of Process Control, 2008;

Stewart et al., Systems and Control Letters, 2010)

> System-wide control objective functions
> The closed-loop performance converges to the corresponding centralized

control system as the iteration number increases

¢ Lyapunov-based iterative DMPC for nonlinear systems (Liu et al., AIChE Journal, 2009;

2010; Liu et al., Automatica, 2010; TAC, 2012; Christofides et al., Springer, 2011)

> Well-characterized regions of closed-loop stability

> Accounting for asynchronous and delayed measurements

O COOI’dinatOI’—based DMPC (Cheng et al., Journal of Process Control, 2007; Computers and Chemical

Engineering, 2008)



COOPERATIVE DMPC OF NONLINEAR SYSTEMS

(Liu et al., AIChE J., 2009; AIChE J., 2010)

e System description

#(t) = +Zgz t) + k(x(t))w(t)

o u; (1=1,...,m): m sets of control inputs with |u;| < u** (i =1,...,m)
o flx), gi(x) (i =1,...,m) and k(x): vector functions
e Nonlinear feedback control law, u = h(:r;) = [hi(x) ... hp(2)]F

- 8V
Vi(z) = ) + Z gi(x <0
¢ Renders the origin of the nominal system asymptotically stable under the
control: u; = h;(x) (¢ =1,...,m)
o Satisfies the input constraints on u; (i =1,...,m)

¢ Stability region: (2 C D is a compact set containing the origin

e Distributed model predictive control (DMPC) - each MPC optimizes the same
(global) cost function (cooperative, distributed MPC)



COOPERATIVE DMPC ARCHITECTURES

(Liu et al., AIChE J., 2009; AIChE J., 2010)
e m LMPCs will be designed to decide the m sets of control inputs

e Two approaches

¢ Sequential DMPC ¢ Iterative DMPC
Um, Um
LMPC m LMPC m —
U 4,
Um—1 \ B Um—1
LMPC m —1 LMPCm—l‘_
*Umv Um—1
. x A . x
: Process > w; : Process >
+um, P V3 v
LMPC 2 = LMPC 2 =
Sensors a Sensors
Uy - - -5 U #ul
LMPC 1 o LMPC 1 [ o
x x

e Sequential DMPC: One-directional communication, each controller is evaluated

once at a sampling time

e [terative DMPC: Bi-directional communication, controllers iterate to achieve

convergence at a sampling time



DISTRIBUTED CONTROL ARCHITECTURE

(Qi et al., J. Proc. Contr., 2011)

e Proposed distributed control architecture
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¢ Electrical gird divided into several control areas
¢ Distributed renewable energy generation systems

¢ Distributed control system ¢ Real-time communication network



DISTRIBUTED CONTROL ARCHITECTURE

(Qi et al., J. Proc. Contr., 2011)

e Proposed distributed control architecture
Xty oo Xy Y1, ooty Yo, Xisy ooy Xns, Y1, ooey Yns

g g B

P1n
Electrical Grid Electrical Grid

Control Area 1 : : P, Control Area n
Electrical Grid

A P2 Control Area 2
:

J

o

|

=
g Xis Xos Xns
D
Z
g
'Z| | Control System 1 Control System2 |+ = = 0 r o Control System n
Q
= P 11 P22 P nn
g Y A A
g y1s st Yns
© A/ Y
Renewable Energy\ Renewable Energy\ Renewable Energy
Generation System 1 Generation System2 | . . . . . . Generation System n
X 1ss Y1s y1 X287 Y2s Y2 an; Yns Yn

A J
X7/ ey Xn: Y77 ey Yny X1S) LS XHS/ y187 LY YI’IS

A 4

¢ Control areas of electrical grid

> Different control areas are interconnected through bi-directional power lines
> Electrical power can flow between the different control areas bi-directionally



DISTRIBUTED CONTROL ARCHITECTURE

(Qi et al., J. Proc. Contr., 2011)

e Proposed distributed control architecture
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¢ Distributed renewable energy generation systems

> Each control area may connect with many different types of renewable
energy generation systems



DISTRIBUTED CONTROL ARCHITECTURE

(Qi et al., J. Proc. Contr., 2011)

e Proposed distributed control architecture
Xty oo Xy Y1, ooty Yo, Xisy ooy Xns, Y1, ooey Yns

g g B

P1n
Electrical Grid Electrical Grid

Control Area 1 : : P, Control Area n
Electrical Grid

A P2 Control Area 2
:

J

o

-

=
g Xis Xos Xns
D
Z
g
'Z| | Control System 1 Control System2 |+ = = 0 r o Control System n
Q
= P 11 P22 P nn
g Y A A
g y1s st Yns
© A/ Y
Renewable Energy\ Renewable Energy\ Renewable Energy
Generation System 1 Generation System2 | . . . . . . Generation System n
X 1ss Y1s y1 X287 Y2s Y2 an; Yns Yn

A J
X7/ ey Xn: Y77 ey Yny X1S) LS XHS/ y187 LY YI’IS

A 4

¢ Distributed control system

> Calculates the operating set-points for the control area and the renewable
energy generation system - DMPC is particularly suited



DISTRIBUTED CONTROL ARCHITECTURE

e Proposed distributed control architecture
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e Challenging issues
¢ Predictive control of different renewables-based energy generation systems
¢ Coordination of a renewables-based energy generation system with the
electrical grid and loads
¢ Cooperation between different control systems

e Integrated wind/solar energy generation system connected to an RO water
desalination system and the electrical grid (addressing first two issues)

e Distributed control of distributed wind and solar energy generation system



INTEGRATED WIND/SOLAR AND RO SYSTEM

e System description

DC/DC DC/DC
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¢ Energy generation system
> Wind generation subsystem
> Battery bank

¢ RO water desalination system
> High-pressure pump
> Water storage tank

F
Tank ¢

> Solar generation subsystem

> RO membrane module



SYSTEM MODELING

e Wind subsystem modeling

¢ Three nonlinear ODEsSs . DC/DC

Rectifier Converter 1

‘ — —
| Iy
| g I N

¢ Quadrature current ¢,, direct current ¢4 and

electrical angular speed w,

¢ Manipulated input is a function of the duty

I+

Batte ‘ 7 7

cycle of the converter wu,, ey | o | L
T

\[

o Power generated P, = vp—=4/12 +1 Uy

e Solar subsystem modeling

¢ Two nonlinear ODEs and one algebraic equa- ebe
tion Comrer 2 PV Pancl
¢ Voltage level on the PV panel terminal v,, and i T
the current injected to the DC bus i
o Manipulated input is duty cycle of the con- s G
T

verter Uy,

¢ Power generated Py = 150



SYSTEM MODELING

e Modeling of the battery bank

¢ A voltage source Ej, connected in series with a resistance R and a

capacitor Cy vp = Ep + v, + 1, Ry

o State of charge (SOC) s, = Qe _ Y

Qmax pmax
C C

e RO subsystem modeling

¢ One ODE and two algebraic equations

¢ Retentate stream velocity v,

Feed

% Retentate
v, >

eV}’

¢ Manipulated input is the valve resistance e,

Vr

¢ Power needed for the water desalination sys-

1 F3
tem: Pr = E(PSyS% %YJA% Pw)

e Dynamics of the water storage tank level
F, A, Fy

ohleszA—S(vf—vr)—AS

h
o State of storage (SOS) s; = l

1 max
hl

n

Pump

-
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TWO-TIME-SCALE BEHAVIOR AND CONTROL TASKS

e T'wo-time-scale behavior of the integrated system dynamics
¢ Fast dynamics: i, 14, We, Upy, s, Uy
> Dynamics of the wind, solar and water subsystems

¢ Slow dynamics: v., h;

> States reflecting the interaction of the different subsystems

e Control tasks

¢ Short-term supervisory predictive control of the integrated system

> Standalone mode, I, = 0

¢ Long-term supervisory predictive control of the integrated system

> Connected to the electrical grid, I, =1

> Two-time-scale behavior is taken into account in the design of the

supervisory control system



SHORT-TERM SUPERVISORY PREDICTIVE CONTROL

(Qi et al., IEEE Contr. Syst. Tech.,2011)

e Control objectives

¢ Primary control objective is to coordinate the wind and solar as well as
battery to provide enough energy to the RO subsystem to satisfy scheduled
water production

¢ Secondary control objective is to optimize the operation - reduce battery
short-term charge-discharge cycles

e Design of the cost function

J . PN ref ref 2
s(ty) = /t Q (PRO(T) — P’/ (1) — P, (7‘)) dr
& th4 N tk+N—1
[ BRI [T BT+ A) - P dr
tr 173

¢ The first term penalizes the difference between the power generated by the
wind and solar subsystems and the total power demand

¢ The second term makes the wind subsystem as the primary generation
subsystem

¢ The third term penalized the change of the power provided by the battery



SUPERVISORY CONTROL SYSTEM DESIGN

e Proposed MPC design

min
Pret prefes(A)
S.t.

Js(tx)
pPrel(r) < min{ Pg(7)}, 7 € [trtjy thajr)

(

Py (r) < min{Ppymax(7)}s 7 € [trtss thajt1)
(
(

Pt (tit 1) — Pt (terj) < APy max
Py (thyjrr) — Pi (thag) < dPs max
#(1) = f(&(1)) + g(2(1))u(7)
h(z)=0

2(0) = x(tk)

¢ The first two constraints make sure the power references of the wind and solar

subsystems are achievable

¢ The third and fourth restrict the change value of the generated power in two

consecutive sampling times

¢ The last three equations are system model



SIMULATION RESULTS

e Water production demand e Power trajectories- N =2, A=1s
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e The proposed control system coordinates wind /solar /battery to satisfy the energy
demand of water production



LONG-TERM SUPERVISORY PREDICTIVE CONTROL

(Qi et al., IEEE Contr. Syst. Tech.,2012)

e Control objectives

¢ Primary control objective is to regulate the integrated system to provide
enough energy to the RO subsystem to satisfy scheduled water production

¢ Secondary control objective is to optimize the operation - battery maintenance
and time-varying electric power pricing

e Design of the cost function

tke N tk+N tk+N
It) = o[ amire [ iR [ b Perr
i E4+ N b the N b tha N
+e/ |s(T) — Sgpt‘ dr + 9/ Pro(7)dr + / F,(T)dr
tr ti 2%

¢ The first term implies that the battery should be charged

¢ The second term means small charging currents are preferred

o The third term considers the economics by selling/buying power to/from the
grid (Pg = —iguy)

¢ The fourth term is used to maintain the water level around the optimal value

¢ The fifth term penalized the energy consumption in producing water



SUPERVISORY CONTROL SYSTEM DESIGN
e Proposed MPC design

S.t.

min Jg(tk)
il ot es(A)

Pro(T) — Py(7) — Po() + i (T)up(7) + ipvp = 0
i < Fy (1) < EFprex

0 S db(T) S d]l;nax

S < sy () < s

i(7) < 75 (s6(7))

(1) = f(&(7)) + g((7))u(7)
h(i) = 0
z(0) = z(tk)

¢ The first constraint is an energy balance between different subsystems

¢ The second to the fifth constraints are constraints on system operation

¢ The last three equations are system model accounting for the two-time-scale

behavior



SIMULATION RESULTS

e Power trading profile e Process trajectories
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e Efficiently coordinates wind/solar/battery /RO subsystems and optimally provides
power to the electrical grid



DISTRIBUTED ENERGY GENERATION SYSTEM
INTEGRATED INTO A DC POWER GRID

e System description
¢ Wind subsystem

¢ Solar subsystem

¢ Loads of the system

o DC bus

(Qi et al., IEEE Contr. Syst. Tech., in press)
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DISTRIBUTED CONTROL PROBLEM FORMULATION

e Distributed supervisory control system
Future power demand

and weather forecast l
i ¢ ref ¥ .ref * ¢
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¢ One supervisory MPC for wind subsystem and one for solar subsystem

¢ Supervisory MPCs coordinate and calculate the operating references for the

subsystems

¢ Local controllers operate the subsystems to track the references

e Control objective is to coordinate the wind and solar subsystem as well as

batteries to meet total power demand



CONTROL STRATEGIES

e Four control strategies
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SIMULATION RESULTS

e Sequential distributed supervisory MPC
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¢ The sequential distributed supervisory MPC coordinates different parts of the

system to satisfy the total power demand

¢ Batteries make up the energy shortage



SIMULATION RESULTS

e Iterative distributed supervisory MPC
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¢ The iterative distributed supervisory MPC is also able to coordinate different
parts to satisfy the total power demand

¢ Similar evolution of system states



SIMULATION RESULTS

e Mean performance of each hour under different power generation conditions

Insufficient Balanced Excessive Whole day
(8 ~12 hr & (12 ~ 20 hr) (20 ~ 4 hr)
4~ 8 hr)

Centralized 581.22 1239.3 752.05 857.54
Sequential 688.24 1263.5 880.59 944.12
Sequential 736.31 1974.3 1648.2 1453.0
(reversed)
[terative 3337.3 3275.5 4700.7 3771.2
(cmaz = 1)
[terative 1487.7 3041.3 2823.6 2450.9
(cmaz = 3)
Iterative 664.13 1525.9 1280.3 1156.8
(cmaxz = 6)
Iterative 621.92 1414.8 1020.2 1019.0
(cmaz = 10)

e (Centralized control has the smallest cost and the cost of the iterative DMPC

decreases as iteration number increases



CONCLUSIONS

Review on different control architectures
¢ Distributed predictive control is favorable for large-scale systems

¢ Computational complexity, organization, fault tolerance

Distributed control architecture for integrating distributed energy resources and

loads to the electrical grid
¢ Elements: control areas, distributed energy systems, distributed control

¢ Coordinating different renewable generation systems, grid, loads

Supervisory control of an integrated wind/solar/RO system
¢ Integrated system modeling
¢ Short-term supervisory control of the integrated system in standalone mode

¢ Long-term operation of the integrated system connected to the electrical grid

Distributed supervisory control of wind and solar energy generation system

¢ Compared four different control strategies from a performance point of view
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