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Abstract

Industrial chemical plants are typically large-scale systems with a number of processing

units or subsystems, which are connected together via material, energy and information

flows. The decentralized control frameworks which in general gives suboptimal control per-

formance is normally used for the control of these large-scale chemical processes. With the

increasing scales of industrial processes and the interactions betweeen subsystems, it is more

challenging to design control systems to achieve the optimal plant operation, as well as to

satisfy the increasing requirements on process safety and environmental regulations. In re-

cent years, the distributed framework has been recognized as a promising framework for the

control of large-scale systems with interactions. It is shown that the distributed framework

has the potential to achieve the centralized framework performance, while maintaining the

flexibility of the decentralized control scheme.

This thesis focuses on the development of coordinated distributed state estimation

schemes. Specially, we propose coordination algorithms for distributed moving horizon

state estimators (MHEs) for discrete-time linear systems. In particular, the class of linear

system is composed of several subsystems that interact with each other via their states.

Two coordination algorithms are studied: the price-driven coordination algorithm and the

prediction-driven coordination algorithm. In the proposed coordinated distributed MHE

(CDMHE) schemes, each subsystem is associated with a local MHE. In the design of a local

MHE, a coordinating term is incorporated into its cost function which is determined by

an upper-layer coordinator. It is shown that both CDMHE schemes are able to achieve

the estimation performance of the corresponding centralized design if convergence at each

sampling time is ensured.
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Chapter 1

Introduction

1.1 Motivation

Chemical plants are typically large-scale systems with a number of processing units or sub-

systems, which are connected together via material, energy and information flows. The

increasing requirements in process safety and environmental regulations, as well as the pur-

suit of profits and productivity have led to more and more complicated and integrated

process designs. Decentralized control frameworks are normally used for the control of

these large-scale chemical processes. In the decentralized control frameworks, interactions

between subsystems are often ignored or treated in very conservative ways which result in re-

duced closed-loop performance or even instability. Although centralized control frameworks

may give improved (or the optimal) performance, they are not favorable in industries due to

computational, organizational and fault tolerance considerations (Bakule, 2008; Christofides

et al., 2013).

In the past decade, distributed model predictive control (DMPC) has been recognized as

a promising scheme for the control of large-scale systems. Extensive results have been devel-

oped for DMPC (e.g.Stewart et al., 2011, Liu et al., 2009, Sun and El-Farra, 2008, Tippett

and Bao, 2013, Al-Gherwi et al., 2013, Cheng et al., 2007). A common feature of these

DMPC schemes is that the local controllers communicate with each other directly or via a

coordinator to exchange information and coordinate their control actions. It is shown that

the DMPC has the potential to achieve the centralized control performance, while maintains

the flexibility of a decentralized control scheme (Christofides et al., 2013). Reviews of the

various existing DMPC results can be found in Christofides et al., 2013, Scattolini, 2009.

Pertaining to this work is the coordinated DMPC (CDMPC) framework. The CDMPC

framework has a two-layer hierarchical structure. The lower layer local model predictive

controllers communicate with an upper-layer coordinator to handle the interactions between

1



the subsystems. In Cheng et al., 2007, a price-driven coordination algorithm was proposed

for the optimal control of large-scale linear systems in which a coordinator is used to adjust

local controller’s behaviors by a price vector which approximates the Lagrange multiplier

of the corresponding centralized control problem. In Marcos., 2011, a prediction-driven co-

ordination technique was developed. In this prediction-driven coordination, interactions of

subsystems are calculated by the coordinator and sent to local systems. In Mohseni., 2013,

the stability and convergence properties of different coordination algorithms were analyzed.

While there are extensive results on DMPC, relatively less attention has been given to

distributed state estimation within process control.

Regarding distributed state estimation, there are results on decentralized or distributed

state estimation which are mainly within two classes: distributed Kalman filtering and dis-

tributed moving horizon estimation. The results of distributed Kalman filtering are primar-

ily developed for linear systems in sensor networks (e.g., Khan and Moura, 2008, Mutambara

and Durrant-Whyte, 2000, Stanković et al., 2009). One limitation of distributed Kalman

filtering schemes is that they cannot take into account constraints. Distributed moving

horizon estimation framework (DMHE) has been developed for linear systems (Farina et

al., 2010) and then nonlinear systems (Farina et al., 2012, Zhang and Liu, 2013). These

DMHE schemes can handle constraints in a systematic way. However, in the design of the

above distributed state estimation schemes, no consideration is given to the existing (decen-

tralized) implementation of control/estimation schemes in a process. If a decentralized state

estimation scheme has already been implemented in a process, the above distributed schemes

essentially require a completely redesign of the existing implementation which means high

capital investment.

Inspired by the above considerations, in this thesis, we focus on developing coordinated

algorithms for distributed moving horizon state estimators (MHEs) for a class of discrete-

time linear systems. If a decentralized MHE scheme is already implemented, the proposed

coordination algorithm requires minor modifications to the decentralized scheme and pro-

vides significantly improved performance.

1.2 Different Estimation Frameworks

This section provides a brief description of the three state estimation frameworks: the

centralized, decentralized and distributed state estimation frameworks.

2



1.2.1 The Centralized State Estimation Framework

In the centralized state estimation framework, the entire plant is modeled as a whole and the

entire plant state is estimated using a centralized observer or estimator, as shown in Figure

1.1. The output measurements of different operating units are all sent to the centralized

estimator.

Figure 1.1: A schematic of the centralized state estimation framework

The centralized framework takes into account the interactions between subsystems, and

it can give the best possible estimation result. However, with the increasing of the system

scale, the computation burden increases significantly. Also, the centralized framework lacks

of flexibility and has poor fault tolerance.

1.2.2 The Decentralized State Estimation Framework

In the decentralized state estimation framework, an observer or estimator is designed for

each subsystem and is designed based on the corresponding subsystem model. Figure 1.2

shows a schematic of a decentralized design with N subsystems. Since each subsystem

has its own estimator, the decentralized framework is easy to implement; however, the

interactions between subsystems are typically considered in conservative ways, which lead

to suboptimal results or even loss of stability.

Figure 1.2: A schematic of the decentralized state estimation framework

3



1.2.3 The Distributed State Estimation Framework

The above concerns for the centralized and decentralized state estimation motivate the de-

velopment of distributed state estimation schemes. As mentioned in Section 1.1, there are

results on distributed state estimation which are mainly within two classes: distributed

Kalman filtering and distributed moving horizon estimation. Distributed moving horizon

estimation framework (DMHE) has been developed for linear system (Farina et al., 2010)

and then nonlinear systems (Farina et al., 2012, Zhang and Liu, 2013). Although exist-

ing DMHE schemes vary in the observer formulation and communication structures, the

common characteristic they have is that subsystems exchange information with each other.

From the information exchange, local estimators get the state estimates of other subsys-

tems and use these information to improve local estimation performance. Figure 1.3 shows

a schematic of a distributed state estimation scheme with N estimators.

Figure 1.3: A schematic of the distributed state estimation framework

1.3 Thesis Outline and Contributions

Inspired by the coordinated distributed MPC framework in Cheng et al., 2007; Marcos.,

2011; Mohseni., 2013, this thesis focuses on the development of coordinated distributed

state estimation algorithms. Specifically, the distributed state estimation schemes will be

developed in the context of moving horizon estimation. The outline of the thesis and the

contributions of each chapter are described below.

Chapter 2 provides a description of the notations, terms as well as the system model

and the centralized and decentralized MHE formulations used in this thesis. In Chapter

3, a price-driven coordination algorithm is derived for the distributed moving horizon es-

timation, where a local MHE estimates all the process states, noises and interactions. It

will be shown that the standard price-driven coordination method cannot be used for state

estimation purpose since it requires measurements of the full state vector. A improved

price-driven CDMHE is proposed to address the issue of the standard version. Firstly, the

4



improved price-driven CDMHE is proposed without considering inequality constraints. Sub-

sequently, a method to handle inequality constraints by dividing the inequality constraints

into active constraints and inactive constraints is described. A chemical process example

is given to illustrate the effectiveness of the proposed price-driven scheme. In Chapter 4,

a prediction-driven CDMHE is presented first without considering inequality constraints.

Then a method to handle inequality constraints by using barrier functions is proposed. Two

chemical process examples are given to illustrate the applicability and effectiveness of the

proposed scheme. In Chapter 5, the performance of the prediction-driven CDMHE is further

investigated under different conditions, including triggered communication, communication

failure and premature termination. The last chapter, Chapter 6 summarizes the results of

this thesis and discusses potential future research directions.

The contributions of this thesis can be summarized as:

• an analysis of the limitation of the standard price-driven coordination algorithm in

distributed state estimation;

• a new price-driven coordination algorithm for distributed state estimation;

• a prediction-driven CDMHE with a set of sufficient conditions that ensure the con-

vergence to the centralized MHE;

• methods to handle inequality constraints in CDMHE schemes;

• examples with extensive simulations illustrating the detailed implementations and

demonstrating the performance of the proposed approaches;

• a detailed investigation of the performance of the proposed prediction-driven CDMHE

under different conditions.

5



Chapter 2

Preliminaries

2.1 Terms and Definitions

Some of the key terms used throughout the thesis are explained in this section.

In this thesis, the plant or whole system indicates the entire system, while subsystem

means the distributed units that have their own estimators. We use local to emphasize the

object belongs to subsystems, for example, local state, local estimator.

MHE stands for moving horizon estimation/estimator. The term DMHE denotes dis-

tributed MHE, and CDMHE refers to coordinated distributed MHE in which DMHEs

are coordinated by a coordinator. Price-driven CDMHE and prediction-driven

CDMHE refer to the CDMHE network obtained by price-driven coordination method

and prediction-driven coordination method, respectively. In the context of CDMHE, the

communication stands for a two-way information exchange between local MHEs and the

coordinator. Iteration also describes the process of the information exchange and indicates

that the information exchange progress is an iterative process.

Centralized MHE means the whole system is estimated by one estimator. Central-

ized performance or optimal performance both refer to the optimal performance of

the centralized MHE. A local estimator refers to the local MHE in a subsystem either in

decentralized or distributed estimation network.

2.2 System Description

In this work, the entire plant is assume to be observable and will be described by the

following linear, time-invariant, discrete-time system:

x(k + 1) = Ax(k) + w(k); (2.1a)

y(k) = Cx(k) + v(k) (2.1b)
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where x(k) ∈ Rn is the state vector and y(k) ∈ Rq is the output vector, w and v represent

system and measurement noise terms which have zero means. It is considered that the entire

system can be divided into N interconnected subsystems, each with ni states and qi outputs,

for i = 1, . . . , N . This implies that x(k) =
[
x1(k)T , x2(k)T , · · · , xN (k)T

]T
, y(k) =[

y1(k)T , y2(k)T , · · · , yN (k)T
]T

, where xi ∈ Rni and yi ∈ Rqi are the state and output

vectors of the ith subsystem, respectively. The system matrix A and output matrix C can

be partitioned in the following block-wise fashion:

A =


A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN

 , (2.2)

C =


C11

C22

. . .

CNN

 (2.3)

where Aij ∈ Rni×nj , Cii ∈ Rni×qi , i, j = 1, . . . , N . The ith subsystem can be represented

by the state space model:

xi(k + 1) = Aiixi(k) + wi(k) +
∑
i 6=j

Aijxj(k) (2.4a)

yi(k) = Ciixi(k) + vi(k) (2.4b)

where the part, Aiixi(k)+wi(k) in equation (2.4a) denotes the local dynamics of subsystem

i. Aijxj(k), j 6= i represents the coupling between subsystem i and subsystem j.
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2.3 The Centralized MHE Formulation

For the system model defined in equation (2.1), we consider a centralized MHE formulated

as the following quadratic programming(QP) form:

min
X̃,W̃
J =

1

2

k∑
j=k−Hp+1

v̂(j)′R−1v̂(j) +
1

2

k−1∑
p=k−Hp+1

ŵ(p)′Q−1ŵ(p);

=
1

2

 k∑
j=k−Hp+1

(y(j)− Cx̂)TR−1(y(j)− Cx̂) +
k−1∑

p=k−Hp+1

(ŵ(p)′Q−1ŵ(p))

 ;

(2.5a)

s.t.x̂(j + 1) = Ax̂(j) + ŵ(j) (2.5b)

ŷ(j) = Cx̂(j) + v̂(j) (2.5c)

x̂(j) ∈ X, ŵ(p) ∈W

j = k −Hp+ 1, ..., k; p = k −Hp+ 1, ..., k − 1
(2.5d)

where Hp is the estimation horizon. X̃ = [x̂(k−Hp +1)T , · · · , x̂(k)T ]T , W̃ = [ŵ(k−Hp +

1)T , · · · , ŵ(k − 1)T ]T are the estimated state and estimated process noise respectively, X

and W are constraints on x̂ and ŵ respectively, Q and R are assumed to be block diagonal

weighting matrices and symmetric positive definite.

Problem (2.5) can be also written in a compact form as follows:

min
X̂(k),Ŵ (k)

J =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C
Q−1

] [
X̂(k)

Ŵ (k)

]
+
[
−Y TR−1C 0

] [X̂(k)

Ŵ (k)

]
=

1

2
Z(k)TΥZ(k) + ΦTZ(k)

(2.6a)

s.t. GeqZ(k) = 0

GineqZ(k) ≤ gineq
(2.6b)

where Z(k) = [X̂(k)T , Ŵ (k)T ]T , X̂(k) = [X̂1(k)T , X̂2(k)T , · · · , X̂N (k)T ]T , Ŵ (k) =

[Ŵ1(k)T , Ŵ2(k)T , · · · , ŴN (k)T ]T , Y = [Y T
1 , Y

T
2 , · · · , Y T

N ]T with

X̂i(k) = [x̂i(k −Hp+ 1)T , · · · , x̂i(k)T ]T , (2.7)

Ŵi = [ŵi(k −Hp+ 1)T , · · · , ŵi(k − 1)T ]T . (2.8)

Yi = [yi(k −Hp + 1)T , · · · , yi(k)T ]T (2.9)

Note that the formulations of X̂(k) and Ŵ (k) are different from X̃ and W̃ in (2.5) due to

the organization of the subsystem state and process noise.

In (2.6), the definitions of C and Cii are as follows:
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C =


C11

C22

. . .

CNN

 , Cii =


Cii

Cii

. . .

Cii


Hp blocks

(2.10)

R and Q are weighting matrix with the following definitions:

R =


R1

R2

. . .

RN

 , Q =


Q1

Q2

. . .

QN

 (2.11)

with

Qi =


Qi

Qi

. . .

Qi


Hp blocks

, Ri =


Ri

Ri

. . .

Ri


(Hp−1) blocks

(2.12)

In equality equation (2.6b), Geq = [GA, GB], Geq is a (Hp − 1)n× (2Hp − 1)n matrix,

where n is the number of the states in the whole system. GA and GB are in the following

form:

GA =


GA11 GA12 · · · GA1N

GA21 GA22 · · · GA2N

...
...

. . .
...

GAN1
GAN2

· · · GANN

 , GB =


GB11 GB12 · · · GB1N

GB21 GB22 · · · GB2N

...
...

. . .
...

GBN1
GBN2

· · · GBNN

 (2.13)

with GAii and GAij , i 6= j in following forms:

GAii =


−Aii Ini

−Aii Ini

. . .
. . .

−Aii Ini


(Hp−1)ni×Hpni

(2.14)

GAij =


−Aij 0

−Aij 0
. . .

...
−Aij 0


(Hp−1)ni×Hpni

(2.15)

where GBii and GBij , i 6= j are in following forms:

GBii =


−Ini

−Ini

. . .

−Ini


(Hp−1)ni×(Hp−1)ni

(2.16)
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GBij = 0(Hp−1)ni×(Hp−1)ni
(2.17)

where Gineq and gineq in (2.6b) are defined as the following forms:

Gineq =


IHpn 0
−IHpn 0

0 I(Hp−1)n
0 −I(Hp−1)n

 , gineq =


Xmax

−Xmin

Wmax

−Wmin

 (2.18)

with Xmax =
[
XT

1max
, . . . , XT

Nmax

]T
, Ximax

= [xT
imax

, . . . , xT
imax

]THpni
, Xmin = [XT

1min
, . . . , XT

Nmin
]T ,

Ximin
= [xT

imin
, . . . , xT

imin
]THpni

, Wmin = [WT
1min

, . . . , WT
Nmin

]T , Wimin
= [wT

imin
, . . . , wT

imin
]T(Hp−1)ni

,

where n is the total number of states, ni is the state number of subsystem i, qi is the output

measurement number of subsystem i, I means identity matrix.

2.4 The Decentralized MHE Formulation

For the decentralized MHE, the interactions are not taken into account. For subsystem i,

we consider a local MHE is formulated as the following optimization problem:

min
x̂i,ŵi

Ji =
1

2

k∑
j=k−Hp+1

v̂i(j)
′R−1i v̂i(j) +

1

2

k−1∑
p=k−Hp+1

ŵi(p)
′Q−1i ŵi(p);

=
1

2

 k∑
j=k−Hp+1

(yi(j)−Ciix̂i(j))
TR−1(yi(j)−Ciix̂i(j)) +

k−1∑
p=k−Hp+1

(ŵi(p)
′Q−1i ŵi(p))

 ;

(2.19a)

s.t. x̂i(j + 1) = Aiix̂i(j) + ŵi(j) (2.19b)

ŷi(j) = Ciix̂i(j) + v̂i(j) (2.19c)

x̂i(j) ∈ Xi, ŵi(p) ∈Wi

j = k −Hp+ 1, ..., k; p = k −Hp+ 1, ..., k − 1
(2.19d)

where x̂i, ŵi, v̂i are the estimated state, estimated process noise and estimated measurement

noise for subsystem i, respectively, Ri and Qi are weighting matrices, yi is the provided

measurement of subsystem i.

The problem (2.19) can be rearranged in the compact form as follows:

min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
=

1

2
Zi(k)T ΥiZi(k) + ΦT

i Zi(k)

(2.20a)

s.t. Geq
i Zi(k) = 0

Gineq
i Zi(k) ≤ gineqi

(2.20b)
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where Geq
i = [GAii , GBii ] , GAiiand GBii are defined in (2.14) and (2.16), respectively. Gineq

i

and gineqi are defined as follows:

Gineq
i =


IHpni 0
−IHpni 0

0 I(Hp−1)ni

0 I(Hp−1)ni

 , gineqi =


Ximax

−Ximin

Wimax

−Wimin

 (2.21)

where Ximax , Ximin , Wimax , Wimin are defined the same as in (2.18), ni is the state number

of subsystem i, I means identity matrix.

For the decentralized MHE formulation, the interactions that exists between subsystems

are not considered. Therefore the estimated results that obtained from decentralized MHE

formulation are always suboptimal.

2.5 Existence of Solution to the MHE

In Section 2.3 and Section 2.4, the arrival cost is not considered in the MHE formulations.

In this section, we will focus on the centralized MHE formulation and show that if the

estimation horizon satisfies Hp ≥ n, then the MHE optimization problem is well-posed in

the sense that it has a unique (optimal) solution each sampling time.

In order to simplify the analysis, let us focus on a specific case first. Let us choose the

estimation horizon Hp = 3, the number of states n = 2, and number of measurements p = 1.

Within the estimation horizon, the estimated states of (2.1) satisfy the following recursive

equations:

x̂(0) =
[
I 0 0

] x̂(0)
ŵ(0)
ŵ(1)


x̂(1) =

[
A I 0

] x̂(0)
ŵ(0)
ŵ(1)


x̂(2) =

[
A2 A I

] x̂(0)
ŵ(0)
ŵ(1)


(2.22)
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Based on these equations and the objective function in (2.5), it can be obtained that:

min
x̂(0),ŵ(0),ŵ(1)

J =
1

2
{

2∑
j=0

‖y(j)− Cx̂(j)‖2R−1 +

1∑
q=0

‖ŵ(q)‖2Q−1};

=
1

2
{x̂(0)TCTR−1Cx̂(0) + x̂(1)TCTR−1Cx̂(1) + x̂(2)TCTR−1Cx̂(2)}

+
1

2
{ŵ(0)TQ−1ŵ(0) + ŵ(1)TQ−1ŵ(1)}

+
1

2
{y(0)TR−1y(0) + y(1)TR−1y(1) + y(1)TR−1y(1)}

− {y(0)TR−1Cx̂(0) + y(1)TR−1Cx̂(1) + y(2)TR−1Cx̂(2)}
(2.23a)

s.t. x̂(0) ∈ X, ŵ(0), ŵ(1) ∈W (2.23b)

where X and W are constraints on x̂ and ŵ, respectively.

Substituting equation (2.22) into equation (2.23) and denoting r = CTR−1C, l = R−1C,

z = [x̂(0)T , ŵ(0)T , ŵ(1)T ]T and taking into account that 1
2{y(0)TR−1y(0)+y(1)TR−1y(1)+

y(1)TR−1y(1)} is a constant, the above optimization problem can be rewritten as follows:

min
z
J =

1

2
{zT {

I0
0

 r [I 0 0
]

+

AT

I
0

 r [A I 0
]

+

(A2)T

AT

I

 r [A2 A I
]
}z}

− {y(0)T l′
[
I 0 0

]
+ y(1)T l′

[
A I 0

]
+ y(2)T r′

[
A2 A I

]
}z

+
1

2
zT

0 0 0
0 Q−1 0
0 0 Q−1

 z
=

1

2
zTΥz − Φz

(2.24a)

s.t. Gineq
exp z ≤ gineqexp (2.24b)

where in equation (2.24), Υ, Φ are as follows:

Υ =

r +AT rA+ (A2)T rA2 AT r + (A2)T rA (A2)T r
rA+AT rA2 r +AT rA+Q−1 AT r

rA2 rA r +Q−1


Φ = {y(0)T l

[
I 0 0

]
+ y(1)T l

[
A I 0

]
+ y(2)T l

[
A2 A I

]
}

(2.25)

where Gineq
exp and gineqexp have the following definitions:

Gineq
exp =



In 0 0
−In 0 0

0 Iq 0
0 −Iq 0
0 0 Iq
0 0 −Iq

 , gineqexp =



xmax

−xmin

wmax

−wmin

wmax

−wmin

 (2.26)
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where n is the number of states, q is the number of measurements, xmax, xmin, wmax, wmin

are upper and lower bounds on x̂ and ŵ, respectively.

Since ŵ(0)T [rA + AT rA2]x̂(0) is a scalar, the transpose operation does not change the

value. Therefore, ŵ(0)T [rA + AT rA2]x̂(0) = x̂(0)T [AT r + (A2)T rA]ŵ(0). Therefore the

equation (2.24) can be rewritten as the following form:

min
z
J =

1

2
zTΓz − Φz

s.t. Gineq
exp z ≤ gineqexp

(2.27)

where

Γ =

r +AT rA+ (A2)T rA2 0 0
2(rA+AT rA2) r +AT rA+Q−1 0

2rA2 2rA r +Q−1

 (2.28)

The Karush-Kuhn-Tucker (KKT) conditions for a regular point z∗ to be an minimum

in the quadratic problem (2.27) are:

Γz∗ − Φ +Gineq
exp

T
µ∗ = 0 (2.29a)

Gineq
exp z

∗ − gineqexp ≤ 0 (2.29b)

µ∗T (Gineq
exp z

∗ − gineqexp ) = 0 (2.29c)

µ∗ ≥ 0 (2.29d)

where z∗ is the optimal solution, µ∗ is the Lagrange multiplier.

In order to get unique solution of equation (2.29), the invertibility of matrix Γ is needed;

that is det(Γ) 6= 0.

Lemma 2.5.1. (Silvester, 2000) Suppose A, B, C and D are matrices of dimension n ×

n, n×m, m× n, and m×m, resepctively. Then

det{
[
A 0
C D

]
} = det(A)× det(D) = det{

[
A B
0 D

]
} (2.30)

Based on the above lemma, the determinant of Γ is:

det(Γ) = det(r +AT rA+ (A2)T rA2)det(r +AT rA+Q−1)det(r +Q−1) (2.31)

Because Q−1 is positive definite, r and AT rA are both semi-positive definite, the determi-

nant of the last two matrices are not zero. We just need to show that det(r + AT rA +

(A2)T rA2) 6= 0. Let us use P to represent this matrix.
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P = r +AT rA+ (A2)T rA2

=
[
CT ATCT

] [R−1
R−1

] [
C
CA

]
+ (A2)TCTR−1CA2

= oT
[
R−1

R−1

]
o+ (A2)TCTR−1CA2

(2.32)

where o =

[
C
CA

]
, is the observability matrix of the system.

Lemma 2.5.2. (Mirsky, 2012) For a real matrix A, rank(ATA) = rank(AAT ) = rank(A) =

rank(AT ).

Matrix

[
R−1

R−1

]
is the aggregated form of weighting matrix R−1. Since R−1 is a full

rank and positive symmetric matrix, and usually be picked as a constant multiple identity

matrix, we can treat

[
R−1

R−1

]
as identity matrix. Then we only need to consider the

rank of oT o. Since system is observable, rank(o) = 2, thus rank(oT o) = 2 which is full rank.

Therefore, the determinant of P is not zero, thus P is invertible. This implies that the

MHE optimization problem has a unique solution.

Now, let us consider the general case with system matrices A with dimensions n × n,

C with dimension m× n, and moving horizon Hp. Following similar procedures, it can be

obtained that the corresponding P matrix can be obtained as follows:

P = r +AT rA+ (A2)T rA2 + · · ·+ (AHp−1)T rAHp−1 (2.33)

When estimation horizon Hp ≥ n, P can be rewritten as:

P =
[
CT ATCT · · · (A(n−1))TCT

]

R−1

R−1

. . .

R−1




C
CA

...

CA(n−1)


+

Hp−1∑
k=n

(Ak)TCTR−1C(Ak)

=ϑT


R−1

R−1

. . .

R−1


nm∗nm

ϑ+

Hp−1∑
k=n

(Ak)TCTR−1C(Ak)

(2.34)

where ϑ =


C
CA

...

CA(n−1)

, is the observability matrix of the system, rank(ϑ) = n, which implies

that determinant of P is not 0. Thus determinant of Γ is not zero and Γ is an invertible
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matrix. This means that a unique solution exists for the MHE formulation used in Section

2.3 and Section 2.4.

In summary, for an observable system consists of n states, if the window size of the

horizon Hp ≥ n, the MHE formulation used in in Section 2.3 and Section 2.4 has the unique

solution.

2.6 Conclusions

In this chapter, some terms and definitions used in this thesis are introduced, the formula-

tions of the centralized MHE and the decentralized MHE are given. It is also shown that

such MHE formulation has a unique solution when the estimation horizon is greater than

or equal to the number of states.
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Chapter 3

Price-driven Coordinated
Distributed MHE

In this chapter, a coordination method directly adopted from price-driven CDMPC (Cheng

et al., 2007) is first developed for distributed MHE. We then show that this conventional

price-driven coordination algorithm cannot be used for state estimation since it requires

measurement of the entire system state. Subsequently, an improved price-driven CDMHE

is proposed to address this issue. The convergence analysis of the improved price-driven

CDMHE under both unconstrained and constrained conditions are given.

3.1 Price-driven Coordination Algorithm

In the proposed price-driven CDMHE, we estimate not only the states x̂, process noise ŵ

but also the interaction ĥ. The proposed price-driven CDMHE has a two-layer hierarchical

structure, in which the local subsystems/estimators are in the lower layer and the coordina-

tor is in the upper layer. We first focus on the unconstrained case. The objective function

of the centralized MHE can be rewritten in the summation of N subsystems as follows :

min
X̂i(k),Ŵi(k)

J =

N∑
i=1

{1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
}

(3.1a)

s.t. GAii
X̂i(k) +GBii

Ŵi(k) = Ĥi(k) (3.1b)

Ĥi(k) =

N∑
j=1,j 6=i

−GAij
X̂j(k) (3.1c)

The Lagrange function of the problem (3.1) is written in the following form:
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L =

N∑
i=1

{1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
}

+

N∑
i=1

µT
i (GAiiX̂i(k) +GBiiŴi(k)− Ĥi(k)) +

N∑
i=1

λTi (Ĥi(k) +

N∑
j=1,j 6=i

GAij X̂j(k))

=

N∑
i=1

Fi(X̂i, Ŵi) +

N∑
i=1

µT
i (GAii

X̂i +GBii
Ŵi − Ĥi) +

N∑
i=1

λTi (Ĥi +

N∑
j=1,j 6=i

GAij
X̂j)

(3.2)

where the time instant index k is omitted in X̂i(k), Ŵi(k) and Ĥi(k) to simplify the notation.

µi and λi are Lagrange multiplier vectors which have been introduced to take into account

the equality constraints.

Since the equality constraints are from the system model, we assume the equality con-

straints are independent from each other. The objective function Fi is a quadratic function

of X̂i and Ŵi, so it is continuous differentiable. Therefore, the optimal solution must satisfy

the following stationary conditions of the Lagrangian, i.e. i = 1 to N

∂L
∂X̂i

=
∂Fi

∂X̂i

+GT
Aii
µi +

N∑
j=1,j 6=i

GT
Aji
λj = 0 (3.3a)

∂L
∂Ŵi

=
∂Fi

∂Ŵi

+GT
Bii
µi = 0 (3.3b)

∂L
∂Ĥi

= −µi + λi = 0 (3.3c)

∂L
∂µi

= GAiiX̂i +GBiiŴi − Ĥi = 0 (3.3d)

∂L
∂λi

= Ĥi +
N∑

j=1,j 6=i

GAijX̂j = 0 (3.3e)

In the following, we show how the above centralized optimization problem can be de-

composed into a few subproblems and be solved using a coordinated algorithm. A decompo-

sition method can be used to decompose the centralized problem (3.2) into N subproblems

Ji(α) (i = 1, ..., N), where α denotes the variable in the subproblems. The key steps of

decomposition methods include:

• The definition and the design of corresponding subproblems Ji(α);

• Design of a coordination algorithm to ensure the solutions of the subproblems converge

to the centralized MHE.
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The Lagrange equation of centralized MHE in (3.2) can be rewritten as:

L =

N∑
i=1

Li

=

N∑
i=1

{Fi(X̂i, Ŵi) + µTi (GAiiX̂i +GBiiŴi − Ĥi) + λTi Ĥi +

N∑
j=1,j 6=i

λTj GAjiX̂i}
(3.4)

The Lagrange function in (3.4) takes a separable form and each subproblem can be

defined by the Lagrangian Li which is associated with it. The corresponding subproblem i

can be defined as:

min
X̂i,Ŵi,Ĥi

Ji = Fi(X̂i, Ŵi) + λTi Ĥi +
N∑

j=1,j 6=i

λTj GAjiX̂i

s.t. GAiiX̂i +GBiiŴi = Ĥi

(3.5)

where λi and λj will be determined by the coordinator. The part (λTi Ĥi+
∑N

j=1,j 6=i λ
T
j GAjiX̂i)

is called the coordinating term denoted by {CoT}i. {CoT}i links the local estimator to the

coordinator.

The subproblem (3.5) can be written in the following form:

min
X̂i,Ŵi,Ĥi

Ji =
1

2

[
X̂i(k)T Ŵi(k)T Ĥi(k)T

]T CT
iiR
−1
i Cii 0 0

0 Q−1i 0
0 0 0

X̂i(k)

Ŵi(k)

Ĥi(k)


+ {
[
−Y T

i R−1i Cii 0 0
]

+ pTϕi}

X̂i(k)

Ŵi(k)

Ĥi(k)


=

1

2
Zi(k)TΞiZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0

(3.6)

where X̂i(k) = [x̂i(k −Hp+ 1)T , · · · , x̂i(k)T ]T , Ŵi(k) = [ŵi(k −Hp+ 1)T , · · · , ŵi(k −

1|k)T ]T , Ĥi(k) = [ĥi(k − Hp + 1)T , · · · , ĥi(k)T ]T , Zi(k) = [X̂i(k)T , Ŵi(k)T , Ĥi(k)T ]T .

p(s) = [λT1 , λ
T
2 , · · · , λTN ]T is a vector with dimension (Hp − 1)n × 1 defined by the coor-

dinator and transmitted to the local estimators from the coordinator, and the superscript

‘s’ indicates that the price vector is updated iteratively by the coordinator, and n is the

total number of states. The local variable Ĥi(k) contains the estimated interactions and is

determined by the local estimators. Ŵi(k) is estimated process noise, as part of decision

variables. The constant matrix ϕi involves the interaction model. In the equality constraint,

Fi is defined as:
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Fi =


−Aii I 0 · · · 0 −I 0 · · · 0 −I 0 · · · 0

0 −Aii I · · · 0 0 −I · · · 0 0 −I · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 · · · −Aii I 0 0 · · · −I 0 0 · · · −I

 =
[
GAii GBii −I

]
(3.7)

where Fi is a (Hp − 1)ni × (3Hp − 2)ni matrix, ni is the number of states in subsystem i.

In 3.6, ϕi has the following form:

ϕi =


GA1i GB1i 0

...
...

...
0 0 I
...

...
...

GANi
GBNi

0

 ← ith block (3.8)

where GAij and GBij are defined in (2.15) and (2.17) respectively.

The measurement matrix Yi is defined as follows:

Yi =


yi(k −Hp + 1)
yi(k −Hp + 2)

...
yi(k − 1)
yi(k)


It should be noted that:

N∑
i=1

ϕi

X̂i(k)

Ŵi(k)

Ĥi(k)

 =


ĥ1(k)−

∑N
j=2A1j x̂j(k)

ĥ2(k)−
∑N

j=1,j 6=2A2j x̂j(k)
...

ĥN (k)−
∑N−1

j=1 ANj x̂j(k)

 =


e1
e2
...
eN

 = ∆E(k) (3.9)

When ∆E(k) = 0, the summation of the subproblems defined in (3.6) equals to the

centralized MHE and the solution of the coordinated scheme converges to the centralized

solution. If ∆E(k) 6= 0, the interconnection constraints in the original centralized MHE are

not satisfied, and the coordinator needs to communicate with local MHEs to continue the

process until ∆E(k) = 0. The information flow for this case is shown in the Figure 3.1. A

local MHE sends estimated variables X̂i, Ŵi and Ĥi to the coordinator. The coordinator

checks the stopping criterion. If the stopping criterion is satisfied, the iteration stops;

otherwise the coordinator calculates the price vector p and sends it to the local MHEs to

repeat the iteration.

In the coordinated structure, the lower layer’s task is to solve equations (3.3a), (3.3b),

(3.3c) and (3.3d) for a given p. At the upper coordinator layer, (3.3e) should be used to
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Figure 3.1: Information transfer in the price-driven CDMHE with N subsystems

update p. The basis of the approach is that it is possible to convert the original minimization

problem into a simpler maximization problem. The original minimization problem is the

centralized MHE problem (3.1). Therefore, let us define the dual optimization problem.1

The aggregated price-driven CDMHE problem can be expressed as:

min
X̂,Ŵ ,Ĥ

J =

N∑
i

Ji(X̂i, Ŵi, Ĥi,p) (3.10a)

s.t : FiZi = 0, i = 1, ..., N. (3.10b)

Base on (3.4) and (3.10), the Lagrange dual optimization problem (Boyd and Vanden-

berghe, 2004) φ(p) is presented as:

φ(p) = inf
X̂,Ŵ ,Ĥ

{J (X̂, Ŵ , Ĥ,p)|s.t : FiZi = 0, i = 1, ..., N.} (3.11)

Let the optimal value of the centralized MHE(3.1) be R∗, which is also the optimal

value of the price-driven CDMHE(3.10) when the algorithm converges. In (3.11), according

to the property of duality in Boyd and Vandenberghe, 2004, for every p the Lagrange dual

function gives is a lower bound of on the optimal value R∗ of the optimization problem

(3.10). Thus we have a lower bound that depends on the value of p:

φ(p) ≤ R∗ (3.12)

In order to get the best lower bound from the Lagrange dual function (3.11), the following

optimization problem is presented:

max
p

φ(p) (3.13)

1Details on duality can be found in many optimization textbooks, e.g. Boyd and Vandenberghe, 2004
and Chong and Zak, 2013.
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where from (3.5) we can see that the price vector p in nature is the Lagrange multiplier

that associated with interaction equalities (3.1c), thus the dual optimization problem (3.13)

is an unconstrained optimization problem.

Denoting the optimal value of the dual optimization problem (3.13) as D∗, from (3.12),

the following conclusion can be made:

D∗ ≤ R∗ (3.14)

This property is called weak duality. The difference R∗ − D∗ is referred as the optimal

duality gap of the original problem, since it gives the gap between the optimal value of the

primal problem (3.1) and the best lower bound that can be obtained from the Lagrange

dual optimization problem (3.13) (Boyd and Vandenberghe, 2004).

If the equality

D∗ = R∗ (3.15)

holds, then the optimal duality gap is zero, which means that the optimal value of the dual

optimization problem equals to the optimal value of the primal problem. In this case, we

say strong duality holds. The strong duality only holds when the primal problem is convex

and Slater’s condition holds. Slater’s condition requires the primal problem has strictly

feasible points.

In order to reach the optimal value of the primal optimization problem by solving the

dual optimization problem, the strong duality should hold. The primal problem is the

centralized MHE problem, which has quadratic function and linear constraints, and also it

is assumed to have at least one feasible point. Thus, the strong duality holds which implies

that the optimal value of the dual optimization problem equals to the primal optimization

problem. Therefore, we can solve the dual problem in the coordinator to update the price

vector p.

The Lagrangian function of subsystem i (3.6) is:

Li =
1

2
ZT
i ΞiZ

T
i + {χT

i + p(s)Tϕi}Zi + λTi FiZi (3.16)

The aggregated Lagrange function of the price-driven CDMHE becomes:

L(p, Z) =
1

2
ZTΞZT + {χT + p(s)Tϕ}Z + λTFZ (3.17)

where Z = [ZT
1 , Z

T
2 , · · · , ZT

N ]T , Ξ = diag(Ξ1, Ξ2, · · · , ΞN ), χT = [χT
1 , χ

T
2 , · · · , χT

N ],

ϕ = [ϕ1, ϕ2, · · · , ϕN ], λT = [λT1 , λ
T
2 , · · · , λTN ] and F = [F1, F2, · · · , FN ].
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When the lower level’s task is done(i.e., the subproblems are solved) , we have:

∂Li
∂Z∗i

= 0 for i = 1, 2, · · · , N (3.18)

∂Li
∂λ∗i

= 0 for i = 1, 2, · · · , N (3.19)

where Z∗i and λ∗i are the optimal solution of ith local MHE, therefore we can get:

∂L
∂Z∗

= ΞZ∗ + χ+ ϕTp + F Tλ∗ = 0 (3.20)

Local MHEs send the optimal Z∗i to the coordinator. In the coordinator, the first order

derivative of L with respect to the price vector p becomes:

dL
dp

= (ΞZ∗ + χ+ ϕTp + F Tλ∗)
dZ

dp
+ ϕZ∗ = ϕZ∗ (3.21)

The optimal solution Z∗ are sent to the coordinator as Z(s) to update the price vector

p.

Let us denote that:

∆E(k)(s) =
dL
dp

= ϕZ(s) (3.22)

In the coordinator part, we can use gradient based methods 2 to update the price vector

p. One efficient method is Newton’s method. In this work, Newton’s method is chosen to

update the price vector p, and the update equation at sampling time k is:

p(s+1)(k) = p(s)(k)− α(s)[H(s)(k)]−1∆E(k)(s) (3.23)

where α(s)3 is the step size of the Newton’s method at iteration s which is picked as 1

in usual if a full Newton step is taken. H(s)(k) is the Hessian matrix which need to be

calculated. Since the dual problem is maximization problem, the Hessian matrix should be

negative definite.

The Hessian matrix H(s)(k) is calculated as:

H(s) =
d∆E(k)(s)

dp
= ϕ

dZ(s)

dp
(3.24)

Since ϕZ(s) =
∑N

i=1 ϕiZ
(s)
i , equation (3.24) can be rewritten as:

H(s) =

N∑
i=1

ϕi
dZ

(s)
i

dp
=

N∑
i=1

ϕi∇pZ
(s)
i (3.25)

2Gradient method, conjugate gradient methods, Newton’s method and quasi-newton methods can be
used.

3α is picked as 1 for the unconstrained case
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After solving the local problem (3.6), we can get solutions X̂∗i(s)(k), Ŵ ∗i(s)(k) and Ĥ∗i(s)(k),

and send them to the coordinator. In the coordinator the states Z
(s)
i can be obtained as:

Z
(s)
i = Z∗i = [X̂∗i(s)(k)T , Ŵ ∗i(s)(k)T , Ĥ∗i(s)(k)T ]T . The coordinator also needs the sensitivity

matrix, which is defined as:

5pZi =
dZi

dp
(3.26)

According to (Cheng, 2007) and (Marcos., 2011), the way to calculate the sensitivity

matrix is expressed in following procedure 4.

The condition for Z∗i to be the optimal solution of the ith local MHE can be obtained

as follows:

αi =
∂Li
∂Zi

= ΞiZ
∗
i + χi + ϕT

i p+ F T
i λ
∗
i = 0 (3.27a)

βi = FiZ
∗
i = 0 (3.27b)

The sensitivity matrix ∇pZ
(s)
i can be obtained by evaluating the gradient of Zi with

respect to p:


∂αi

∂p
= Ξi∇pZ

∗
i + ϕT

i + F T
i ∇pλ

∗
i = 0

∂βi
∂p

= Fi∇pZ
∗
i = 0

(3.28)

Equations (3.28) can be written in matrix form as follows:


∂αi

∂p
∂βi
∂p

 =

[
Ξi Fi

T

Fi 0

] [
∇pZ

∗
i

∇pλ
∗
i

]
=

[
−ϕT

i

0

]
(3.29)

In order to have a unique solution to the above equation, the following matrix should

be invertible:

Λi =

[
Ξi Fi

T

Fi 0

]
(3.30)

If Λi is invertible, ∇pZ
∗
i can be picked as the first (3Hp − 1)ni rows of Λi.

In summary, for a given price vector p(s), each local MHE solves the local optimization

problem (3.6) to get Z∗i (for i = 1, 2, · · · , N), calculates sensitivity matrix ∇pZ
∗
i , and then

sends them to the coordinator. The coordinator uses Z∗ as Z(s) to check the stopping

criterion. If the interaction error ‖ ∆E(k)(s) ‖≤ ε, the iteration stops; otherwise, the

4The inequality conditions are not considered here.
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Hessian matrix H(s) is calculated according to equation (3.25). The coordinator updates

price vector p according to (3.23). Iteration counter increases by one (i.e., s← s+ 1) and

repeats the process. The detail price-driven CDMHE algorithm is described in the following

table:

Algorithm 1 Implementation of Price-driven Coordinated Distributed MHE

Initialization
Coordinator: Set iteration counter s = 0. The price vector p(0) is arbitrarily determined.
repeat

Coordinator: p(s) is sent to local MHE estimators.
Local Estimators: Local MHE problems (3.6) are solved, and the opti-

mal solutions X̂∗i(s)(k), Ŵ ∗i(s)(k) and Ĥ∗i(s)(k) are obtained. Construct Z∗i =

[X̂∗i(s)(k)T , Ŵ ∗i(s)(k)T , Ĥ∗i(s)(k)T ]T . ∇pZ
∗
i is calculated according to equation (3.29). Z∗i (k)

and ∇pZ
∗
i (for i = 1, 2, · · · , N) are sent to the coordinator.

Coordinator: s ← s + 1. Coordinator receives Z∗i (k) and ∇pZ
∗
i , and treats Z∗i (k)

as Z
(s)
i (k). The Hessian matrix H(s) is calculated according to (3.25). Step-size α is

chosen/calculated. Price vector p is updated according to (3.23).
until stopping criterion ‖ ∆E(k)(s) ‖≤ ε is satisfied.

3.2 An Improved Price-driven CDMHE

In Section 3.1, we proposed a price-driven CDMHE algorithm without consideration of in-

equality constraints. Since the problem is unconstrained, we can find the analytical solution

of the subsystem optimization problems. The first order optimality condition for a variable

Z∗i to be the optimal solution of problem (3.6) is listed as following:

∂Li
∂Zi

= ΞiZ
∗
i + χi + ϕT

i p
(s) + F T

i λ
∗
i = 0 (3.31a)

∂Li
∂λi

= FiZ
∗
i = 0 (3.31b)

If a unique solution exists for the of the above equation (3.31):[
Z∗i
λ∗i

]
=

[
Ξi Fi

T

Fi 0

]−1 [−ϕi
Tp(s) − χi

0

]
(3.32)

In order to get the unique solution and use the Newton’s method to update the price

vector, we need to prove the invertibility of Λi. However, the invertibility of Λi can only be

guaranteed when the matrix Cii is full rank. A detail proof can be found in the Appendix

A.1. For the estimation problem, the Cii is not full rank in usual. Due to this, we cannot

get unique solutions from solving the local optimization problem (3.6) and the Newton’s
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method can not be used to update the price vector 5.

One way to make the matrix Λi invertible is to add an additional term in the cost

function of subsystem i (3.6). In this work, we propose to add 1
2 ‖ Ĥi(k) ‖D−1 . Therefore

the improved design of local DMHE i becomes:

min
X̂i,Ŵi,Ĥi

Ji =
1

2

[
X̂i(k)T Ŵi(k)T Ĥi(k)T

]T CT
iiR
−1
i Cii 0 0

0 Q−1i 0

0 0 D−1i

X̂i(k)

Ŵi(k)

Ĥi(k)


+ {
[
−Y T

i R−1i Cii 0 0
]

+ pTϕi}

X̂i(k)

Ŵi(k)

Ĥi(k)


=

1

2
Zi(k)TΞ∗iZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0

(3.34)

where Ξ∗i is used to differentiate from Ξi in (3.6), D−1i is the weighting matrix of Ĥi(k). The

addition of the term Ĥi(k)TD−1i Ĥi(k) ensures that problem (3.34) has a unique solution.

D−1i needs to satisfy certain conditions which can be found in Appendix A.2.

We note that the improved design of the local MHE includes the interaction in the cost

function which is added purely to ensure the uniqueness of the solutions of the local MHEs.

3.3 Convergence Properties of the Improved Price-driven
CDMHE

In this section, we show that the improved price-driven CDMHE can converge in two iter-

ations at each sampling time.

As shown in equation (3.31), the first order optimal condition for the modified optimiza-

tion problem of local MHE i at sth communication cycle can be written as:

∂Li

∂Zi
=

CT
iiR
−1
i Cii 0 0
0 Q−1i 0
0 0 D−1i

X̂∗i (k)

Ŵ ∗i (k)

Ĥ∗i (k)

+

−CT
iiR
−1
i Yi

0
0

+

ϕT
iA

ϕT
iB

ϕT
iC

p(s) +

GT
Aii

−I
−I

λ∗i = 0

(3.35a)

∂Li

∂λi
=
[
GAii −I −I

] X̂∗i (k)

Ŵ ∗i (k)

Ĥ∗i (k)

 = 0 (3.35b)

5Other gradient based method like gradient method can be used to update the price vector by

p(s+1) = p(s) −KdL
dp

= p(s) −K
N∑
i=1

ϕiZ
(s)
i (3.33)

where K is the step size.
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where ϕ = [ϕiA, ϕiB, ϕiC ].

Equation (3.35) can be written into the following form:



CT
iiR
−1
i CiiX̂

∗
i (k) + ϕT

iAp
(s) +GT

Aii
λ∗i = CT

iiR
−1
i Yi

Q−1i Ŵ ∗i (k) + ϕT
iBp

(s) − λ∗i = 0

D−1i Ĥ∗i (k) + ϕT
iCp

(s) − λ∗i = 0

GAiiX̂
∗
i (k)− Ŵ ∗i (k)− Ĥ∗i (k) = 0

(3.36)

The optimality conditions (3.36) for subsystems can be aggregated from i = 1 to N as:

CTR−1CX̂MHE + ϕT
Ap

(s) + ḠT
AλMHE = CTR−1Y

Q−1ŴMHE + ϕT
Bp

(s) − λMHE = 0

D−1ĤMHE + ϕT
Cp

(s) − λMHE = 0

ḠAX̂MHE − ŴMHE − ĤMHE = 0

(3.37)

where D = diag(Q1, . . . ,QN ) is the aggregated form of Qi, CT and R−1 are defined

in 2.10) and (2.11), ḠA = diag(GA11 , . . . , GANN
), ϕA = [ϕA1 , ϕA2 , . . . , ϕAN

], ϕB =

[ϕB1 , ϕB2 , . . . , ϕBN
] and ϕC = [ϕC1 , ϕC2 , . . . , ϕCN

]. In order to simplify the notation,

the sampling time k is not shown in the estimated variables. X̂MHE , ŴMHE and ĤMHE

are the aggregated forms of the optimal solution of subsystems.

From the definition of ϕi in (3.8) and the definition of GBij in (2.17), it can be concluded

that ϕB = 0 and ϕC = −I. Substituting these into the equation (3.37) and solve the

equations. From the second equation in (3.37), we can get:

λMHE = Q−1ŴMHE (3.38)

By combining equation (3.38) with the third and fourth equations in (3.37), we can get

that:

ŴMHE = (DQ−1 + I)−1(ḠAX̂MHE −Dp(s)) (3.39)

Substituting equations (3.39) and (3.38) into the first equation in (3.37), X̂MHE can be
obtained as:

X̂MHE = (CTR−1C+ḠAQ
−1(DQ−1+I)−1ḠA)−1{[(DQ−1+I)−1D−ϕT

A]p(s)+CTR−1Y } (3.40)

Therefore, at sth iteration, X̂MHE and ŴMHE can be expressed as a function of ps as:

X̂MHE = c1p
(s) + c2 (3.41a)

ŴMHE = c3p
(s) + c4 (3.41b)

26



with

c1 = (CTR−1C + ḠAQ
−1(DQ−1 + I)−1ḠA)−1[(DQ−1 + I)−1D − ϕT

A] (3.42a)

c2 = (CTR−1C + ḠAQ
−1(DQ−1 + I)−1ḠA)−1CTR−1Y (3.42b)

c3 = (DQ−1 + I)−1(ḠAc1 −D) (3.42c)

c4 = (DQ−1 + I)−1ḠAc2 (3.42d)

The expression of c1 shows that c1 is only dependent on system matrices A, B, C and

weighting matrices Q−1, R−1, D−1 and horizon Hp, while the matrix c2 is dependent

on A, B, C, Q−1, R−1, D−1, horizon Hp and output Y . A, B, C are system matri-

ces which represent system properties and remain unchanged for a linear time-invariant

system. Q−1, R−1, D−1 and Hp are from the local MHE design, which are fixed for an ex-

isting decentralized network. Output Y remains unchanged during the estimation interval.

Therefore the linear coefficients c1 and c2 are constant matrices during the kth estimation

interval.

From equation (3.22), we can get:

∆E(k)(s) = ϕZ(s) = ϕAX̂MHE + ϕBŴMHE + ϕCĤMHE (3.43)

Since ϕB = 0 and ϕC = −I, equation (3.43) becomes:

∆E(k)(s) = ϕAX̂MHE − ĤMHE

= ϕAX̂MHE + ḠAX̂MHE − ŴMHE

= ((ϕA + ḠA)c1 − c3)p(s) + c2 − c4

(3.44)

From equation (3.24), the Hessian matrix is calculated as:

H(s) =
d∆E(k)(s)

dp(s)
= (ϕA + ḠA)c1 − c3 (3.45)

Therefore ∆E(k)(s) can be expressed as:

∆E(k)(s) = H(s)p(s) + c2 − c4 (3.46)

Substituting equation (3.45) into equation (3.23), and picking α(s) to be 1, the following

equation can be obtained:

p(s+1)(k) = p(s)(k)− α(s)[H(s)(k)]−1∆E(k)(s)

= p(s)(k)− [H(s)(k)]−1(H(s)p(s) + c2 − c4)

= −[H(s)(k)]−1(c2 − c4)

= ς

(3.47)
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For the unconstrained price-driven CDMHE, H(s)(k)−1, c2, c4 are constant matrices as

defined in equations (3.45), (3.42b) and (3.42d). When the iteration s ≥ 2, p(s)(k) becomes

a constant matrix ς. Therefore, when the iteration s ≥ 2, ∆E(k)(s) becomes:

∆E(k)(s) = H(s)p(s) + c2 − c4

= −H(s)[H(s)(k)]−1(c2 − c4) + c2 − c4

= 0 (s ≥ 2)

(3.48)

From equation (3.48), it can be concluded that the improved price-driven CDMHE

algorithm converges in 2 iterations without consideration of inequality constraints.

3.4 Improved Price-driven CDMHE with Inequality Con-
straints

In this section, inequality constraints are added to the estimated state x̂i, process noise ŵi

and estimated interaction ĥi. The sensitivity matrices that used to calculate the Hessian

matrix are derived with inequality constraints. Inequality constraints are divided into active

inequality constraints and inactive inequality constraints in each subsystem. Due to the

change of the active inequality constraints, the Hessian matrix needs to be calculated in

each iteration.

3.4.1 Sensitivity Matrix Calculation

For subsystem i, the local MHE design becomes:

min
X̂i,Ŵi,Ĥi

Ji =
1

2
Zi(k)TΞ∗iZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0

F ineq
i Zi(k) ≤ gineqi

(3.49)

where F ineq
i Zi(k) ≤ gineq is used to denote the constraints that added to X̂i, Ŵi and Ĥi(i.e.,

X̂i ∈ Xi, Ŵi ∈Wi, Ĥi ∈ Hi). F
ineq
i and gineq have the following expressions:

F ineq
i =



IHpni 0 0
−IHpni 0 0

0 I(Hp−1)ni
0

0 −I(Hp−1)ni
0

0 0 I(Hp−1)ni

0 0 −I(Hp−1)ni

 (3.50)
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gineqi =



Ximax

−Ximin

Wimax

−Wimin

Himax

−Himin

 (3.51)

The Lagrange function Li can be formulated according to the optimization problem

defined in equation (3.49) as:

Li =
1

2
ZT
i Ξ∗iZ

T
i + {χT

i + p(s)Tϕi}Zi + λTi FiZi + µTi (F ineq
i Zi(k)− gineqi ) (3.52)

where the vectors λi and µi are the Lagrange multipliers that associated with the equality

constraints and inequality constraints in equation (3.49).

The first order optimality conditions are:

∂Li

∂Zi
= Ξ∗iZi + χi + ϕT

i p
(s) + F T

i λi + ACF
ineq
i

T
ACµi = 0 (3.53a)

∂Li

∂λi
= FiZi = 0 (3.53b)

ACF
ineq
i Zi − ACgineqi = 0 (3.53c)

INF
ineq
i Zi − IN gineqi + INσi = 0 (3.53d)

where the subscript AC stands for the active inequality constraints, IN stands for the

inactive inequality constraints. The vector σi represents the slack variable that associated

with inactive inequality constraints. The sensitivity analysis can be conducted as follows:

Ξ∗i∇pZi + ϕT
i + F T

i ∇pλi + ACF
ineq
i

T∇pACµi = 0 (3.54a)

Fi∇pZi = 0 (3.54b)

ACF
ineq
i ∇pZi = 0 (3.54c)

INF
ineq
i ∇pZi +∇pINσi = 0 (3.54d)

where ∇pZi denotes dZi/dp
s, ∇pλi denotes dλi/dp

s, ∇pACµi represents dACµi/dp
s, and

∇pINσi represents dINσi/dp
s.

Therefore, the sensitivity matrix ∇pZi can be calculated by solving the equations in

(3.54). Equation (3.54) can be written into the matrix form as:

Πi


∇pZi

∇pλi
∇pACµi
∇pINσi

 =


−ϕT

i

0
0
0

 (3.55)
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with

Πi =


Ξ∗i Fi

T
ACF

ineq
i

T
0

Fi 0 0 0

ACF
ineq
i 0 0 0

INF
ineq
i 0 0 I

 (3.56)

Hessian matrix is calculated as:

H(s) =
N∑
i=1

ϕi
dZ

(s)
i

dp
=

N∑
i=1

ϕi∇pZ
(s)
i (3.57)

Step size α in the price vector updating equation (3.23) is calculated using the method

in Cheng, 2007.

3.4.2 Convergence Analysis

In this section, the convergence of the constrained modified price-driven CDMHE algorithm

is proven by using the property of the gradient-based method.

Define the function W as following:

W(p) = D∗ − φ(p) (3.58)

where D∗ is the optimal value of the dual optimization problem (3.13), and φ(p) is defined

in (3.11). Therefore, W ≥ 0 and equals to zero if and only if p = p∗.

The derivative of W with respect to the iterations s is expressed by:

Ẇ =
dW
dp

T dp

ds

= (−dφ(p)

dp
)T
dp

ds

(3.59)

The gradient
dφ(p)

dp
= ϕZ = J (3.60)

where J is used to represent the gradient.

As discussed in the coordinator design part, the gradient-based method is used to update

the price vector p. The dual problem (3.13) we solve to get p is a maximization problem.

For the maximization problem, the rate of change of the price vector is proportional to the

gradient vector. Therefore, the following equation can be obtained:

dp

ds
∝ J = νJ (3.61)

where ν is a positive constant.
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Figure 3.2: Process flow diagram of two interconnected CSTR units and one separator.

Therefore, substituting (3.61) and (3.60) into (3.59), the following expression can be

obtained:

Ẇ = −νJTJ (3.62)

where ν is positive, we can get Ẇ ≤ 0. Therefore, the price-update scheme is stable

and convergent. This implies ∆E(k)(s) → 0 with the increase of iteration numbers s.

Thus, the proposed price-driven CDMHE algorithm converges to the optimal solution of

the centralized MHE.

3.5 Illustrative Example

In this section, a chemical process is used to illustrate the effectiveness and applicability of

the proposed price-driven CDMHE scheme.

3.5.1 Problem Description

In this section, the proposed coordinated state estimation approach is applied to a simulated

chemical process. The process contains two connected continuous stirred tank reactors

(CSTR) and one flash tank separator as shown in Figure 3.2 (Liu et al., 2008). As shown

in Figure 3.2, pure A is fed into the first CSTR at flow rate F10 and temperature T10. The

outlet stream of CSTR 1 is fed to CSTR 2 at flow rate F1 and temperature T1. There is

an additional stream containing pure A at flow rate F20 and temperature T20 which is also

fed to CSTR 2. A part of the output of CSTR 2 passes through a separator and recycled

back to CSTR 1 at recycle flow rate Fr and temperature T3. Two irreversible elementary
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exothermic reactions A→ B, B → C take place in the two reactors, where A is the reactant

material, B is the desired product, and C is the undesired byproducts. Because of the non-

isothermal nature of the reactions, each CSTR is equipped with a jacket to remove/provide

heat. Based on standard modeling assumptions, nine ordinary differential equations can be

obtained to describe the dynamics:

dxA1

dt
=
F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1 (3.63a)

dxB1

dt
=
F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (3.63b)

dT1
dt

=
F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

cp
k1e

−E1
RT1 xA1 +

−∆H2

cp
k2e

−E2
RT1 xB1 +

Q1

ρcpV1
(3.63c)

dxA2

dt
=
F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2 (3.63d)

dxB2

dt
=
F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (3.63e)

dT2
dt

=
F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

Q2

ρcpV2
+
−∆H1

cp
k1e

−E1
RT2 xA2 +

−∆H2

cp
k2e

−E2
RT2 xB2

(3.63f)

dxA3

dt
=
F2

V3
(xA2 − xA3)− (Fr + Fp)

V3
(xAr − xA3) (3.63g)

dxB3

dt
=
F2

V3
(xB2 − xB3)− (Fr + Fp)

V3
(xBr − xB3) (3.63h)

dT3
dt

=
F2

V3
(T2 − T3) +

Q3

ρcpV3
+

(Fr + Fp)

ρcpV3
(xAr∆Hvap1 + xBr∆Hvap2 + xCr∆Hvap3)

(3.63i)

where values of the parameters are given in the Table 1. It is assumed that in the separa-

tor, the relative volatility for each of the components remains constant within the operating

temperature range. Under this assumption, the algebraic equations modeling the composi-

tion of the overhead stream relative to composition of liquid in the flash tank is described

as follows:
xAr =

αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

(3.64)

The sytem is divided into three subsystems according to the three vessels in the process,

the states are expressed as xi = [xAi, xBi, Ti]
T , for i = 1, 2, 3. The corresponding external
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Table 3.1: Process variables for the reactors and separator

xA1, xA2, xA3 mass fractions of A in reactors 1,2,3
xB1, xB2, xB3 mass fractions of B in reactors 1,2,3
xC1, xC2, xC3 mass fractions of A in reactors 1,2,3
xAr, xBr, xCr mas fractions of A,B,C in the recycel stream
T1, T2, T3 temperatures in reactors 1,2,3
T10, T20 feed stream temperatures to reactors 1 and 2
F1, F2 effluent flow rates from reactors 1 and 2
F10, F20 steady-state feed stream flow rates to reactors 1 and 2
Fr, Fp flow rates of the recycle and purge streams

V1, V2, V3 volumes of reactors 1, 2, 3
E1,E2 activation energy for reactions A→ B and B → C
k1, k2 pre-exponential values for reactions A→ B and B → C

∆H1,∆H2 heats of reaction for reactions A→ B and B → C
∆Hvap1,∆Hvap2,∆Hvap3 evaporating enthalpies for A,B,C

αA, αB, αC relative volatilities of A,B,C
Q1, Q2, Q3 heat inputs/removals into/from reactors 1,2,3
ρ, cp, R solution density, heat capacity and gas constant

Table 3.2: Process parameters for the reactors and separator

F10 = 5.04m3/h k1 = 2.77× 103s−1

F20 = 5.04m3/h k2 = 2.6× 103s−1

Fr = 5.04m3/h E1 = 5.0× 104kJ/kmol
Fp = 5.04m3/h E2 = 6.0× 104kJ/kmol
V1 = 1.0m3 T10 = 300K
V2 = 0.5m3 T20 = 300K
V3 = 1.0m3 R = 8.314kJ/kmol K
αA = 3.5 ρ = 1000.0kg/m3

αB = 1.0 cp = 0.231kJ/kgK
αC = 0.5 xA10 = 1

T10 = 300.0K xB10 = 0
T20 = 300.0K xA20 = 0

∆Hvap1 = −3.53× 104kJ/kmol xB20 = 0
∆Hvap2 = −1.57× 104kJ/kmol ∆H1 = −6.0× 104kJ/kmol
∆Hvap3 = −4.068× 104kJ/kmol ∆H2 = −7.0× 104kJ/kmol
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Table 3.3: Parameters used in the price-driven CDMHE

Initial Guess Moving Horizon Weighting Matrix

MHE 1 x̂1(0) = [0.0508 0.3277 561.0186]T 10 Q1 =

0.0012 0
0 0.0012 0
0 0 0.12


R1 = 0.012

D1 =

12 0
0 12 0
0 0 12


MHE 2 x̂2(0) = [0.1518 0.4444 513.3340]T 10 Q2 =

0.0012 0
0 0.0012 0
0 0 0.12


R2 = 0.012

D2 =

12 0
0 12 0
0 0 12


MHE 3 x̂3(0) = [0.0693 0.3560 546.4699]T 10 Q3 =

0.0012 0
0 0.0012 0
0 0 0.12


R3 = 0.012

D3 =

12 0
0 12 0
0 0 12



input to each vessels are Q1, Q2 and Q3. It is assumed that the measurement states are

temperatures. Choose the input heat Q = [2.9× 106kJ/h, 1.0× 106kJ/h, 2.9× 106kJ/h]T ,

the corresponding steady state is

xs =
[
0.0313 0.2602 549.7686 0.1203 0.3499 499.4590 0.0348 0.2855 535.5199

]T
.

Linearize the nonlinear model at xs and discretize the continuous model into discrete

time model by sampling time 0.005 hr, we can get the linear discrete time model. The

random disturbances added to the dynamics of the temperatures’ differences are generated

as normally distributed values with zero mean and standard deviation 0.01, bounded be-

tween [−0.05, 0.05]. The random disturbances added to the dynamics of the concentrations

are generated as normally distributed values with zero mean and standard deviation 0.001,

bounded between [−0.005, 0.005]. The concentrations are bounded between[0, 1], the tem-

peratures are bounded between [500, 600]. In this case, we do not add constraints on the

estimated interaction The parameters used in the coordinated algorithm are in Table 4.3.

For the price-driven CDMHE algorithm, the termination threshold ε is 0.001. The actual

initial condition is

xinit =
[
0.0443 0.3052 557.2686 0.1413 0.4129 508.7090 0.0578 0.3325 542.8199

]T
.
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3.5.2 Unconstrained Case Results

In this case, we simulate the process without consideration of the inequality constraints to

verify the convergence efficiency. The simulation results are shown in Figure 3.3 - Figure 3.6.

Figure 3.3 shows the trajectories of the estimated states given by the centralized MHE, the

decentralized MHE, the price-driven CDMHE and the actual state. It is shown that the

estimated states given by the decentralized MHE are far from the actual states. Figure 3.4

is used to give us a clearer view of the estimated states given by the price-driven CDMHE

and the centralized MHE. It can seen that the trajectory of estimated states given by the

price-driven CDMHE is almost overlapped with the centralized trajectory, which means the

price-driven CDMHE reaches the centralized performance. Figure 3.5 shows the trajectory

of the error norm of the three estimated algorithms. It is shown that the performance

of the centralized MHE and the proposed prediction-driven CDMHE algorithm are much

better than the decentralized MHE. The summation of error term given by the price-driven

CDMHE is 14.0345 while the summation of error term given by the decentralized MHE is

100.0387 which is around 7 times of the error norm provided by the price-driven CDMHE.

Figure 3.6 shows the number of iterations during the sampling time intervals. It can be

seen that the iterations are all 2, which verifies the theory in Section 3.3.
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Figure 3.3: Trajectories of the actual states (solid line), estimates given by the proposed uncon-
strained price-driven CDMHE (dashed line), estimates given by the centralized MHE (dotted line),
and the decentralized MHE (dash-dotted line).
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Figure 3.4: Trajectories of the actual states (solid line), estimates given by the proposed uncon-
strained price-driven CDMHE (dashed line), estimates given by the centralized MHE (dash-dotted
line).
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Figure 3.5: Trajectories of the estimation error norm given by the proposed unconstrained price-
driven CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE
(dashed line).

3.5.3 Constrained Case Results

The constraints are taken into account by using the method described in Section 3.4. The

simulation results are shown in Figure 3.7 - Figure 3.10. Figure 3.7 shows the trajectories
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Figure 3.6: Numbers of iterations during each sampling time of the proposed unconstrained price-
driven CDMHE.

of the estimated states given by the price-driven CDMHE, the centralized MHE, the decen-

tralized MHE and the actual state. Because of the existence of constraints, the estimates

given by the MHE formulations are different from the unconstrained case. Figure 3.8 is

used to show a clearer view of the estimated states given by the constrained price-driven

CDMHE and the constrained centralized MHE. It can seen that constrained price-driven

CDMHE reaches the constrained centralized performance. Figure 3.9 shows the trajectory

of the error norm of the three estimated algorithms. It is shown that the performance of the

constrained centralized MHE and proposed constrained price-driven CDMHE algorithm are

much better than constrained decentralized MHE. The summation of error term given by

the constrained price-driven CDMHE is 13.9983 while the summation of error term given

by the decentralized MHE is 142.0082 which around 10 times of the error norm provided

by constrained price-driven CDMHE. Figure 3.6 shows the number of iterations during the

sampling time intervals. It can be seen that the iterations are from 4 to 14 which verifies

that the price-driven CDMHE algorithm with inequality constraints needs more iterations

to converge.

3.6 Conclusions

In this chapter, a price-driven coordinated algorithm is derived for the distributed moving

horizon estimation, in which a local MHE estimates the process states, noises and inter-

actions. It is shown that the conventional price-driven coordinated distributed moving
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Figure 3.7: Trajectories of the actual states(solid line), estimates given by the proposed price-driven
CDMHE (dashed line), estimates given by the centralized MHE (dotted line), and the decentralized
MHE (dash-dotted line), all with inequality constraints.
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Figure 3.8: Trajectories of the actual states(solid line), estimates given by the proposed price-
driven CDMHE (dashed line), estimates given by the centralized MHE (dash-dotted line) all with
inequality constraints.

horizon estimation(CDMHE) cannot be used for state estimation purpose since it requires

measurement of the full state vector to ensure the existence of unique solution in the local

38



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

T (h)

|e
|

Figure 3.9: Trajectories of the estimation error norm given by the proposed price-driven CDMHE
(dash-dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed line) all
with inequality constraints.
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Figure 3.10: Number of iterations during each sampling time of the proposed constrained price-
driven CDMHE

MHEs. An improved price-driven CDMHE is firstly proposed to address the issue of the

conventional version. An improved price-driven CDMHE is proposed without considering

inequality constraints first. The analysis shows the unconstrained price-driven CDMHE

converges to the performance of centralized MHE in two iterations during each sampling

time. The simulation of a chemical process without inequality constraints verified this the-

ory. The formulation of the improved price-driven CDMHE with inequality constraints is
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also described by dividing the inequality constraints into active constraints and inactive

constraints. The simulation of the chemical process with inequality constraints shows good

convergence to the centralized MHE.

The main strengths of the proposed improved price-driven CDMHE are:

• It is easier to solve than a global approach since only lower order subproblems are

solved.

• The performance of the price-driven CDMHE reaches the corresponding centralized

MHE.

• When Newton’s method is used to update the price vector in the coordinator, the

subsystems show fast convergence speed. Specially, without inequality constraints,

the algorithm converges in two iterations.

However, the method also has certain drawbacks. The main disadvantage is the existence

of the 1
2 ‖ Ĥi(k) ‖D−1

i
in the cost function. This term is added purely to ensure unique

solutions can be obtained by local MHEs. Nevertheless, by properly choosing the weighting

matrix D−1i , the effect of the additional term can be reduced. The proposed improved

price-driven CDMHE is still an efficient distributed state estimation method.
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Chapter 4

Prediction-driven Coordinated
Distributed MHE

In this chapter, a prediction-driven coordinated moving horizon estimation algorithm is de-

veloped. The differences between the prediction-driven CDMHE and price-driven CDMHE

exist in the coordinator and the estimated variables. The formulation of the unconstrained

prediction-driven CDMHE is introduced first; then sufficient convergence conditions that

ensure its convergence are provided; and a method to handle constraints is given at last.

4.1 Prediction-driven CDMHE Formulation

In this section, the prediction-driven CDMHE is presented. Figure 4.1 shows a schematic

of the proposed design. In the proposed design, the local MHEs send subsystem state

estimates to the coordinator; the coordinator calculates a price vector and the estimation of

the interactions between subsystems and sends them to local MHEs. The above steps are

carried out iteratively each sampling time. First, we introduce the subsystem MHE design.

Subsequently, we present the coordinator design. Finally, we summarize the prediction-

driven coordinated distributed state estimation algorithm.

4.1.1 Subsystem MHE Design

In the coordinated distributed system, the model of the local subsystem i is as following:

x̂i(k + 1) = Aiix̂i(k) + ĥi(k) + ŵi(k);

ŷi(k) = Ciix̂i(k) + v̂i(k)
(4.1)

where ĥi(k) denotes the estimated interaction of subsystem i with other subsystems which

is calculated by the coordinator.
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Figure 4.1: Information transfer in prediction-driven CDMHE with N subsystems

In this coordinated algorithm, a coordinating term is incorporated in the cost function

of each local MHE. The coordinating term of MHE i (i = 1, . . . , N) characterizes the

effects of other subsystems on subsystem i. The coordinating term is also a link between

the local estimator and the coordinator. For MHE i, the coordinating term is defined

as p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
where X̂i(k) = [x̂i(k − Hp + 1)T , . . . , x̂i(k)T ]T , Ŵi(k) = [ŵi(k − Hp +

1)T , . . . , ŵi(k − 1)T ]T , and (4.3), (4.9) define Θi and p(s), respectively.

The local MHE for subsystem i at the sth iteration is formulated as the following opti-

mization problem:

min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
=

1

2
Zi(k)TΥiZi(k) + {ΦT

i + p(s)TΘi}Zi(k)

(4.2a)

s.t. Geq
i Zi(k) = Ĥ

(s)
i (k) (4.2b)

where Yi = [yi(k−Hp+ 1)T , ...,yi(k)T ]T , Ĥ
(s)
i (k) is a variable determined by the coordinator

which approximates the interaction between subsystem i and other subsystems, p(s) is a

vector determined by the coordinator and connects the local subsystem with the coordina-

tor. The superscript ‘s’ of Ĥ
(s)
i (k) and p(s) indicates that they are coordinating variables

calculated by the coordinator at the sth iteration and communicated back to the local es-

timator. Geq
i = [GAii , GBii ] with GAii and GBii are defined in (2.14) and (2.16). This

coordinated design can guarantee the unique solution exists in the subsystem, the proof can

be found in Appendix A.3.
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In (4.2), Θi is a (Hp − 1)n× (2Hp − 1)ni matrix built in the following block-wise fashion:

Θi =


G1i

...
0
...

GNi


ith block is a

← (Hp − 1)ni × (2Hp − 1)ni
zero matrix.

(4.3)

Θi = [ΘAi ,ΘBi ] with

ΘAi =


GA1i

...
0
...

GANi

 ΘBi =


GB1i

...
0
...

GBNi

 (4.4)

4.1.2 Formulation of the Coordinator

Vector p(s) in the local MHE design is a (Hp− 1)n× 1 vector which is an approximation of

the centralized MHE Lagrange multiplier, computed and updated by the coordinator and

will be referred to as the ‘price vector’. The price vector p(s) is same for all subsystems,

therefore, it does not have subscript i.

At the sth iteration of the sampling time k, the coordinator first sends p(s) and Ĥ
(s)
i (k)

to local MHE i. Based on p(s) and Ĥ
(s)
i (k), the ith local MHE problem (4.2) is solved and

optimal estimates for the local state and disturbance X̂∗i(s)(k) and Ŵ ∗i(s)(k) are obtained.

The local MHE sends X̂∗i(s)(k) and Ŵ ∗i(s)(k) to the coordinator. The ‘s’ in the subscripts

is used to denote that these optimal values are calculated in the sth iteration by the local

estimators.

The coordinator increases the iteration counter by one(i.e., s← s+1), collects X̂∗i(s−1)(k), i =

1, . . . , N and Ŵ ∗i(s−1)(k), i = 1, ..., N , and assigns

X̂
(s)
i (k) = X̂∗i(s−1)(k); X̂(s)(k) =

[
X̂

(s)
1 (k)T , · · · , X̂(s)

N (k)T
]T
. (4.5a)

Ŵ
(s)
i (k) = Ŵ ∗i(s−1)(k); Ŵ (s)(k) =

[
Ŵ

(s)
1 (k)T , · · · , Ŵ (s)

N (k)T
]T
. (4.5b)

The coordinator uses X̂(s)(k) and Ŵ (s)(k) to update estimated interaction Ĥ
(s)
i (k) and

price vector p(s). Ĥ
(s)
i (k) in equation (4.2) is the estimated interaction between subsystem i

and other subsystems. It is defined as Ĥ
(s)
i (k) = [ĥ

(s)
i (k −Hp + 1)T , . . . , ĥ

(s)
i (k)T ]T . In

this prediction-driven CDMHE algorithm, Ĥi(k) is calculated by the coordinator in the

following equation:

Ĥ
(s)
i (k) = −

∑
j 6=i

Gij

[
X̂

(s)
j (k)

Ŵ
(s)
j (k)

]
(4.6)
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where Gij =
[
GAij , GBij

]
, and GAij , GBij are defined in (2.15) and (2.17).

The price vector is the approximation of the Lagrange multiplier in the centralized MHE,

it can be obtained from following equation:

GTp(s) = −
[
CTR−1C

Q−1

] [
X̂(s)(k)

Ŵ (s)(k)

]
+

[
CTR−1Y

0

]
(4.7)

where G = [GA, GB]. (4.7) can be rewritten in the following form:

GT
Ap

(s) = −CTR−1CX̂(s)(k) + CTR−1Y (4.8a)

GT
Bp

(s) = −Q−1Ŵ (s)(k) (4.8b)

Since the size of matrix G is (Hp−1)n× (2Hp−1)n, we can only get p(s) by approxima-

tion. In this work, X̂(s)(k) and Ŵ (s)(k) are related through the equality constraint (4.2b

). Since GB is invertible, we pick equation (4.8b) to approximate p(s), thus p(s) can be

calculated as:

p(s) = −GT
B
−1

Q−1Ŵ (s)(k) (4.9)

X̂(s)(k) is updated according to equation (4.5a). Ŵ (s)(k) is updated according to equa-

tion (4.5b) and p(s) is updated according to (4.9). After updating these variables, coordina-

tor calculates interaction term Ĥ
(s)
i (k) for each subsystem i for i = 1, 2, . . . , N according

to (4.6). After that, coordinator sends p(s) and Ĥ
(s)
i (k) to local estimators. The ith local

estimator receives p(s) and Ĥ
(s)
i (k), and then solves the local optimization problem (4.2) to

obtain the estimated state X̂∗i and Ŵ ∗i .

The above iteration process is terminated when the coordinator determines that ‖

X̂(s)(k)− X̂(s−1)(k) ‖< ε, where ε is pre-defined accuracy threshold.

The proposed prediction-driven CDMHE algorithm is summarized in Algorithm 2.

4.2 Convergence Performance Analysis

In this section, we first show that if at each sampling time the coordinated algorithm

converges, the prediction-driven coordinated algorithm converges to the corresponding cen-

tralized performance. Then based on the iterative nature of the prediction-driven CDMHE,

we derive a set of sufficient conditions under which the convergence of the algorithm is

ensured.
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Algorithm 2 Implementation of Prediction-driven Coordinated Distributed MHE

Initialization
Coordinator: Set iteration counter s = 0. When k = 1, X̂(0)(k) and Ŵ (0)(k) are arbi-
trarily determined; when k > 1, X̂(0)(k) and Ŵ (0)(k) are picked as X̂(k − 1), Ŵ (k − 1).

p(0)(k) is calculated according to (4.9), Ĥ
(0)
i (k) is determined according to (4.6).

repeat

Coordinator: p(s) and Ĥ
(s)
i (k) are sent to local MHE estimators.

Local Estimators: Problem (4.2) is solved. X̂∗i(s)(k) and Ŵ ∗i(s)(k) are sent to the
coordinator.

Coordinator: s ← s + 1, X̂(s)(k) and Ŵ (s)(k) are updated according to (4.5a) and

(4.5b), p(s) and Ĥ
(s)
i (k) are calculated based on (4.9) and (4.6).

until stopping criterion ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε is satisfied.

4.2.1 Performance of the Coordinated Algorithm

In this section, we show that if the prediction-driven coordinated algorithm 2 converges every

sampling time, the solution of the prediction-driven CDMHE converges to the centralized

MHE.

Proposition 4.2.1. Consider that the entire system described by (2.1) is estimated by N

local coordinated DMHE estimators as given by solving (4.2). Suppose that the coordinated

distributed MHE estimators are coordinated using the propose prediction-driven CDMHE

algorithm 2 described in Section 4.1. When the CDMHE converges every sampling time,

that is the stop criteria ‖X̂(s)−X̂(s−1)‖ < ε is satisfied, the solution obtained from CDMHE

equals to the centralized optimal solutions.

Proof Proposition 4.2.1 can be proven by comparing the centralized optimal solution to

the solutions obtained with the prediction-driven CDMHE estimators.

Centralized Estimation Problem

As shown in (2.6), the centralized problem without inequality constraints can be written in

terms of variable Z(k) as follows:

min
Z(k)
J =

1

2
Z(k)TΥZ(k) + ΦTZ(k) (4.10a)

subject to:

GeqZ(k) = 0
(4.10b)

where Υ and Φ are the same as defined in (2.6), Z(k) = [X̂(k)T , Ŵ (k)T ]T , X̂(k) =

[X̂1(k)T , . . . , X̂N (k)T ]T and Ŵ (k) = [Ŵ1(k)T , . . . , ŴN (k)T ]T , Geq = [GA, GB], GA and

GB are defined in (2.13).
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The Lagrange function of (4.10) is expressed as:

Lcen =
1

2
Z(k)TΥZ(k) + ΦTZ(k) + λT (GeqZ(k)) (4.11)

The optimal condition for a regular point Z∗(k) to be a minimum in the quadratic

problem (4.10) are:

ΥZ∗(k) + Φ +GeqTλ∗ = 0 (4.12a)

GeqZ∗(k) = 0 (4.12b)

where Z∗(k) is the optimal solution, λ∗ is the Lagrange multiplier.

Coordinated Estimation Problem

Aggregating the subsystem optimization problem (4.2) from 1 to N , the aggregated form
is expressed as follows:

min
X̂(k),Ŵ (k)

J =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C 0
0 Q−1

] [
X̂(k)

Ŵ (k)

]
+ {
[
−Y TR−1C 0

]
+ p(s)T Θ̄}

[
X̂(k)

Ŵ (k)

]
=

1

2
Z(k)T ΥZ(k) + {ΦT + p(s)T Θ̄}Z(k)

(4.13a)

subject to: ḠeqZ(k) = Ĥ(s)(k) (4.13b)

where X̂(k) and Ŵ (k) are in the same order as in the centralized problem, Y, C and Φ

are also same as in the centralized problem. Ḡeq is the aggregated form of Geq
i and Ḡeq =

[ḠA, ḠB]. Θ̄ is the aggregated form of Θi and Θ̄ = [Θ̄A, Θ̄B]. Ĥ(s)(k) is the aggregated

form of Ĥ
(s)
i (k) and Ĥ(s)(k) = [Ĥ

(s)
1 (k)T , Ĥ

(s)
2 (k)T , · · · , Ĥ(s)

N (k)T ]T . ḠA, ḠB, Θ̄A, Θ̄B are

respectively defined as:

ḠA = diag(GA11 , ..., GANN
), (4.14)

ḠB = diag(GB11 , ...,GBNN
), (4.15)

Θ̄A = GA − ḠA, (4.16)

Θ̄B = GB − ḠB, (4.17)

So we have:

Θ̄ + Ḡ = G (4.18)

Ĥ(s)(k) = −Θ̄Z(s)(k) (4.19)
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The first order optimal condition for equation (4.13) can be written as:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
Ap

(s) + ḠT
AλMHE = ∅ (4.20a)

Q−1ŴMHE(k) + Θ̄T
Bp

(s) + ḠT
BλMHE = ∅ (4.20b)

ḠAX̂MHE(k) + ḠBŴMHE(k) = −(Θ̄AX̂
(s)(k) + Θ̄BŴ

(s)(k))
(4.20c)

where X̂MHE(k) = [X̂1(k)T , · · · , X̂N (k)T ]T , ŴMHE(k) = [Ŵ1(k)T , · · · , Ŵ T
N ]T and λMHE =

[λT1 , · · · , λTN ]T . The subscript ‘MHE’ means that the solutions are the aggregation of the

local MHE solutions.

The equation (4.20c) can be rewritten as following:

Ḡeq
A X̂MHE(k) + Ḡeq

B ŴMHE(k) + Θ̄AX̂
(s)(k) + Θ̄BŴ

(s)(k) = 0 (4.21)

In our proposed coordinated algorithm, when the algorithm converges, X̂(s)(k) almost

equals to X̂(s−1)(k). This implies that in the last iteration, X̂(s)(k) = X̂MHE(k) and

Ŵ (s)(k) = ŴMHE(k). Based on this, equation (4.21) can be written as:

Ḡeq
A X̂MHE(k) + Ḡeq

B ŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.22)

So the first order optimal conditions of prediction-driven CDMHE (4.20) becomes:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
Ap

(s) + ḠT
AλMHE = 0 (4.23a)

Q−1ŴMHE(k) + Θ̄T
Bp

(s) + ḠT
BλMHE = 0 (4.23b)

ḠAX̂MHE(k) + ḠBŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.23c)

Given GBij = 0 is defined in (2.17), GB and ḠB as defined in (2.13) and (4.15) respec-

tively, the following equation can be concluded:

GB = ḠB (4.24)

Given the definition of Θ̄B as in equation (4.17), we can get Θ̄B = 0. The equation

(4.23b) can be written as:

GT
BλMHE = −Q−1ŴMHE(k) (4.25)

The price vector p(s) is updated by:

p(s) = −GT
B
−1

Q−1Ŵ (s)(k) (4.26)
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Since at the end of iteration, Ŵ (s)(k) = ŴMHE(k), comparing (4.25) and (4.26), we can

get that p(s) = λMHE . Therefore, at the end of iteration, equation (4.23) can be rewritten

as:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
AλMHE + ḠT

AλMHE = 0 (4.27a)

Q−1ŴMHE(k) + ḠT
BλMHE = 0 (4.27b)

ḠAX̂MHE(k) + ḠBŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.27c)

Let us denote ZMHE(k) = [X̂T
MHE , Ŵ

T
MHE ]T , and write the equation (4.27) into terms

of ZMHE . The following equation can be obtained:

ΥZMHE(k) + Φ +GeqTλMHE = 0 (4.28a)

GeqZMHE(k) = 0 (4.28b)

Comparing the first order optimal conditions of the centralized problem (4.12) with the

ones of the coordinated problem (4.28) at the end of iteration, we can see that they are all

same except the name of variables. The solution of (4.12) and (4.28) must be same; this

means that at the end of the iteration, the estimated states of the proposed prediction-driven

CDMHE ZMHE(k) converges to the centralized estimate Z∗(k).

4.2.2 Convergence Conditions

In this section, we provide sufficient conditions to ensure convergence of the proposed

prediction-driven coordinated algorithm. The sufficient conditions given in this section

ensure the convergence of the proposed prediction-driven CDMHE algorithm to the cen-

tralized MHE. The proof of the convergence is inspired by the convergence analysis of

coordinated continuous-time linear quadratic regulators in Cohen, 1977.

First, we define the aggregated cost function without coordinating terms of the CDMHE

JD as follows:

JD =

N∑
i=1

JDi (4.29)

where

JDi =
1

2

(
|Yi(k)− CiiX̂i(k)|2

R−1
i

+ |Ŵi(k)|2
Q−1

i

)
s.t. GAiiX̂i(k) +GBiiŴi(k) = Ĥi(k)

Ĥi(k) = −
∑
j 6=i

Gij

[
X̂j(k)

Ŵj(k)

] (4.30)
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where JDi is the cost function in local MHE i of (4.2) without the coordinating term, Ĥi(k)

is the accurate interaction in subsystem i.

Based on the subsystem model, we are able to express Ŵi at a specific time instant k

in terms of the subsystem state and interaction as:

Ŵi(k) = G−1Bii
(Ĥi(k)−GAiiX̂i(k)) = fi(X̂i(k), Ĥi(k))

for : i = 1, 2, · · · , N.
(4.31)

So the objective function JDi can be written as follows:

JDi(X̂i(k), Ĥi(k)) =
1

2

(
|Yi(k)− CiiX̂i(k)|2

R−1
i

+ |fi(X̂i(k), Ĥi(k))|2
Q−1

i

)
(4.32)

Therefore, the objective function JD defined in (4.29) can be rewritten as:

JD(X̂(k), Ĥ(k)) =
1

2

N∑
i=1

(
|Yi(k)−CiiX̂i(k)|2

R−1
i

+ |fi(X̂i(k), Ĥi(k))|2
Q−1

i

)
(4.33)

Define ŴDMHE as the vector that contains all the subsystem Ŵi(k), ŴDMHE(k) =

[Ŵ1(k)T , Ŵ2(k)T , ..., ŴN (k)T ]T . Then according to the relationship between Ŵi(k) and

X̂i(k), Ĥi(k) in (4.31), ŴDMHE(k) can be written as:

ŴDMHE(k) = Ḡ−1B (Ĥ(k)− ḠAX̂(k)) = f(X̂(k), Ĥ(k)) (4.34)

where X̂(k) = [X̂1(k)T , X̂2(k)T , ..., X̂N (k)T ]T and Ĥ(k) = [Ĥ1(k)T , Ĥ2(k)T , ..., ĤN (k)T ]T ,

ḠA and ḠB are defined in (4.14) and (4.15) respectively.

Let K be the mapping from state X̂(k) to the interaction Ĥ(k). Then ŴDMHE(k)

can be rewritten as: ŴDMHE(k) = f(X̂(k),K(X̂(k))). The objective equation JD can be

expressed as follows:

JD(X̂(k), Ĥ(k)) =
1

2

(
|Y (k)− CX̂(k)|2R−1 + |f(X̂(k),K(X̂(k)))|2Q−1

)
(4.35)

For the centralized MHE (2.6), the estimated noise Ŵ (k) can also be expressed as a

function of states:

Ŵ (k) = −G−1B GAX̂(k) = f̄(X̂(k)) (4.36)

where the vector Ŵ (k) is arranged in the same way as the vector ŴDMHE(k). The relation-

ship between Ŵ (k) and X̂(k) can be derived from (2.6b) which gives a linear relationship.

The centralized objective function (2.6) can be expressed in terms of the estimated states

as:

Jcen(X̂(k)) =
1

2

(
|Y (k)− CX̂(k)|2R−1 + |f̄(X̂(k))|2Q−1

)
(4.37)
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The objective functions JD(X̂(k), Ĥ(k)) and Jcen(X̂(k)) are both quadratic functions

that can be differentiated to obtain:

Ψ =
d2Jcen
dX(k)2

(4.38a)

Ω = diag(Ωi) (4.38b)

where Ωi =
∂2JD
∂X̂2

i (k)
, for i = 1, 2, ..., N . The matrices Ψ and Ω will be used in the following

theorem in characterizing the convergence conditions.

Theorem 4.2.1. Consider system (2.1) with the proposed prediction-driven coordinated

distributed state estimation algorithm described in Section 4.1. If Λ = (Ω − Ψ

2
) is positive

definite, then the estimates given by the prediction-driven CDMHE algorithm converge to

the ones obtained by the centralized MHE of (2.6) at each sampling time as the iteration

number s increases.

Proof For any given estimated state X̂(k):

f̄(X̂(k)) = −G−1B GAX̂(k) (4.39)

According to (4.30), we can get the aggregated form Ĥ(k) as following form:

Ĥ(k) = −
[
Θ̄A Θ̄B

] [X̂(k)

Ŵ (k)

]
(4.40)

while Θi = [ΘiA, ΘiB], ΘiA and ΘiB are defined in (4.4), Θ̄A = [Θ1A, Θ2A, · · · , ΘNA],

Θ̄B = [Θ1B, Θ2B, · · · , ΘNB]. Since GBij = 0 from (2.17), thus Θ̄B = 0, ḠB = GB. From

(4.14) and the definition of Θ̄A, it can be obtained that:

GA = ḠA + Θ̄A (4.41)

Thus for any given estimated state X̂(k):

f(X̂(k), Ĥ(k)) = Ḡ−1B (Ĥ(k)− ḠAX̂(k))

= Ḡ−1B (−Θ̄AX̂(k)− ḠAX̂(k))

= −G−1B GAX̂(k)

(4.42)

So we get the following equation:

f̄(X̂(k)) = f(X̂(k),K(X̂(k))) (4.43)
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which also implies that:

Jcen(X̂(k)) = JD(X̂(k), Ĥ(k)) (4.44)

Evaluating the first order derivative respect to state X̂(k) at both sides of the above

equation (4.44), the following equation can be obtained:

dJcen
dX̂(k)

=
∂JD
∂X̂(k)

+
∂JD
∂Ĥ(k)

dĤ(k)

dX̂(k)
(4.45)

It can be seen that the objective function of prediction-driven CDMHE (4.2) Ji can be

rewritten as:

Ji(X̂i(k)) = JDi(X̂i(k), Ĥ
(s)
i (k)) + p(s)TΘi

[
X̂i(k)

Ŵi(k)

]
(4.46)

For the subsystem optimization problem (4.2), it can be verified based on the definitions

of the matrices in the cost function and system description that

p(s)TΘi

[
X̂i(k)

Ŵi(k)

]
= Γi(X̂

(s)(k))X̂i(k) (4.47)

while

Γi(X̂
(s)(k)) =

∂JD
∂Ĥ(k)

|(X̂(s)(k),K(X̂(s)(k)))

dĤ(k)

dX̂i(k)
|X̂(s)(k) (4.48)

The proof of equation (4.47) requires somewhat lengthy calculations, which are given

in Appendix B. The equation (4.47) and equation (4.45) reveal the relation between the

centralized MHE and the proposed CDMHE design.

Now, Let us consider the actual cost function used in the CDMHE design and denote

JCDMHE as the aggregation of the subsystem cost function such that:

JCDMHE =

N∑
i=1

Ji (4.49)

It can be calculated that:

dJCDMHE

dX̂(k)
|X̂(s)(k) =

∂JD
∂X̂(k)

|X̂(s)(k) +
∂JD
∂Ĥ(k)

dĤ(k)

dX̂(k)
|X̂(s)(k) (4.50)

According to (4.45) and (4.50),
dJcen
dX̂(k)

=
dJCDMHE

dX̂(k)
when they are evaluated at X̂(s)(k).

This result will be used in the next part of the proof.

Next, let us consider the Lagrangian functions of the centralized MHE and the CDMHE

problems. Note that the equality constraint in (2.6) has already been used in the expression

of Ŵ in terms of X̂, so the Lagrangian function is equal to the objective function.
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If we denote the optimal solution to the centralized MHE at time instant k as X̂∗(k)

and perform Taylor series expansion of
dJcen
dX̂(k)

around X̂∗(k), it can be obtained that:

dJcen
dX̂(k)

=
dJcen
dX̂(k)

|X̂∗(k) +
d2Jcen
dX̂2(k)

|X̂∗(k)(X̂(k)− X̂∗(k)) (4.51)

Note that since the objective function Jcen is quadratic, so the higher terms in (4.51) are

zeros. Also, since X̂∗(k) is the optimal solution of the centralized MHE at time k, we can

get
dJcen
dX̂(k)

|X̂∗(k) = 0 (4.52)

Moreover, according to (4.38), (4.51) can be rewritten as:

dJcen
dX̂(k)

= Ψ(X̂(k)− X̂∗(k)) (4.53)

If we evaluate
dJcen
dX̂(k)

at X̂(s)(k), we can get:

dJcen
dX̂(k)

|X̂(s)(k) = Ψ(X̂(s)(k)− X̂∗(k)) (4.54)

Let us also perform a Taylor series expansion of
dJCDMHE

dX̂(k)
around X̂(s+1)(k) which is

the optimal solution of the CDMHE at the end of sth iteration, we have:

dJCDMHE

dX̂(k)
=
dJCDMHE

dX̂(k)
|X̂(s+1)(k) +

d2JCDMHE

dX̂2(k)
|X̂(s+1)(k)(X̂(k)− X̂(s+1)(k)) (4.55)

Because X̂(s+1)(k) is the optimal solution of the CDMHE at sth iteration, we can get

that
dJCDMHE

dX̂(k)
|X̂(s+1)(k) = 0 (4.56)

Form equation (4.47), it can be observed that the coordinating term in Ji is a linear

function of X̂i(k), thus
d2JCDMHE

dX̂2(k)
=

d2JD
dX̂2(k)

= diag(
d2JD
dX̂2

i (k)
) = Ω. Equation (4.55) can

be further rewritten as:

dJCDMHE

dX̂(k)
= Ω(X̂(k)− X̂(s+1)(k)) (4.57)

If we evaluate
dJCDMHE

dX̂(k)
at X̂(s)(k), we can get:

dJCDMHE

dX̂(k)
|X̂(s)(k) = Ω(X̂(s)(k)− X̂(s+1)(k)) (4.58)
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From (4.45), (4.50), (4.54) and (4.58), we get:

X̂(s)(k)− X̂(s+1)(k) = Ω−1Ψ(X̂(s)(k)− X̂∗(k)). (4.59)

Now, let us expand Jcen(X̂(k)) around X̂(s)(k); that is,

Jcen(X̂(k)) =Jcen(X̂(s)(k)) +
dJcen
dX̂(k)

|T
X̂(s)(k)

(X̂(k)− X̂(s)(k))

+ (X̂(k)− X̂(s)(k))T
1

2

d2Jcen
dX̂2(k)

|T
X̂(s)(k)

(X̂(k)− X̂(s)(k))

(4.60)

Evaluating (4.60) at X̂(s+1)(k), we can get:

Jcen(X̂s+1(k)) =Jcen(X̂s(k)) + (X̂s(k)− X̂s+1(k))TΩ(X̂s+1(k)− X̂s(k))

+ (X̂s+1(k)− X̂s(k))T
Ψ

2
(X̂s+1(k)− X̂s(k))

(4.61)

From equation (4.61) and (4.59), we can get the expression of Jcen(X̂s(k))−Jcen(X̂s+1(k))
as following:

Jcen(X̂(s)(k))− Jcen(X̂(s+1)(k)) =(X̂(s)(k)− X̂∗(k))TΨT (Ω−1)T (Ω − Ψ

2
)Ω−1Ψ(X̂(s)(k)− X̂∗(k))

(4.62)

We can make the following conclusions: If Ω − Ψ

2
> 0 is satisfied, we can get that

Jcen(X̂(s)(k)) > Jcen(X̂(s+1)(k)). This implies that with the increasing of iteration s, the

estimate obtained by the prediction-driven CDMHE X̂(s)(k) converges to the centralized

estimate X̂∗(k).

4.3 Prediction-driven CDMHE Formulation with Inequality
Constraints

One main advantage of moving horizon estimation is the ability to handle constraints.

In Section 4.1, the prediction-driven coordinated distributed moving horizon estimation

algorithm is formulated without inequality constraints. In this section, we propose to use

barrier functions to handle the inequality constraints. In this way, we transfer the inequality

constraints into the cost function. Specially, we consider the constraints on the estimated

state X̂ and the estimated process noise Ŵ .

The objective function of the prediction-driven CDMHE becomes:
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min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
(4.63a)

s.t. GAiiX̂i(k) +GBiiŴi(k) = Ĥ
(s)
i (k)

X̂i(k) ∈ X, Ŵi(k) ∈W
(4.63b)

First, we introduce the barrier function, ρ : R→ R as follows:

ρ(u) =

{
0 lb ≤ u ≤ ub
+∞ else

(4.64)

where lb is the lower bound of u and ub is the upper bound of u. From the definition of the

barrier function, it can be seen that the barrier function acts like a wall to constrain the

variable into the boundary.

Our goal is to approximately formulate the inequality constrained prediction-driven

CDMHE as an unconstrained problem. Using the barrier function introduced in equation

(4.64), the augmented objective function of local MHE i in the prediction-driven CDMHE

denoted as Jic can be rewritten as:

min
X̂i(k),Ŵi(k)

Jic =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
+ ρix(X̂i(k)) + ρiw(Ŵi(k))

(4.65a)

s.t. GAiiX̂i(k) +GBiiŴi(k) = Ĥ
(s)
i (k) (4.65b)

where

ρix(X̂i(k)) =
K∑

l=K−Hp+1

ni∑
j=1

ρ(x̂ij(l)); (4.66a)

ρiw(Ŵi(k)) =
K−1∑

l=K−Hp+1

ni∑
j=1

ρ(ŵij(l)) (4.66b)

where X̂i(k) = [x̂i(k − Hp + 1)T , x̂i(k − Hp + 2)T , · · · , x̂i(k)T ]T for i = 1, 2, · · · , N .

x̂i(l) = [x̂i1(l)
T , x̂i2(l)

T , · · · , x̂ini(l)
T ]T and ni is the number of states in subsystem i. Let

us denote this kind prediction-driven CDMHE as augmented prediction-driven CDMHE.
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Therefore the aggregated augmented objective function of constrained prediction-driven

CDMHE denoted as JCDMHE can be obtained as:

JCDMHE =
N∑
i=1

Jic (4.67)

For the centralized MHE, the same method is applied to transfer the inequality con-

straints on estimated states X̂ and estimated process noise Ŵ into the objective function.

Let us denote this kind of centralized MHE as augmented centralized MHE. Thus the ob-

jective function of augmented centralized MHE has the following expression:

min
X̂(k),Ŵ (k)

Jcenc =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C
Q−1

] [
X̂(k)

Ŵ (k)

]
+
[
−Y TR−1C 0

] [X̂(k)

Ŵ (k)

]
+ ρx(X̂(k)) + ρw(Ŵ (k))

(4.68a)

s.t. GAX̂(k) +GBŴ (k) = 0 (4.68b)

where

ρx(X̂(k)) =
N∑
i=1

{
K∑

l=K−Hp+1

ni∑
j=1

ρ(x̂ij(l))} (4.69a)

ρw(Ŵ (k)) =
N∑
i=1

{
K−1∑

l=K−Hp+1

ni∑
j=1

ρ(ŵij(l))} (4.69b)

(4.69c)

where X̂(k) = [X̂1(k)T , X̂2(k)T , · · · , X̂N (k)T ]T , X̂i(k) is arranged in the same way as the

subsystem i in the prediction-driven CDMHE.

The same barrier function is used to transfer the inequality constraints into the cost

function in the decentralized MHE. Let us denote this kind decentralized MHE as augmented

decentralized MHE. For subsystem i described in (2.19), the new augmented objective

function denoted as Jidc becomes:

min
X̂i(k),Ŵi(k)

Jidc =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
+ρix(X̂i(k)) + ρiw(Ŵi(k))

(4.70a)

s.t. GAii
X̂i(k) +GBii

Ŵi(k) = 0 (4.70b)

where ρix(X̂i(k)) and ρiw(Ŵi(k)) are defined in equation (4.66a) and equation (4.66b) re-

spectively.

55



The corresponding price vector in the augmented prediction-driven CDMHE is calcu-

lated as:

p(s) = −GT
B
−1

Q−1Ŵ (s)(k)− dρw(Ŵ (s)(k))

dŴ (s)(k)
(4.71)

where

dρw(Ŵ (s)(k))

dŴ (s)(k)
= [

dρ1w(Ŵ
(s)
1 (k))

dŴ
(s)
1 (k)

T

,
dρ2w(Ŵ

(s)
2 (k))

dŴ
(s)
2 (k)

T

, · · · ,
dρNw(Ŵ

(s)
N (k))

dŴ
(s)
N (k)

T

]T (4.72a)

dρiw(Ŵ
(s)
i (k))

dŴ
(s)
i (k)

= [
dρ(ŵ

(s)
1 (k −Hp + 1))

dŵ
(s)
1 (k −Hp+ 1)

T

,
dρ(ŵ

(s)
2 (k −Hp + 2))

dŵ
(s)
2 (k −Hp + 2)

T

, · · · , dρ(ŵ
(s)
ni (k − 1))

dŵ
(s)
ni (k − 1)

T

]T

(4.72b)

dρ(ŵ
(s)
i (k −Hp + 1))

dŵ
(s)
i (k −Hp+ 1)

= [ρ′(ŵ
(s)
i1 ), ρ′(ŵ

(s)
i2 ), · · · , ρ′(ŵ(s)

ini
)]T (4.72c)

Since the objective functions in all three schemes (centralized MHE, decentralized MHE

and prediction-driven CDMHE) are all minimization problems, after adding the barrier

function to the objective function, the barrier function assures that the variables satisfy

the constraints. Compared with the unconstrained case, the optimum that the augmented

centralized MHE find is inside the boundary and may be different form the unconstrained

case. For the augmented prediction-driven CDMHE , for every iteration at each sampling

time, there exists sequences of X̂(s) and Ŵ (s) inside the boundary.

In the implementation of the CDMHE algorithm, the basic idea is to approximate the

barrier function defined in (4.64). Let us consider the case that we only have the upper

bound u ≤ 0. The barrier function denoted as ρ−(u) becomes:

ρ−(u) =

{
0 u ≤ 0

+∞ else
(4.73)

Logarithmic barrier function is one way to approximate the barrier function (4.64).

As shown in Figure 4.2, logarithmic barrier functions give good approximations. In the

implementation, the approximation of the barrier function always ensures the variables are

inside the boundary. The logarithmic function that used to approximate the barrier function

(4.64) is expressed as:

ρ̂−(u) = −(1/t)log(−u) (4.74)

where −(1/t)log(−u) is convex and increasing in u, and differentiable. t > 0 is a parameter

that sets the accuracy of the approximation. As t increases, the approximation becomes

more accurate (Boyd and Vandenberghe, 2004).
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Figure 4.2: The dashed lines show the function ρ−(u) and the solid lines show ρ̂−(u) =
−(1/t)log(−u).

4.3.1 Convergence Analysis

Using the logarithmic barrier function to approximate the prediction-driven CDMHE in-

equality constraints (4.63). For the aggregated augmented prediction-driven CDMHE and

the augmented centralized MHE, denoting the logarithmic barrier function in the cost func-

tion as (1/t)φ(X), it can be obtained that:

JCDMHEC = JCDMHE + (1/t)φ(X) (4.75a)

Jcenc = Jcen + (1/t)φ(X) (4.75b)

Let us consider that the system has m inequality constraints that can be expressed as

Ti(X) ≤ 0, for i = 1, . . . , m; therefore, φ(X) = −
∑m

i=1 log(−Ti(X)). The first order and

second order derivatives of logarithmic barrier function φ can be expressed as (Boyd and

Vandenberghe, 2004):
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∇φ(X) =
m∑
i=1

1

−Ti(X)
∇Ti(X) (4.76a)

∇2φ(X) =
m∑
i=1

1

Ti(X)2
∇Ti(X)∇Ti(X)T +

m∑
i=1

1

−Ti(X)
∇2Ti(X) (4.76b)

Therefore, for the augmented centralized MHE, equation (4.54) becomes:

dJcenc
dX̂(k)

|X̂(s)(k) = (Ψ +
1

t
∇2φ(X∗))(X̂(s)(k)− X̂∗(k)) (4.77)

For the augmented prediction-driven CDMHE, equation (4.58) becomes:

dJCDMHEC

dX̂(k)
|X̂(s)(k) = (Ω +

1

t
∇2φ(X(s+1)))(X̂(s)(k)− X̂(s+1)(k)) (4.78)

For the derivatives of the logarithmic barrier function φ(X), we have the following

assumption:

• With the increasing of t to ∞, 1
t∇φ(X) and 1

t∇
2φ(X) are going to zero.

Let us used the following symbols to represent the derivatives of logarithmic barrier

function as:

ε1 =
1

t
∇2φ(X∗)(X̂(s)(k)− X̂∗(k)), (4.79a)

ε2 =
1

t
∇2φ(X(s+1))(X̂(s)(k)− X̂(s+1)(k)) (4.79b)

ε3 =
1

t
∇2φ(X(s)) (4.79c)

A similar equality equation to (4.59) can be obtained as:

X̂(s)(k)− X̂(s+1)(k) = Ω−1(Ψ(X̂(s)(k)− X̂∗(k)) + ε1 − ε2)

= Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε4
(4.80)

where ε4 = Ω−1(ε1 − ε2).
Therefore, for the augmented cost functions, the similar expression to (4.62) can be

obtained as following:

Jcenc(X̂(s)(k))− Jcenc(X̂(s+1)(k)) =(Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε3)T (Ω − Ψ

2
− ε4

2
)

(Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε3)

(4.81)

The values of ε1, ε2, ε3 and ε4 are closely related to the value of t which can be adjusted

in the simulations. According to the assumption that when t goes to ∞, εi, i = 1, 2, 3, 4

are all close to zero. Therefore the similar conclusion can be obtained as in Section 4.2.2

as t goes to ∞, with the increasing of iteration s, the estimate obtained by the augmented

prediction-driven CDMHE X̂(s)(k) converges to the augmented centralized estimate X̂∗(k).
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4.4 Illustrative Examples

In this section, the proposed prediction-driven CDMHE algorithm is applied to two chemical

processes. In the first case, the process contains two connected continuous stirred tank

reactor. In the second case, the process consists of two connected continuous stirred tank

reactors and one flash tank separator which has been used in Section 3.5. In this case, we

consider constraints on the estimated variables X̂ and Ŵ and use the method proposed in

Section 4.3 to transfer the inequality constraints into the objective function. The results of

both cases show that the proposed prediction-driven CDMHE reaches the centralized MHE

performance.

4.4.1 Two-CSTR Case

In this section, the proposed coordinated state estimation approach is applied to a simu-

lated chemical process. The process contains two connected continuous stirred tank reactor

(CSTR) with a recycle stream as shown in Figure 4.3 (Sun and El-Farra, 2008). As shown

in Figure 4.3, pure A is fed into the first CSTR at flow rate F0, molar concentration CA0

and temperature T0. A stream recycled from CSTR 2 is also fed into CSTR 1 at flow rate

Fr, molar concentration CA2 and temperature T2. The outlet stream of CSTR 1 is fed to

CSTR 2 and an additional stream containing pure A at molar concentration CA03, flow rate

F3 and temperature T03 is also fed to CSTR 2. The output of CSTR 2 passes through a

separator which is used to remove the products and recycle unreactant A back to CSTR 1.

Three irreversible elementary exothermic reactions A→ B, A→ U and A→ R take place

in the two reactors, where A is the reactant material, B is the desired product, and R and

U are the undesired byproducts. Because of the non-isothermal nature of the reactions,

each CSTR is equipped with a jacket to remove/provide heat. Based on standard modeling

assumptions, four ordinary differential equations can be obtained to describe the dynamics:

dT1
dt

=
F0

V1
(T0 − T1) +

Fr

V1
(T2 − T1) +

3∑
i=1

Gi(T1)CA1 +
Q1

ρcpV 1
(4.82a)

dCA1

dt
=
F0

V1
(CA0 − CA1) +

Fr

V1
(CA2 − CA1)−

3∑
i=1

Ri(T1)CA1 (4.82b)

dT2
dt

=
F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑
i=1

Gi(T2)CA2 +
Q2

ρcpV 2
(4.82c)

dCA2

dt
=
F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)−

3∑
i=1

Ri(T2)CA2 (4.82d)
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Figure 4.3: Process flow diagram of two interconnected CSTR units.

where Ri(Tj) = ki0exp(−Ei/RTj), Gi(Tj) = ((−∆Hi)/ρcp)Ri(Tj), with j = 1, 2, Tj , CAj , Vj

and Qj represent the temperature of the reactor, the concentration of A, the reactor volume

and the rate of the heat input to the reactor, respectively, ∆Hi, ki, Ei, with i = 1, 2, 3, denote

the enthalpies, pre-exponetial constants and activation energies of three reactions, respec-

tively, cp and ρ denote the heat capacity and density of the fluid in the reactors. The param-

eters are given in Table 3.2. When Q1 = Q2 = 0, CA0 = Cs
A0, CA03 = Cs

A03, the process has

a steady state at (T s
1 , C

s
A1, T

s
2 , C

s
A2) = (300.3878K, 2.4881kmol/m3, 300.3496K, 2.2840kmol/m3).

Linearizing the nonlinear model at this steady state, a linear model of the process can be

obtained. We assume that temperatures T1, T2 are measurable and sampled synchronously

with sampling time ∆t = 0.005h = 18sec. The concentration in the two CSTRs are unmea-

surable and should be estimated. Note that an output feedback controller is implemented to

ensure the closed-loop stability. The entire process is divided into two subsystems according

to the two reactors.

For subsystem 1, x1(k) = [T1(k) − T s
1 , CA1(k) − Cs

A1]
T , for subsystem 2, x2(k) =

[T2(k) − T s
2 , CA2(k) − Cs

A2]
T . The actual initial condition for the whole system is x(0) =

[13, 2, 34, 1.5]T . The random disturbances added to the dynamics of the temperatures are

generated as normally distributed values with zero mean and standard deviation 1. The

random disturbances added to the dynamics of the concentrations are generated as nor-

mally distributed values with zero mean and standard deviation 0.1. The initial guesses,

horizon and weighting matrices used in the two local MHEs are shown in Table 4.2. The

termination threshold ε = 0.0001.
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Table 4.1: Process parameters of 2-CSTR process

F0 = 4.998m3/h k10 = 3.0× 106h−1

F1 = 39.996m3/h k20 = 3.0× 105h−1

F3 = 30.0m3/h k30 = 3.0× 105h−1

Fr = 34.998m3/h E1 = 5.0× 104kJ/kmol
V1 = 1.0m3 E1 = 7.53× 104kJ/kmol
V1 = 3.0m3 E1 = 7.53× 104kJ/kmol

R = 8.314kJ/kmolK ρ = 1000.0kg/m3

T0 = 300.0K cp = 0.231kJ/kgK
T03 = 300.0K Cs

A0 = 4.0kmol/m3

Cs
A03 = 2.0kmol/m3 ∆H1 = −5.0× 104kJ/kmol

∆H2 = −5.2× 104kJ/kmol ∆H3 = −5.4× 104kJ/kmol

Table 4.2: Parameters used in the prediction-driven CDMHE for the 2-CSTR process

MHE 1 MHE 2
Initial Guess x̂1(0) = [5; 3.5] x̂2(0) = [20; 4]

Moving Horizon 10 10

Weighting Matrix Q1 =

[
0.62 0

0 0.982

]
Q2 =

[
0.62 0

0 0.982

]
R1 = 0.82 R2 = 0.82

For this chemical process, there are two subsystems. According to (4.38), we can get Ψ

as follows:

Ψ = CTR−1C +GT
AG
−1
B

T
Q−1G−1B GA (4.83)

where C,R and Q are defined in (2.6), GA and GB are defined in (2.13).

According to equation (4.38), we can get Ω as follows:

Ω1 = CT
11R

−1
1 C11 +GT

A11
G−1B11

T
Q−11 G−1B11

GA11

Ω2 = CT
22R

−1
2 C22 +GT

A22
G−1B22

T
Q−12 G−1B22

GA22

Ω =

[
Ω1

Ω2

] (4.84)

It can be verified that the eigenvalues of (Ω−Ψ/2) are all positive which means (Ω−Ψ/2)

is positive definite, so the convergence condition proposed in Proposition 4.2.1 is satisfied.

The coordinated scheme is implemented following Algorithm 2 to estimate the entire

system state in a distributed way. The proposed prediction-driven CDMHE is compared

with different estimation techniques to illustrate its performance. Specially, the proposed

prediction-driven CDMHE is compared with the corresponding centralized MHE and de-

centralized MHE. Note that in the decentralized MHE, the interactions between subsystems

are neglected.
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The simulation results are given in Figure 4.4 - Figure 4.6. The trajectories of the

estimates given by the three estimation schemes are shown in Figure 4.4. In order to see

the estimated trajectories obtained by the prediction-driven CDMHE algorithm and the

centralized MHE clearly. Figure 4.5 shows the estimation given by the centralized MHE

and the prediction-driven CDMHE along with the actual state trajectory. The trajectories

of the estimation error are in Figure 4.6.
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Figure 4.4: Trajectories of the actual state (solid line), estimates given by the proposed prediction-
driven CDMHE (dashed line), estimates given by the centralized MHE (dotted line), and the decen-
tralized MHE (dash-dotted line).

From Figure 4.5, it can be seen that the estimated state given by the proposed prediction-

driven CDMHE and the estimated states given by the centralized MHE are very close (the

two lines overlap with each other). This means the prediction-driven CDMHE has reached

the performance of the centralized MHE. From Figure 4.4 and Figure 4.6, we can see that

the estimation given by the decentralized MHE is poor compared with the prediction-

driven CDMHE. Note that both the centralized MHE and the prediction-driven CDMHE

give relatively poor estimates of the second state. This is due to the characteristics of

the process. In this work, we show that the proposed prediction-driven CDMHE gives

the same performance as the centralized MHE. From Figure 4.9, it can be seen that the

proposed prediction-driven CDMHE and the centralized MHE give significantly improved
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Figure 4.5: Trajectories of the actual state (solid line), estimates given by the proposed prediction-
driven CDMHE (dashed line), estimates given by the centralized MHE (dotted line).
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Figure 4.6: Trajectories of the estimation error given by proposed prediction-driven CDMHE
(dash-dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed line)
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performance over the decentralized MHE. This is because the prediction-driven CDMHE

and centralized MHE take into account the interactions between subsystem explicitly while

in the decentralized MHE the interaction between subsystems is ignored.

4.4.2 Two-CSTR and One Separator

The same chemical process used in Section 3.5 is used here to illustrate the effectiveness of

the prediction-driven CDMHE. The initial state remains same. We use logarithmic barrier

to approximate the barrier functions mentioned in (4.64). For subsystem i in the prediction-

driven CDMHE and decentralized MHE, the barrier functions are chosen as:

ρix(X̂i(k)) = (−1/t)

K∑
l=K−Hp+1

ni∑
j=1

(log(x̂ij(l)− Xlbij) + log(Xubij − x̂ij(l)) (4.85a)

ρiw(Ŵi(k)) = (−1/t)
K−1∑

l=K−Hp+1

ni∑
j=1

(log(ŵij(l)−Wlbij) + log(Wubij − x̂ij(l)) (4.85b)

In the centralized MHE, the barrier function is the summation of the decentralized ones,

as following:

ρx(X̂(k)) =
N∑
i=1

ρix(X̂i(k)) (4.86a)

ρw(Ŵ (k)) =
N∑
i=1

ρiw(Ŵi(k)) (4.86b)

where t is a turning parameter, Xlb and Xub are the lower bound and upper bound of the

constraints on the estimated states X̂, respectively, and Wlb and Wub are the lower bound

and upper bound of the constraints on the estimated noises Ŵ , respectively.

The tuning parameter t is chosen as a large positive number and determines the accuracy

of the approximation. When x̂ij and ŵij are inside the boundary, the barrier function terms

will almost have no effects on the original cost function. When x̂ij or ŵij approaches the

boundary, the value of ρxi(X̂i(k)) or ρwi(Ŵi(k)) approaches +∞. In this case, the tuning

parameter t is chosen as 106. The weighting matrices and initial guesses of subsystems are

given in Table 4.3.

For this chemical process, there are three subsystems. According to (4.38), we can get

Ψ as follows:

Ψ = CTR−1C +GT
AG
−1
B

T
Q−1G−1B GA (4.87)

where C,R and Q are defined in (2.6), GA and GB are defined in (2.13).
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Table 4.3: Parameters used in the prediction-driven CDMHE

Initial Guess Moving Horizon Weighting Matrix

MHE 1 x̂1(0) = [0.0508 0.3277 561.0186]T 10 Q1 =

0.822 0
0 0.12 0
0 0 0.82


R1 = 12

MHE 2 x̂2(0) = [0.1518 0.4444 513.3340]T 10 Q2 =

0.522 0 0
0 0.82 0
0 0 1.22


R2 = 12

MHE 3 x̂3(0) = [0.0693 0.3560 546.4699]T 10 Q3 =

0.22 0 0
0 0.12 0
0 0 0.32


R3 = 12

According to equation (4.38), we can get Ω as follows:

Ω1 = CT
11R

−1
1 C11 +GT

A11
G−1B11

T
Q−11 G−1B11

GA11

Ω2 = CT
22R

−1
2 C22 +GT

A22
G−1B22

T
Q−12 G−1B22

GA22

Ω3 = CT
33R

−1
3 C33 +GT

A33
G−1B33

T
Q−13 G−1B33

GA33

Ω =

Ω1

Ω2

Ω3


(4.88)

It can be verified that the eigenvalues of (Ω−Ψ/2) are all positive which means (Ω−Ψ/2)

is positive definite, so the convergence condition proposed in Proposition 4.2.1 is satisfied.

The simulation results are shown in Figure 4.7 - Figure 4.10. Figure 4.7 shows the

trajectories of the estimated states given by the centralized MHE, the decentralized MHE,

the prediction-driven CDMHE and the actual states.Figure 4.8 is used to give us a clearer

view of the estimated states given by the prediction-driven CDMHE and the centralized

MHE. We can see that the prediction-driven CDMHE reaches the centralized performance.

Figure 4.9 shows the trajectories of the error norm of the three estimated algorithms. We

can see that the performance of centralized MHE and proposed prediction-driven CDMHE

algorithm are much better than the decentralized MHE. The summation of error given

by the prediction-driven CDMHE is 14.0238 while the summation of error given by the

decentralized MHE is 147.15 which is more than 10 times of the error norm provided by

prediction-driven CDMHE. Figure 4.10 shows the number of iterations during the sampling

time intervals. It can be seen that the iterations are between 8 and 22.

From the above two simulation cases, the performance of proposed prediction-driven

CDMHE agrees with what is suggested by the theoretical analysis, and reaches the per-

formance of the centralized MHE. Compared with the decentralized MHE, the proposed

prediction-driven CDMHE has significant improvement while still keeps the flexibility in
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Figure 4.7: Trajectories of the actual state (solid line), estimates given by the proposed CDMHE
(dashed line), estimates given by the centralized MHE (dotted line), and the decentralized MHE
(dash-dotted line).
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Figure 4.8: Trajectories of the actual state (solid line), estimates given by the proposed CDMHE
(dashed line), estimates given by the centralized MHE (dash-dotted line).

the structure.
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Figure 4.9: Trajectories of the estimation error norm given by proposed CDMHE (dash-dotted
line), the centralized MHE (solid line), and the decentralized MHE (dashed line).
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4.5 Conclusions

In this chapter, a coordinated distributed moving horizon estimation scheme is proposed

for a class of discrete-time, linear systems. In particular, the class of linear systems we

focus on is composed of several subsystems that interact with each other via their states.

It is seen from the formulations that the proposed prediction-driven CDMHE estimators

are obtained by modifying the decentralized MHE estimator. A coordinating term is added

to each local MHE to connect the local estimators with the coordinator. After modifying
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the decentralized MHEs, the coordinator is designed based on a method used to solve the

the optimality conditions of the aggregated CDMHE. This allows the prediction-driven

CDMHE scheme to maintain the desired properties of the decentralized MHE estimators

such as flexibility and robustness.

Convergence of the prediction-driven CDMHE algorithm is also studied in this chapter

and sufficient convergence conditions are given. In addition, a way to use barrier function to

handle inequality constraints in the proposed coordinated algorithm is presented in Section

4.3 and the convergence is guaranteed. Furthermore, it is shown that once the convergence

condition is satisfied, the solution of the proposed prediction-driven CDMHE algorithm

converges to the centralized MHE solution. Two chemical processes are used to illustrate

the efficiency and applicability of the proposed coordinated scheme.
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Chapter 5

Robustness of the
Prediction-driven CDMHE

In this chapter, the robustness of the prediction-driven CDMHE algorithm proposed in

Chapter 4 is investigated under different scenarios. These scenarios include: 1) Triggered

communication, between the subsystem estimators and the coordinator, 2) Communication

failure between a subsystem and the coordinator, and 3) Premature termination of the

coordination algorithm. The robustness investigation is carried out based primarily on

simulations with extensive discussion.

5.1 Triggered Communication

In this section, the proposed prediction-driven CDMHE with triggered communication is

discussed. The purpose of the triggered communication method is to minimize the com-

munication cost between the local estimators and the coordinator. A schematic of the

prediction-driven CDMHE with triggered communication is presented in Figure 5.1. In

this algorithm, every local subsystem has a MHE estimator and a communication trigger

which determines whether the information in the current iteration should be sent to the

coordinator. This implies that the information obtained in a subsystem estimator at the

current iteration is not necessarily sent to the coordinator. In this way the communication

load between the subsystems and the coordinator can be reduced. In this algorithm, the

difference between the current state estimate and the last sent state estimate is the basis

to design the triggering condition. The rest of this section is organized as follows: first, the

proposed prediction-driven CDMHE with triggered communication algorithm is presented;

then a convergence analysis is given; finally, the algorithm is applied to the chemical process

that described in Section 3.5.
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Figure 5.1: A schematic of the proposed prediction-driven CDMHE design with triggered commu-
nication.

The implementation algorithm of the prediction-driven CDMHE with triggered commu-

nication is described in Algorithm 3.

Algorithm 3 Prediction-driven CDMHE with triggered communication

Initialization
Coordinator : Set iteration counter s = 0. When k = 1, X̂(0)(k) and Ŵ (0)(k) are
arbitrarily determined; else X̂(0)(k) and Ŵ (0)(k) are picked as X̂(k − 1) and Ŵ (k − 1),

and p(0)(k) and Ĥ
(s)
i (k) are calculated according to (4.9) and (4.6), respectively.

Local Trigger : In local trigger i, X̂
(0)
i (k) is picked as the corresponding part in X̂(0)(k)

in the coordinator.
repeat

Coordinator : p(s) and Ĥ
(s)
i (k) are sent to local MHE estimators.

Local Estimators : Local problem (4.2) is solved based on the local measurements
Yi(k). X̂∗i(s)(k) is sent to the trigger that associated with the local MHE.

Local Trigger : The trigger checks the triggering condition. If the triggering con-

dition is satisfied, the trigger updates X̂
(s)
i (k) = X̂∗i(s)(k) and Ŵ

(s)
i (k) = Ŵ ∗i(s)(k) and

sends X̂
(s)
i (k) and Ŵ

(s)
i (k) to the coordinator. Otherwise, no information is transmitted

between the trigger and the coordinator.

Coordinator : Coordinator uses X̂
(s)
i (k) and Ŵ

(s)
i (k) that received from triggers to

construct X̂(s)(k) and Ŵ (s)(k). Then, p(s) and Ĥ
(s)
i (k) are calculated based on (4.9) and

(4.6).
until stopping criterion ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε is satisfied.

It is shown in Algorithm 3 that the triggering condition for each subsystem i is checked

every iteration during each sampling interval after the latest estimated state is calculated

by the local MHE i. The triggering condition is designed based on the difference between

the current estimated states and last sent estimated states. For subsystem i, the triggering
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condition at sth iteration during sampling time k is defined specifically as follows:

U
(s)
i (k) =

{
1, if ‖X̂∗i(s)(k)− X̂(si)

i (k)‖ ≥ εi
0, if ‖X̂∗i(s)(k)− X̂(si)

i (k)‖ < εi
(5.1)

where si is the last iteration that MHE i sent its state to the coordinator. X̂∗i(s)(k) and

Ŵ ∗i(s)(k) are the current estimated state and noise of MHE i at iteration s in the time

interval k, respectively. X̂
(si)
i (k) and Ŵ

(si)
i (k) are the last sent estimated state and noise of

MHE i at time interval k. εi is the threshold of subsystem i. When U
(s)
i (k) = 1, that is, the

triggering condition is satisfied, the MHE i set X̂
(s)
i (k) = X̂∗i(s)(k), Ŵ

(s)
i (k) = Ŵ ∗i(s)(k) and

sends them to the coordinator. At the same time, the local trigger updates si to s. When

U
(s)
i (k) = 0, which implies the triggering condition is not satisfied, the MHE i does not send

any estimated variables to the coordinator. The coordinator continues using the estimated

variables that received previously. From the triggering condition in equation (5.1), it can

be seen that the condition is dependent on the local subsystem. Therefore, the triggering

conditions for different subsystems may be satisfied at different iterations.

From Algorithm 3, it can be seen that a local trigger uses the triggering condition to

decide whether to update the estimated state or not. In the prediction-driven CDMHE with

triggered communication, instead of using the current estimated states from the subsystems,

sometimes coordinator needs to use the last sent estimated states to approximate the current

estimated states. The stopping criterion in the prediction-driven CDMHE with triggered

communication requires ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε in the coordinator which is the same as

in the prediction-driven CDMHE of Algorithm 2.

5.1.1 Convergence Analysis

The convergence analysis is conducted under the assumption that the proposed prediction-

driven CDMHE with regular communication converges. Since the stopping criteria used in

the coordinator is ‖X̂(s)(k) − X̂(s−1)(k)‖ < ε, which means the largest difference between

two iterations is ε. For a system with N subsystems, when the stopping criterion ‖X̂(s)(k)−

X̂(s−1)(k)‖ < ε in the coordinator is satisfied at time k, there are three cases need to be

discussed:

1. The triggering conditions and the stopping criteria in the coordinator are all satisfied

at the same iteration, which means that all the current estimated states are sent to

the coordinator. This situation is exactly the same as the proposed prediction-driven

CDMHE with regular communication;
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2. Some of the triggering conditions are satisfied. In this case, some of the estimated

states X̂
(s)
i (k) are last sent estimated states which means they are the approximation

of the current actual states X̂∗i(s)(k). Without losing generality, we assume that from

subsystem 1 to subsystem l, the triggering conditions are satisfied when the stopping

condition in the coordinator is satisfied. Therefore, ‖X̂∗i(s)(k) − X̂
(s−1)
i (k)‖ < εi is

satisfied in l subsystems. Since ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε, the difference between the

current estimated state and last iteration estimated state ‖X̂∗(s)(k) − X̂(s−1)(k)‖ <√
ε2 +

∑l
i=1 ε

2
i .

3. All the triggering conditions are not satisfied at the end of the iterations at time

constant k. In this case, X̂(s)(k) = X̂(s−1)(k) is obtained. Thus, the difference between

the current estimated state and last iteration estimated state ‖X̂∗(s)(k)−X̂(s−1)(k)‖ <√∑N
i=1 ε

2
i .

From the above three cases, it can be seen that when the iteration ends, the difference

between the current estimated state and the last iteration estimated state are bounded

within certain threshold. If the proposed prediction-driven CDMHE algorithm converges,

the prediction-driven CDMHE with triggered communication will converge as well. It can

be seen that the proposed prediction-driven CDMHE with triggered communication gives

more relaxed stopping criterion compared with the prediction-driven CDMHE with regu-

lar communication. Thus, the communication costs between the distributed MHEs can be

reduced by following Algorithm 3 based on the triggering condition in (5.1) with possi-

ble bounded loss of estimation performance. Note that by carefully picking the triggering

thresholds and the stopping criteria, it is possible to achieve almost the same performance

as the prediction-driven CDMHE with regular communication while reducing the commu-

nication cost.

5.1.2 Simulation Results

In this section, the proposed prediction-driven CDMHE with triggered communication is

compared with the prediction-driven CDMHE with regular communication to illustrate its

performance from the communication cost point of view. The chemical process with two-

CSTR and one seperator used in Section 4.4.2 is used in this section. Since the stopping

criterion used in Section 4.4.2 is ε = 0.001, the triggering conditions are picked as εi =

0.001×
√

3/3, i = 1, 2, 3. The inequality constraints are not considered. Other conditions

are the same as the simulation case in Section 4.4.2.
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The simulation results are shown in Figures 5.2 - Figures 5.4. Figure 5.2 shows the

state trajectories of the estimated sates given by the prediction-driven CDMHE with trig-

gered communication, the centralized MHE and the actual state. From Figure 5.2, it

can be seen that the estimated state trajectories given by the prediction-driven CDMHE

with triggered communication are almost overlapped with the centralized trajectories. The

summation of the absolute error between estimated state given by the prediction-driven

CDMHE with triggered communication and the actual state is 14.5753 which is almost

same with the summation error term 14.5741 given by the prediction-driven CDMHE with

regular communication. Therefore, the prediction-driven CDMHE with triggered communi-

cation described in Algorithm 3 keeps the estimation performance of the prediction-driven

CDMHE. Figure 5.3 shows the iteration number given by the regular prediction-driven

CDMHE and the prediction-driven CDMHE with triggered communication. The iteration

number given by the prediction-driven CDMHE with triggered communication is slightly

less, which means lower communication cost. Figure 5.4 shows the iteration number that

the current estimated state is not sent. From Figure 5.3 and Figure 5.4, it can be concluded

that communication cost between the subsystems and the coordinator is reduced.
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Figure 5.2: State trajectories of the actual states (solid line), the estimated state given by the
proposed CDMHE implemented following Algorithm 3 based on triggering condition (5.1) (dashed
line) and the estimated state given by the centralized MHE (dash-dotted line).
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Figure 5.3: Numbers of iterations given by prediction-driven CDMHE (right side) and prediction-
driven CDMHE with triggered communication (left side) during each sampling time k.
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Figure 5.4: Numbers of iterations that subsystem i (i = 1, 2, 3) keeps the last sent estimated
state following Algorithm 3 based on triggering condition (5.1) during each sampling time k.

5.2 Communication Failure

Compared with the centralized MHE, the proposed prediction-driven CDMHE maintains

the resilience from the decentralized MHE. In the proposed prediction-driven CDMHE,
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the communication between the coordinator and local MHEs is important in achieving the

centralized performance. In this section, the scenario that communication failure happens

between subsystems and the coordinator is discussed.

Under the condition that the proposed prediction-driven CDMHE algorithm with reg-

ular communication converges, we assume that communication failure happens between

subsystem j and the coordinator, which means that coordinator cannot receive any esti-

mated state from subsystem j and subsystem j cannot receive any information about price

vector p and interaction Ĥj from the coordinator. There are two cases that need to be

discussed:

1. subsystem j loses connection with coordinator from the very beginning and no infor-

mation has been exchanged between them. Thus, for subsystem j, the price vector

p and interactions Ĥj are all zero during all the sampling time, which makes sub-

system j act like the decentralized local MHE. In the coordinator, the calculations

of the price vector and interaction vectors will be affected. Therefore, the estimated

states of other subsystems, especially the subsystems that strongly coupled with the

subsystem j will be affected.

2. when the communication failure happens, subsystem j and the coordinator have ex-

changed information. In this case, subsystem j keeps using the last received price

vector p and interaction vector Ĥj while the coordinator keeps using the last received

estimated state from subsystem j. For subsystem j, the price vector p and interac-

tion vector Ĥj are not accurate, the subsystem j will not give good estimated state

as before. For other subsystems, the estimation of the price vector and interaction

vectors will be affected. Therefore, the estimated states will be affected, especially

the subsystems that strongly coupled with the subsystem j.

5.2.1 Simulation Results

In this section, the chemical process with two-CSTR and one seperator introduced in Section

4.4.2 is used. Two cases are discussed. In the first case, subsystem 3 loses connection with

coordinator at k = 0; in the second case, subsystem 3 loses connection with coordinator

after sampling time k = 15. The other simulation settings are the same as in Section 4.4.2.

Communication Failure Case 1

In this case, subsystem 3 loses connection with coordinator at k = 0. The estimated states

should provide by subsystem 3 are picked as zero in the coordinator. Results are shown in
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Figure 5.5 - Figure 5.7. Figure 5.5 shows the trajectories of estimated states, from which

we can see that the estimated state given by subsystem 3 of prediction-driven CDMHE is

almost the same with the decentralized MHE. This is caused by the disconnection between

the coordinator and subsystem 3. Subsystem 3 cannot receive coordinated variables, and it

actually works in the decentralized way. Figure 5.6 gives a clearer view of the trajectories

of estimated states given by the prediction-driven CDMHE and the centralized MHE. From

Figure 5.6, it can be seen that the estimated state given by the prediction-driven CDMHE

is different from those of the centralized MHE. Not only the estimated states of subsystem

3 are affected, the estimated states of other subsystems are also affected. However, the

performance of prediction-driven CDMHE is still better than the decentralized MHE which

can be seen from the state trajectories in Figure 5.5 and the error norm trajectory in

Figure 5.7.
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Figure 5.5: Communication Failure Case 1: State trajectories of the actual state (solid line),
estimated states given by the proposed CDMHE (dashed line), the centralized MHE (dotted line),
and the decentralized MHE (dash-dotted line).

Communication Failure Case 2

In this case, subsystem 3 loses connection with the coordinator after time interval k = 15,

i.e., t = 0.075h. Results are shown in Figure 5.8 - Figure 5.10. Figure 5.8 shows the

trajectories of estimated states given by the prediction-driven CDMHE, the centralized

MHE and the decentralized MHE, respectively. From Figure 5.9, it can be seen that after
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Figure 5.6: Communication Failure Case 1: State trajectories of the actual state (solid line),
estimated states given by the proposed CDMHE (dashed line) and the centralized MHE (dash-
dotted line).
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Figure 5.7: Communication Failure Case 1: Trajectories of the error norm given by proposed
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed
line).
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0.075h, the states of subsystem 3 starts to deviate from the estimated state given by the

centralized MHE, other subsystems are also affected. Figure 5.10 shows the trajectories

of the error norm of the three estimation algorithms, from which we can see that the

error trajectory given by the proposed prediction-driven CDMHE is slightly different from

the centralized MHE after 0.075h. The performance of the prediction-driven CDMHE is

still much better than the performance of the decentralized MHE which can be seen from

Figure 5.8 and Figure 5.10.
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Figure 5.8: Communication Failure Case 2: State trajectories of the actual state (solid line),
estimated states given by the proposed CDMHE (dashed line), the centralized MHE (dotted line),
and the decentralized MHE (dash-dotted line).

From the above simulations in the two case studies, the proposed prediction-driven

CDMHE shows resiliency against communication failure. When the communication failure

happens, the subsystem that loses connection with the coordinator works in a decentralized

way while other subsystems that coupled with this subsystems are affected. Therefore, the

estimated states given by the prediction-driven CDMHE cannot converge to the estimated

states given by the centralized MHE.

5.3 Premature Termination of the Coordination Algorithm

Premature termination of the coordination algorithm means that during sampling time k,

the coordination algorithm stops at iteration ‘s’ before the estimated state given by the
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Figure 5.9: Communication Failure Case 2: State trajectories of the actual state (solid line),
estimated states given by the proposed CDMHE (dashed line) and the centralized MHE (dash-
dotted line).
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Figure 5.10: Communication Failure Case 2: Trajectories of the error norm given by proposed
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed
line).
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coordination algorithm converges to the estimated state given by the centralized MHE.

The premature termination of the coordination algorithm may happen for various reasons.

For example, the time interval is not sufficient long to reach the convergence or the stop

criterion threshold ε is poorly chosen. In this section, we consider that the iteration stops at

‘sk’ in time interval k. Under the assumption that the proposed prediction-driven CDMHE

converges, the estimated state X̂(s)(k) given by the coordination algorithm converges to

X̂∗(k) as iteration ‘s’ increases. Thus premature termination at iteration ‘sk’ will cause

X̂(sk)(k) belongs to the neighborhood of the centralized optimal solution.

5.3.1 Simulation Results

In this section, the chemical process with two-CSTR and one seperator introduced in Section

4.4.2 is used. From the simulation case in Section 4.4.2, it can be obtained from Figure 4.10

that the iteration numbers are between 8 to 22. So in this case, we fixed the iterations as

7, which means the coordinated algorithm is terminated before it reaches the termination

threshold. The other simulation settings are the same as that in Section 4.4.2. The results

are shown in Figure 5.11 - Figure 5.13. Figure 5.11 shows the estimated state trajectories

given by the prediction-driven CDMHE with premature termination, the centralized MHE,

the decentralized MHE and the actual states. From Figure 5.12, we can see that the

estimated states given by the prediction-driven CDMHE with premature termination are

different from the centralized ones, but they are very close especially after 0.05h. The

reason is that the actual iterations after t = 0.05h are around 11 which is closer to 7. From

Figure 5.11 and Figure 5.13, we can see that the estimated states given by the prediction-

driven CDMHE with premature termination are still much better than the decentralized

MHE.

5.4 Conclusions

In this chapter, three scenarios are studied based on the proposed prediction-driven CDMHE

algorithm in Chapter 4. A triggered communication algorithm for prediction-driven CDMHE

was presented in Section 5.1. The communications between subsystems and the coordina-

tor were triggered by the difference between the current estimated state and the last sent

estimated state. The proposed prediction-driven CDMHE with triggered communication

reduced the communication cost between the subsystems and the coordinator. The al-

gorithm was applied to a chemical process in Section 5.1.2. The results were compared

with the results with the prediction-driven CDMHE with regular communication from a
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Figure 5.11: Premature termination case: State trajectories of the actual state (solid line), esti-
mated states given by the proposed CDMHE (dashed line), the centralized MHE (dotted line), and
the decentralized MHE (dash-dotted line).
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Figure 5.12: Premature termination case: State trajectories of the actual state (solid line), esti-
mated states given by the proposed CDMHE (dashed line), and the centralized MHE (dash-dotted
line).

81



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

T (h)

|e
|

Figure 5.13: Premature termination case: Trajectories of the error norm given by proposed
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed
line).

communication cost point of view. With appropriate triggering thresholds, the proposed

triggered communication algorithm not only keeps the estimation performance but also

reduces the communication cost between subsystems and the coordinator. Subsequently,

two cases of communication failure were discussed in Section 5.2. The prediction-driven

CDMHE showed autonomy and resiliency against communication failures. In the first case,

a subsystem lost connection with the coordinator before the communication began. In the

other case, the subsystem lost connection with the coordinator after information been ex-

changed. The corresponding simulation results were given in Section 5.2.1. The results of

both cases showed that the proposed prediction-driven CDMHE algorithm can handle the

communication failure and provide better estimates than the decentralized MHE. Finally,

premature termination of the coordination algorithm was studied in Section 5.3. The pre-

mature termination of coordination algorithm rendered the estimated states belongs to a

neighborhood of the centralized optimal solution. The simulation results showed that the

proposed prediction-driven CDMHE could keep the performance close to the centralized

one.
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Chapter 6

Conclusions

6.1 Summary

The focus of this thesis was on the development of the coordinated distribution moving

horizon state estimation schemes for large-scale systems. Specially, the class of systems

considered is a class of linear systems that composed of several subsystems that interacts

with each other via their states. The CDMHE algorithms proposed in this work are intended

to coordinate the local MHEs to achieve the optimal plant-wide performance, that is, the

centralized state estimation performance, while maintain the flexibility of the decentralized

estimation framework. Both the CDMHE schemes proposed in this thesis give guaranteed

convergence to the centralized optimal solution when the convergence conditions are satis-

fied. The coordinated distributed estimators can be constructed with minor modifications

to the exsiting decentralized estimators. The effectiveness of the coordinated distributed

estimation schemes is shown in this thesis by implementing the algorithms into chemical

processes.

In Chapter 3, a price-driven coordinated algorithm was developed for the distributed

moving horizon state estimation, where the local MHE estimates the process states, noises

and interactions. However, it was shown that the conventional price-driven coordinated

algorithm cannot be used for state estimation purpose since it requires measurement of

the full state vector. An improved price-driven CDMHE was proposed to address the

issue of the standard version. In the improved price-driven coordinated algorithm, the

local MHE recieves price vector from coordinator and sends the estimated state, noise,

interaction and sensitivity matrix to the coordinator. Coordinator uses these information

to calculate the price vector. Newton’s method is used to update the price vector. Without

consideration of the inequality constraints, the proposed price-driven CDMHE algorithm

was shown to converge in two iterations. For the system with inequality constraints, the
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sensitivity matrix is divided into active set and inactive set, and changes with the active

set. Due to the existence of the inequality constraints, more iterations are needed to achieve

the convergence.

The drawback of the improved price-driven CDMHE is the additional term 1
2 ‖ Ĥi(k) ‖D−1

i

in the cost function. This term is added purely to ensure the singular solution does not arise

in the local MHEs. Therefore, to avoid this drawback, in Chapter 4, a prediction-driven

coordinated algorithm was developed for the distributed moving horizon state estimation,

where the local MHE estimates the state and process noise. In this coordinated scheme, the

local MHE receives estimated interaction and price vector from the coordinator and sends

estimated state and noise to the coordinator. The proposed prediction-driven algorithm

was shown to converge to the centralized optimal solution with the increasing of the itera-

tion number. A barrier function method was proposed to handle inequality constraints. In

Chapter 5, the robustness of the prediction-driven CDMHE is further investigated under

different scenarios, including triggered communication, communication failure and prema-

ture termination. The proposed prediction-driven CDMHE algorithm showed robustness

and resilience to these cases.

It should be noted that both Chapter 3 and Chapter 4 focused on the development

of the coordination algorithms of the local MHEs. Different coordination methods were

used in these chapters. Without consideration of the inequality constraints, price-driven

CDMHE algorithm shows fast convergence by using Newton’s method to update the price

vector, while the prediction-driven CDMHE algorithm may need more iterations to achieve

the centralized MHE performance. When these two coordinated algorithms both converge,

the corresponding price vector converges to the Lagrange multiplier that associate with the

system equality constraint of the centralized MHE.

The key point of the coordination methods lies in the definition and coordination of the

subproblems. In this thesis, the two proposed coordination methods, price-driven CDMHE

and prediction-driven CDMHE both achieve the plant-wide optimal performance. There

are still numerous challenges remain in the application of the coordinated distributed state

estimation schemes that need to be addressed.

6.2 Directions for Future Work

Based on the work presented in the previous chapters, some possible directions for future

work are listed as follows:

84



• Both coordination methods proposed in this thesis need information exchange between

subsystems and coordinator, and the iterations during each sampling interval have

great impact on the computation and communication load. Therefore, the complexity

study for both price-driven CDMHE and prediction-driven CDMHE is recommended

Knowing the computation load of different CDMHE methods can give us a better

understanding of the coordination algorithms and help us to choose algorithm from

the candidates;

• Although the two CDMHE algorithms both converge to the centralized optimal per-

formance, arrival cost is not considered in both cases. Arrival cost summarizes the

effect of previous data. A study that includes arrival cost in the cost function is

needed;

• In order to converge to the centralized MHE optimal solution, the prediction-driven

CDMHE needs to satisfy the convergence condition proposed in Chapter 4. The

convergence condition is related to the system matrices, weighting matrices and size

of the horizon. The system matrices represent the interaction strength in some way.

The effects of the interaction strength, weighting matrices and size of the horizon on

the convergence condition are worth investigating;

• The focus of this thesis is linear systems. The work can be extended to nonlinear

systems by using the same coordination methods.

• The integration of CDMHE with distributed predictive control (e.g., DMPC) needs

investigation. DMPC has been widely applied to the control of large-scale complex

system, which requires the state measurement every sampling time. The CDMHE

algorithms can provide state estimates to the control network when the state mea-

surements are not available.
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Appendix A

Invertibility of Matrices

Prior to the proof, the term Schur complement and some related lemmas are introduced.

Assume that a square matrix M ∈ R(l+m)×(l+m)is partitioned into the following four blocks:

M =

[
S T
U V

]
(A.1)

where S ∈ Rl×l, T ∈ Rl×m, U ∈ Rm×l and V ∈ Rm×m. If the square matrix S is

nonsingular, then:

M/S , V −US−1T (A.2)

is defined to be the Schur complement of M relative in S. Similarly, if the square matrix

V is nonsingular, the Schur complement of M relative in V is defined as:

M/V , S − TV −1U (A.3)

The Schur complement is a very useful tool in matrix analysis. A commonly used prop-

erty of Schur complement is presented in Lemma A.0.1:

Lemma A.0.1. (Zhang, 2006) Let M ∈ R(l+m)×(l+m) be a square matrix partitioned as in

equation A.1. If S is nonsingular, then:

det(M) = det(S)det(M/S) (A.4)

Similarly, if V is nonsingular, there is:

det(M) = det(V )det(M/V ) (A.5)

where det(M) means the determinant of matrix M .

When S(V ) is nonsingular, that is det(S) 6= 0 (det(V ) 6= 0). Then in equation (A.4)

(equation (A.5)), det(M) 6= 0 is equivalent to det(M/S) 6= 0 (det(M/V ) 6= 0), which leads

to the following Corollary:
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Corollary A.0.1. For the partitioned matrix M as in (A.1), if the block S(V ) is non-

singular, then M is invertible if and only if the Schur complement M/S(M/V ) is

invertible.

A.1 The Invertibility Discussion of Λi

We use Schur complement to prove the invertibility of Λi.

Λi =


CT
iiR
−1
ii Cii 0 0 GT

Aii

0 Q−1ii 0 −I
0 0 0 −I

GAii −I −I 0


So we can write the matrix as:

S =

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
, T =

[
0 GT

Aii

0 −I

]
, U =

[
0 0

GAii −I

]
, V =

[
0 −I
−I 0

]
M/V = S − TV −1U

=

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
−
[
0 GT

Aii

0 −I

] [
0 −I
−I 0

]−1 [
0 0

GAii −I

]
=

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
−
[
−GT

Aii
0

I 0

] [
0 0

GAii −I

]
=

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
As det(M) = det(V )det(M/V ), we need to prove det(M/V ) 6= 0.

det(M/V ) = det{
[
CT
iiR
−1
i Cii 0

0 Q−1i

]
} = det{CT

iiR
−1
i Cii}det{CT

ii}

We need to prove det{CT
iiR
−1
i Cii} 6= 0.

det{CT
iiR
−1
i Cii} = det{CT

iiR
−1/2
i }det{R−1/2i Cii}

det{CT
iiR
−1/2
i } = det{R−1/2i Cii}

= det{Cii}det{Ri}−1/2

We need to prove det{Cii} 6= 0. However, only when Cii is full rank, det{Cii} 6= 0. Thus

Λi is invertible only when Cii is full rank.

A.2 Invertibility Condition of Improved Price-driven CDMHE

After adding term 1
2Ĥi(k)TD−1i Ĥi(k) to the cost function in the price-driven coordinated

local MHE design, Λi defined in equation (3.30) becomes:

Λi =

[
Ξ∗i Fi

T

Fi 0

]
(A.6)
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Substituting the Ξ∗i and Fi
T into Λi, the following equation can be obtained:

Λi =


CT
iiR
−1
i Cii 0 0 GT

Aii

0 Q−1i 0 −I
0 0 D−1i −I

GAii −I −I 0

 (A.7)

Using Schur complement to discuss the invertibility condition that D−1i needs to satisfy,

we can write the matrix as:

S =

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
, T =

[
0 GT

Aii

0 −I

]
, U =

[
0 0

GAii −I

]
, V =

[
D−1i −I
−I 0

]
(A.8)

Therefore the inverse of the matrix V is:

V −1 =

[
0 −I
−I −D−1i

]
(A.9)

Therefore, the following expression can be obtained:

M/V = S − TV −1U

=

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
−
[
0 GT

Aii

0 −I

] [
0 −I
−I −D−1i

] [
0 0

GAii
−I

]
=

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
−
[
−GT

Aii
D−1i GAii GT

Aii
D−1i

D−1i GAii
−D−1i

]
=

[
CT

iiR
−1
i Cii +GT

Aii
D−1i GAii GT

Aii
D−1i

D−1i GAii
Q−1i +D−1i

]
(A.10)

As det(M) = det(V )det(M/V ) and V is invertible (det(V ) 6= 0), therefore we need to

find the condition that det(M/V ) 6= 0. By using Schur complement again, we can get that:

det(M/V ) = det{
[
CT

iiR
−1
i Cii +GT

Aii
D−1

i GAii
GT

Aii
D−1

i

D−1
i GAii

Q−1
i +D−1

i

]
}

= det(Q−1
i +D−1

i )det{CT
iiR

−1
i Cii +GT

Aii
D−1

i GAii
−GT

Aii
D−1

i (Q−1
i +D−1

i )−1D−1
i GAii

}

= det(Q−1
i +D−1

i )det{CT
iiR

−1
i Cii +GT

Aii
(D−1

i −D−1
i (Q−1

i +D−1
i )−1D−1

i )GAii
}

(A.11)

Since Q−1i and D−1i are the weighting matrices which are usually picked as symmetric

positive definite matrices, the determinant of (Q−1i +D−1i ) cannot be zero. In order to make

the matrix Λi in (A.6) invertible, the weighting matrix D−1i needs to make the determinant

of {CT
iiR
−1
i Cii +GT

Aii
(D−1i −D

−1
i (Q−1i +D−1i )−1D−1i )GAii} not equal to zero.

Therefore when we pick the weighting matrix D−1i , the following condition should be

satisfied:

det{CT
iiR
−1
i Cii +GT

Aii
(D−1i −D

−1
i (Q−1i +D−1i )−1D−1i )GAii} 6= 0 (A.12)

88



A.3 Uniqueness Solution of the Prediction-driven CDMHE

For the unconstrained prediction-driven CDMHE, in the sth communication cycle, the La-

grange equation for subsystem i can be expressed as following:

Li =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii 0

0 Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
+ λTi (Geq

i

[
X̂i(k)

Ŵi(k)

]
− Ĥi(k))

(A.13)

The optimal solution of problem (4.2) at sth communication cycle is:



∂Li
∂X̂i(k)

= CT
iiR
−1
i CiiX̂i(k)−CT

iiR
−1
i Yi + ΘT

Ai
p(s) +GA

T
iiλi = ∅

∂Li
∂Ŵi(k)

= Q−1i Ŵi(k) +GT
Bii
λi = ∅

∂Li
∂λ̂i(k)

= GAiiX̂i(k) +GBiiŴi(k) = −
∑
j 6=i

GAijX
(s)
j (k) +GBijW

(s)
j (k)

(A.14)

where Θi can be divided into two parts, that is Θi = [ΘAi ,ΘBi ], G
eq
i = [GA

eq
ii , GB

eq
ii ].

ΘAi ,ΘBi are defined as:

To ensure the local MHE has unique solution, the matrix Mi must be invertible:

Mi =

 CT
iiR
−1
i Cii 0 GT

Aii

0 Q−1i GT
Bii

GAii GBii 0

 (A.15)

We will use Schur complement to prove the invertibility of Mi. From the definition of

GBii , the matrix Mi can be expressed as:

Mi =


CT

iiR
−1
i Cii 0 GT

Aii

0 Q−1i −I
GAii −I 0

 (A.16)

So we can write the matrix as:

S = CT
iiR
−1
i Cii, T =

[
0 GT

Aii

]
, U =

[
0

GAii

]
, V =

[
Q−1i −I
−I 0

]
.

Therefore, the following equation can be obtained:

M/V = S − TV −1U

= CT
iiR
−1
i Cii −

[
0 GT

Aii

] [Q−1i −I
−I 0

]−1 [
0

GAii

]
= CT

iiR
−1
i Cii −

[
0 GT

Aii

] [ 0 −I
−I −Q−1i

]−1 [
0

GAii

]
= CT

iiR
−1
i Cii +GT

Aii
Q−1i GAii

(A.17)
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Neither CT
iiR
−1
i Cii nor GT

Aii
Q−1i GAii is full rank; however, their summation may be full

rank. From Section 2.5 in Chapter 2, it is shown that for an observable system consists of

n states, if the horizon Hp ≥ n, the MHE formulation used in Section 2.3 and Section 2.4

has a unique solution. The matrix Mi is the same with the one used in decentralized MHE,

thus the invertibility of Mi can be guaranteed.
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Appendix B

Coordinated Term Verification

Our purpose is to compute Γi(X̂
(s)(k))X̂i(k), or equivalently to proof p(s)

T
Θi

[
X̂i(k)

Ŵi(k)

]
=

Γi(X̂
(s)(k))X̂i(k). We have seen that

Γi(X̂
(s)(k)) =

∂JD
∂Ĥ(k)

|(X̂(s)(k),K(X̂(s)(k)))

dĤ(k)

dX̂i(k)
|X̂(s)(k) (B.1)

From (4.35), we can express
∂JD
∂Ĥ(k)

|(X̂(s)(k),Ĥ(s)(k)) as
∂JD
∂Ŵ (k)

dŴ (k)

dĤ(k)
|(X̂(s)(k),Ĥ(s)(k)). Ac-

cording to (4.35) and (4.2b), we can get that

∂JD
∂Ŵ (k)

dŴ (k)

dĤ(k)
|(X̂(s)(k),Ĥ(s)(k)) = (Q−1Ŵ (s))T Ḡ−1B (B.2)

Since Gij = [GAij , GBij ], GBij = 0, from (4.3), we can express Θi = [ΘiA,ΘiB], while

ΘiB consists of GBij , so that ΘiB = 0. Then Ĥ(s)(k) = [Ĥ
(s)
1 (k)T , Ĥ

(s)
2 (k)T , ..., Ĥ

(s)
N (k)T ]T ,

Ĥ(s)(k) can be expressed as following:

Ĥ(s)(k) = −
[
Θ1A, Θ2A, · · · , ΘNA, Θ1B, Θ2B, · · · , ΘNB

] [X̂(s)(k)

Ŵ (s)(k)

]
= −

[
Θ̄A Θ̄B

] [X̂(s)(k)

Ŵ (s)(k)

]
= −Θ̄AX̂

(s)(k)

(B.3)

From the expression of Ĥ(s)(k), we can get the expression of
dĤ(k)

dX̂i(k)
|X̂(s)(k) as:

dĤ(k)

dX̂i(k)
|X̂(s)(k) = −ΘiA (B.4)

Thus we get Γi(X̂
(s)(k))X̂i(k) as following:

Γi(X̂
(s)(k))X̂i(k) = −(Q−1Ŵ (s))T Ḡ−1B ΘiAX̂i(k) (B.5)
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From (4.9), we can get the expression of p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
as:

p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
= −(Q−1Ŵ (s))TG−1B ΘiAX̂i(k) (B.6)

From the definition of GB, ḠB, Θ̄B, we can easily get that GB = ḠB + Θ̄B, since

Θ̄B = 0, we can get GB = ḠB. So we can get the conclusion that:

p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
= Γi(X̂

(s)(k))X̂i(k) (B.7)
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decentralized estimator. IEEE Transactions on Automatic Control 54, 410–415.

Stewart, B. T., S. J. Wright and J. B. Rawlings (2011). Cooperative distributed model

predictive control for nonlinear systems. Journal of Process Control 21, 698–704.

Sun, Y. and N. H. El-Farra (2008). Quasi-decentralized model-based networked control of

process systems. Computers and Chemical Engineering 32, 2016–2029.

Tippett, M. J. and J. Bao (2013). Distributed model predictive control based on dissipativ-

ity. AIChE Journal 59, 787–804.

Zhang, F. (2006). The Schur complement and its applications. Vol. 4. Springer Science &

Business Media.

94



Zhang, J. and J. Liu (2013). Distributed moving horizon estimation for nonlinear systems

with bounded uncertainties. Journal of Process Control 23, 1281–1295.

95


