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Outline

® State estimation of nonlinear systems

O Observer-enhanced moving horizon estimation (MHE) - an output feedback
perspective

O Distributed implementation
> Distributed observer-enhanced MHE
> Forming distributed estimator networks from decentralized estimators
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O

Different approaches to economic MPC
0 Our approach - economic MPC with extended horizon
0 Applications

m Conclusions
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Part |: State Estimation of Nonlinear Systems

1. Observer-enhanced moving horizon estimation (MHE)

2. Distributed implementation
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Introduction to state estimation

® State estimation reconstructs the state of a system
0 Sufficient measured variables & a system model
® For linear systems, standard solutions are available
0 Luenberger observers and Kalman filters
® State estimation for nonlinear systems is much more challenging
0 Extensions of linear solutions based on successive linearization
> Extended Kalman filters - ad hoc solutions (Eykhoff, Wiley, 1974)
0 Designs that explicitly account for nonlinearities

> Deterministic approaches: High-gain observers etc. (Gauthier et al., TAC, 1992)

> Stochastic approaches: Moving horizon estimation etc. (Rao et al., Automatica, 2001; TAC,
2003; Michalska and Mayne, TAC, 1995)
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Deterministic nonlinear observers

® System description

p(t) = flzt),w(t))
y(t) = h(z)+o()

U z, y: system state vector & measured output vector
O w, v: process & measurement noise
m Deterministic nonlinear observer Z(t) = F(z(t),y(t))
o Noise information is not used
0 A common form of F(z,y) (Gauthier et al., TAC, 1992; Ciccarella et al., 1JC, 1993)
F(z,y) = f(2,0) + K(z,9)(h(2) — y)
® Objective: z converges to = with tunable convergence rate

O ngh-galn observers (Gauthier et al., TAC, 1992; Ahrens and Khalil, Automatica, 2009)
0 Separation principle is possible in output feedback control
0 Very sensitive to measurement NoiSe (Ahrens and Khalil, Automatica, 2009)
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Moving horizon estimation ... mc 20

® Moving horizon estimation (MHE) o Moving estimaton
R . [ H '
k=1 k Discard past {™""*a, o
S a2 et 2| measwement| 4, P
X'H(]i:) e ke : “:\ : : New measurement
+V(&(tk—nN)) : H * : . ' .‘Z /at LN
st 3(t) = F(@(8), w(t;)),t € [ts, tiya] ! ¢+
v(ti) = y(ti) — h(E(t;))
wlts) € W, wlta) €V, &) € X LU, t'k+N tii N+

® Online optimization based approach

U Explicitly uses distribution/boundedness information of w, v,

O A moving estimation window with an arrival cost V(Z(tx—n))
® QObjective: to obtain an estimate of  minimizing the cost function

O Arrival cost approximation for constrained systems is difficult (Rao and Rawlings,

AIChE, 2002; Ungarala, JPC, 2009; Lopez-Negrete et al., JPC, 2011)

0 Closed-loop stability in output feedback control cannot be established
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Comparison of high-gain observers and MHE

® High-gain observers = Moving horizon estimation
> Do use of noise information > Noise considered explicitly
> Not optimal > Optimal
> Tunable convergence rate > Unknown convergence rate
> Separation principle is possible > No available separation principle
> Sensitive to measurement noise > Robust to measurement noise
> Use only current measurements > Depends on arrival cost estimation
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> Do use of noise information > Noise considered explicitly
> Not optimal > Optimal
> Tunable convergence rate > Unknown convergence rate
> Separation principle is possible > No available separation principle
> Sensitive to measurement noise > Robust to measurement noise
> Use only current measurements > Depends on arrival cost estimation

Combine the advantages of high-gain observers and MHE
® QObserver-enhanced MHE for nonlinear systems (i, ces, 2013)

0 Reduced sensitivity to noise
0 Reduced dependence on accuracy of the arrival cost

0 Has the potential to be used in output feedback control (zhang and Liu, AichE 1., 2013;
Ellis et al., SCL, 2013; Zhang et al., JPC, 2014)
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Observer-enhanced MHE - Preliminaries .. ces. 2o

m System description
#(t) = fla(t),w(?))
y(t) = h(@) +o(t)
O w and v are bounded and z € X
m Existence of a nonlinear deterministic observer 2 = F(z,y)

0 Estimation error decays asymptotically for the nominal system

|2(t) — z(t)| < B(]2(0) — z(0)],1)
> fis a KL function
® The estimation error is bounded when w and v are bounded
[2(t) =z ()| < B(l2(tk) — z(tr)], t — te) +v(t — ti)

O ~(t — tx): an increasing function that characterizes
the effects of w, v
m The difference between y(¢) and h(z(tx) can be
used to measure the accuracy of the estimate z(¢)
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Observer-enhanced MHE - Formulation .. ces, 23

®m Observer-enhanced MHE

= 2 k 2
min i:kE—N wltolg—1 + i:kZ—N R }
X (tg) N
+V(2(tk—nN))

st @) = F(@(), w(ty)),t € [tsstiq1]

v(t;) = y(t;) — h(2(t;))

w(t;) € W, v(t;) €V, &(t) € X

2(t) = F(2(t), y(tg—1))

2(tg—1) = 2(tg—1)

[#(tr) — 2(tp)] < sly(tr) — h(z(tk))]

1

Lo Lo
0 The observer is used to calculate a confidence region every sampling time

O Z(tx) is optimized within the region
0 Kk is a parameter that determines the size of the confidence region

> When k = 0, it reduces to the observer implemented in sampled and hold

> When k is too large, it reduces to the regular MHE
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Application to a CSTR example - Simulation settings

® A non-isothermal continuous stirred tank reactor

3

dT F AH; —E; Qe
— = —(T - T) — ki RT C

dt Vr( A0 ) Z‘: ocp o€ At ocp Vi
dc F 3 —B;

TtA = v(cAO —Ca)+ Zkioe RT Ca

i=1

B The reactor temperature T is measured

Bounded uncertainties: -5 < v <5,-10 < wr, we, <10

A reduced-order deterministic observer (soroush, ces, 1907)

¢ F N 3 —E; .
TtA = - (Cao = Ca) + D kioe BT

i=1

® Parameters: A =0.01 h, Kk =0.02
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Application to a CSTR example - Results

® Simulation results

0 0.2 0.4 0.6 0.8 1
Time (hr)
N =10

BLACK: Proposed; RED: regular MHE; PINK: observer

1500 ————
¥ N —— Proposed MHE
\ = = Classical MHE

Performance
—_
o =
= =3
=3 =
’

SS
-
¥ ~~a___

! ! ! ! ! !

2 4 6 8 0 1 W 1

Horizon
k=f ]
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J:kzo\z(tk)—m(tk)\swn:hsz { 0 50

0 Observer-enhanced MHE gives better estimates in both 7" and Ca
0 Averages of the normalized error: 0.3667, 0.3494, 0.2836

0 Observer-enhanced MHE depends less on N or the arrival cost
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Output feedback control & some remarks

® QObserver-enhanced MHE in output feedback control

0 Output feedback MPC and its triggered implementation (zhang and Liu, AICKE J., 2013)

0 Qutput feedback economic MPC (iis et al., sct, 2013)

> Provable closed-loop stability

> Improved control performance

MPC x Observ;/r[»lilll:‘hanced

® Remarks on observer-enhanced MHE

0 Theoretical advancement for output feedback nonlinear control
0 If a nonlinear observer can be designed, it is appealing

0 If regular MHE requires a large N, it may be used to address the
computational issue
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Spectrum of Plant-wide Control Schemes

System System
u X u x
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Decentralized process control

Centralized process control
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Spectrum of Plant-wide Control Schemes

System System System
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Spectrum of Plant-wide Control Schemes

91 subsystem 1} l "VAPT ‘Lalajbs/sterm} al l MPC 1 }“1 =[l 1} el
- ] T il
2 l MPC 2 Ha‘&bwsemz} l MPC 2 } =l[ 0}
—— [ — [ —
< >
Centralized process control Distributed process control Decentralized process control

Distributed process control is between
centralized and decentralized process control

® Motivation of distributed process control/estimation

0 Reduced computational complexity and increased fault tolerance
O Increased estimation performance to decentralized state estimation
0 Distributed output feedback control

> Distributed MPC based on state feedback (christofides et al., Springer, 2011; CCE, 2013; Cai et al.,

JPC, 2014; Li and Shi, SCL, 2013; Li and Zheng, Wiley, 2016)
13 of 38



Distributed MHE - System description

® System description
i(t) = fi(mi(t), wi(t)) + fi( Xa(D))
yi(t) = hi(wi(t)) + vi(t)
O fi, fi and h; are Lipschitz functions
0 w; and v; are bounded and z; € X;

0 y; is sampled every A at time instants ¢y,

® QObservability assumption - Auxiliary observers
2 (t) = Fi(z:(t), hi(2i(t)))
0 Estimation error decays asymptotically for the nominal system when
filXi(t) =0
[2:(t) — 2 (t)| < Bi(|2:(0) — =i (0)],t)
> B; is a KL function and Fj is a Lipschitz function

0 Different techniques to design the auxiliary observer (cicccarella et al., 11c, 1993; Kazantzis

and Kravaris, SCL, 1998; Soroush, CCE, 1998; Kravaris et al., CCE, 2013)
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Distributed MHE - Algorithm g s i sec. 209

1. At to, all MHEs are initialized with
initial subsystem guess ;(0) and
the actual subsystem output
measurements y;(0)

2. At ty > 0, carry out the following:

Communication Network

A A A
551} })Aci %, ifci £, 35‘1
IR 2 V2l gdi R 2
‘ MHE 1 ‘ ‘ MHE 2 ‘ MHE m ‘

A [ 4

M

Y2

Y

m
Subsystem 1 ; Subsystem 2 w Subsystem m

System

2.1. MHE i receives its local measurement y; (tx)

2.2. MHE i requests and receives the output measurements y;(tx—1) and state
estimate & (tx—1) from other subsystems that directly affect its dynamics

2.3. Based on the received information, MHE ¢ calculates its current state

estimate &;(tx)

3. Go to Step 2 at tp41
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Distributed MHE - Augmenting auxiliary observers qu.

and Liu, JPC, 2013)

® Augmented auxiliary observers

zi(t) = Fi(zi(8), yi(te—1)) — auxiliary observer
+fi(Xi(tr-1)) — interaction model
+ 2 rer, Kot(@) (i (te—1) — hi(#1(tk-1))) — correction term

O fi(Xi(th-1)) # fi(Xi(te—1))

® The gain K is time-varying

of: (oh\t
Ki = —_—
1T By (amz)

=2 (tg—1)

0 Linear dynamics in the error dynamics caused by the interaction is
compensated for by the correction term
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Distributed MHE - Local MHE i s e, soc. 2015)

k—1 k
min w; (t 2+ v; (t 2 4+ Vi(Z; (tp—
5t BB a0 q:kZ_NI ( q)lQi 1 q:%I_NI ( Q)lRi 1 (Zi(tk-n))

st @) = fi(@i (1), wi(ts)) + fi(Xi(tq)), t € [tq, tgs]
vi(tq) = yi(tq) — hi(Zi(tq))
wi(tq) ew, ’Ui(tq) ev, il(t) € X;

2i(t) = Fi(2:(t), yi(to—1)) + fi(Xi(tp—1))
+ e, Ko@) Wi(te—1) = hi(@1(tk-1)))
Zi(th—1) = i(tp—1)

|2 (tk) — zi(te)| < milyi(te) — hi(zi(tx))|

® The local MHEs are formulated in terms of subsystems and subsystem
interactions are considered

m A confidence region is created based on both the output and the
reference state estimate calculated by the nonlinear observer

® The estimate of the current state is only allowed to be optimized within
this region
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Distributed MHE - A chemical process example

B Application to a reactor-separator process
Fo

States: T4, Tp, T
Inputs: Q;

Outputs: T;
i=1,2 3

0 Three subsystems according to the three tanks
O Auxiliary observers are designed as follows (ciccarella et al., 15c, 1993)
£5(t) = fi(#:(t),0) + Gi(@: (1) ™" Koi (yi(t) — 4: (1))

dd;(z;
> G; = ;]AE:E’L)
i

> Ko,,; is a fixed gain matrix

0 Sampling time: A =18 sec, N =3, ki = 0.5

0 Correction gain: K; 3 =[0050.4]7 Ko 1 =[00110.88]" K32 = [0 0 60.48]7
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Distributed MHE - SimUIation reSU|tS (Zhang and Liu, JPC, 2013)

® Trajectories of normalized estimation error

1 45
40 P 40 40
\ 100 L N
\ N
3sp K . 3sf, 35
1\ ’ \
30h | 80 . 30
[ . A
1 . !
25p / 25f0
z v = eof! z v oL
20f) ! 20f}!
LY i "
LY ! '
'
EE] S 40| EE| I
(Y [\ "
0f ' 10f 'y
' \ \ ll
' 201, ' ‘\
st \ spo Y
\ \ [N N
\ N N _'_-_ P - e — —
0 - ob—s= = 0 =
0 . . 0 005 01 015 02 0 005 01 015 02 0 005 01 015 02
Time Time Time
Proposed v.s. Observers

Time
Proposed v.s. Decentralized Proposed v.s. w/o correction

Proposed v.s. Regular
O In the observers, the correction terms are also implemented
O Observer-enhanced distributed MHE has a much faster convergence rate

O Information exchange can be used to significantly improve the performance

0 Correction terms play an important role
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Forming distributed estimators from decentralized estimators
® The concept can be extended to connect decentralized estimators

® An illustrative example

Decentralized estimation
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Forming distributed estimators from decentralized estimators

® The concept can be extended to connect decentralized estimators
® An illustrative example

Fo,To.Cao Fs. Tos. Caos

Fa. Tos, Cana

Decentralized estimation

Distributed estimation
15
— Decentralized scheme
~ - - Distributed scheme
1 ]

lel

0.5

0
0 0.2 04 0.6 0.8
Time (h)
Normalized estimation error
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Forming distributed estimators from decentralized estimators

® The concept can be extended to connect decentralized estimators

® An illustrative example

Fo.To. Cao Fs Tos, Caos Fa. Tos, Cana

Decentralized estimation Distributed estimation
15
— Decentralized scheme . .
0 Different types of estimators can be
L 1 connected

lel

0s O Improved estimation performance

0 Weakly coupled subsystem error

% 0.2 04 06 0.8 1 dyna mics
Time (h)

Normalized estimation error
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Other related work

® Distributed adaptive high-gain extended Kalman filters (rasediet a1, ApECHEM, 2015)
m Coordinated distributed moving horizon state estimation (an etal. coc, 2016)

® Communication delays and losses in distributed state estimation (rashedi et al.,

AIChE Journal, 2016; Zhang and Liu, JPC, 2014; Zeng and Liu, SCL, 2015)

® Triggered communication in distributed state estimation (znang and Liu, sct, 2014;

Rashedi et al., submitted)

® Subsystem decomposition in distributed state estimation (vin et a. AichE Journal,

2016; Yin and Liu, submitted)
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Part |l: Economic Model Predictive Control

1. Economic MPC with extended horizon

2. Applications
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Introduction to economic MPC

m Current paradigm for achieving overall economic objectives

oM . S -
Real Time Opfimization !—Ilerarch!cal partitioning of objectives and
information
(RTO)
> RTO layer: overall economic optimization
A
Advanced Control > Advanced control layer: set-point tracking
MPC
( ) 0 Issues that need to be addressed
v > Advanced control has different objectives
Regulatory Control
(PID) > e.g., fast asymptotic tracking
> Economic performance loss in the transient
y periods (Forbes and Marlin, CCE, 1996; Zhang and Forbes, CCE, 2000)
FLCEES > More important for slow processes
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Introduction to economic MPC

= Different approaches to address these issues
0 Dynamic RTO (Marquardt et al, Focapo, 2003; LNCIS, 2007)
0 MPC with an economic terminal cost (zanin et al., CEP, 2002)

O Economic model predictive control (EMPC) (Rawiings et al.. NMPC, 2009)

Real Time Optimization (zs,us) = argmin le(z,u)
(RTO) s.t. f(x, u) =0
(x.wu:) \L (x37us)
Advanced Control min [ (|lz - sl + lu — ue|R)dt
(MPC) st. &= f(x,u)
U

min [ le(z, u)dt
Economic MPC “

st. &= f(z,u)
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Different approaches to economic MPC

® |mportant topics in EMPC: stability, performance, robustness
m Different approaches
0 Terminal cost and constraints
> Point-wise terminal constraint (Diehl et al., TAC, 2011)
> Terminal cost and terminal region constraints (Amrit et al., ARC, 2011; Miiller et al., JPC, 2014)
> Lyapunov-based constraints (Heidarinejad et al., AIChE J, 2012; Ellis et al., JPC, 2014; Automatica, 2014)
0 Extension of control horizon
> Extension of control horizon (Griine Automatica, 2013), (Griine, JPC, 2014)
> Finite horizon can provide near optimal performance

O Our approach: extension of prediction horizon (i et al., cEs 2015; ADCHEM, 2015;

Automatica, in press)
> Separation between prediction and control horizon
> Significantly improved computational efficiency
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Preliminaries

m System description
z(k+1) = fz(k), u(k))
0 f is continuous

0 x and u are bounded in compact set x € X, u € U

m Optimal steady state m Auxiliary controller h(z)
(Ts,us) = arg rilgl I(z, u) O h(z) is Lipschitz continuous
st. x=f(z,u) O z, is asymptotically stable in
reX DcCX
uel O h(z)€eU, VzeD
O [: continuous economic cost 0 D is forward-invariant: z € D,
function f(z, h(z)) € D.
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Proposed EMPC - Implicit terminal cost (i e i auomsics in ey

® Objectives: a computationally efficient EMPC with an easy-to-construct
terminal cost and guaranteed stability & performance

B |mplicit terminal cost based on the auxiliary controller

>

tk tk+Nh

e(x,Np) == Spn s (e (k, 2), bz (K, )

U xp(k,z): state trajectory under controller h(z) with initial state z

O c¢(x, Ni): accumulated economic stage cost under h(z) for Ny steps
27 of 38



PrO posed EM PC - FOI’m Ulation (Liu and Liu, Automatica, in press)

m EMPC formulation

. N—-1 4/~ ~
w(O) (D) ru(N—1) 2RO (k) u(k)) + e(Z(N). Nn)

st @(k+1) = f@k),uk), k=0,..

O

c(Z(N), Ni,) extends the prediction horizon

O

Achieving improved transient performance from ¢ to txyn4 N,
0 Recursively feasible
0 Computationally efficient
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Proposed EMPC - Performance & stability (i sn tis, astomatics in press)

® Asymptotic average performance

_ 1
Jasy = Fhm sup — l(z(k),u(k))

0

B!

£
Il

® Properties of the proposed EMPC
U Jﬁlfpc < Uzs,us) + Bi(dmax, Ni)
O State will be driven into an open ball B,.(xs) where r depends on N},
> Achieve practical stability
> Sufficient conditions: strict dissipativity and finite supply under h(z)
0 Transient performance is upper bounded by the auxiliary controller

> An optimally designed auxiliary controller may contribute to improved
computationally efficiency and economic performance - back to the basis

® No requirement on the length of N
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A numerical example
® Linearized continuous stirred-tank (pien, et at. TAC, 2011; Grine, Automatica, 2013)
wte+ 1) = (0308 Sous )o@+ ( _000iar ) v+ ( $aoas )
0 Stage cost I(z,u) = |z|> + 0.05u%, X = [-100, 100]?, U = [-10, 10].
O Optimal steady state z; ~ [3.5463,14.6531]", us ~ 6.1637
O Auxiliary controller h = us, D= {x: |z — zs] <85} C X

® Proposed with N =1 v.s. EMPC without terminal cost (srine, Automatica, 2013)

A
0.4
~ @
g g :
£ =
3 202
z 9] A
0.1 A
o o
B o E
0 50 100 150 200 250 300 o 5 10 15 20
k N/N,
Performance trajectories Computational times

30 of 38



Oilsand separation example (. aocrew 2o, ces, 09

® Primary separation vessel

ore ore

Qore’ A, -, O

l Froth -T— 9, Ot,,f, Otsf

ga g |
Qfd’(xb , Oy —+—0

9y

m m
a,, o

K

Mixer Middlings

me

Tailings

0, 0,
O Three manipulated inputs: u = [u1, u2, u3]” = [Qf1, Qm, Q)T
O Economic objective: maximize bitumen recovery rate

O A typical control configuration: maintain the froth/middlings interface at a
constant level
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Oilsand separation example (. aocrew 2o, ces, 09
® EMPC design

0 Control objective - maximize bitumen recovery rate

r(x(t), u(t))

0 Auxiliary proportional controllers

_ Z? 1a£j(t)Qf(t)

j= lag;eQOTE
® Simulation results: N =5, N, =30, A = 1hr

] Average recovery rates

> P=0.7690, MPC=0.7754
> EMPC w/o TC=0.8267
‘f B > Proposed EMPC= 0.8845
% 20 40 60 72
t(h)
Proposed: Blue

EMPC w/o TC: Red
Tracking MPC: Green
32 of 38
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Wastewater treatment plant e ecr o)

= \Wastewater treatment plant

. Z,
Anoxic compartments Aerated compartments Settler
|KLa K,a |KLa
0,.2Z °o oo|[° o |Lrty
0, %0 . _ _ O _lyns O o
Y W Lt oo o
o o
Biological reactor 0.2, 0.2,
[
Y 0.7, —

0 Model is developed by the International Water Association
0 Periodic operation subject to high uncertainties

0 Two manipulated inputs: @, and Kras

0 Economic objective: maximize the effluent quality

0 A typical control configuration: maintain Snyo,2 and So 5 at pre-determined
set-points by manipulating the two control inputs
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Wastewater treatment plant e ecr o)
® EMPC design - representation of the control objective

0 Effluent quality: daily average of a weighted summation of the
concentrations of different compounds in the effluent

1t
BQ = j'tof (2TSSe(t) + CODe(t) +30SN g, e(t) + 105N o (1) + 2BODe(t))Qe(t)dt

® Simulation results: MPC with N, = 2, N, = 1, EMPC with N = 8, N, = 60

13000

12000

11000

10000

EQ kgpolunsl)

T
 anys)

Proposed: Black Tracking MPC: Red Pl: Blue
O Pl control = 6123.53 kg/d, Tracking MPC = 6022.64 kg/d
0 Proposed EMPC = 5671.86 kg/d
> Improved 7.4% and 5.8% compared with Pl and MPC
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EMPC in anemia management

® Anemia is caused by compromised hemoglobin
IeVeIS a}zaum

® Patients with End Stage Renal Disease have a
compromised ability to produce erythropoietin
(EPO) by which the body creates red blood cells

7.5pum

m Recombinant human EPO (rHUEPO) is used to
treat anemic patients Topun
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EMPC in anemia management

® Anemia is caused by compromised hemoglobin
IeVeIS G}Mum

® Patients with End Stage Renal Disease have a
compromised ability to produce erythropoietin
(EPO) by which the body creates red blood cells 54

® Recombinant human EPO (rHUEPO) is used to
treat anemic patients

Top view

® Objectives: to develop control algorithms to maintain hemoglobin within
target range and to save rHUEPO

= An ARX model is identified for each patient based on input-output data
® Economic zone MPC is used to minimize rHUEPO consumption

m Soft state constraints are used to ensure hemoglobin is within target
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EMPC in anemia management

® Simulation results of economic zone MPC and zone MPC

Hemoglobin (g/dL)

N
a
J

EMPC

N
o

B
o o

EPO Dose (IU*107%)
(%)

o

IS}
B
1S5}
N
S}
W
S

40 50 60 70 80 90 100
Time, t (weeks)

0 Percent of points in zone: MPC=86.8, EMPC=85.2, Physician=78.8
0 rHUEPO consumptions (x10%): MPC=1.53, EMPC=1.33, Physician=1.55

> Reduced over 13%
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Conclusions

® State estimation of nonlinear systems
O Observer-enhanced MHE - an output feedback perspective
> Less dependent on the horizon
> Less sensitive to noise
> May be used in output feedback control
0 Distributed MHE
> Communication is important
> Correction terms are important
> May be extended to connect different types of estimators
® Economic MPC
o Economic MPC with extended prediction horizon
> Extended prediction horizon via an auxiliary stabilizing controller
> Improved computational efficiency
> Guaranteed stability and performance
0 Applications: oilsand separation, wastewater treatment, anemia

management
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