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TALK OUTLINE

• Background, motivation and objectives

• Review on different control architectures: Distributed predictive control

• Proposed distributed control architecture for integrating distributed energy

resources and loads to the electrical grid

⋄ Elements and challenging issues

• Supervisory control of an integrated wind/solar/RO system

⋄ Stand-alone operating mode

⋄ Electrical grid-connected operating mode

⋄ RO is the load of the system (associated with a tank to store ‘energy’)

⋄ Simulation results

• Distributed supervisory control of distributed wind and solar systems

⋄ Different distributed supervisory controller communication strategies

⋄ Simulation results

• Conclusions



INTRODUCTION

• Traditional electrical grid v.s. smart electrical grid

⋄ Centralized power plants with one-directional power flow

v.s. distributed power plants with bi-directional power flow

⋄ Slow response to power quality issues

v.s. real-time, automated, interactive technologies

⋄ Difficult for distributed energy resources interconnection

v.s. easy to integrate distributed energy resources

• Renewable energy

⋄ Rising rate of energy consumption

⋄ Environmental issues

⋄ Solar energy and wind energy

◃ Natural resources ◃ No carbon emission

◃ Reduced investment risk

• Distributed predictive control framework for smart grid develop-

ment
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PREVIOUS WORK AND OBJECTIVES

• Previous work on control of wind/solar energy generation systems

⋄ Control of wind energy generation (Novak et. al., CSM, 1995; Thiringer and Linders, TEC, 1993;

Valenciaga et. al., IJER, 2000; Chinchilla et. al., TEC, 2006)

⋄ Control of solar energy generation (Johansen and Storaa, Automatica, 2002; Coito et. al., IJACSP,

1997; Hamrouni et. al., RE, 2008; Yoshida et. al., EPEJ, 2007)

⋄ Control of stand-alone hybrid wind/solar energy generation (Valenciaga et. al., CTA,

2000; CTA, 2001; Valenciaga and Puleston, TEC, 2005; Ahmed et. al., EPCS, 2009)

⋄ Centralized/distributed supervisory predictive control of wind/solar/RO/grid

energy generation systems (Qi et al., TCST, 2011; 2012; JPC, 2011)

• Objectives

⋄ Propose a distributed control architecture for integrating distributed energy

resources and loads to the electrical grid

⋄ Supervisory control of a wind/solar/RO system connected to the grid

⋄ Distributed control of distributed wind and solar energy generation system



CENTRALIZED VS. DISTRIBUTED CONTROL
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• Centralized process control architecture

⋄ Computational complexity ⋄ Organization and maintenance

⋄ Fault tolerance

• Move towards distributed control architecture

• Issues need to be addressed when moving to distributed control

⋄ Coordination of controllers for stability and performance

⋄ Communication strategy between distributed controllers

• Model Predictive Control (MPC): a natural framework for distributed control system



CENTRALIZED, DECENTRALIZED AND DISTRIBUTED

CONTROL

• Different control architectures
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Distributed control system

• Classified by communication between different controllers

⋄ Decentralized control system

◃ No communication between controllers

⋄ Distributed control system

◃ Different controllers exchange information to coordinate their actions

⋄ Non-cooperative vs Cooperative distributed control systems

◃ Depending on the cost functions used in the controllers



NON-COOPERATIVE DMPC

• Non-Cooperative DMPC Review

⋄ DMPC for a class of decoupled systems with the distributed controllers

evaluated in sequence (Richards and How, International Journal of Control, 2007)

⋄ DMPC for a class of discrete-time linear systems (Camponogara et al., IEEE Control

Systems Magazine, 2002)

⋄ DMPC for systems with dynamically decoupled subsystems (Keviczky et al.,

Automatica, 2006)

⋄ DMPC scheme for linear systems coupled through the state (Jia and Krogh, ACC, 2001)

⋄ Application to supply chain optimization (Dunbar and Desa, NMPC, 2005)

⋄ Application of iterative DMPC scheme together with a distributed Kalman

filter to a quadruple tank system (Mercangoz and Doyle, Journal of Process Control, 2007)



COOPERATIVE DMPC

• Cooperative DMPC Review

⋄ Idea of cooperative DMPC was first introduced in 2005 (Venkat et al., CDC, 2005)

⋄ Cooperative DMPC of linear systems (Rawlings and Stewart, Journal of Process Control, 2008;

Stewart et al., Systems and Control Letters, 2010)

◃ System-wide control objective functions

◃ The closed-loop performance converges to the corresponding centralized

control system as the iteration number increases

⋄ Lyapunov-based iterative DMPC for nonlinear systems (Liu et al., AIChE Journal, 2009;

2010; Liu et al., Automatica, 2010; TAC, 2012; Christofides et al., Springer, 2011)

◃ Well-characterized regions of closed-loop stability

◃ Accounting for asynchronous and delayed measurements

⋄ Coordinator-based DMPC (Cheng et al., Journal of Process Control, 2007; Computers and Chemical

Engineering, 2008)



COOPERATIVE DMPC OF NONLINEAR SYSTEMS
(Liu et al., AIChE J., 2009; AIChE J., 2010)

• System description

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) + k(x(t))w(t)

⋄ ui (i = 1, . . . ,m) : m sets of control inputs with |ui| ≤ umax
i (i = 1, . . . ,m)

⋄ f(x), gi(x) (i = 1, . . . ,m) and k(x): vector functions

• Nonlinear feedback control law, u = h(x) = [h1(x) . . . hm(x)]T

V̇ (x) =
∂V (x)

∂x
(f(x) +

m∑
i=1

gi(x)hi(x)) < 0

⋄ Renders the origin of the nominal system asymptotically stable under the

control: ui = hi(x) (i = 1, . . . ,m)

⋄ Satisfies the input constraints on ui (i = 1, . . . ,m)

⋄ Stability region: Ω ⊂ D is a compact set containing the origin

• Distributed model predictive control (DMPC) - each MPC optimizes the same

(global) cost function (cooperative, distributed MPC)



COOPERATIVE DMPC ARCHITECTURES

(Liu et al., AIChE J., 2009; AIChE J., 2010)

• m LMPCs will be designed to decide the m sets of control inputs

• Two approaches

⋄ Sequential DMPC ⋄ Iterative DMPC
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• Sequential DMPC: One-directional communication, each controller is evaluated

once at a sampling time

• Iterative DMPC: Bi-directional communication, controllers iterate to achieve

convergence at a sampling time



DISTRIBUTED CONTROL ARCHITECTURE
(Qi et al., J. Proc. Contr., 2011)

• Proposed distributed control architecture
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⋄ Electrical gird divided into several control areas

⋄ Distributed renewable energy generation systems

⋄ Distributed control system ⋄ Real-time communication network



DISTRIBUTED CONTROL ARCHITECTURE
(Qi et al., J. Proc. Contr., 2011)

• Proposed distributed control architecture
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⋄ Control areas of electrical grid

◃ Different control areas are interconnected through bi-directional power lines

◃ Electrical power can flow between the different control areas bi-directionally



DISTRIBUTED CONTROL ARCHITECTURE
(Qi et al., J. Proc. Contr., 2011)

• Proposed distributed control architecture
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⋄ Distributed renewable energy generation systems

◃ Each control area may connect with many different types of renewable

energy generation systems



DISTRIBUTED CONTROL ARCHITECTURE
(Qi et al., J. Proc. Contr., 2011)

• Proposed distributed control architecture
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⋄ Distributed control system

◃ Calculates the operating set-points for the control area and the renewable

energy generation system - DMPC is particularly suited



DISTRIBUTED CONTROL ARCHITECTURE
• Proposed distributed control architecture
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• Challenging issues

⋄ Predictive control of different renewables-based energy generation systems

⋄ Coordination of a renewables-based energy generation system with the

electrical grid and loads

⋄ Cooperation between different control systems

• Integrated wind/solar energy generation system connected to an RO water

desalination system and the electrical grid (addressing first two issues)

• Distributed control of distributed wind and solar energy generation system



INTEGRATED WIND/SOLAR AND RO SYSTEM

• System description
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⋄ Energy generation system

◃ Wind generation subsystem ◃ Solar generation subsystem

◃ Battery bank

⋄ RO water desalination system

◃ High-pressure pump ◃ RO membrane module

◃ Water storage tank



SYSTEM MODELING

• Wind subsystem modeling

⋄ Three nonlinear ODEs

⋄ Quadrature current iq, direct current id and

electrical angular speed we

⋄ Manipulated input is a function of the duty

cycle of the converter uw

⋄ Power generated Pw = vb
π

2
√
3

√
i2q + i2duw

Rectifier
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• Solar subsystem modeling

⋄ Two nonlinear ODEs and one algebraic equa-

tion

⋄ Voltage level on the PV panel terminal vpv and

the current injected to the DC bus is

⋄ Manipulated input is duty cycle of the con-

verter upv

⋄ Power generated Ps = isvb
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SYSTEM MODELING

• Modeling of the battery bank

⋄ A voltage source Eb connected in series with a resistance Rb and a

capacitor Cb vb = Eb + vc + ibRb

⋄ State of charge (SOC) sb =
Qc

Qmax
c

=
vc

vmax
c

• RO subsystem modeling

⋄ One ODE and two algebraic equations

⋄ Retentate stream velocity vr

⋄ Manipulated input is the valve resistance evr

⋄ Power needed for the water desalination sys-

tem: PT =
1

η
(Psys

Fd

Y + 1
2

F 3
r

Y 3A2
p
ρw)

vr

Retentate

vf vp

Permeate

evr

RO Membranes
Pump
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• Dynamics of the water storage tank level

⋄ ḣl =
Fs

As
=

Ap

As
(vf − vr)−

Fd

As

⋄ State of storage (SOS) st =
hl

hmax
l



TWO-TIME-SCALE BEHAVIOR AND CONTROL TASKS

• Two-time-scale behavior of the integrated system dynamics

⋄ Fast dynamics: iq, id, we, vpv, is, vr

◃ Dynamics of the wind, solar and water subsystems

⋄ Slow dynamics: vc, hl

◃ States reflecting the interaction of the different subsystems

• Control tasks

⋄ Short-term supervisory predictive control of the integrated system

◃ Standalone mode, Is = 0

⋄ Long-term supervisory predictive control of the integrated system

◃ Connected to the electrical grid, Is = 1

◃ Two-time-scale behavior is taken into account in the design of the

supervisory control system



SHORT-TERM SUPERVISORY PREDICTIVE CONTROL
(Qi et al., IEEE Contr. Syst. Tech.,2011)

• Control objectives

⋄ Primary control objective is to coordinate the wind and solar as well as

battery to provide enough energy to the RO subsystem to satisfy scheduled

water production

⋄ Secondary control objective is to optimize the operation - reduce battery

short-term charge-discharge cycles

• Design of the cost function

Js(tk) =

∫ tk+N

tk

α
(
PRO(τ)− P ref

w (τ)− P ref
s (τ)

)2
dτ

+

∫ tk+N

tk

βP ref
s (τ)2dτ +

∫ tk+N−1

tk

ζ (Pb(τ +∆)− Pb(τ))
2
dτ

⋄ The first term penalizes the difference between the power generated by the

wind and solar subsystems and the total power demand

⋄ The second term makes the wind subsystem as the primary generation

subsystem

⋄ The third term penalized the change of the power provided by the battery



SUPERVISORY CONTROL SYSTEM DESIGN

• Proposed MPC design

min
P ref

w ,P ref
s ∈S(∆)

Js(tk)

s.t. P ref
w (τ) ≤ min

τ
{Pmax

w (τ)}, τ ∈ [tk+j , tk+j+1)

P ref
s (τ) ≤ min

τ
{Ppv,max(τ)}, τ ∈ [tk+j , tk+j+1)

P ref
w (tk+j+1)− P ref

w (tk+j) ≤ dPw,max

P ref
s (tk+j+1)− P ref

s (tk+j) ≤ dPs,max

˙̃x(τ) = f(x̃(τ)) + g(x̃(τ))u(τ)

h(x̃) = 0

x̃(0) = x(tk)

⋄ The first two constraints make sure the power references of the wind and solar

subsystems are achievable

⋄ The third and fourth restrict the change value of the generated power in two

consecutive sampling times

⋄ The last three equations are system model



SIMULATION RESULTS

• Water production demand
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• Power trajectories - N = 2, ∆ = 1 s
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• The proposed control system coordinates wind/solar/battery to satisfy the energy

demand of water production



LONG-TERM SUPERVISORY PREDICTIVE CONTROL
(Qi et al., IEEE Contr. Syst. Tech.,2012)

• Control objectives

⋄ Primary control objective is to regulate the integrated system to provide

enough energy to the RO subsystem to satisfy scheduled water production

⋄ Secondary control objective is to optimize the operation - battery maintenance

and time-varying electric power pricing

• Design of the cost function

Jg(tk) = γ

∫ tk+N

tk

db(τ)dτ + ξ

∫ tk+N

tk

ib(τ)
2dτ + ζ

∫ tk+N

tk

p(τ)PG(τ)dτ

+ϵ

∫ tk+N

tk

∣∣st(τ)− soptt

∣∣ dτ + θ

∫ tk+N

tk

PRO(τ)dτ ÷
∫ tk+N

tk

Fp(τ)dτ

⋄ The first term implies that the battery should be charged

⋄ The second term means small charging currents are preferred

⋄ The third term considers the economics by selling/buying power to/from the

grid (PG = −iGvb)

⋄ The fourth term is used to maintain the water level around the optimal value

⋄ The fifth term penalized the energy consumption in producing water



SUPERVISORY CONTROL SYSTEM DESIGN

• Proposed MPC design

min
irefG ,vref

r ∈S(∆)
Jg(tk)

s.t. PRO(τ)− Pw(τ)− Ps(τ) + irefG (τ)vb(τ) + ibvb = 0

Fmin
p ≤ Fp(τ) ≤ Fmax

p

0 ≤ db(τ) ≤ dmax
b

smin
t ≤ st(τ) ≤ smax

t

ib(τ) ≤ imax
b (sb(τ))

˙̃x(τ) = f(x̃(τ)) + g(x̃(τ))u(τ)

h(x̃) = 0

x̃(0) = x(tk)

⋄ The first constraint is an energy balance between different subsystems

⋄ The second to the fifth constraints are constraints on system operation

⋄ The last three equations are system model accounting for the two-time-scale

behavior



SIMULATION RESULTS

• Power trading profile
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• Process trajectories
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• Efficiently coordinates wind/solar/battery/RO subsystems and optimally provides

power to the electrical grid



DISTRIBUTED ENERGY GENERATION SYSTEM

INTEGRATED INTO A DC POWER GRID
(Qi et al., IEEE Contr. Syst. Tech., in press)

• System description

⋄ Wind subsystem

⋄ Solar subsystem

⋄ Loads of the system

⋄ DC bus
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DISTRIBUTED CONTROL PROBLEM FORMULATION

• Distributed supervisory control system
Future power demand 

and weather forecast
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⋄ One supervisory MPC for wind subsystem and one for solar subsystem

⋄ Supervisory MPCs coordinate and calculate the operating references for the

subsystems

⋄ Local controllers operate the subsystems to track the references

• Control objective is to coordinate the wind and solar subsystem as well as

batteries to meet total power demand



CONTROL STRATEGIES
• Four control strategies

ProcessMPC
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• Cost function

J =
1

Mt −Mi + 1

Mt∑
i=Mi

(α|P for
d (t|ti)− P ref

w (t|ti)− P ref
s (t|ti) + irefb1

(t|ti)Eb

+irefb2
(t|ti)Eb|+ β1 īb1(i)

2
+ β2 īb2(i)

2
+ γ1d̄b1(i)

2
+ γ2d̄b2(i)

2
+ δP̄s(i))



SIMULATION RESULTS

• Sequential distributed supervisory MPC
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⋄ The sequential distributed supervisory MPC coordinates different parts of the

system to satisfy the total power demand

⋄ Batteries make up the energy shortage



SIMULATION RESULTS

• Iterative distributed supervisory MPC
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⋄ The iterative distributed supervisory MPC is also able to coordinate different

parts to satisfy the total power demand

⋄ Similar evolution of system states



SIMULATION RESULTS

• Mean performance of each hour under different power generation conditions

Insufficient Balanced Excessive Whole day

(8 ∼ 12 hr & (12 ∼ 20 hr) (20 ∼ 4 hr)

4 ∼ 8 hr)

Centralized 581.22 1239.3 752.05 857.54

Sequential 688.24 1263.5 880.59 944.12

Sequential 736.31 1974.3 1648.2 1453.0

(reversed)

Iterative 3337.3 3275.5 4700.7 3771.2

(cmax = 1)

Iterative 1487.7 3041.3 2823.6 2450.9

(cmax = 3)

Iterative 664.13 1525.9 1280.3 1156.8

(cmax = 6)

Iterative 621.92 1414.8 1020.2 1019.0

(cmax = 10)

• Centralized control has the smallest cost and the cost of the iterative DMPC

decreases as iteration number increases



CONCLUSIONS

• Review on different control architectures

⋄ Distributed predictive control is favorable for large-scale systems

⋄ Computational complexity, organization, fault tolerance

• Distributed control architecture for integrating distributed energy resources and

loads to the electrical grid

⋄ Elements: control areas, distributed energy systems, distributed control

⋄ Coordinating different renewable generation systems, grid, loads

• Supervisory control of an integrated wind/solar/RO system

⋄ Integrated system modeling

⋄ Short-term supervisory control of the integrated system in standalone mode

⋄ Long-term operation of the integrated system connected to the electrical grid

• Distributed supervisory control of wind and solar energy generation system

⋄ Compared four different control strategies from a performance point of view
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