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Abstract

Chronic Kidney Disease (CKD) affects millions of people throughout the world

today. One of the major side effects of this disease is the inability to regulate the

body’s red blood cell production, and subsequently the mass of the protein called

hemoglobin within the body. The health of these patients deteriorates and they be-

come anemic. Recently, erythropoietin stimulating agents have become the standard

for treating anemia in chronic kidney disease. The medication works extremely well

for what it is designed to do. The problem with this scenario is the inability of the

physician’s to be able to choose an appropriate dose for each patient. The dosing

protocols are not standardized across hospitals, and many of the dosing regimens are

poorly designed. As such, many patients’ hemoglobin levels are poorly controlled.

The poor control of hemoglobin in CKD patients is well documented through peer

reviewed research. The focus of this thesis is to present an individualized epoetin-alfa

dosing regimen, through the use of well known model predictive control technologies.

Due to the absence of a proper setpoint, zone model predictive control becomes the

focus of the controller methods.

The foundation of any model predictive controller is the system model. This thesis

presents several different hemoglobin response modeling techniques including classical

ARX, pharmacokinetic and pharmacodynamic (PKPD) delayed differential equation

modeling and a novel new nonlinear constrained ARX modeling (C-ARX) method.

The hemoglobin response modeling methods are compared on a clinical data set of

167 patients. It will be shown that the new modeling method offers similar modeling

results to the previously developed PKPD model, with the added benefit of being

linear and easily estimated through nonlinear programming. The nonlinear C-ARX

method is also converted to a weighted linear C-ARX, which improves the robustness

of estimation even further, without a large loss in estimation performance.
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Different model predictive controllers were tested against the current anemia man-

agement protocol (AMP) from a participating hospital. The first set of tests were

performed using the identified models as the simulated patient and represent a more

nominal case for controller testing. Using these results, some of the controllers were

eliminated from further testing. The second set of simulations were performed on a

patient simulator that was designed based on the PKPD models. The simulator uses

random integrating process noise to represent a slowly changing dose over time. The

designed simulator also incorporates random step and ramp disturbances to simulate

blood loss, infections and other acute anomalies observed in the clinical data. The

remaining controller types were tested on the designed patient simulator and repre-

sent a realistic and rigorous test scenario for the modeling and control methods. The

final controller recommended for use is a weighted recursive least squares zone model

predictive controller that uses a funnel shaped control zone.
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Chapter 1

Introduction

1.1 Motivation

Chronic Kidney Disease (CKD) is estimated to affect nearly 10% of the world’s

population (A. Levey, 2007). There are several stages of CKD that patients can

be categorized into, with the most severe stage being classified as End Stage Renal

Disease (ESRD). Millions of people worldwide are classified as ESRD patients and

many undergo dialysis treatment or kidney transplants as a result (W. Couser, 2011).

Over 80 % of chronic kidney disease patients that receive treatment are in wealthy

countries that have access to universal healthcare and have large elderly populations

(V. Jha, 2013). The elderly population is increasing at a quick rate in developing

countires such as China and India and the number of chronic kidney disease patients

is expected to increase drastically over the coming years (V. Jha, 2013).

One of the major side effects of CKD is the inability to produce endogenous ery-

thropoietin, which is a hormone used to regulate the production of red blood cells in

the body. Red blood cells contain a protein called hemoglobin which is vital to the

survival of a human. Hemoglobin is responsible for binding to oxygen and delivering

it around the body to the tissues and organs. Without oxygen, the organs and tissues

will die. When the natural production of erythropoietin drops significantly, these pa-

tients suffer from a condition called anemia, which is characterized as a reduced mass

of red blood cells and hemoglobin within the body. In the 1980s, recombinant human

erythropoietin (rHuEPO) was shown to help regulate the production of red blood

cells and hemoglobin. It was in this time period that CKD patients suffering from

anemia started to undergo erythropoietin stimulating agent (ESA) treatment. Since
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the initial discovery of rHuEPO, several drugs have been invented to stimulate the

production of red blood cells and hemoglobin including darbepoetin-alfa, epoetin-alfa

(EPO), epoetin-beta and methoxy polyethylene glycol-epoetin beta.

It has been recognized by the clinical community that while low hemoglobin levels

lead to anemia, hemoglobin values above 13.0 g/dL can increase the risk of mortal-

ity for the patient (Rosner and Bolton, 2008; Jing et al., 2012; Singh et al., 2006).

Hence, effective methods are needed to determine the appropriate dose of ESA to

maintain the target hemoglobin level. Many conventional methods for guiding ESA

and iron dosing used by clinicians, rely on a set of rules based on past experiences

or retrospective studies. Those methods for ESA administration are generally im-

precise, and as a result, the patient’s hemoglobin levels are often poorly controlled.

The hemoglobin often moves through the target range with large oscillations and

overshoots. Of the 167 clinical patients studied, approximately 56% of the patients

depict some varying degree of oscillatory behaviour that lasts for months or years.

This phenomena is shown for several patients in Figure 1.1, where the control zone is

from 9.5 to 11 g/dL. New effective anemia management methods are needed to avoid

the adverse effects associated with increased hemoglobin levels, while minimizing the

effects of anemia. It is estimated that CKD costs the United States 48 billion dollars

per year (National Kidney Foundation, 2017), and utilizes approximately 6.7% of

Medicare’s annual budget to treat a small fraction (< 1%) of the population (Damien

et al., 2016). It becomes clear that major treatment cost savings could be possible,

while also improving the health of CKD patients.
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(c) Patient 3

Figure 1.1: Actual clinical patients that undergo hemoglobin cycling
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1.2 Thesis Outline and Contributions

Chapter 2 begins with a method of data preprocessing that is introduced to re-

sample the patient data into discrete weekly measurements. Three modeling methods

are then introduced in detail including ARX modeling, Pharmacokinetic and Phar-

macodynamic (PK/PD) modeling and nonlinear Constrained ARX modeling. The

modeling methods are performed on the clinical data and the results are presented.

This chapter shows that the new method of Hemoglobin Response modeling developed

through Constrained ARX modeling is the most effective method in predicting patient

hemoglobin. The nonlinear constrained ARX is also simplified into a weighted linear

quadratic program making the optimization of the parameters more robust, without

losing a great deal of model performance as compared to the nonlinear programming

problem. The new linear C-ARX method is used on the clinical data to test the

effectiveness of the model algorithm to recursively estimate models at each sampling

instant. The model performance is based on the 8-step ahead prediction residuals.

Chapter 3 begins with an example of one of the current Anemia Management

Protocols from a participating hospital. Then, a short description of the model struc-

ture used within the model predictive control algorithms is presented. Many different

types of deterministic model predictive controllers are introduced, and subsequently

reformulated in quadratic programs which are quickly and efficiently solved by con-

ventional optimization methods. The next section of this chapter focuses on stochastic

model predictive controllers which take in to account the best known uncertainties

for additive process noise disturbance and measurement noise. This section explores

the theory behind chance constraints and conditional value at risk constraints. The

problems are reformulated into standard quadratic or linear programs. Three con-

troller algorithms are then presented for dealing with time-varying disturbances. The

chapter ends with some concluding remarks about the controller designs explored.

In Chapter 4, controller tuning is discussed in detail for the controllers to be

tested through computer simulations and the results are presented. Simulation results

are presented for the clinical patient models, and the current AMP is compared to

several of the controller options. The controllers were tested using a combination of

additive process noise and measurement noise while using the linear ARX model as
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the patient simulator. Some of the controllers were then tested on a Patient Simulator

that was designed based on the PKPD clinical models. The Patient Simulator uses

a non-stationary integrating disturbance, measurement noise and random step and

ramp disturbances. Simulated input and output data was collected by controlling

the clinical PKPD models with the AMP while several small disturbances entered

the system. From this data, constrained ARX models were estimated to match the

clinical PKPD models and used to begin simulations to test the controller set. The

most promising controllers were tested on the patient simulator, and different tuning

parameters and features for both the modeling and control algorithm are used for

comparisons. The results were analyzed and a controller was chosen as the appropriate

solution for clinical trials.

Chapter 5 presents some future work and considerations. Most notably among

them, would be the design of a better patient simulator that was built based on the

biological systems, rather than random noise.

The objective of this thesis was to explore several technologies for the implemen-

tation of a computerized dose optimizer for management of anemia in chronic renal

disease. The application could be implemented in software programs to automatically

gather measurements from the computer database, attain an individualized patient

model, and calculate and offer improved epoetin-alfa (EPO) dosing regimens to the

many patients suffering from chronic renal disease. As it has been shown, there exists

many cases of extremely poor control in actual clinical data, and a large portion of

economic waste on dosing excess recombinant human erythropoietin. This thesis aims

to reduce these economic deficiencies and increase the quality of life for CKD patients

through improved hemoglobin management.
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Chapter 2

System Identification for
Hemoglobin Response Models

2.1 Introduction

The aim of this chapter is establish a good mathematical model structure to de-

scribe the hemoglobin (Output) response to the administered ESA (Input), epoetin-

alfa (EPO). 1-3 years of clinical data for 167 different patients was gathered from a

participating hospital, along with their proprietary ESA protocol. Hemoglobin val-

ues were typically taken approximately 2 weeks apart, while ESA dosing was done

typically once per week. Using this data several empirical modeling methods were

explored including Classical ARX, Constrained ARX (C-ARX) and Pharmacokinetic

and Pharmacodynamic (PK/PD) modeling. Hemoglobin response models vary dras-

tically between patients. It has been recognized that due to the large variance in

patient weight, drug sensitivity and stage of the disease, it may not be possible to

attain a population model. Regardless of the ability to attain a population model,

data-driven individualized hemoglobin response models should provide the best pos-

sible predictions for use in a model based controller.

2.2 Data Preprocessing for ARX Modeling

For the purpose of the simulation results in later chapters, it is assumed that

weekly Hgb measurements are available. The clinically optimal Hgb sampling fre-

quency for CKD is 4 times per month (A. Gaweda, 2010). The available clinical data

does not contain weekly hemoglobin measurements and must be re-sampled.
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One of the difficulties in modeling the hemoglobin response models is that each

patients’ historical data contains inputs and outputs that have been sampled at dif-

ferent frequencies. Generally, the hemoglobin measurements occurred every 2 weeks

but the sampling time could vary greatly over the course of a patients’ historical data.

The ESA dosing times also varied. Typically, the dosing was done every week, but

it was not uncommon to see a patient not receive a dose for many weeks, or receive

multiple doses in the same week. It has been recognized that the hemoglobin con-

centration responds very slowly and the system gain remains very small. The patient

data used had each total drug dose in international units administered in multiples

of thousands. The weekly sum of doses ranged from 0 IU to as high as 45 000 IU.

With such a small gain and large time constant, it was proposed to re-sample

the patient data into weekly sampling intervals to perform ARX modeling. Figure

2.1 contains a pictorial example where the original data is shown in blue and the

re-sampled data points are shown in red. For the hemoglobin measurements, the first

measurement was taken to be the first day of the sampling time and corresponds to

day 0. The next hemoglobin measurement would occur approximately 2 weeks later,

for example at day 16. A linear interpolation was performed between these two mea-

surements to attain an approximated measurement for the hemoglobin value on day

7. The next necessary measurement would be the day 14 measurement, where again a

linear interpolation would be used between the day 0 and day 16 measurement. The

rest of the hemoglobin measurements were re-sampled into weekly measurements in

this fashion. The EPO doses were re-sampled into a weekly value by taking the sum

of the current days EPO dose and the previous 6 days of doses.

2.3 Modeling Techniques

All three modeling methods described in this section are empirical modeling meth-

ods, that is, they are arrived at by using input and output data. Both the classi-

cal ARX and Constrained ARX modeling methods require the re-sampled weekly

input/output data. The PK/PD modeling method is a continuous time modeling

method, and it requires an accurate delayed differential equation solver which will

be introduced in this section. Due to the medical communities affinity for a more
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Figure 2.1: Patient Data Resampling Example

scientific approach, the PK/PD model may be more meaningful but it will be shown

that a new Constrained ARX modeling technique can provide better modeling re-

sults. The original C-ARX method is nonlinear, and a simplification of this problem

is introduced to facilitate the use of quadratic programming instead of nonlinear

programming.

2.3.1 Autoregressive with Exogenous Inputs Modeling

Classical ARX modeling was the first method used to obtain a model. The model

is derived through the well known solution to least squares regression. ARX models

take the form of

yk+1 = a1 yk + · · ·+ an yk−n + b1uk−d + · · ·+ bmuk−m−d (2.1)

which can be described as an ARX model of order [n m d]. The letter n refers to

the order of the output polynomial, m to the order of the input polynomial, and the

letter d refers to the delay used on the inputs.

System identification techniques to attain an ARX model have many requirements

in the data to be able to estimate an appropriate model. It is necessary to have

sufficient process excitation. Normally, a proper input sequence would be designed,

known as a Random Binary Sequence (RBS), but due to the actual system being a

patient, such an input may not be ethical and could compromise the health of the

patient. Without a properly designed input sequence, the results of this method are

at the mercy of past doses chosen by the hemodialysis unit within the hospital. If the
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system data exhibits very little process excitation, this method will fail to obtain a

proper model. It should also be noted that ARX modeling is highly sensitive to data

corrupted by noise. The measurement noise when measuring the hemoglobin values

in a lab setting is quite large compared to our target range of 9.5 to 11 g/dL.

ARX modeling was performed for many different model orders and delays. One

of the first things that was noticed is that models with a large number of past output

measurements (higher order n) resulted in very small bk parameters making the input

parameters insignificant in the resulting model. To improve the modeling results,

the order of the output parameters was fixed at n = 1, meaning only the current

hemoglobin and past doses are used for prediction. It is hypothesized that red blood

cells have a lifespan of 3-4 months (Elliot, 2008), which means there is a possibility

that the predicted hemoglobin is reliant on many of the past of doses. Figure 2.2

shows the results of the average bk parameters, along with their respective standard

error of every identified [1 20 1] patient model.
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Figure 2.2: bk Parameters for a [1 20 1] Population ARX Model, along with one standard
error

The only significant pattern throughout the models was that many of the models

displayed more positive bk coefficients in the lower delays as seen by the average in

Figure 2.2. Using the clinical data, the impulse response of the group of patients

8



was estimated. Matlab’s cra function was used to perform this analysis. Figure 2.3

shows the average impulse response (IR) for all the patients with whitening of the

input and output, along with the Standard Error of the Mean (SEM), for lags up to

50 weeks. The prewhitening filter filters the input and output data through the same

filter and computes the covariance functions. Positive values at each lag suggest that

the output is influenced positively by the input, and the magnitude estimates the

degree of influence. This figure has a similar trend as Figure 2.2.
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Figure 2.3: Average Impulse Response for the Filtered and Resampled Clinical Data with
SEM, using a Pre-whitening filter

This observation is also reinforced by looking at the cross correlation of the resam-

pled data at different lags. Before the cross correlation was calculated, the resampled

data first had a weak filter applied to the input and output to help to alleviate some

of the noise, as well as the input doses that happened to be very large/small due to

timing in the resampling (ie. a one week total may contain two doses and the next

week total could contain no doses even though the doses were spread out by 6 days).

The filter was designed in Matlab using the designfilt function. The filter designed

was a low pass finite impulse response filter, with a filter order of 4 and a cuttoff

frequency of 0.2 hz and used a hamming window. Figure 2.4 shows the average cross

correlation results of all the patients for lags up to 50 weeks. The oscillations in the
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figure suggest the system is of a very high order. The values of the cross correlation

function suggest a strong influence of the input on the first 10-15 weeks of the output.

This observation aligns with the hypothesis of red blood cells living for 3-4 months

as previously suggested in the works by Elliot.
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Figure 2.4: Cross Correlation Values for the filtered and resampled data, shown with the
SEM

These results turn out to align with other observations in the PK/PD modeling

method, and are a major contributor to the design of the Constrained ARX modeling

method.

2.3.2 Pharmacokinetic and Pharmacodynamic Modeling

The grey box model type outlined in this section is based on pharmacokinetics and

pharmacodynamics from a paper written by Chait et al in 2014. Pharmarcokinetics

is the study of the movement of drugs within the body, while pharmacodynamics is

the study of the effects that drugs have on the mechanisms within the body. This

method is a continuous time model of delayed differential equations containing 8

unique parameters that are estimated for an individual patient through nonlinear

least squares regression. The estimated parameters are represented in the Table

2.1. The system of delayed differential equations can be simplified into a continuous
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Parameter Description

Hen Hemoglobin Level due to Endogenous Erythropoietin
µ Mean RBC life span
V Maximal clearance rate
Km Exogenous Erythropoietin level that produces half maximal clearance rate
α Linear clearance constant
S Maximal RBC production rate stimulated by EP
C Amount of EP that produces half maximal RBC production rate
D Time required for EPO-stimulated RBCs to start forming

Table 2.1: Estimated parameters and descriptions for the PK/PD Model

delayed nonlinear state space represented in Equation 2.2

Een =
CHen

µ KH S −Hen

(2.2a)

dE(t)

dt
=
−V E(t)

Km + E(t)
− α E(t) + dose(t) (2.2b)

dR(t)

dt
=

S (Een + E(t−D))

(C + Een + E(t−D))
− 4

x1(t)

µ2
(2.2c)

dx1(t)

dt
= x2(t) (2.2d)

dx2(t)

dt
=

S (Een + E(t−D))

(C + Een + E(t−D))
− 4

x1(t)

µ2
− 4

x2(t)

µ
(2.2e)

where the states E(t), R(t) represent the pool of exogenous erythropoietin and

the population of RBCs within the body. Ep is the summation of the endogenous

and exogenous erythropoietin. KH is the average amount of hemoglobin per RBC

(also known as the mean corpuscular hemoglobin, MCH). The value used here is

fixed at 29.5 pg/cell, which is within the reference range of 27-33 pg/cell (Chait et

al., 2014). The hemoglobin value is directly proportionate to the RBC population;

the hemoglobin value can be attained by multiplying the RBC population estimate by

the MCH value. The function dose(t) is a train of impulses, representing the EPO in-

jections, which are estimated to occur on the exact day they were administered. The

model has an initial condition as represented in Equations 2.3 and requires two mea-

surements of hemoglobin (hgb1 & hgb2) and the time in between those measurements
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(t1 & t2) to estimate.

Ṙ0 =
(hgb2 − hgb1)

KH(t2 − t1)
(2.3a)

E(0) = 0 (2.3b)

R(0) =
hgb1

KH

(2.3c)

x1(0) =
µ(Hen − µ KH Ṙ0)

4KH

(2.3d)

x2(0) = R(0) − 4 x1(0)

µ
(2.3e)

It should be relatively obvious, the difficulties this model structure presents in

estimating the model parameters by numerical computation methods. Firstly, the

model includes the impulse function in the first state’s derivative, dE(t)
dt

, which intro-

duces some discontinuities into the solution. Secondly, the model includes a delayed

term, E(t − D), in two of the state equations. This presents a very difficult prob-

lem because the state, E(t), contains discontinuities and the delayed term allows the

discontinuities to propagate throughout the system (Christopher, 2000). In order to

effectively simulate this system, the discontinuities must be tracked and dealt with

appropriately by the careful selection of the step size. Thirdly, unless the step size

of the algorithm is fixed, the value for the delayed solution that is necessary for the

current estimate of the derivatives may not be available. An estimate for the past

solution must be used based on some sort of interpolation of the solution history.

These problems invite a short segue into the design of an efficient solver to estimate

these models.

Delayed Differential Equation Solver Design

As mentioned previously, it is desired to develop an efficient algorithm to simulate

the system mentioned in Equations 2.2 and 2.3. It would be easy to use a fixed

step size, first or second order method developed for ODEs and modify it to use the

delayed terms. This certainly works, but is incredibly inefficient. The desire here, is to

create an efficient solver, which naturally leads to a variable step size solver. Variable

step solvers are capable of modifying their step size, and producing some minimum

amount of taylor series truncation error when solving each point. The idea behind
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variable step solvers is that they estimate each point using two different methods,

such as a first and second order Euler method, and then estimate the truncation

error from the difference in the solutions between the two methods. The algorithm

will check to make sure the error is within the desired user set tolerance. If it is

acceptable, the highest order value (usually the most accurate) is kept and the step

size is adjusted larger for the next iteration. If the point fails the error tolerances,

the step size is reduced and the iteration is re-run. Larger step sizes allow the solver

to skip over many calculations and the step size is desired to be as large as possible

without compromising the accuracy of the solution. Efficiency is also lost within the

solver for every failed iteration, so it is important to make appropriate adjustments

to the step size.

The algorithm that was chosen here was a modified version of the explicit Bogacki-

Shampine (2,3) variable step size algorithm (Bogacki and Shampine, 1989) for ODEs

which uses both a second order and a third order solution to estimate the truncation

error and adjust the step size. The local error estimate achieved is for the lower order

solution. The integration is advanced with the higher order solution because it is

believed to be more accurate (Shampine, 2004). Four coefficients must be estimated

using the current step size and second and third order estimates for the solution are

then given by Equations 2.4

k1 = f(tn, yn) (2.4a)

k2 = (tn +
h

2
, yn +

h k1

2
) (2.4b)

k3 = f(tn +
3 h

4
, yn +

3 h k1

4
) (2.4c)

yn+1 = yn +
2 h k1

9
+
h k2

3
+

4 h k3

9
(2.4d)

k4 = f(tn + h, yn+1) (2.4e)

zn+1 = yn +
7 h k1

24
+
h k2

4
+
h k3

3
+
h k4

8
(2.4f)

where yn+1 represents the third order solution, and zn+1 represents the second order

solution. It should be noted that k4 for one iteration is the same estimate used for

k1 of the next iteration. This is a First Same As Last (FSAL) algorithm designed to
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aid in reducing the computational burden. The local error estimate is computed by

Eest = Elocal + h.o.t. where h.o.t. are the higher order taylor expansion terms. The

error estimate must satisfy the following equation.

||Eest|| ≤ Rtol (2.5)

where Rtol is the relative error tolerance set by the user, and ||Eest|| is a suitable

weighted norm (Shampine, 2004). For this algorithm, we achieve an estimate for

||Eest|| by using Equation 2.6 (Shampine and Thompson, 2001).

||Eest|| = h ∗ ||
[k1 k2 k3 k4][−5

72
1
12

1
9
−1
8

]T

max(|yn+1| , Atol
Rtol

)
||∞ (2.6)

where Atol is the absolute error tolerance. If the error estimate is lower than the

relative tolerance, the iteration is successful and the step size is adjusted by one of

two ways. If the following equation is satisfied

1.25 ∗ (Eest/Rtol)
1
3 > 0.2 (2.7)

then the new step size, hn+1 will be

hn+1 =
hn

1.25 ∗ (Eest/Rtol)
1
3

(2.8)

If Equation 2.7 is not satisfied, then

hn+1 = 5 ∗ hn (2.9)

One of the requirements of the algorithm is that the solution, yn+1, to the problem,

must be smooth. It is necessary to carefully choose the step sizes so that discontinu-

ities become mesh points, which will allow the algorithm to compute the proper esti-

mates for the solutions and the local error estimate (Shampine and Thompson, 2001).

To accomplish this, the discontinuities along with their propagations are tracked and

the step size is appropriately adjusted. For example, take the system delay, D, to be

7 days. If the patient is given a dose on day 8, their will be a discontinuity in the

derivative and solution for the first state, E(t), on day 8. The history of E(t) is used

in the second (R(t)) and fourth state (x1(t)) which means that on day 15, these states

and derivatives will cross the day 8 discontinuity in E(t) and create a discontinuity
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in the solutions for these states. A discontinuity will propagate through the solution

D days after every dose. The location of these discontinuities are known and this

solver pre-calculates them before the integration starts. If the step size is to step over

a discontinuity, the step size is adjusted to be equal to the distance to the next dis-

continuity. The next point evaluated is immediately to the right of the discontinuity.

An example of a simulation using the DDE solver for one of the attained models is

shown in Figure 2.5.
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Figure 2.5: Example of the State Evolution when simulated with the designed DDE Solver

ARX Approximations of PK/PD Model

The nonlinear state space presented is difficult and slow to use within an MPC

routine. A nonlinear model predictive controller could certainly be built using func-

tions such as fmincon or IPOPT and will be introduced in the next chapter. The

nonlinear controller does present a few challenges though. Firstly, the DDE solver is

highly sensitive to inaccuracies in the initial condition, and there does not exist an

accurate way of calculating the initial derivative Ṙ0 needed for the initial condition.

Secondly, there are no guarantees that the DDE solver described above finds the

proper solution. Due to the fact that the numerical method is an explicit method,

the solver still runs a risk of becoming unstable which will greatly impact the opti-

mization problem within the MPC controller. In the design of an MPC controller,

the prediction horizon has been chosen to be 8 weeks. To start the DDE solver, it
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requires a history of the solution up to D days previous to the solution to become the

most accurate. This is never available. For the first D days of the simulation, E(t) is

considered to be constant at zero, due to the lack of history data. This assumption

does not impact the model training algorithm significantly, but can certainly affect

the controller optimization problem over such a short prediction horizon.

It is desired to obtain a more convenient model, to avoid some of these problems.

One proposed approach is to design a random binary sequence (RBS) based on a

step test of the nonlinear model, and then subsequently filter it through the non-

linear model and use the resulting simulated data to obtain an ARX model. This

method was used for its simplicity, but also for exploring the structure of the ARX

models obtained, to aid in the design of the Constrained ARX method. Due to the

small control zone and minimal nonlinearities, the linearization of the models in this

manner does not introduce significant error. An example of an infinite step ahead

prediction comparison is shown in Figure 2.6. The fit of the PK/PD nonlinear model

is shown along with the ARX approximation and the actual data. It can be seen that

the ARX model provides a relatively good estimate of the nonlinear model as long

as the hemoglobin remains relatively close to the control zone. From looking at the

past patient history, it can be seen that the hemoglobin of the patients rarely exits a

zone of 8-13 g/dL.
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Figure 2.6: Example of the ARX approximation for the Nonlinear state space for an
infinite step ahead prediction
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An example of the structure of the bk parameters is shown in Figure 2.7 for a

patient. Here the ARX model has an order of [1 13 2]. The system is described by

the following Equation.

Hgbt+1 −Hgbss =− a1 (Hgbt −Hgbss) . . .

+
13∑
k=1

bk (EPOt−k+1 − EPOss) + et
(2.10)
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Figure 2.7: Example of the bk parameter structure for the PK/PD ARX approximation

After analyzing the obtained models, it was found that every identified ARX model

contained this same structure. That is, they all contained larger peak parameters at

the delay of two weeks, and then slowly decreased towards zero, usually in some

exponential decaying pattern. The majority of all the models contained only positive

bk parameters.

Using the PKPD-ARX models and matlabs deconv function, the impulse response

(IR) of a model can be estimated. deconv works by performing long division of the

B(z−1) polynomial by the A(z−1) polynomial, converting the ARX model directly to

an impulse response model. The IR models can be represented by equation

yt+1 =
∞∑
k=1

bkut−k+1 (2.11)
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Figure 2.8 shows the average values for the coefficients in the IR models for all the

patients. Again, it can be seen that there exists a greater dependence on the models

on the first few weeks of past inputs, and the effect decays exponentially overtime.
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Figure 2.8: Average values of the bk parameters in the IR models of all the estimated
PKPD-ARX models over 50 lags

A combination of the observations in the ARX models and the PK/PD mod-

els, along with the medical background knowledge, aided in the development of the

Constrained ARX modeling method which will be introduced next.

2.3.3 Constrained Autoregressive with Exogenous Inputs (C-
ARX) Modeling

Inspired in part by the previous observations, a method of Constrained ARX

modeling was designed as outlined in detail in a conference paper written by Dr. Jia

Ren (Ren et al., 2017). This method again uses the re-sampled one week data. The

basic premise of the design is that the structure of the model is similar to the ARX

model mentioned earlier, but has the bk parameters constrained to be similar to the

ARX models identified from the PKPD models. The resulting model takes a similar

form as the PKPD-ARX, but it is much less restrictive on the location of the peak bk

parameter. The peak time parameter is allowed to float from a delay of 2 to a delay
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of 4. Another major benefit of this design is that the hemoglobin and EPO value that

is used as the pseudo-steady state of the system is not the average value of the data,

but rather it is also optimized within the problem. This results in an extra 2 degrees

of freedom in the estimation problem.

The ARX model explored again contained a single a parameter, and 20 bk pa-

rameters. It should be noted that some of the bk parameters could take on a value

of zero; there is not necessarily always 20 non-zero parameters. The model takes the

form of Equation 2.12, with a one week sampling time.

Hgbt+1 −Hgbss =a1 (Hgbt −Hgbss) . . .

+
20∑
k=1

bk (EPOt−k+1 − EPOss) + et
(2.12)

The optimization problem was originally designed as a mixed integer nonlinear

programming problem (MINLP). The MINLP is outlined in Equation 2.13.

min

tf∑
t=1

[Hgbt −Hgbt,actual]2 (2.13a)

s.t.−Kzk + 0.001 ≤ k − tpeak ≤ K(1− zk) ∀k = 1, . . . , K (2.13b)

−M(1− zk) ≤ α(k − 1)− bk(tpeak − 1) ≤M(1− zk) ∀k = 1, . . . , K (2.13c)

−Mzk ≤ α exp−β(k−tpeak)−bk ≤Mzk ∀k = 1, . . . , K (2.13d)

7.0 ≤ Hgbt ≤ 15.0 ∀t 7.0 ≤ Hgbss ≤ 11.0 ∀t (2.13e)

0.7 ≤ a1 ≤ 0.99 0 ≤ EPOss (2.13f)

b1 = 0 bk ≥ 0 ∀k = 2, . . . , K (2.13g)

bk ≥ 0.1 k = kpeak 1.1 ≤ tpeak ≤ 3.9 (2.13h)

α ≥ 0.1 β ≥ 0.05 zk ∈ {0, 1} (2.13i)

The cost function is simply the sum of squared errors between the model and the

actual measurements. The integers in the problem are contained in each zk variable.

zk holds a value of 1 if time instance k is before the peak time, or 0 if it is after

the peak time. Constraint 2.13b enforces this. The bk parameters take on a linearly

increasing pattern before the peak parameter, which is enforced by Equation 2.13c
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and the variable α.

bk =
α(k − 1)

tpeak − 1
(2.14)

It should be noted that tpeak is a continuous variable, meaning the peak time can exist

anywhere from 1.1 to 3.9 and α is the value of the parameter at that peak time. The

bk parameters take on an exponentially decreasing pattern after the peak parameter,

which is enforced by Equation 2.13d, and the variable β, which is the decay rate.

Equation 2.13d reduces to the following Equation for bk parameters after the peak

time.

bk = α exp−β(k−tpeak) (2.15)

Equations 2.13e,f help to enforce physically realizable solutions. The constraints on

a1 ensure the resulting model is open-loop stable. Another important equation is

Equation 1 of line 2.13h. It is important to constrain the first bk parameter after the

peak time parameter for kpeak to be above 0.1. This ensures the model reliance on

the past doses and overcomes the issues arising from the small gain of the inputs as

mentioned in Section 2.3.1.

MINLP problems are relatively difficult to solve. There are commercially available

solvers such as DICOPT in GAMS mentioned in the paper that are capable of finding

this solution, efficiently. To reduce the computational complexity, the MINLP was

converted to a series of nonlinear programming (NLP) problems. That is, instead of

solving the integer variables for zk in the optimization problem, the values are fixed

at a specific value and then an NLP problem can be solved. This can be performed

for all the combinations of zk because there are only 3 different combinations that can

occur for the chosen constraint on tpeak. The constraint bk ≥ 0.1 for k = kpeak will

also have to be modified for each case. The values of the cost functions are compared,

and the model corresponding to the lowest cost function solution will be chosen as the

best model. This iterative NLP problem is solved using both an IPOPT interface for

Matlab as well as Matlab’s native fmincon function. It is desired to have a complete

Matlab solution for on-line implementation. It has been recognized that IPOPT is

more robust than fmincon in some situations, and this will be explored in the next

section.

Using the C-ARX models and Matlab’s deconv function, the IR of a model can be
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estimated. Figure 2.9 shows the average values for the coefficients in the IR models

for all the patients. The IRs again take on a similar shape as the cross correlation

function figure and the IR of the PKPD-ARX models.
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Figure 2.9: Average values of the bk parameters in the IR models of all the estimated
C-ARX models over 50 lags

2.3.4 Linear C-ARX Modeling

A conversion of the original nonlinear C-ARX modeling method was also explored.

In the next Chapter, recursive modeling will be introduced for a control algorithm,

where a new model is obtained after each new updated hemoglobin measurement.

This requires a robust modeling method, which naturally leads to a conversion of the

nonlinear problem to a linear problem. The only nonlinearities in the method are

built into the shape of the bk parameters and the steady state values. The steady

state values can be taken as the average Hgb and EPO dose from the data used for the

model estimation. The bk parameter shape can be replaced by making each successive

bk parameter a certain percentage lower/higher depending on whether the parameter

is before or after the peak time parameter. The model order was also reduced to a

[1 8 1] ARX model. Three optimization problems are still solved for each peak time

location, and again the best solution can be chosen. With this alteration, the problem
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can be formulated as the well known Quadratic Program. The derivation for the QP

problem starts with the following equation.


yk+1

yk+2

:
yk+tf

 =


uk uk−1 uk−2 . . . uk−7 yk,actual
uk+1 uk uk−1 . . . uk−6 yk+1,actual

: :
uk+tf−1 uk+tf−2 uk+tf−3 . . . uk+tf−8 yk+tf,actual



b1

b2

:
b8

a1

 (2.16)

which can be represented by the following

ŷ = Xθ̂ (2.17)

The cost function of the QP problem remains the same as before and is represented by

the sum of squared errors between the model and actual measurements. y represents

a vector of the actual measurements (Hgb1 to Hgbtf ).

min (y − ŷ)T (y − ŷ) (2.18)

which can be easily reduced to the standard QP form.

min θ̂THθ̂ + 2θ̂Tf + c (2.19)

where

H = XTX

f = −XTy

c = yT y

along with the following constraints, which would correspond to a peak time bk param-

eter at b2. The other two configurations (peak time at 3 and 4 weeks) can be written

in a similar manner by replacing Equations 2.21e-l with the appropriate constraints.

7.0 ≤ Hgbt ≤ 15.0 ∀t (2.21a)

0.7 ≤ a1 ≤ 0.99 (2.21b)

b1 = 0 (2.21c)

bk ≥ 0 ∀k = 2, . . . , K (2.21d)

b2 ≥ 0.1 (2.21e)
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b3 < 0.8 b2 (2.21f)

b4 < 0.8 b3 (2.21g)

b5 < 0.8 b4 (2.21h)

b6 < 0.8 b5 (2.21i)

b7 < 0.8 b6 (2.21j)

b8 < 0.8 b7 (2.21k)

b8 < 0.005 (2.21l)

Another alteration explored, was weighted least squares for the linear C-ARX

method. This involves minimal alterations to the above formulation. The constraints

remain the same, only the cost function is altered by adding in a weighting matrix

(Q). The weighting matrix uses a chosen value of λ ∈ {<n : 0 < λ ≤ 1} to weight the

more recent measurements more heavily than the older measurements.

min (y − ŷ)TQ(y − ŷ) (2.22)

which can be reduced again to the standard QP form.

min θ̂THθ̂ + 2θ̂Tf + c (2.23)

where

H = XTQX

f = −XTQy

c = yT Q y

and

Q =


λtf 0 . . . 0
0 λtf−1 . . . 0

:
. . . :

0 . . . λ1

 (2.25)

2.4 Modeling Results on Clinical Data

This section outlines the results of performing the modeling methods on the avail-

able clinical data. The clinical data statistics are outlined in Table 2.2. It should be
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noted that there was no pre-screening of patients completed before attempting the

modeling methods. For instance, there exists some patients that have no dose for the

first half of the data. It is well known, this cannot possibly lead to a proper model.

Similar situations exist for some other patients that may cause some of the modeling

methods to fail. The cases where the modeling method fails will be filtered out after

all models are obtained and tested. The filtration method will be discussed later in

this section. The first 50% of the data was used as training data sets, and the models

were validated on the last 50% of the data. The figures shown in this section start

from the first actual hgb measurement that occurs at a time just after the initial

condition. Due to the number of bk coefficients, the simulation data for the training

set do not start until 21 weeks after the initial point. Also, as the sampling time does

not fall directly on these measurement days, a linear interpolation was used between

the closest points for each modeling type. For the validation portion of the data, the

simulation was reset to an initial condition matching the first actual hgb data point

in that data range.

Statistic Value
Number of Patients 168
Hemoglobin (Mean ± std ) 10.48 ±0.57
EPO dose, IU/week (Mean ± std ) 3167.2 ± 2484.4
Hgb Measurement Frequency (approximate) 2 weeks
Average Patient Data Length (Mean ± std ) 126.4 ±19.7 (weeks)

Table 2.2: Statistics describing the clinical data used in the modeling methods

The results of the different modeling types on the clinical data are shown in Table

2.3. The results for the C-ARX are done using three different optimization solvers.

The MINLP problem is solved directly in GAMS using DICOPTS. The NLP problem

is solved using fmincon and also against a third party matlab interface for IPOPT.

A couple initial conclusions can be made from these unfiltered results. It can be seen

that the ARX modeling method (all types) tend to model more of the system noise.

This can be inferred by the fact that the mean training RMSE is much better than

the PKPD modeling method, yet the mean validation RMSE is significantly larger

proportionally when compared to that of the PKPD modeling method. An example

of this is shown in Figure 2.10. The NLP model in the figure represents the solution
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obtained from Matlab’s fmincon.

Mean RMSE Std RMSE Models
Modeling Method Training Validation Training Validation Included

Classical ARX 1.12 5.06 3.24 21.18 168
Constrained ARX - MINLP 0.70 1.87 0.33 5.14 158
Constrained ARX - NLP (fmincon) 0.76 1.66 0.50 1.42 168
Constrained ARX - NLP (IPOPT) 0.76 1.66 0.50 1.43 168
PKPD 0.94 1.61 0.68 2.59 167
PKPD-ARX Approximations 1.47 2.72 3.54 11.26 158

Table 2.3: Modeling Results of the unfiltered models for the various modeling methods
explored along with the number of models included in the resulting statistics
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Figure 2.10: Example that shows the ARX modeling methods capturing the peaks of the
data, where as the PKPD model does not capture the sharpness of the data peaks

The validation statistics for the Classical ARX method are very poor. From the

filtered results, it will be shown that there are a few patients that skew these statistics

greatly. This phenomenon is a result of an ill-conditioned X matrix in some of the

patients when estimating the parameter set, θ̂, using the formula θ̂ = (XTX)−1XTY .
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This situation occurs when two rows or columns of the matrix X are the same or

similar. Mathematically, this means the regressors are colinear or close to colinear

(Soderstrom and Stoica, 1989). An example of this can be seen in Figure 2.11.
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Figure 2.11: ARX modeling Algorithm fails to estimate a proper model. Modeling results
for both training and validation data for all modeling methods

Another thing that can be seen in this data, is that both the NLP versions of

the constrained ARX modeling using IPOPT and fmincon result in almost identical

statistics. Due to the extra complexity, it is not worth using IPOPT over fmincon in

a practical application, as it does not offer a substantial benefit.

Table 2.4 shows the filtered modeling results. Firstly, the filtered results confirm

the fact that some patients skew the results in the Classical ARX modeling. The

results are as expected for Classical ARX modeling because the training error is very

close to the C-ARX modeling methods. The C-ARX method has two extra degrees

of freedom allowing it have lower training error on some patients, even with the

modeling structure constrained. Both the C-ARX methods using the MINLP and
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the NLP problem yield very similar results. On average, these results show that the

C-ARX modeling method works better than Classical ARX and the PKPD modeling

methods. The C-ARX is certainly better than Classical ARX as it provides lower

validation RMSE on a larger number of models than the Classical ARX method.

As will be discussed later, it is not overly desired to have a nonlinear modeling

method for control purposes. On average, the C-ARX provides better results than the

PKPD modeling method with the added benefit that the C-ARX models are linear,

and estimated more easily and efficiently in Matlab. The algorithm for converting

the PKPD models to PKPD-ARX approximations is based on performing successive

step tests on the attained models using a bisection optimization algorithm to find

corresponding EPO levels of the system that center the step test around the control

zone of 9.5-11.0 g/dL. Using these results, an RBS was designed and the models can

be converted to linear ARX models. It can be seen that the algorithm in its present

form fails to identify a good linear model for some of the patients, which may be a

result of the PKPD modeling method not achieving a proper model in the first place,

or a failure in the conversion algorithm. When some of the worse models are filtered

out of the PKPD-ARX models, it can be seen that these approximations result in

relatively close performance to their nonlinear counterparts.

Mean RMSE Std RMSE Models
Modeling Method Training Validation Training Validation Included

Classical ARX 0.70 1.28 0.62 0.66 136
Constrained ARX - MINLP 0.70 1.21 0.34 0.58 145
Constrained ARX - NLP (fmincon) 0.69 1.18 0.35 0.60 144
PKPD 0.83 1.23 0.37 0.62 153
PKPD-ARX Approximations 1.09 1.26 0.62 0.60 133

Table 2.4: Modeling Results for the various modeling methods where patients with vali-
dation RMSE ≥ 3 removed from corresponding model type

Figure 2.13 shows the modeling techniques exhibit a degree of robustness against

acute step disturbances, such as infections or blood losses. These scenarios present

difficulty in determining dosing and how the patient’s hemoglobin will respond to the

ESA treatment.
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Figure 2.12: Example patient showing the modeling methods robustness for rejecting
disturbances in the training data

Figure 2.12 shows an example where the patient model significantly changes over

the course of the patients history. The patient’s health deteriorates and the patient

continually needs a higher degree of ESAs to manage their anemia. All modeling

types validate poorly on this patient. As all patients will generally become more sick

over time, this brings about the need to recursively attain new models for each patient

to be able to capture the time-varying nature of the model parameters. Recursive

modeling results will be obtained for the clinical data and presented later in this

chapter.
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Figure 2.13: Example of a patient where the health continually deteriorates over the
length of the patient history.

2.4.1 Model Order Reduction

It is desired to reduce the model order of the [1 20 1] nonlinear C-ARX models. A

reduction in model order should yield a positive impact on the model estimation due

to the fact that, in practice, more data points are available to perform the estimation.

Another reason it should offer improvements, is that a large number of parameters

often result in the modeling of noise in the system, which is undesirable. To perform

the system identification with the new model orders, the same number of data points

were used in each case, even though there would be extra data points for the C-ARX

models with lower orders. This was done to be able to more accurately compare

the model orders. Another small change from the original C-ARX conference paper

is the addition of a constraint on the final bk parameter. This was done to avoid

large system gains seen in models that have low training RMSE values, but poor
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validation RMSE which is a result of the bk parameters not decaying to zero by the

final parameter. The new constraint applied is bend ≤ 0.005, which will ensure the bk

parameters decay towards zero by the final bk parameter.

Different orders of the C-ARX models were identified for each of the 167 patients,

and the unfiltered results are shown in Table 2.5. It can be seen that the validation

RMSE for both [1 8 1] and [1 10 1] orders are better than the other model orders

tested. The standard deviation of the RMSE is also much lower for these two model

orders than the others, coming in at 0.80 and 0.78 versus 1.39 and 1.42. The training

RMSE and standard deviation remain very comparable between all the methods.

Mean RMSE Std RMSE Models
Model Order Training Validation Training Validation Included

[1 5 1] 0.78 1.60 0.50 1.39 167
[1 8 1] 0.80 1.39 0.58 0.80 167
[1 10 1] 0.79 1.38 0.53 0.78 167
[1 20 1] 0.76 1.66 0.50 1.42 167

Table 2.5: Modeling Results without filtering for the various model orders of Constrained
ARX models

Filtering the results by removing all the models with a validation RMSE greater

than 3 yields the results in Table 2.6. It is very important to note that the model

orders [1 8 1] and [1 10 1] both contain more models than the other orders, even

though their the validation RMSE comes in a bit higher. This suggests that the [1 8

1] and [1 10 1] model orders are a bit more robust than the other model orders.

Mean RMSE Std RMSE Models
Model Order Training Validation Training Validation Included

[1 5 1] 0.72 1.21 0.36 0.65 149
[1 8 1] 0.76 1.29 0.51 0.67 161
[1 10 1] 0.77 1.33 0.52 0.70 164
[1 20 1] 0.71 1.19 0.40 0.61 145

Table 2.6: Constrained ARX Modeling Results with filtering out all models with Validation
RMSE ≥ 3

Further filtering of the results in the statistics are shown in Table 2.7. This

filtering shows that all 4 model orders remove a similar amount of the models from

the statistics, leaving 73-75 models for each model order with Validation RMSE equal

to 1 or less. These results show that for the better data sets, all four model orders

seem acceptable for use.
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Mean RMSE Std RMSE Models
Model Order Training Validation Training Validation Included

[1 5 1] 0.59 0.69 0.19 0.18 74
[1 8 1] 0.58 0.73 0.21 0.17 75
[1 10 1] 0.57 0.72 0.19 0.17 75
[1 20 1] 0.57 0.70 0.19 0.17 73

Table 2.7: Constrained ARX Modeling Results with filtering out all models with Validation
RMSE ≥ 1

Considering all these results, it is recommended to use the model order of [1 8 1].

This model order offers similar validation RMSEs, while providing a certain degree

of robustness with a smaller model order. In practice, it will allow the modelling

method to have an extra 8 data points to perform the optimization problem versus

the [1 20 1] C-ARX models.

2.4.2 Recursive Linear ARX Modeling Results

Recursive modeling results were also obtained on the clinical data to test the mod-

eling accuracy of the 8-step residuals. An Exponentially Weighted Moving Average

(EWMA) filter was designed and used to aid in removing some of the measurement

noise from the clinical data. The EWMA filter uses a filter value, α, and takes the

form of Equation 2.26.

yf,k = αyk + (1− α)yf,k−1 (2.26)

The linear constrained ARX modeling method was chosen for the recursive modeling

algorithms due to the robustness and simplicity of the QP solver as compared to

the NLP solver. Comparisons of the performance of the linear and nonlinear C-ARX

method for modeling results using a 50/50 training/validation split are shown in Table

2.8. The weighted C-ARX method uses a λ value of 0.98.

Mean RMSE Std RMSE Models
Modeling Method Training Validation Training Validation Included

Constrained ARX - NLP (nonlinear) 0.76 1.29 0.51 0.67 161
Constrained ARX - QP (linear) 0.70 1.26 0.35 0.63 150
Weighted Constrained ARX - QP (linear) 0.70 1.25 0.35 0.63 149

Table 2.8: Modeling Results for the 3 C-ARX methods where patients with validation
Mean RMSE ≥ 3 removed from corresponding model type

Various settings were used to filter the data, and different estimation window
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lengths were explored when comparing the 8-step residuals obtained from recursively

estimating a model at each sampling instant. The highlights of these results are

presented in Table 2.9. It should be noted that the accuracy of the 8-step predic-

tion is highly dependent on the initial condition, and the hemoglobin has very slow

dynamics. This means the measurement noise of the clinical data may significantly

effect the accuracy of the 8-step predictions. The highlights presented here show

that the modeling accuracy improves as the window estimation size increases. It also

shows a λ that is around 0.98 to 1.0 gives similar results, but a lower λ causes the

modeling accuracy to decay. A higher λ value puts more equal weighting on all the

measurements, where as a lower value puts much more weight on the newer measure-

ments. Due to the complexities of the NLP solver and the PKPD model estimation,

the linear versions of the C-ARX methods were selected to test the recursive con-

troller algorithms. An estimation window length of 70 gives good accuracy of the

hemoglobin predictions, but the linear C-ARX modeling method can be used on less

data. In a clinical setting, there may not exist more than a years worth of data, but

this shows the modeling method can be used with less data points, without too much

deterioration in model accuracy.

Model Method Non-Weighted Weighted Weighted Weighted Weighted

Training Window Size 70 30 50 70 70
Weighting Value (λ) – 0.98 0.98 0.98 0.95

Mean -0.05 -0.08 -0.04 -0.06 -0.08
Standard Deviation 1.04 1.26 1.20 1.05 1.09

Mean (absolute) 0.76 0.87 0.81 0.77 0.78
90% Confidence Interval ± 1.71 ± 2.08 ± 1.97 ± 1.73 ± 1.80

Table 2.9: Highlights of the Recursive Modeling 8-Step Residual Statistics for the Linear
C-ARX modeling methods with various settings

2.5 Conclusions

In this chapter, three different modeling methods were explored. The classical

ARX method was chosen as a base to compare the other models too. The classical

ARX models that were estimated were of order [1 20 1]. A DDE modeling method was

also used based on pharmacokinetics and pharmacodynamics. This method used a

fixed model structure and eight parameters within the model structure were estimated

by using an individual patients’ data along with nonlinear least squares regression in
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Matlab. The third method used was the method of attaining a [1 20 1] order ARX

model through constrained optimization. In this modeling technique, the steady

state values were also optimized. The magnitudes of the parameters were constrained

to follow certain patterns learned from the first two methods. The three modeling

methods were tested on the clinical patient data and compared for all 167 patients.

It was found that on average the Constrained ARX models outperformed the other

modeling methods. The classical ARX modeling method performed the worst as was

expected due to the impact of large process and measurement noise in the clinical

data, along with a relatively large amount of b parameters. These ARX models

tended to over-fit the noise. The C-ARX modeling method performed quite similar

to the DDE modeling method, but has the benefit of being linear, and efficiently

estimated.

Model order reduction for the Constrained ARX models was also explored. It was

found that reducing the model order to [1 8 1] resulted in a good balance between

robustness and model accuracy. It resulted in comparable RMSE values to the [1

20 1] models, but with less parameters to estimate. The [1 8 1] model order was

also shown to be more robust than the [1 5 1] model order. The [1 8 1] and [1 10 1]

results were extremely close in values and were both considered for the final suggested

model order. The final choice for the model order for the Constrained ARX modeling

method is of order [1 8 1] because there are less parameters to estimate than the [1

10 1]. For the purpose of controller design, the [1 8 1] Constrained ARX models offer

the best modeling solution.

A weighted and non-weighted linear version of the nonlinear C-ARX method was

also introduced. The results show that the linear version of the C-ARX modeling

methods yields similar results on the 50/50 training/validation tests as the nonlinear

method. The linear C-ARX uses a simple QP formulation. QP solvers are more robust

than NLP solvers are and are more desirable to use. Both the weighted and non-

weighted versions performed similar on the 50/50 modeling results. The two linear

methods were also selected to explore the effect of window size and weighting values

on the 8-step prediction residuals. The results from the recursive modeling results

suggested that a longer window and higher value of λ were better at predicting the hgb

8 weeks later. It should be noted that the accuracy of the 8-step predictions is highly
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dependent on the initial condition, which can be greatly affected by measurement

noise. The data was filtered with an EWMA filter to try and remove some of the

effect of the noise. Taken altogether, it is recommended that either the weighted or

non-weighted linear C-ARX modeling method with an order of [1 8 1] should be used

within the controller. Both the linear and nonlinear methods will be explored further

in the controller performance tests.
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Chapter 3

Hemoglobin Controller Designs

3.1 Introduction

Chapter 3 explores the development of several different types of model predictive

controllers to be used to dose epoetin-alfa in the control of hemoglobin in CKD. The

optimal hemoglobin target range is still up for debate (Singh, 2007) but generally lies

somewhere between 9.5 and 12.0 g/dL for CKD patients. The tremendous cost of

ESA therapy leaves a lot of room for debate on this issue, and there becomes a fine

line where one could sacrifice patient health for monetary gain. For the purpose of

this thesis, a control zone of 9.5 to 11.0 g/dL will be used. This range was chosen

based on the available physician’s protocol that the controllers will be compared to.

There exist a few problems with a one-size-fits-all protocol for delivering ESA’s to the

patients. First, many of these protocols make doses based on a patient’s weight, even

though this is poorly correlated, as is shown in Figure 3.1. Secondly, the protocols lack

the ability to counter acute disturbances in the hemoglobin in the patients, such as

infection, blood loss or blood transfusions. The protocol that is used for comparison in

this paper, is generally sluggish with its choice of ESA dosing and often fails to react

quickly when presented with acute disturbances. Frequent disturbances, along with

the reactive behaviour of the protocol, cause bouts of hemoglobin cycling. Thirdly,

due to the large delay in the system caused by the pharmacokinetics and the delay

in the production of red blood cells, it is extremely difficult to control by reactive

measures as the protocol will always be a week or two behind the system dynamics.
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Figure 3.1: Relationship between Patient Weight and Average EPO dose for 167 clinical
patients

With the aim of producing a more stable ESA protocol to overcome some of

these issues, model based predictive controllers were explored. Gaweda et al. present

one of the first published applications using a model predictive controller design and

artificial neural networks for the control of hemoglobin (A. Gaweda, 2008). Recent

works on ESA dosing using model predictive control techniques have been used with

improved clinical results as suggested in studies by Gaweda et al. (A. Gaweda, 2014;

M. Brier, 2010). Hemoglobin variability was reduced significantly in these studies

without compromising the safety of patient health. These studies suggest MPC may

be a useful tool in the effective treatment of anemia in CKD. These studies were

limited to traditional MPC and dose totals and controller aggressiveness were not

tracked. This chapter seeks to develop and test new methods to aid in improved

controller performance.

This chapter begins with an introduction to the model structure used in the MPC

algorithms and outlines several predictive controllers, that are classified as either

deterministic or stochastic. Deterministic controllers take the model structure to be

a true model of the system, and the measurements to be a true measurement of the

system and calculate an optimal dose based on this. The stochastic controllers take

into account some of the uncertainties in the system, such as measurement noise in

measuring the mass per volume of hemoglobin. Both classical MPC and Zone model

predictive control will be explored within the framework of these two classifications.

The physician’s protocol used for comparison in this thesis is shown on the next

page, with sensitive information removed.
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Figure 3.2: Physician’s Protocol for dosing Epoetin-alfa
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3.2 System Model

The system model that has been used in the following derivations is an autore-

gressive with exogenous inputs (ARX) model. This model can be obtained by either

of the three methods mentioned in Chapter 2. The model structure for the [1 20 1]

Constrained ARX model is as follows, where the inputs and outputs are represented

as deviation variables. The derivations shown in this chapter will use a control horizon

of N . In the next chapter on simulation results, the control horizon will be fixed to 8

weeks, which corresponds to N = 8 using a one week sampling time (∆t = 1 week).

The theory for the following controller designs focus on the [1 20 1] ARX models.

For models with less b parameters such as the [1 8 1] C-ARX models, the missing b

parameters can simply be set to zero.

yk+1 = −a1 yk + b1uk + · · ·+ b20uk−19 (3.1)

3.3 Deterministic Model Predictive Controller De-

signs

3.3.1 Zone MPC Cost Function and Reformulation of Prob-
lem into Quadratic Program

The cost function that has been explored is a combination of state/output (yk ∈

<n) penalties from the target zone and penalties on the magnitude of the changes

in the input (∆uk ∈ <n). This controller design using these cost function terms is

commonly used in many emerging papers written on Type 1 Diabetes, and the control

of blood glucose (B. Grosman, 2010; V. Batora et al., 2015; Knab et al., 2015). This

penalty term allows the controller to eliminate erratic behaviour of the input; it aids

in smoothing the optimized input. The cost function and constraints are outlined in

Equation 3.2.

min
u,δ

1

2

N∑
i=1

(yk+i − δk+i)
T Q̂ (yk+i − δk+i) +

1

2

N−2∑
i=0

∆uTk+i R̂ ∆uk+i (3.2a)

s.t. yL ≤ δk+i ≤ yH i = 1, . . . , N (3.2b)

uL ≤ uk+i ≤ uH i = 0, . . . , N − 2 (3.2c)

∆uL ≤ ∆uk+i ≤ ∆uH i = 0, . . . , N − 2 (3.2d)
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The controller achieves zone tracking through the use of the slack variable, δ̂k ∈

{<n : yL ≤ δk ≤ yH}, in the cost function, along with its associated constraint in

Equation 3.2b. The zone limits are set by choosing values for yL and yH in the con-

straint. The use of the slack variable in this way eliminates the cost of the state

at that time instant as long as the state is in between the zone limits yL and yH .

If the state is outside of the target zone, the cost associated with that point is the

distance from the point to the nearest zone boundary, squared, and then multiplied

by the state tuning parameter (Q̂ ∈ {<n : Q̂ > 0} ). In the following designs, no

terminal state penalty is used and the prediction horizon is chosen large enough to

ensure practical stability. R̂ ∈ {<n : R̂ > 0} is the tuning value on the rate change

term and is always set to 1 and only Q̂ is adjusted.

In order to solve the optimization algorithm efficiently, it is desired to generate

a quadratic program reformulation (Rawlings, 2000). Using the chosen ARX model

structure this can be achieved by making several substitutions and matrix manipu-

lations. First start by separating the model in Equation 3.1 into the state response

(ỹk = Ayk), future input response (Bûk), and past input response (PŨk). From the

perspective of the classical ARX modeling method, a1 will always be a negative num-

ber, which eliminates the negative signs from the following equations. The following

equations also do not show b1 because it is assumed to be equal to zero due to the

delay in the system.

ỹk =


(−a1)
(−a1)2

(−a1)3

:
(−a1)N

 yk B ûk =


0 0 0 · · · 0
b2 0 0 · · · 0

b3 − a1b2 b2 0 · · · 0

: :
. . . . . . :

poly1 poly2 · · · b3 − a1 b2 b2




uk
uk+1

uk+2

:
uk+N−2



poly1 = bN + (−a1) bN−1 + (−a1)2 bN−2 + · · ·+ (−a1)N−2 b2

poly2 = bN−1 + (−a1) bN−2 + (−a1)2 bN−3 + · · ·+ (−a1)N−3 b2 (3.3)
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P Ũk =


b2 b3 b4 · · · b20

(−a1) b2 + b3 b4 + (−a1) b3 · · · · · · (−a1) b20

(−a1)2 b2 + (−a1) b3 + b4 : · · · · · · (−a1)2 b20

: :
. . . . . . :

poly3 poly4 · · · poly5 (−a1)N−1 b20



uk−1

uk−2

uk−3

:
uk−19



poly3 = b2 (−a1)N−1 + b3 (−a1)N−2 + b4 (−a1)N−3 + b5 (−a1)N−4 + b6 (−a1)N−5 + . . .

poly4 = b3 (−a1)N−1 + b4 (−a1)N−2 + b5 (−a1)N−3 + b6 (−a1)N−4 + b7 (−a1)N−5 + . . .

poly5 = b19 (−a1)N−1 + b20 (−a1)N−2

The following matrices are also needed in the reformulation.

ŷk =


yk+1

yk+2

:
yk+N

 δ̂k =


δk+1

δk+2

:
δk+N

 ŷL =


yL,k+1

yL,k+2

:
yL,k+N

 ŷH =


yH,k+1

yH,k+2

:
yH,k+N



ũk =


uk−1

0
:
0

 ûk =


uk
uk+1

:
uk+N−2

 ∆ûk =


∆uk

∆uk+1

:
∆uk+N−2

 (3.4)

φ =


1 0 . . . 0
−1 1 . . . 0

:
. . . . . . 0

0 0 −1 1

 Q =


Q̂ 0 . . . 0

0 Q̂ . . . 0

: :
. . . :

0 0 . . . Q̂

 R =


R̂ 0 . . . 0

0 R̂ . . . 0

: :
. . . :

0 0 . . . R̂


It follows that

∆ûk = φ ûk − ũk (3.5)

Equation (3.2) can then be rewritten as a quadratic equation in matrix form as

min
ûk,δ̂k

1

2

[
‖ỹk + B ûk + P Ũk − δ̂k‖2

Q + ‖∆ûk‖2
R

]
(3.6a)

s.t. ŷL ≤ δ̂k ≤ ŷH (3.6b)

ûL ≤ ûk ≤ ûH (3.6c)

∆ûL ≤ ∆ûk ≤ ∆ûH (3.6d)

where ûL, ûH , ∆ûL, ∆ûH are vectors of the original constraint limits. Equation

(3.6a) can be easily transformed into a standard Quadratic Program of the form
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min
Zk

1

2
ZT
k H Zk + fT Zk + c (3.7)

where

H =

[
B −I
φ 0

]T [
Q 0
0 R

] [
B −I
φ 0

]
f =

[
B −I
φ 0

]T [
Q 0
0 R

] [
ỹk + P Ũk
−ũk

]

c =

[
ỹk + P Ũk
−ũk

]T [
Q 0
0 R

] [
ỹk + P Ũk
−ũk

]
Zk =

[
ûk
δ̂k

]
Problems in the QP form can be solved easily and efficiently by many conventional

solvers. Matlab’s quadprog function utilizing the interior-point optimization algo-

rithm will be used to solve these problems within the MPC controller.

3.3.2 Classical Model Predictive Control (MPC)

Classical Model Predictive control has a much simpler derivation of the Quadratic

Program (J. Rawlings, 1993), but the derivation in the previous section can be re-

verted back to classical MPC by setting all the zone boundaries (yH and yL), in terms

of deviation variables, to be equal to the desired setpoint.

One of the potential downfalls of using classical MPC, is the controllers’ aggres-

siveness when using a one-size-fits-all set of tuning parameters. When controlling

around the setpoint, the controller will often make excessive dose changes, while it

tries to regulate back to exactly the setpoint. For a single process system, it is often

ok to tune the controller to try and eliminate much of this aggression, but this may

not be a viable solution when the controllers can’t be individually tuned to the pa-

tient due to the sheer volume of patients. Each patient will have different hemoglobin

response dynamics, as well as a different steady state EPO dose.

3.3.3 Zone Model Predictive Control (ZMPC)

Zone Model Predictive Control is a control algorithm that has been gaining a

lot of attention in the medical field, where clinically acceptable setpoints often do

41



not exist. It has been successfully used in clinical trials for the treatment of Type 1

Diabetes (Gondhalekar et al., 2013). Zone MPC has been shown to provide robustness

against plant model mismatch as well as against measurement noise (Gondhalekar

et al., 2013). Paralleling this experience to the case presented here, hemoglobin

measurement techniques suffer from a large amount of measurement uncertainty. The

system is also time-varying, which results in plant model mismatch.

Zone MPC is achieved by setting yH and yL to the desired limits. A problem

exists with leaving the zone boundaries as static values along the prediction horizon.

Due to the controller’s cost function offering no state penalties within the zone, the

nominal solution is often allowed to settle near the boundaries of the zone. This is an

undesirable feature of ZMPC because plant model mismatch, as well as measurement

and process noise, will often push the state outside of the desired region. One way to

remedy this situation is to set a tighter control zone than actually desired. Another

way to remedy this situation is to modify the constraints on the slack variable, δ̂k,

in Equation 3.6b. They can be modified to allow the zone boundaries to decay back

toward the middle of the zone over the prediction horizon. An example of this is

portrayed in Equation 3.8. Here the variable p can be chosen (p < 1) to tune the

decay rate of the constraints over the prediction horizon, N . A pictorial view of the

constraints is shown for an example in Figure 3.3. Here the target zone is chosen to

be between 9.5 and 11.0 g/dl, and the shape tuning parameter, p, is chosen to be

equal to 0.6.
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Figure 3.3: Constraint boundaries for the slack variable δk when the shape tuning param-
eter (p) is set to 0.6
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The zone boundaries can be calculated with the following equations to facilitate

a funnel-like control region.

ŷL =


yL

yH+yL
2
− pyH−yL

2
yH+yL

2
− p2 yH−yL

2

:
yH+yL

2
− pN−1 yH−yL

2

 ŷH =


yH

yH+yL
2

+ pyH−yL
2

yH+yL
2

+ p2 yH−yL
2

:
yH+yL

2
+ pN−1 yH−yL

2

 (3.8)

An example of the Zone MPC controllers using static boundaries and funnel con-

straints is shown in Figure 3.4. Here the controller with static boundaries settles

exactly on the upper bound while the controller using the funnel constraints still

regulates to the center of the zone.
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Figure 3.4: Comparison of Zone MPC with static vs decaying constraints on the slack
variable under nominal conditions

Depending on the funnel shape, funnel controller performance will typically lie

somewhere between that of the zone MPC controller and the classical MPC controller.

That is, it will be more aggressive than the zone MPC controller, but have better

state management. It will be less aggressive than the classical MPC controller, but

often not yield as good of state management as the classical MPC. The funnel shape

allows the controller to weakly track a setpoint. It is still desired to have a relatively
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low average ∆uk value, and the funnel shaped control zone allows the controller to be

tuned to a more optimal level somewhere in between classical MPC and traditional

zone MPC.

3.3.4 Economic Model Predictive Control (EMPC)

A simple Economic Zone MPC controller can be created by modifying the cost

function equation to that of Equation 3.9, where the input, uk+i ∈ {<n : 0 ≤ uk ≤

umax}, is the absolute value of the input. The cost function then includes a penalty

on the state deviation from the zone (primary objective), a penalty on change in the

input (secondary objective), along with a penalty on the total drug use (secondary

objective). In this fashion, the controller will regulate the state to the zone, while bal-

ancing the minimization of both the cost of the ESA treatment and the aggressiveness

of the controller.

min
U,δ

1

2

N∑
i=1

(yk+i − δk+i)
T Q (yk+i − δk+i) +

1

2

N−2∑
i=0

(∆uTk+i R ∆uk+i + uTk+i S) (3.9a)

s.t. yL ≤ δk+i ≤ yH i = 1, . . . , N (3.9b)

uL ≤ uk+i ≤ uH i = 0, . . . , N − 2 (3.9c)

∆uL ≤ ∆uk+i ≤ ∆uH i = 0, . . . , N − 2 (3.9d)

In theory, significant drug costs can be saved by implementing EMPC on the patients.

For demonstration purposes, both the controllers used in this section have a point

target and their tuning parameter R is set to 0. Figure 3.5 depicts a 100 week

simulation that compares economic MPC to classical MPC under additive process

noise drawn from the distribution N(0, 0.252). The setpoint is set in the middle of the

zone at 10.25 g/dL. The state management is quite similar between both controllers,

but the EMPC nets a drug dose reduction of 17.1% over the classical MPC controller.

The tuning parameters Q and S are set at 400 and 1 for EMPC and 110 and 1 for

MPC, respectively. The economic MPC controller results in a small negative offset

compared to the classical MPC controller, which is the result of the economic term.

The EMPC controller has a lower average hemoglobin value.
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Figure 3.5: Comparison of EMPC with classical MPC for a 100 week patient simulation
using additive process noise drawn from N(0, 0.252)

Figure 3.6a,b depicts two more simulations, when changing the tuning parameter

Q from 400 to 110 and 10000, respectively. The improper tuning parameters cause

significant offset to the downside of the system in Figure 3.6a. Figure 3.6b actually

shows the EMPC controller using more drug dose than the classical MPC controller,

a 4.4% increase.
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(a) EMPC Tuning Parameter Q=110
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(b) EMPC Tuning Parameter Q=10000

Figure 3.6: Simulations comparing different tuning parameters for the EMPC controller

Minimizing the drug costs in the cost function can be performed, but the tuning

parameters are highly sensitive. To aid in the tuning of this controller, the economic

term was changed to a linear term versus a quadratic term, and the doses are scaled
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by 5000 IU. One of the complexities in tuning the controller is that drug doses come

in multiples of 1000 and range from 0 to as high as 40000 IU. With each patient

having different drug sensitivities, this controller becomes extremely difficult to tune

properly for each patient. If tuned incorrectly, the controller will jeopardize the

patients’ health. This controller will be explored further in Chapter 4.

3.3.5 Nonlinear Zone MPC

Another possible solution for control is through the use of a nonlinear Zone MPC

controller. This controller uses the PK/PD model from Equation 2.2 directly, and

coupled together with Matlab’s fmincon function, can solve for optimal control in-

puts. Nonlinear MPC has become more viable in recent years due to the advancement

in modern computational speed and efficiencies, but it is still quite computationally

expensive to solve a nonlinear programming problem (Allgower et al., 2004). Mat-

lab’s fmincon function uses an interior-point algorithm to solve this problem. The

algorithm simulates the system numerically, using a DDE solver similar to the one

developed in Chapter 2, and then calculates a new step size by estimating the gradi-

ent at that point. The numerical method for simulating the DDE model is again an

explicit method, so it does run the risk of being unstable for some time points which

would greatly impact the solution from fmincon.

Figure 3.7 depicts a short 100 week simulation using measurement and additive

process noise for the Nonlinear MPC controller versus a Linear MPC controller using

an ARX model. The PK/PD model is used to simulate the patient, which makes

almost identical models within the nonlinear MPC controller and the patient simula-

tor. The ARX model chosen for this simulation offers only a minor amount of plant

model mismatch, and does not produce a great deal of offset. In this simulation, the

measurement noise was drawn from a distribution of N(0, 0.1662) which corresponds

to a measurement error of approximately ±0.5 g/dL. The PK/PD model parameters

in the patient were also allowed to vary with each parameter following a distribution

of zero mean with the standard deviation being set to 10% of the original parameter

value. It is clear from the the simulation that the NMPC controller does not offer

improved accuracy over the linear counterpart. The time taken for the entire NMPC

controller for the 100 week simulation was 8.26 hours, while the linear MPC controller
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completed the simulation in 2 minutes. If the purpose of this project was to control

a single system, nonlinear MPC would certainly be a viable solution for many of the

patients, but due to the sheer volume of patients that will be controlled using the

proposed algorithm, it would require an incredible amount of computer processing

power to calculate all the patients’ control inputs. For this reason Nonlinear Zone

MPC has not been explored further.
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Figure 3.7: Example 100 week Simulation for a Nonlinear MPC controller versus a lin-
ear MPC controller for a single patient when trying to control the PK/PD model with
measurement noise and parameter variation

3.4 Stochastic Model Predictive Controller Designs

Stochastic controllers have the ability to take into account some of the known

uncertainties within a system. The constraints of the system are determined prob-

abilistically which allows a small portion of violation. Uncertainties can manifest

themselves within process and measurement noise, or within the model parameters

themselves. This chapter focuses on the development of stochastic controllers that

take into account the uncertainties in the measurement and process noise. These

stochastic controllers take into account the randomly distributed vector Ŝk, that will

be taken from a distribution that approximates some additive process uncertainty.

By utilizing the random variables and it’s probability distribution, several methods

for regulating to a zone can be explored and will be discussed in this section.
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3.4.1 Stochastic System Model

Due to the propagation of error from each time instant along the prediction hori-

zon, the random vector Ŝk is multiplied to a variation of the state response matrix

which will be denoted as matrix D. Adding the additional random vector contribution

to the system, the model takes on the following form

ŷk = A yk + B ûk + P Ũk + D Ŝk (3.10)

where

D Ŝk =


I 0 · · · 0

(−a1) I · · · 0
(−a1)2 (−a1) · · · 0

: :
. . . :

(−a1)N−1 (−a1)N−2 · · · I




sk
sk+1

sk+2

:
sk+N−1


3.4.2 Chance Constraints with Gaussian Uncertainty

The use of individual chance constraints was explored. In this method, these

constraints use the properties of the distribution of the random vector Ŝk and then

these chance constraints are formulated into hard constraints. If the random variables

inside the vector follow a Gaussian distribution they can be converted directly to

hard constraints (Grosso et al., 2014). If we consider the variable sk+i to be part of

the distribution N(s̄,Σ) where vector Dj refers to the jth row of the matrix D, the

hard constraints can be formulated from the following method (Grosso et al., 2014).

In zone control, chance constraints would be applied to both the upper and lower

bounds of the control region. For example purposes, the following upper bound

chance constraint will be used to illustrate the method.

Pr(yk+i < yH) ≥ 1− ε where yk+i = f(xk, ûk, Ũk) + DjŜk (3.11)

In Equation (3.11), ε refers to the probability level in which the chance constraint is

allowed to be violated. The distribution of sk+i is not normal. To normalize this dis-

tribution in the chance constraint, it follows that the mean of the distribution should

be subtracted from both sides and then both sides can be divided by the standard

deviation of the distribution of the random variable DjŜk+i (ie. N(s̄TDT
j , DjΣD

T
j )).
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The resulting equation is

Pr

DjŜk − s̄TDT
j√

DjΣDT
j

<
yH − f(xk, ûk, Ũk)− s̄TDT

j√
DjΣDT

j

 ≥ 1− ε (3.12)

Equation (3.12) follows a standard normal distribution, N(0, 1), and can be

represented by

Φ

yH − f(xk, ûk, Ũk)− s̄TDT
j√

DjΣDT
j

 ≥ 1− ε (3.13)

where Φ (·) is the cumulative distribution function (CDF) of the standard normal

distribution. Taking the inverse CDF of both sides, and rearranging the equation

results in the deterministic hard constraint representing Equation (3.11)

yH ≥ φ−1(1− ε)
√
DjΣDT

j + s̄TDT
j + f(xk, ûk, Ũk) (3.14)

Similarly, hard constraints can be determined for the lower zone boundary.

yL ≤ −φ−1(1− ε)
√
DjΣDT

j + s̄TDT
j + f(xk, ûk, Ũk) (3.15)

Due to the constraints being hard constraints, the controller will naturally have

feasibility issues. This problem can be overcome by using a hybrid controller or

using soft constraints which will be discussed in the following sections.

3.4.3 Conditional Value at Risk (CVaR) Constraints

CVaR is a popular tool used in risk management. CVaR was introduced by Rock-

afellar and Uryasev (Rockafellar and Uryasev, 2000). It is widely used in the finance

industry for portfolio management. Before the advent of CVaR, the Value at Risk

(VaR) was the standard for optimization problems involving finances (Rockafellar

and Uryasev, 2000). In the finance industry, p−V aR is defined as the maximum loss

value that is assigned to some desired probability , p, over a given prediction horizon.

That is to mean that this loss p− V aR will occur p% of the time.

One of the main benefits over the previous chance constraint formulation, is that

CVaR is usable for any type of distribution and doesn’t rely on the noise distribution

being Gaussian. The following upper bound chance constraint will be used as an
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example for the derivation of a CVaR constraint. Here, it is desired to have the

output remain underneath some upper bound within a certain probability. Opposite

to intuition, the following derivation is completed using a probability of violation (ε)

of the constraint. The uncertainty is again located within the output, yk, in the form

of a random variable sk+i. sk+i is part of the distribution N(s̄,Σ). For brevities sake

in notation, the output in the derivation will remain as yk and it will be assumed it

contains the random variable.

Pr{yk > yH} ≤ ε (3.16)

Equation 3.17 is the definition for the indicator function. This function holds a value

of 1 if u > 0 and a value of 0 if u ≤ 0.

1(0,∞)(u) = 1 if u > 0 (3.17a)

1(0,∞)(u) = 0 if u ≤ 0 (3.17b)

Inserting the positive variable α into the indicator function changes the input to the

indicator function but makes no difference in its output.

1(0,∞)(u) = 1(0,∞)(
1

α
u) (3.18a)

α > 0 (3.18b)

Defining an upper bounding function φ(u) for the indicator function, the following

inequality can be written.

1(0,∞)(
1

α
u) ≤ φ(

1

α
u) (3.19)

Replacing u with yk − yH , the following inequality can be written. If yk − yH > 0

the constraint is violated and the indicator function holds a value of 1, and vice

versa. φ(u) is the upperbounding function for the indicator function and it is a

conservative estimate of the probability of violation, ε.

Pr{yk − yH > 0} = E[1(0,∞)(yk − yH)] ≤ E[φ(
1

α
(yk − yH))] ≤ ε (3.20)
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From this, any solution that satisfies the inequality will also satisfy the constraint.

The focus will remain on the right side of this inequality. (u)+ is defined as the

maximum operator, which will hold the maximum value between 0 and the input u.

Applying the upper bounding function φ(u) = (u+ 1)+, a conservative

approximation of the chance constraint is defined as

E
[
( 1
α

(yk − yH) + 1)+
]
≤ ε (3.21)

multiply by α
ε

1

ε
E
[
((yk − yH) + α)+

]
≤ α (3.22)

moving α to the left hand side

−α +
1

ε
E
[
((yk − yH) + α)+

]
≤ 0 (3.23)

To reduce conservatism, find the minimum α that satisfies the inequality. That is, it

is desired to find the smallest upperbound. This results in the CVaR constraint, but

it is difficult to calculate its value in its present form.

min
α
−α +

1

ε
E
[
((yk − yH) + α)+

]
≤ 0 (3.24)

The expectation operator is removed with the introduction of sampling to

approximate the CVaR constraint. M is the total number of scenarios. For instance,

if there were a single random variable per scenario, and the prediction horizon was

1, it would be necessary to sample the random variables’ distribution M times. πj is

the probability that a single scenario will occur, and will be equal to 1
M

.

−α +
1

ε

M∑
j=1

πj
[
((yk,j − yH) + α)+

]
≤ 0 (3.25)

The above equation is still not usable within an optimization constraint function. The

expression inside of the max operator can be replaced by two separate constraints.

The following equation replaces the max operator term with the variable vj, and con-

straints are set on vj to satisfy the original max operator’s function. The combination

of all three constraints in Equation 3.26 can be used to provide a conservative esti-

mate of the original chance constraint in Equation 3.16 through the use of sampling

(A. Parisio, 2013). These constraints are solved using many different scenarios of the
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random variable distribution, leading to it being part of a class of controllers called

Scenario-Based MPC.

− α +
1

ε

M∑
j=1

πjvj ≤ 0 (3.26a)

vj ≥ (yk,j − yH) + α j = 1, ...,M (3.26b)

vj ≥ 0 j = 1, ...,M (3.26c)

3.4.4 Zone MPC Hybrid Controller using Hard Chance Con-
straints

The controller outlined in this section uses the Quadratic Program formulation in

Equation 3.7, along with a number of chance constraints. The controller adds chance

constraints only when the system output enters the zone and the regular Zone MPC

controller is used while the output is outside of the desired zone. This controller

type leads to stable solutions but it reduces the ability to analytically explain the

probability of having the output within the bounds because the chance constraints

are not always used. It is typically not feasible for a large prediction horizon to have

a chance constraint at each time instant, k, along the predicted trajectory because

the constraints will end up converging at some point before the prediction horizon

ends making every solution infeasible. One way around this is to use less chance

constraints and then extend the final chance constraint to create a zone constraint

for the remaining portion of the prediction horizon. The constraint extension will not

be necessary in the control of hemoglobin because the prediction horizon is short and

does not allow the constraint convergence.

3.4.5 Zone MPC using Soft Chance Constraints

Another way to deal with the infeasibility of the chance constraints is to introduce

the addition of slack variables that relax the chance constraints if necessary. These

same slack variables are then penalized heavily in the cost function. In this way,

the relaxation of the constraints only occurs if the chance constraints are infeasible.

In these cases, the solution should then always touch the boundary of the relaxed
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constraint. The hard constraints in Equations 3.14 and 3.15 with the introduction of

these slack variables become

yH + ξ1 > φ−1(1− ε)
√
DjΣDT

j + s̄TDT
j + f(xk, ûk, Ũk) (3.27a)

yL − ξ2 < −φ−1(1− ε)
√
DjΣDT

j + s̄TDT
j + f(xk, ûk, Ũk) (3.27b)

The Quadratic Program in Equation 3.7 can be augmented to include the two slack

variables ξ1 ∈ {<n : ξ1 > 0} and ξ2 ∈ {<n : ξ2 > 0}. The new H, f , and c will be

subscripted with 1 while the previous H, f , and c from Equation 3.7 will be used

without subscripts. The new penalty on the slack variables ξ1 and ξ2 will be

ξP ∈ {<n : ξP > 0} and hold a very high value.

min
Zk

1

2
ZT
k H1 Zk + fT1 Zk + c1 (3.28)

where

H1 =

H 0 0
0 ξP 0
0 0 ξP

 and Zk =


ûk
δ̂k
ξ1

ξ2


f1 =

[
f 0 0

]T
c1 = c

Subject to the previous constraints as well as two new constraints on the new slack

variables

ŷL ≤ δ̂k ≤ ŷH

ûL ≤ ûk ≤ ûH

∆ûL + ũk ≤ φ ûk ≤ ∆ûH + ũk

0 ≤ ξ1

0 ≤ ξ2
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3.4.6 Scenario Based Zone MPC using Hard CVaR Con-
straints

The controller described in this section belongs to the family of Scenario-Based

Controllers. The controller is designed to take into account an additive process noise

from a known distribution. Using this known distribution, the chance constraints

are created as outlined in Section 3.4.3. This controller design will have 2 CVaR

constraints on the output of the system, 1 on the lower bound and 1 on the upper

bound. The constraints will be used for k = 3 as shown in Equation 3.29.

− αk +
1

ε

M∑
j=1

πjvj,k ≤ 0 k = 3 (3.29a)

vj,k ≥ (yk,j − yH) + αk j = 1, ...,M, k = 3 (3.29b)

vj,k ≥ 0 j = 1, ...,M, k = 3 (3.29c)

− βk +
1

ε

M∑
j=1

πjωj,k ≤ 0 k = 3 (3.29d)

ωj,k ≥ (yL − yk,j) + βk j = 1, ...,M, k = 3 (3.29e)

ωj,k ≥ 0 j = 1, ...,M, k = 3 (3.29f)

The controller that will be tested for this section will use 100 scenarios (M = 100).

It should quickly become apparent that scenario-based constraints such as these lead

to a very large number of constraints. In this case, there will be 4M + 2 constraints

related to the CVaR constraints, leading to a total of 402 constraints. With this in

mind, the cost function used was changed to a linear program for the ability of that

solver type to handle a large number of constraints. In this case Matlab’s linprog

function was used along with its dual-simplex optimization solver. The cost function

is outlined in Equation 3.4.6.

minQ
8∑

k=1

|yk − δk|+R

6∑
k=0

|∆uk| (3.30)

This equation can be manipulated to remove the absolute sign and the resulting

linear program with all the constraints is outlined in Equation 3.31.

minQ
8∑

k=1

hk +R
6∑

k=0

gk (3.31a)
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− αk +
1

ε

M∑
j=1

πjvj,k ≤ 0 k = 3 (3.31b)

vj,k ≥ (yk,j − yH) + αk j = 1, ...,M, k = 3 (3.31c)

vj,k ≥ 0 j = 1, ...,M, k = 3 (3.31d)

− βk +
1

ε

M∑
j=1

πjωj,k ≤ 0 k = 3 (3.31e)

ωj,k ≥ (yL − yk,j) + βk j = 1, ...,M, k = 3 (3.31f)

ωj,k ≥ 0 j = 1, ...,M, k = 3 (3.31g)

hk ≥ yk − δk k = 1, . . . , 8 (3.31h)

hk ≥ −(yk − δk) k = 1, . . . , 8 (3.31i)

gk ≥ ∆uk k = 0, . . . , 6 (3.31j)

gk ≥ −∆uk k = 0, . . . , 6 (3.31k)

δk ≤ yH k = 1, . . . , 8 (3.31l)

−δk ≤ −yL k = 1, . . . , 8 (3.31m)

uk ≤ Umax k = 0, . . . , 6 (3.31n)

−uk ≤ Umin k = 0, . . . , 6 (3.31o)

∆uk ≤ ∆Umax k = 0, . . . , 6 (3.31p)

−∆uk ≤ ∆Umin k = 0, . . . , 6 (3.31q)
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Equation 3.31 leads to a total of 470 constraints and an optimization vector Zk as

outlined below. There are 2M + 30 variables to be optimized (232).

Zk =



u0

:
u6

δ1

:
δ8

α3

:
v1,3

:
v100,3

β3

ω1,3

:
ω100,3

h1

:
h8

g0

:
g6



(3.32)

Due to in-feasibility issues, if the controller fails to find a feasible solution, a backup

classical MPC controller will be used for that time instant. This is a hybrid controller

solution similar to that used in the controller with Hard Chance Constraints.

3.4.7 Scenario Based Zone MPC using Soft CVaR Constraints

Similar to the formulation for soft constraints previously mentioned in the Gaus-

sian case, the CVaR constraints can be relaxed to facilitate feasibility. Again, a slack

variable is introduced to relax the constraints in Equation 3.33b,e. The constraints in

Equation 3.33r,s are also added to ensure the new slack variables are always positive.

minQ
8∑

k=1

hk +R
6∑

k=0

gk + ξP (ξ1 + ξ2) (3.33a)

− ξ1 − αk +
1

ε

M∑
j=1

πjvj,k ≤ 0 k = 3 (3.33b)

vj,k ≥ (yk,j − yH) + αk j = 1, ...,M, k = 3 (3.33c)
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vj,k ≥ 0 j = 1, ...,M, k = 3 (3.33d)

− ξ2 − βk +
1

ε

M∑
j=1

πjωj,k ≤ 0 k = 3 (3.33e)

ωj,k ≥ (yL − yk,j) + βk j = 1, ...,M, k = 3 (3.33f)

ωj,k ≥ 0 j = 1, ...,M, k = 3 (3.33g)

hk ≥ yk − δk k = 1, . . . , 8 (3.33h)

hk ≥ −(yk − δk) k = 1, . . . , 8 (3.33i)

gk ≥ ∆uk k = 0, . . . , 6 (3.33j)

gk ≥ −∆uK k = 0, . . . , 6 (3.33k)

δk ≤ yH k = 1, . . . , 8 (3.33l)

−δk ≤ −yL k = 1, . . . , 8 (3.33m)

uk ≤ Umax k = 0, . . . , 6 (3.33n)

−uk ≤ Umin k = 0, . . . , 6 (3.33o)

∆uk ≤ ∆Umax k = 0, . . . , 6 (3.33p)

−∆uk ≤ ∆Umin k = 0, . . . , 6 (3.33q)

ξ1 ≥ 0 (3.33r)

ξ2 ≥ 0 (3.33s)

3.4.8 Scenario Based Zone MPC using Conditional Value at
Risk in Cost Function

Another controller method for dealing with uncertainty is the scenario based MPC

controller using CVaR in the cost function, rather than in the constraints. The con-

troller discussed here, will look at optimizing the control inputs using conditional

value at risk, directly within the cost function which leads to a solution that is al-

ways feasible. The scenario based Zone MPC controller uses the distribution of the

random variable sk to generate several different plausible scenarios of noise. Instead

of optimizing a linear or quadratic objective as before, the controller optimizes the

Conditional Value at Risk (β-CVaR) as introduced by Bemporady et al (Bemporady

et al., 2011). The formulation of this problem requires several steps and starts with
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the definition of a linear program similar to the previous quadratic objective function

used. The linear program used as the loss function is ∈ <n+i which is associated with

decision vectors ûk ∈ {<n : umin ≤ uk ≤ umax} and δ̂k ∈ {<n : yL ≤ δk ≤ yH} and

random vector Ŝk ∈ <n. Ũk ∈ <n is associated with the past inputs. Note that Q

and R are again used as the tuning parameters in this equation.

f(ûk, Ũk, δ̂k, Ŝk) = Q
N∑
i=1

|yk+i − δk+i| + R

N−2∑
i=0

|∆uk+i| (3.34)

Let p(s) be the probability density function of the random variable sk. Used in the

calculation of β-CVaR is another parameter β-VaR (Value at Risk) which is defined

as the smallest value for which the probability that the loss function will not exceed

its value is β. β is the fixed value confidence level and typically holds a value

greater than 0.9. The downside of using only β-VaR (`) is that the loss greater than

` is not accounted for. β-CVaR allows for the quantification of losses greater than `.

The variable β-VaR is defined as

`β(ûk, Ũk, δ̂k) = min{` ∈ < : ψ(ûk, Ũk, δ̂k, `) ≥ β} (3.35)

where the probability of f(ûk, Ũk, δ̂k, Ŝk) not exceeding ` is

(ûk, Ũk, δ̂k, `) =

∫
f(ûk,Ũk,δ̂k,Ŝk)≤`

p(s)ds (3.36)

β-CVaR is defined as

φβ(ûk, Ũk, δ̂k) = (1− β)−1

∫
f(ûk,Ũk,δ̂k,Ŝk)≥`β(u)

f(ûk, Ũk, δ̂k, Ŝk) p(s)ds (3.37)

The loss associated with any ûk , Ũk and δ̂k can be determined from the addition of

both β-VaR and β-CVaR.

Fβ(ûk, Ũk, δ̂k, `) = `+ (1− β)−1

∫
Ŝk∈<m

[f(ûk, Ũk, δ̂k, Ŝk)− `]+p(s)ds (3.38)

[f ]+ denotes the max of [f, 0]. The integral in the above equation is difficult to solve

explicitly which brings about the need to perform sampling to approximate it. M

number of scenarios (or M vectors of Ŝk) are randomly generated from p(s) with

each scenario having a probability of πj of occurring. Then Equation (3.38) can be

approximated by
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F̂β(ûk, Ũk, δ̂k, `) = `+ (1− β)−1

M∑
j=1

πj [f(ûk, Ũk, δ̂k, Ŝk)− `]+ (3.39)

Combining Equations (3.34) and (3.39) and adding the previous system constraints,

the final form of the SMPC problem results in a linear program minimizing the

β-CVaR as follows where k, j, i represent the sampling instant, scenario number and

sampling instant along the prediction horizon, respectively.

min
ûk,δ̂k,`,vj

`+ (1− β)−1

M∑
j=1

πj vj (3.40a)

s.t. vj ≥ Q
N−1∑
i=0

hk+i,j +R
N−2∑
i=0

gk+i − ` (3.40b)

vj ≥ 0 ∀ j (3.40c)

hk+i,j ≥ yk+1+i,j − δk+i,j ∀ i, j (3.40d)

hk+i,j ≥ −(yk+1+i,j − δk+i,j) ∀ i, j (3.40e)

gk+i ≥ ∆uk+i ∀ i (3.40f)

gk+i ≥ −∆uk+i ∀ i (3.40g)

umin ≤ uk+i ≤ umax ∀ i (3.40h)

∆umin ≤ ∆uk+i ≤ ∆umax ∀ i (3.40i)

yL ≤ δk+i,j ≤ yH ∀ i, j (3.40j)

The above Equation results in 4MN + 2M + 6N constraints and an optimization

vector length of 2MN + 2N +M + 1.

3.5 Time-varying System Controllers for Distur-

bance Rejection and Offset-Free Control

Traditional MPC controllers tend to break down in the presence of large plant

model mismatch as well as when significant unmeasured disturbances are introduced

into the plant process. These can produce large offsets between the actual process

variables and the setpoint. This section explores a few potential methods for dealing

with these scenarios.
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3.5.1 ZMPC with Internal Model Control and Integrator

The first such method is a simple version of offset-free MPC. The aim of this

controller was to explore a way to deal with plant-model mismatch as well as any un-

modeled disturbances. It is already known that most patients’ health will deteriorate

slowly overtime, similar to the introduction of a slow continuous ramp disturbance.

The idea behind this MPC algorithm is to calculate the 1-step error between the

ARX model and the actual measurement and adjust the reference targets for the

zone boundaries to reflect the estimate for the estimated steady state offset (alterna-

tively one could include the disturbance estimate D̂k in the model instead of adjusting

the targets). Offset-Free MPC algorithms similar to this have been shown to work

well for constant steady state disturbances (Pannocchia and Rawlings, 2003). This

method can be expressed in the following equations in terms of deviation variables.

The ARX model is in the form

ŷk = a1yk−1 +
20∑
i=1

biuk−i + D̂k−1 (3.41)

and gives a 1-step ahead estimate of the system when using the past data on and

before time k − 1.

d̂k = yk − ŷk (3.42)

gives an estimate for the 1-step residual at time k. This residual is multiplied by a

filter value, K, and added to the summation of the previous time step estimate for

dk. Equation 3.5.1 represents the total integrated output 1-step error.

D̂k =
k∑
1

Kd̂k (3.43)

The model inside the controller remains static, but the targets of the MPC routine

are adjusted to reflect the steady state offset estimate. This is represented by

yL,new = yL − D̂k (3.44a)

yH,new = yH − D̂k (3.44b)

A block diagram of the simulation setup is shown in Figure 3.8. The DDE solver

along with a random additive disturbance is used as the patient simulator. The DDE

60



solver is in continuous time and sampled weekly, while the designed control system is

in discrete time with a sampling interval equal to the hemoglobin sampling rate. In

cases of constant steady state offset, this algorithm will capture the full offset over

time.

Figure 3.8: Block Diagram of the MPC and IMC algorithm with a filtered integrator when
simulated using a disturbance variable and measurement noise

Figure 3.9 shows a 500 week simulation where an additive noise disturbance ac-

cumulates a negative sum in the first 250 weeks and then switches to accumulating a

positive sum in the last 250 weeks. The filter value K is equal to 0.2, 0.5 and 0.8 in

these simulations. The low filter value helps to reject any acute disturbances and zero

mean measurement noise but still captures the long-term disturbance dynamics. As

the filter value increases, the input response becomes much noiser, and the gains in

state management are minimal. The shortcomings of this configuration can be seen

in this figure. In cases of steady ramp disturbances such as the simulation in Figure

3.9, this algorithm will often lag behind the actual disturbance, as can be seen in the

middle of the simulation where the system settles on or below the control zone limit.

This lag presents a large problem for the time-varying nature of the steady state EPO

dose. It is likely that the steady state dose may oscillate up and down over the course

of the patient’s life. The IMC configuration works well for steady state offset, but

fails to provide adequate control when the steady-state dose changes quickly. For this
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reason, the IMC configuration was not explored further in the following chapters.
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Figure 3.9: Comparison of different filter values with an Offset-Free MPC controller versus
a classical MPC controller for a single patient when trying to control the PK/PD model
with uncertainties

3.5.2 ZMPC with Recursive Modeling

To overcome the dynamic nature of a patients’ health over time, this algorithm

recursively estimates a new constrained ARX model at each specified time instant.

This method relies on the fixed structure of the C-ARX models to ensure that the

model attained at each time step is open-loop stable and representative of a physio-

logically acceptable model (Turksoy et al., 2014). The estimation phase uses a moving

window of historical data that is 50 data points in length. A longer window is typi-

cally better for model estimation, but patient health may change over time, making

the initial data counter-productive in estimating a present time model. If too little

data is used, it is difficult mathematically to find a proper solution, given the large

number of degrees of freedom in the model. A block diagram of the simulation is

shown in Figure 3.10 . The controller model, steady states, and constraints must be

updated after each new model is obtained.
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Figure 3.10: Block Diagram of the MPC algorithm with recursive modeling when simu-
lated using disturbance and measurement noise

Figure 3.11 shows a comparison of the response of the recursive ZMPC controller

to that of the IMC-MPC configuration discussed previously. Recursively estimating

the patient model can help to overcome the time-varying nature of the patient model.
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Figure 3.11: Comparison of Recursive ZMPC and the IMC-MPC configuration for a single
patient when trying to control the PK/PD model with uncertainties

63



3.5.3 Digital PID Control

Another appropriate method for control is to use a Digital PID controller. PID

control is a very mature technology and used widely across many industries. PID

controllers have the advantage of being able to be tuned for disturbance rejection

which may offer improved state management in scenarios where the patient model is

time-varying. PID controllers have been used successfully in the control of Type 1

Diabetes and the first FDA approved automatic insulin pump (Medtronic’s Minimed

670G, approved by FDA Sept 28, 2016) is equipped with PID control (S. Trevitt,

2016). PID controllers typically perform quite well for SISO systems, if designed and

tuned properly (O’Dwyer, 2006).

To design the PID controllers, a First Order Plus Deadtime (FOPDT) transfer

function estimate for the patient model is first needed. Due to health consequences

and liabilities, it is not feasible to perform step tests on the patients in practice. One

method to derive a FOPDT model is to first estimate a Constrained ARX model,

and subsequently perform a step test on the attained model. The steady state values

from the C-ARX model identification will be used for the FOPDT model. The dosing

levels are chosen appropriately to center the step response over the control zone,

having the initial hemoglobin approximately equal to 9.5 and the final hemoglobin

appropriately equal to 11 g/dL. In order to identify the FOPDT model automatically,

the dosing levels are chosen automatically through the use of a simple Interval Halving

Optimization Method. The deadtime (θ) for each system will be assumed to be 2

weeks to avoid having to get the tangent line to the curve in the transfer function

estimate. Using linear interpolation between the simulated data points, and the

beginning and final simulated measurements, a FOPDT model can be easily attained

automatically using the a graphical method outlined in Figure 3.12.
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Figure 3.12: Graphical Approach to estimating a First Order plus Deadtime transfer
function that is used to attain continuous time transfer functions for PID controller design

As a starting point for the PID controller (parallel form), IMC-based PID con-

troller settings were selected from the works of Chien and Fruehauf (Seborg et al.,

2011). Due to the large amount of uncertainty in the process model and disturbances,

it is desired to make the controller more robust. This can be accomplished by reduc-

ing the controller gain (Kc) and increasing the integral time constant (τI) (Seborg

et al., 2011). The reduction factor for Kc was determined empirically through sim-

ulation tests and found to be approximately 0.3. τI was increased by a factor of 35,

which was also determined empirically. τD remains the same.

The continuous time PID controller is then converted to a discretized version

using a sampling time of 1 week (Ts). Continuous time transfer functions can be

discretized using finite difference methods (FDM). One such form for discretizing the

PID controller is represented in Equation 3.45 (V. Bobal, 2005).

U(z)

E(z)
=

(Kc + τI
Ts
2

+ τD
Ts

)z2 + (−Kc + τI
Ts
2
− 2τD

Ts
)z + τD

Ts

z2 − z
(3.45)

which can be rearranged into the discrete time domain to attain the following equation

for the next time instants’ input. The continuous time PID parameters and sampling
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time (in weeks) are substituted into the equation.

u(k) = u(k−1)+(Kc+τI
Ts
2

+
τD
Ts

)e(k)+(−Kc+τI
Ts
2
−2τD
Ts

)e(k−1)+
τD
Ts
e(k−2) (3.46)

3.6 Conclusion

Several model based predictive controllers were designed and discussed in this

chapter. Two main classifications of controllers were explored, deterministic and

stochastic. Deterministic controllers do not take into account the possible uncer-

tainty in the measurements and process noise. The stochastic controllers are able to

take into account these uncertainties and should be more effective than their deter-

ministic counterparts when the uncertainty distributions are known. The stochastic

controllers introduced here however, do not take into account parameter uncertainty.

It is possible that plant model mismatch may adversely affect these controller types.

Three methods for dealing with the Time-varying nature of the models were pre-

sented. These included the internal model control based MPC, Recursive MPC and

Digital PID controller methods. The IMC based MPC will not be explored further

due to its inability to provide good control for ramp disturbances. The PID con-

troller and the recursive ZMPC algorithm will be tested rigorously, under different

simulation scenarios in Chapter 4.
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Chapter 4

Simulation Results and Discussion

4.1 Introduction

This Chapter focuses on many aspects of the controller simulation results. The

first section uses the C-ARX models within the MPC controllers, and performs sev-

eral test scenarios to determine the effectiveness of the MPC controllers against one

another as well as against the current anemia management protocol obtained from

an actual hemodialysis unit from a hospital.

The first set of simulations will focus on the controller algorithms. The ARX

models will be used in the both the controller and as the patient simulator. The

tuning parameters for each controller will first be discussed. The controllers will be

tested using different types of disturbances and process noise. These tests represent

the nominal case and will provide good results to eliminate some of the less effective

controllers designed in Chapter 3.

The last section includes simulation results which represent a more realistic test

scenario, where the controllers are used to control the PK/PD model as it is subjected

to process noise and disturbances. These simulations use a designed patient simulator

which includes measurement noise, integrating process disturbance noise as well as

random acute disturbances. The random integrating disturbance causes the average

patient dose to drift away from its original value. The random acute disturbances

simulate infections and blood loss which are common to CKD patients. To overcome

the time-varying nature of the patient simulator, recursive modeling will be used.

The chapter will conclude with the final recommendation for the control system.

67



4.2 Simulation Results using Identified ARX Mod-

els to Simulate Patients

4.2.1 MPC Tuning

The tuning parameters for an MPC controller are often difficult to choose. It is

typically necessary to strike a balance between them, which is often found empiri-

cally through testing in simulations. Some guidelines do exist for tuning parameters

in general (J. Garriga, 2010). The difficulty with this particular case, is that each

patient is different, and hence follows a different system model. It would be very

difficult to tune a controller that has performance tied closely to the correct tuning

parameters for each patient. This is one of the advantages of the Zone MPC formula-

tion presented, it is not overly sensitive to tuning parameters. The tuning parameter

for the states (Q) are typically set much higher than the tuning parameter for the

change in input term (R). This allows the controller to have a primary objective,

which is to regulate the hemoglobin into the zone, as well as a secondary objective,

which is to keep the same dose as long as the hemoglobin will stay within the control

zone. In nearly all of the proposed cases, the tuning parameter Q will be set much

higher than that of R. The classical MPC controller will have Q = 500 and R = 1

chosen for its tuning parameters.

Due to the complexities apparent in the design of the stochastic controllers, it is

worth mentioning some of the other tuning parameters in more detail.

ZMPC

Zone MPC will be used in multiple configurations. For comparison purposes, a

ZMPC controller with static boundaries equal to the target will be used. Another

configuration of the ZMPC controller will use decaying constraints on the δk slack

variable. The final tuning parameters for these two controllers are outlined in Table

4.1. An example simulation is shown in Figure 4.1.
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Tuning Parameter static funnel
Q 500 500
R 1 1
yL (δk constraint) 9.5 g/dL 9.75 g/dL
yH (δk constraint) 11 g/dL 10.75 g/dL
yL (target) 9.5 g/dL 9.5 g/dL
yH (target) 11 g/dL 11 g/dL
p, (yL decay ratio on δk constraint) 0 0.6
p, (yH decay ratio on δk constraint) 0 0.6

Table 4.1: Final tuning settings for the ZMPC controllers that will be tested
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Figure 4.1: Example simulation comparing ZMPC with static boundaries and decaying
boundaries on the δk constraints

ZMPC Hybrid with 1 CVaR Constraint

The first controller discussed here is the ZMPC controller with CVaR constraints.

This controller requires an estimate for the process noise distribution to draw random

samples from, for the scenarios. It also requires tuning parameters Q and R, along

with control zone boundaries for the constraints, as well as control zone boundaries

for δk. The number of scenarios M and the CVaR constraint violation probability ε

is also needed. It should be noted that the CVaR constraints cannot be combined

with a ZMPC controller that has a control boundary larger than what the CVaR con-

straints will typically be solved as, because this eliminates the state term in the cost
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function. The CVaR constraint will be added for yk+3. A constraint on yk+2 is also

avoided because the solution to the optimization problem is typically very aggressive

in trying to reach the target zone in a single move if the current state starts outside

of the desired control region.

Without delving into specifics, Figure 4.2 shows a simulation figure that com-

pares classical MPC directly to classical MPC using the CVaR constraint. In this

simulation, the tuning parameter Q is set too low, but it allows the effect of the

CVaR constraints to be demonstrated. The figure clearly shows that the addition of

the CVaR constraint greatly improves the performance as compared to the controller

without the CVaR constraints.
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Figure 4.2: Example simulation showcasing the ability of CVaR constraints to regulate
the zone boundary

Figure 4.3 shows an example simulation where the tuning parameter Q is set

much higher to align with the previously stated guidelines of having a primary and

secondary objective, to avoid patient specific tuning. It can be seen that the effect

of the CVaR constraint is small, but it does offer an improvement in performance for

this case. For this short simulation, the percent of points within the zone was 90.6%

compared to 88.8% for MPC with CVaR constraints, and classical MPC, respectively.
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Figure 4.3: Example simulation showcasing that if Q is set too high, the CVaR constraints
have little impact on the solution

The final controller to be tested will be a ZMPC controller with 1 CVaR constraint.

The constraints on δk will also be reduced to 10.15 to 10.35 g/dL. This will allow a

small penalty-free zone in the center of the actual control zone to try and reduce

control input chatter, while still allowing the CVaR constraints to do their proposed

purpose. Figure 4.4 shows an example simulation as compared to a classical MPC

controller. The final parameter settings for the controller are shown in Table 4.2. ε

is set relatively high in order to facilitate the feasibility of the optimization problem.

Due to the conservativeness of the CVaR constraints, if ε is set too low, the upper and

lower bound constraints will overlap and the problem will become infeasible. With

such a tight boundary of control, this becomes a severe problem for this controller.

The control region tested in this section is from 9.5 to 11.0 g/dL. This is a very tight

range for CVaR approximations. Not shown here, but simulations were performed

with zone boundaries of 9.5 - 12.0 g/dL and ε equal to 0.05 and this eliminates most

of the in-feasibility issues encountered with the smaller control zone. ε can be also be

tuned to the choice of σ2
Sk

. The larger the value used, the larger ε will have to be to

facilitate feasibility. The number of infeasible optimization solutions will be tracked

during the simulations.
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Tuning Parameter Value
Q 100
R 1
yL (δk constraint) 10.05 g/dL
yH (δk constraint) 10.45 g/dL
yL (target) 9.5 g/dL
yH (target) 11 g/dL
M 100
ε 0.25
S̄k *
σ2
Sk

*

Table 4.2: Final tuning settings for the ZMPC-CVaR (constraint) controller that will be
tested.

*note the mean and variance of the random distribution will be set during specific
simulation tests
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Figure 4.4: Example simulation using the final controller tuning settings for the ZMPC-
CVaR (constraints) controller to be tested as compared to classical MPC

ZMPC with 1 Soft CVaR Constraint

This controller is exactly the same as the previous controller using a CVaR con-

straint on time instant yk+3, but instead of using a backup controller in the event

of in-feasibility, an additional slack variable will be used to loosen the constraints to

make the problem feasible when necessary. The slack variable will then be penalized
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heavily in the cost function. Figure 4.5 shows an example simulation of this con-

troller compared to a ZMPC controller with static bounds on δk. The table of final

tuning parameters for this controller is shown in Table 4.3. The control zone for the

controller will be a small region in the center of the actual target hemoglobin.

Tuning Parameter Value
Q 100
R 1
ξP 107

yL (δk constraint) 10.05 g/dL
yH (δk constraint) 10.45 g/dL
yL (target) 9.5 g/dL
yH (target) 11 g/dL
M 100
ε 0.05
∆Umax 20 000 IU
S̄k *
σ2
Sk

*

Table 4.3: Final tuning settings for the ZMPC-CVaR (Soft Constraint) controller that
will be tested.

*note the mean and variance of the random distribution will be set during specific
simulation tests
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Figure 4.5: Example simulation using the final controller tuning settings for the ZMPC-
CVaR (Soft Constraint) controller to be tested as compared to ZMPC with static boundaries
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ZMPC with CVaR in the Cost Function

This controller, unlike it’s CVaR constraint counterpart, is always feasible. It

is not necessary to use a backup controller. This controller is still a scenario-based

controller and uses the linear program over the quadratic program due to its large

number of constraints. An example simulation of the ZMPC-CVaR (Cost) controller

as compared to a ZMPC controller is shown in Figure 4.6. Here both zone boundary

conditions on δk are equal to the target zone of 9.5-11 g/dL. The ZMPC-CVaR (Cost)

controller regulates the points in the zone at an accuracy of 93.0%, compared to that

of the ZMPC controller with 72.2%. One thing to note is the aggressiveness of the

controller. This controller exhibits the largest average changes in the input out of all

the controllers discussed. For this reason, a constraint on ∆Uk is also used to cap the

changes to a max of 20000 IU.
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Figure 4.6: Example simulation using the final controller tuning settings for the ZMPC-
CVaR (Cost) controller to be tested as compared to ZMPC with static boundaries

The final tuning parameters for this controller are outlined in Table 4.4.
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Tuning Parameter Value
Q 100
R 1
yL (δk constraint) 10.05 g/dL
yH (δk constraint) 10.45 g/dL
yL (target) 9.5 g/dL
yH (target) 11 g/dL
M 200
β 0.99
∆Umax 20 000 IU
S̄k *
σ2
Sk

*

Table 4.4: Final tuning settings for the ZMPC-CVaR (cost) controller that will be tested.

*note the mean and variance of the random distribution will be set during specific
simulation tests

ZMPC Hybrid with 7 Hard Chance Constraints

This controller will use the standard ZMPC controller formulation with the addi-

tion of 7 chance constraints on yk+2 to yk+8. There was no chance constraint placed

on yk+1 as it cannot be affected by uk. Due to the nature of the hard constraints,

a backup classical MPC controller will be used in case the optimization problem be-

comes infeasible. Figure 4.7 shows the controller as compared to a ZMPC controller

with again the same boundaries used on δk that are equal to the target zone of 9.5 to

11.0 g/dL.
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Figure 4.7: Example simulation using the final controller tuning settings for the ZMPC-
HCC (7) to be tested as compared to ZMPC with static boundaries
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For the final tuning parameters, the constraints on yL and yH will decrease expo-

nentially to create a funnel. Figure 4.8 shows an example of the δk constraints and

chance constraints visually.
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Figure 4.8: Example simulation using the final controller tuning settings for the ZMPC-
HCC (7) to be tested as compared to ZMPC with static boundaries

The final tuning parameters that will be used for this controller are outlined in

Table 4.5. The constraints on δk will decay back towards the center of the zone at

the ratio specified.

Tuning Parameter Value
Q 500
R 1
yL (δk constraint) 9.75 g/dL
yH (δk constraint) 10.75 g/dL
yL decay ratio (δk constraint) 0.6k g/dL
yH decay ratio (δk constraint) 0.6k g/dL
yL (target) 9.5 g/dL
yH (target) 11 g/dL
ε 0.01
S̄k *
σ2
Sk

*

Table 4.5: Final tuning settings for the ZMPC-HCC (7) controller that will be tested.

*note the mean and variance of the random distribution will be set during specific
simulation tests
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ZMPC with 7 Soft Chance Constraints

This controller will use the standard ZMPC controller formulation with the ad-

dition of 7 soft chance constraints on yk+2 to yk+8. There was no chance constraint

placed on yk+1 as it cannot be affected by uk. Figure 4.9 shows the controller as

compared to a ZMPC controller with again the same boundaries used on δk that are

equal to the target zone of 9.5 to 11.0 g/dL.
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Figure 4.9: Example simulation using the final controller tuning settings for the ZMPC-
SCC (7) to be tested as compared to ZMPC with static boundaries

For the final tuning parameters, the constraints using yL and yH will decrease

exponentially to create a funnel similar to the hard chance constraint version. The

final tuning parameters that will be used for this controller are outlined in Table 4.6.

The constraints on δk will decay back towards the center of the zone at the ratio

specified.
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Tuning Parameter Value
Q 500
R 1
ξP 109

yL (δk constraint) 9.75 g/dL
yH (δk constraint) 10.75 g/dL
yL decay ratio (δk constraint) 0.6k g/dL
yH decay ratio (δk constraint) 0.6k g/dL
yL (target) 9.5 g/dL
yH (target) 11 g/dL
ε 0.01
S̄k *
σ2
Sk

*

Table 4.6: Final tuning settings for the ZMPC-SCC (7) controller that will be tested.

*note the mean and variance of the random distribution will be set during specific
simulation tests

4.2.2 Additive Process Noise Simulation Results

The first test used to assess the different controllers’ performance was a simulation

using the Constrained ARX models within the controller, as well as for the patient.

The Constrained ARX models were the nonlinear version estimated using an NLP

solver. This represents the nominal case, with perfect modeling. A block diagram of

the simulations in shown in Figure 4.10.

Figure 4.10: Block Diagram of the MPC controller test simulations using an ARX model
as the patient simulator
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These results are shown in Table 4.7. The additive process noise was drawn from

a distribution of sk = N(0, 0.32) and added to the system output after each week of

simulation. In practical applications, the hemoglobin value is not expected to change

more than 5% between actual hemoglobin measurements (1 week intervals), making

this noise distribution near the worst case scenario. Simulations were performed

across all 167 patient models for 500 weeks. Due to some of the patient models not

being acceptable, the results were filtered. The models were estimated using Matlab’s

fmincon function and there are no guarantees that a global minimum solution has

been found. There are also no guarantees that each patient’s data was acceptable

to estimate a model. Many of the patients are also healthy enough to not receive

epoetin-alfa for many weeks, which could result in a bad model. The results were

filtered by removing all the simulations for every patient that scored less than 50%

of the points within the zone for at least one of the controllers or the physician’s

protocol. Filtering with this criteria, the statistics in the table include 132 of the 167

patients. This aids in excluding models that do not behave like actual patients, and

can skew the results, especially in the physician protocol statistics. Another item to

note, is that the stochastic controllers were given the exact distribution of additive

noise, which may not be realistic in actual practice.

Performance
Statistic

MPC ZMPC ZMPC ZMPC ZMPC ZMPC ZMPC ZMPC AMP
class. static funnel SCC HCC H-CVaR S-CVaR CVaR

(7) (7) (1) (1) (cost)
Integrated yk Err. 0.136 0.314 0.186 0.141 0.142 0.164 0.162 0.194 0.486
% of Points in Zone 92.0 82.5 89.1 91.6 91.4 90.5 90.3 89.5 76.1

Uk Total ( IU
1000

) 4724 4714 4699 4708 4690 4754 4738 4782 4909
Avg. Weekly Uk 9448.7 9428 9398 9416 9380 9509 9476 9564 9817
Avg. ∆Uk 4684 423 487 3178 2424 4609 7751 8165 344

Table 4.7: Simulation Results for the various ZMPC controllers as compared to the physi-
cian’s protocol for the additive process noise test scenario

There are many observations that can be concluded within these simulation re-

sults. One of the first things to note, is that the average change in the input is

extremely conservative for the physician’s protocol. This is due to the protocol not

allowing the change of inputs very often. Usually the dose is changed, and then not

allowed to be changed again for 2-4 weeks. The model based controllers will likely

change the dose often as they respond to disturbances and process noise.

The first controller to be discussed is the classical MPC controller. The classi-
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cal MPC controller is seen to have the highest accuracy in state control. With the

tuning parameter, Q, set abnormally high, this result makes sense. The classical

controller does however suffer by having very high average drug use, along with very

high average ∆uk as compared to the other controllers. The state performance of

this controller could be considered close to the upper limit that any of the controllers

could achieve within the problem constraints.

The ZMPC controller with static boundaries on the slack variable, δk, performs

better but quite similar to the Physician Protocol in all categories. It has small im-

provements in all categories reducing the Integrated Output Error by 35.5% and the

total drug use by 4.0%. The percent of points was 8.4% higher and this comes at a

cost of increasing the average change in input by only 23.0%. However, this controller

remains the most sluggish controller, of all the model based controllers tested, due to

the large control zone. Zone MPC typically lags in state performance with regards

to setpoint based MPC controllers (B. Grosman, 2010), but its benefits come in the

form of a more clinically acceptable and safer controller due to the more constant

drug doses.

The ZMPC controller with funnel constraints on the slack variable, δk, performs

much better than the ZMPC controller in terms of state control and total drug use.

Adding the funnel constraint offers large improvements over static boundaries. As

compared to the physician’s protocol, it offers improvements in every category except

increasing the average weekly change in dose by only 41.6%, which is still minimal

compared to the other controllers. The funnel control zone allows the weak tracking

of a setpoint, while also retaining some of the features of the Zone MPC algorithm

with the static control zone boundaries.

The two ZMPC controllers using the chance constraints converted to hard con-

straints assuming Gaussian uncertainty perform similar to each other. These con-

trollers use chance constraints on the upper and lower zone boundary for k + 2 to

k + 8. ZMPC HCC (7) is the hybrid controller that uses classical MPC in the event

of infeasibility. The HCC version of the controller becomes infeasible around 2% of

the time. ZMPC SCC (7), relaxes the constraints until they are feasible, with these

relaxation variables being penalized heavily in the cost function. These controllers

also use the same funnel constraints as the ZMPC funnel controller. Both of these

80



controllers offer improvements in state control over the ZMPC funnel controller, with

similar total drug use, however they do so at a large increase in the average change

in input. As compared to the ZMPC funnel controller, the difference is an increase

of 553% and 398% for the HCC and SCC controllers, respectively. The aggressive

change in the inputs may be an undesirable feature of these controllers, for a small

gain in state performance.

The CVaR constraint controllers offer a similar performance to the other chance

constrained MPC controllers. The feasibility of the CVaR constraints is extremely

low due to the conservativeness of the CVaR constraints. The zone boundaries of the

CVaR constraints tend to overlap very easily. Even with the probability of violation

set to 25%, the constraints are not feasible around 8% of the time.

The controller with CVaR in the cost function has good state performance but its

average change in uk is the highest of all the controllers which makes this controller

type a poor choice for this application. I speculate that this controller performs

poorly due to the tight boundaries in this case. Previous tests of this controller using

a larger control zone for a CSTR produced very good results, which is not apparent

in these simulations.

4.2.3 Disturbance Rejection

Another necessary test for the controllers is to measure how well they respond to

disturbances. Several different major disturbances can be detected within the data.

Examples of these disturbances, are slow deterioration in patient health (negative

ramp disturbance), acute blood loss (negative step disturbance), and blood transfu-

sions (positive step disturbance). The controllers will be tested under these conditions

by overlaying a disturbance vector on top of additive process noise. A disturbance

will be introduced approximately every 50 weeks. An example of the nominal case

is shown in Figure 4.11. Here there are several step and ramp disturbances added

to the system. At weeks 50, 100 ,150 and 200, negative step disturbances are intro-

duced of magnitude -1 (g/dL), -2(g/dL), -3(g/dL) and -4(g/dL). At weeks 250-255,

300-305 and 305-310 there are ramp disturbances introduced at -0.5 (g/dL)/week, -

0.75(g/dL)/week and 0.5(g/dL)/week, respectively. At times 350, 400 and 450, there

are positive step disturbances introduced of magnitude 2, 3 and 1 (g/dL), respectively.
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From weeks 450-500, there exists a negative ramp disturbance of -0.1 (g/dL)/week. It

is interesting to note that the physician’s protocol can induce an oscillatory behavior

in the output. The hemoglobin control of the physician’s protocol is not very good

and results in a lot of hemoglobin values over the 11.0 g/dL zone target. Hemoglobin

values above the upper limit of the target zone are undesirable and result in the use of

excess epoetin-alfa, which has economic consequences. The disturbances here are also

well spread out in time with almost a year in between the disturbances. Patients may

undergo more disturbances within a shorter time limit, which could further impact

control. The MPC algorithms are easily able to deal with these acute disturbances

and return the hemoglobin to the target zone.
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Figure 4.11: Example simulation of the controller response to the designed output dis-
turbance # 1 vector for the nominal case (no process noise)

Applying this identical disturbance to patient number 15, along with an additive

process noise of N(0, 0.252) results in the controller responses shown in Figure 4.12.
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Figure 4.12: Example simulation of the controller response to the designed output distur-
bance #1 vector along with additive process noise drawn from the distribution of N(0, 0.252)

If the disturbance vector is instead set as successive negative step disturbances

every 10 weeks, it can be seen that the physician’s protocol is not able to control the

hemoglobin very well again. This particular feature of the current anemia manage-

ment protocol is one of the biggest detriments as the patients will see many acute

disturbances over the course of their lifetime. The physician’s protocol is unable to

control these situations well, and often the medical professionals are left to guess an

appropriate dose to counter these disturbances based on their past experiences. The

nominal case is shown in Figure 4.13, while the case with additive process noise is

shown in Figure 4.14
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Figure 4.13: Example simulation of the controller responses to successive negative step
disturbances for the nominal case (no process noise)

Again, the same disturbance can be applied along with an additive process noise

from the distribution N(0, 0.252). Figure 4.14 shows the controller responses for

patient 15 for this case. The AMP spends a lot more time outside the control zone

boundary than the model predictive controllers. The state performance between most

of the controllers is very similar.
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Figure 4.14: Example simulation of the controller responses to successive negative step
disturbances along with additive process noise drawn from the distribution of N(0, 0.252)

Using disturbance vector #1 and an additive process noise with distribution

N(0, 0.252), simulations were performed for every patient to test the controllers’ regu-

lation ability. The results are represented in Table 4.8. Again, the simulations where

one of the 9 control methods scored less than 50% of the points within the zone were

removed, leaving 117 of the 167 simulations remaining in these statistics.

Performance
Statistic

MPC ZMPC ZMPC ZMPC ZMPC ZMPC ZMPC ZMPC AMP
class. static funnel SCC HCC H-CVaR S-CVaR CVaR

(7) (7) (1) (1) (cost)
Integrated yk Err. 0.173 0.381 0.214 0.181 0.182 0.189 0.183 0.203 0.531
% of Points in Zone 89.6 77.6 86.9 89.1 88.9 88.3 88.7 88.5 72.4

Uk Total ( IU
1000

) 5116 5108 5060 5093 5068 5086 5068 5178 5411
Avg. Weekly Uk 10232 10216 10120 10186 10136 10171 10136 10355 10822
Avg. ∆Uk 4407 804 670 2973 2315 4543 7335 8449 473

Table 4.8: Simulation Results for the various ZMPC controllers as compared to the physi-
cian’s protocol for the designed disturbance test scenario

The controller performance for the disturbance vector simulation results in similar
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performance values for each of the controllers as compared to the simulations without

the disturbance vector. As expected, each of the controllers state management dete-

riorates slightly due to the acute disturbances. The ZMPC controller with the funnel

constraints offers the most desirable solution. It has very good state performance,

coupled with a very low average change in uk. The chance constrained controllers (as

tuned) have good state performance, but the rate change terms are far too high to be

considered viable in a clinical setting. The Zone MPC (static and funnel) controllers

will be studied further in more rigorous simulation tests.

4.3 Controller Simulation Results on PK/PD Pa-

tient Simulator

In order to test the controllers with a more realistic scenario, it is proposed to

test the controllers’ regulation abilities when trying to control the PK/PD model,

along with added process , measurement noise and acute disturbances. The following

sections outline the design of a realistic patient simulator, justification for the chosen

noise distributions and the simulation results on the patient simulator.

A block diagram of the simulation setup is shown in Figure 4.15.

4.3.1 Patient Simulator Design

To begin the control system testing, simulated data was needed initially to acquire

a constrained ARX model of the system. As in a clinical setting, an initial few months

of data is necessary before a proper model can be identified for the MPC algorithms

to be put into use. Initially, the PK/PD models were used along with a designed

disturbance, random measurement noise and the physician’s protocol control scheme

to collect simulated data. A constrained ARX model was subsequently identified

from this simulated data. An example of this is shown in Figure 4.16 for both the

validation and training data. The data was split evenly into training and validation

portions, similar to the clinical data. The bottom subplot, shows the shape of the bk

parameters.
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Figure 4.15: Block Diagram of the Simulation Setup for Recursive Zone Model Predictive
Control and the Patient Simulator

Figure 4.16: Example of a scenario used to attain the C-ARX models from simulated data

Model parameters were estimated for each of the 167 clinical patients and it is these

models that serve as the basis for the simulated patients. The actual clinical patients

exhibit many varying degrees of behaviour beyond that which the PK/PD model can
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capture. Most notably, clinical patients may become increasingly dependent on EPO

over time. This can be seen in a few clinical patients in Figure 4.17.

0 100 200 300 400 500 600 700 800 900 1000

H
gb

, (
g/

dL
)

6

8

10

12

Time (days)
0 100 200 300 400 500 600 700 800 900 1000

   
E

P
O

 (I
U

)

0

5000

10000

15000

(a) Patient 4

0 100 200 300 400 500 600 700 800 900 1000

H
gb

, (
g/

dL
)

8

10

12

14

Time (days)
0 100 200 300 400 500 600 700 800 900 1000

   
E

P
O

 (I
U

)

×104

0

0.5

1

1.5

2

(b) Patient 5
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(c) Patient 6

Figure 4.17: Clinical patients will become continually more dependent on EPO doses if
their natural endogenous erythropoietin production deteriorates

Some patients may also become more healthy for short periods of time. This

phenomena is depicted in multiple patients in Figure 4.18.
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(c) Patient 9

Figure 4.18: Clinical patients become less dependent on EPO doses as their natural
endogenous erythropoietin production increases

Both of these scenarios bring about a time varying nature of the process system.

To aid in simulating these conditions, an integrating disturbance with a small negative

mean was used. This allows the patients’ hemoglobin response to drift slowly away

from the original model in either direction, but with a bias to the downside. The

accumulation of the disturbance term will impact the steady state input significantly.

Another frequent occurrence is acute negative step and ramp disturbances. These

can be seen during infections or when significant blood loss occurs. Some acute

disturbances can be seen in the clinical patients shown in Figure 4.19. The step

disturbances are clearly identifiable. Patient 10 exhibits a negative ramp disturbance

around day 800. Patient 12 exhibits a negative ramp disturbance around day 375.
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(b) Patient 11
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(c) Patient 12

Figure 4.19: Clinical patients’ exhibiting acute disturbances

The occurrence of these types of disturbances is also incorporated into the patient

simulator. A negative step or ramp disturbance can be incorporated by modifying

the red blood cell population. Low weekly probabilities are given to these types of

disturbances making them occur randomly. The RBC population is represented by

the 2, 3 and 4th states in the PKPD model. The probability of a step disturbance

occurring is set to 1 % each week. This results in approximately one acute step

disturbance event per 2 years, per patient. There is a 15 week grace period after

each step disturbance where another disturbance cannot occur, to avoid multiple

disturbances in very short periods of time. The magnitude of the step disturbance is

randomly chosen to reduce the current red blood cell population by multiplying it by a

fractional number between 0.73 and 0.98. This disturbance translates to a maximum

hemoglobin drop of roughly -3.5 g/dL, which is near the maximum drop observed in

the clinical data. The states governing the RBC population can be modified using

Equations 4.1, which are derived in the original work on the PKPD model (Chait et

al., 2014). The new RBC population is calculated incorporating the step disturbance

(AD). AD holds a value of 1 unless a disturbance is selected for the current weekly

time instance. If a disturbance is selected, AD is set to a fractional value and Rk

is updated. The state x2 is also updated to reflect changes in the RBC population.

States x1,k and Ek remain unchanged.

Rk,new = ADRk (4.1a)

x2,k = Rk,new −
4x1,k

µ
(4.1b)

Similarly, negative ramp disturbances are also programmed into the simulator.

The chance of a negative ramp disturbance is also set to 1% each week. The magnitude
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of AD for the ramp disturbance is chosen randomly between 0.7 and 0.95 and then

the full magnitude is spread over a duration of time. The time is chosen randomly to

be between 4 and 15 weeks. For example, if the total magnitude drop was chosen to

be 30% and then the length of the drop was chosen to be 15 weeks, AD would hold

a value of 1 − 0.3/15 = 0.98 for 15 weeks in a row. There is also a grace period of

10 weeks after the completion of the ramp distubance where no additional ramps or

steps can occur.

A simple block diagram of the patient simulator is shown in Figure 4.20, where

the integrating process noise is added through the disturbance variable, dk, and the

acute disturbances are added to the model through the use of the variable AD.

Figure 4.20: Block Diagram of the Patient Simulator

Figure 4.21 shows three simulations where the proprietary AMP is used to control

the designed patient simulator. Figure 4.21a shows a negative ramp disturbance

similar to that seen in Figure 4.19a and 4.19c. Figures 4.21b and 4.21c have similar

time-varying features due to the integrating disturbance accumulating a non-zero

sum overtime, similar to Figures 4.17 and 4.18. Figures 4.21b and 4.21c also exhibit

a negative step disturbance.
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(a) Simulated Patient 1
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(b) Simulated Patient 2
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(c) Simulated Patient 3

Figure 4.21: Simulations showcasing the features of the designed patient simulator

4.3.2 Process and Measurement Noise

The patient simulator will use random process noise for the integrating distur-

bance, as well as a random measurement noise. To determine the appropriate process

and measurement noise, a recursive moving window model estimation method was

used. This method uses a moving window of 50 points of data for each patient, and

estimates a model for these data points. The estimated model is used to predict a

single 1-step prediction residual, and then the moving window is advanced by 1 week.

This was performed for all patients with a large enough data set, and the residuals

were combined to produce a distribution shown in Figure 4.22. The statistics for the

residuals are shown in Table 4.9.

Statistic Value

Mean 0.0053
Standard Deviation 0.264

Mean (absolute) 0.191
90% Confidence Interval ± 0.440
Total No. of Residuals 9335
Clinical Patients used 159
Average Patient Data 126.4 weeks

Table 4.9: 1-Step Residual Statis-
tics

Residual
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Figure 4.22: 1-Step Residuals for all Pa-
tients

The standard deviation of the 1-step residuals is 0.264. With this knowledge, it

would be appropriate to have a combined measurement and process noise distribution

similar to the error exhibited in the 1-step residuals. CKD patients typically have
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their blood work drawn and analyzed in a lab. One such commercially available hema-

tology analyzer is Samsung’s LABGEO Hemotology Analyzer. This specific device

analyzes blood samples automatically using impedance technology for cell counting

and photometry for hemoglobin analysis (Park et al., 2014). The manufacturer’s co-

efficient of variation (CV) for Hgb measurement for this device is 2.4%. It has been

tested in a research study to produce a range of CV values between 0.71 and 1.22

% with a median CV of 0.84 % (Park et al., 2014). CV is the ratio of the standard

deviation to the mean measurement. For example, a true measurement of 11.0 g/dL

would produce a standard deviation for the measurement error of 0.264, according to

the manufacturer’s specifications.

With both the commercial device and the 1-step residuals in mind, three mea-

surement noise environments for the simulations were chosen to perform the exper-

iments. The first environment uses a higher measurement noise with a distribution

of N(0, 0.202), while the integrating process noise was drawn from the distribution

N(−0.001, 0.12). The combined standard deviations of both process and measurement

noise add up to a standard deviation of 0.3 g/dL, which should be an adequate high

noise test scenario for the modeling and control algorithm. A lower measurement noise

environment was also tested using a measurement noise distribution of N(0, 0.102),

while the integrating process noise was drawn from the distribution N(−0.001, 0.12).

The lower noise environment will aid in quantifying the effect of measurement noise

on the modeling and control algorithms and will represent a more nominal environ-

ment. The third noise environment has only measurement noise which is drawn from

a distribution of N(0, 0.202). All three environments will also be subjected to random

step and ramp disturbances on the RBC population.

4.3.3 Simulation Results on PK/PD Simulator

The controllers were compared based on three categories. The first category cal-

culates the integrated output error outside the actual control zone. It captures a

summation of the magnitudes of the zone violations and quantifies the state perfor-

mance. The second category is the average EPO dose given. This category quantifies

the cost to treat the patient. The third category quantifies the average change in

EPO dose from week to week. This category aids in choosing a controller that has
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an acceptable level of aggressiveness. The EPO doses are typically given in multiples

of 1000 IU. It is more desirable to have a lower average change in weekly drug dose

than 1000 IU. The choice of controllers and tuning parameters selected in this section

are based on rigorous empirical methods. To justify the use of the parameters and

features selected for discussion, a short explanation of the selections is necessary.

The first set of simulations is of different tuning parameters for the classical recur-

sive MPC and is shown in Figure 4.23. The integrated output error is plotted against

the average drug dose, while the average change in input statistic is displayed as a

number beside each point on the figure. This study was completed using the R-MPC

controller with different tuning parameters for Q (10, 30, 50, 80, 120) and R=1. The

linear constrained ARX model estimation was completed using a moving window of

50 data points, where each point carries equal weight. The high noise environment

was used for these simulations. The simulations were run for 113 simulated patients

for 500 weeks each. Parallel to theoretical expectations, as the state tuning parameter

Q increases, the controller becomes more aggressive and the state performance im-

proves. These improvements come at the cost of controller aggressiveness and a larger

amount of drug use. Q=30 was chosen as the settings for further discussion because

it’s improvements over Q=10 are noticeable, but the improvements in state perfor-

mance as the Q becomes higher do not outweigh the disadvantages of the controller

aggressiveness and increased drug cost.
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Figure 4.23: Comparison of different classical MPC tuning settings
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Another study explored the effect of the window size length used for model esti-

mation. Figure 4.24 shows the effects of changing the window size estimation from 30

to 80, in steps of 10 data points. The simulations were performed on the high noise

environment for each of the 113 patients at a simulation length of 500 weeks. Linear

C-ARX modeling was used along with Zone MPC with the funnel constraints and a

tuning parameter Q fixed at 100 and R=1. The figure shows significant improvements

can be made by increasing window length to a value larger than 50. As more points

are used in the model estimation phase, the model improves, which matches theo-

retical expectations. The improvements seen by the controller may be attributed to

the design of the patient simulator, as the DDE model remains static. Subsequently,

the system gain remains the same and this may contribute to the model accuracy

improvement observed with larger window sizes. The controller performance gains

start to suffer from diminishing returns as the window size is increased, as can be

seen in the figure.
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Figure 4.24: Comparison of different window size lengths used for linear constrained ARX
model estimation

Different tuning values for the economic term in the cost function were also ex-
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plored. The state tuning parameter Q was increased to 1000, R was set to 1 and S

was varied from 0 to 5, to determine the effect of the economic term. The goal of this

study was to reduce the total drug usage, while still having good state performance.

Figure 4.25 shows the Recursive Zone MPC with the funnel constraints with the var-

ied economic tuning parameter for all the simulated patient models. The simulations

were performed in the high noise environment for a length of 500 weeks per each of

the 113 patients.
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Figure 4.25: Comparison of different tuning parameters for the economic term

The controller behaviour is as expected. As the economic term penalties are in-

creased, the state performance is reduced by up to 8.2%. The maximum average

change in drug dose also increased from 1109 to 1820 IU/week, a 64% increase. The

maximum drug savings is approximately 3.7% using an economic term tuning pa-

rameter of S=5. The effect of the economic term can be seen in Figure 4.26. Here,

the economic term produces a bias to the negative side compared with the controller

without an economic term. As the economic penalties increase, the offset increases.

The economic term is highly sensitive to an incorrect tuning parameter, and makes

it difficult to have a one size fits all set of parameters.
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Figure 4.26: Hemoglobin Offset produced by the economic term

Another set of simulations explored the effect of the tuning parameter λ on the

weighting matrix in Weighted Recursive Least Squares Regression using the funnel

model predictive zone controller. The results are outlined in Figure 4.27. The re-

sults show that the state performance increases as λ increases, but so does the total

drug dose. Interestingly though, the controller becomes slightly less aggressive as λ

increases, as can be seen by the values beside each dot which represent the average

change in weekly drug dose (IU). A value of 0.98 will be chosen for λ in the subsequent

simulations for testing on the three different noise environments.
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Figure 4.27: Comparison of different weighting matrices for the weighted least squares
modeling methods used in tandem with the funnel model predictive controller

The final controllers selected for the simulations on the three different noise en-

vironments are shown in Table 4.10 with their tuning settings. The digital PID and

current AMP will also be tested.

Controller Estimation Control
Identifier Q S R Window Size λ Target (g/dL)

MPC 30 - 1 70 - 10.25
R-MPC 30 - 1 70 - 10.25

R-ZMPC 200 - 1 70 - 9.75 - 10.75
R-FMPC L 100 - 1 70 - 9.75 - 10.75, funnel

R-FMPC NL 100 - 1 70 - 9.75 - 10.75, funnel
WR-FMPC 100 - 1 all 0.98 9.75 - 10.75, funnel

WR-EFMPC 1000 5 1 all 0.98 9.75 - 10.75, funnel

Table 4.10: Tuning parameters for the different model predictive controllers explored

The first noise environment to be explored is the high noise environment. The

results of all the simulations for each controller are shown in Figure 4.28. It is easy

to see that the classical MPC controller without recursive modeling performs much

worse than the classical MPC controller with recursive modeling. The integrated

output error is nearly 3 times as large for the controller that does not use recursive
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modeling. The current AMP also performs very poorly in comparison to the rest of

control methods, having an integrated output error value 2 to 3 times larger than the

other controllers. The rest of the recursive and weighted recursive controllers per-

form relatively similar to each other in terms of state performance but some obvious

differences can be seen by comparing some of the controllers. When comparing the

recursive zone MPC controller with the static boundaries (R-ZMPC) to the linear C-

ARX recursive zone MPC controller with the funnel constraints (R-FMPC L), it can

be seen that the funnel constraints help to improve the state performance by 12.2%, as

well as reduce the total drug usage by 0.7%. This comes at the cost of more frequent

EPO dose changes, increasing the average change in EPO by 77.7%. The robustness

of the nonlinear C-ARX is not as good as the linear C-ARX method here. The non-

linear C-ARX method (R-FMPC NL) performs worse in state management (-16.1%)

and total drug usage (+1.1%) as compared to the linear version (R-FMPC L). The

weighted recursive zone MPC controller with the funnel constraints (WR-FMPC) of-

fers a slight improvement in the state management (+7.0%) over the non-weighted

version (R-FMPC L), but comes at the cost of slightly increased drug usage (+1.1%)

and controller aggressiveness (+5.5%). As expected, the weighted recursive least

squares economic zone MPC controller with the funnel constraints (WR-EFMPC)

performs slightly worse in state management (-5.1%) than the controller without the

economic term (WR-FMPC) but it reduces the total drug usage by approximately

2.7%. Another detriment of the economic term is the large increase in the controller

aggressiveness. It increases by 118% and is over the 1000 IU threshold that would be

desirable to stay beneath. Last but not least, the PID controller performs worse than

most of the MPC controllers in state management, but it also yields a lower total

drug usage. This feature of the PID controller is completely attributable to the fact

that when an acute disturbance occurs, the PID controller is sluggish to respond on

some patients as compared to the MPC controllers, which causes the PID controller

to give less dose for longer than the other controllers. The controller settings used for

the PID controller are easily able to handle all the patient models and disturbances

relatively well, with the least complex solution. The R-FMPC L and WR-FMPC

controller both have acceptable levels of controller aggressiveness and perform similar

here and would be the most desirable selection based on this noise criteria.
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Figure 4.28: Comparison of different anemia management controllers in the high noise
environment

The second noise environment to be explored is the low noise environment. The

results of the controller simulations are shown in Figure 4.29. The low noise environ-

ment impacts the performance of all the controllers, in a relatively equal manor. The

location of each point on the figure remains relatively equal to the location on Figure

4.28. The same comparisons can be made here as previously discussed. It should be

noted that each controller becomes slightly less aggressive in its control action. The

R-MPC and WR-EFMPC controllers still have far too high of input changes to be

used safely in a clinical setting. The R-FMPC L and WR-FMPC controller both have

acceptable levels of controller aggressiveness and perform similar here and would be

the most desirable selection based on this noise criteria. The PID controller performs
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fairly well, but again its sluggishness on acute disturbances is an undesirable feature.

Integrated Output Error
20 30 40 50 60 70 80

A
ve

ra
ge

 E
P

O
 d

os
e,

 (I
U

)

8000

8200

8400

8600

8800

9000

9200

9400

   303

   539

   965

  1436
   447

   783

   756
   810

  1379

AMP
PID
MPC
R-MPC
R-ZMPC
R-FMPC L
R-FMPC NL
WR-FMPC
WR-EFMPC

Figure 4.29: Comparison of different anemia management controllers in the low noise
environment

The final noise environment was used to perform controller simulations. This en-

vironment keeps the high measurement noise but does not use the integrating process

noise. This is not likely to occur in a clinical setting, but it is a good exploratory

exercise to see the impact that the integrating disturbance has on the controller per-

formance. The controller performance shifts quite a bit in comparison to the other

two noise environments. In these simulations, the classical MPC controller without

recursive modeling performs much better than previously, as expected. The R-ZMPC

controller has a similar state performance location relative to the others, but it comes
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at the cost of much larger drug usage. This is the result of the hemoglobin set-

tling near the top of the control zone more often than the other controllers. These

simulations include only negative acute disturbances, which will cause the R-ZMPC

controller to settle near the top boundary more often as the controller forces the Hgb

upwards after the disturbance. The R-FMPC NL controller still performs worse as

compared to the linear version, which solidifies the linear modeling method as the

method of choice to obtain a C-ARX model. The aggressiveness of the WR-EFMPC

and R-MPC controller are still quite high, and taking into consideration the previous

results, these controllers are not recommended for use.
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Figure 4.30: Comparison of different anemia management controllers in the noise envi-
ronment without the integrating disturbance
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Several of the simulations, with a partial showing of the controllers, will be used

to illustrate abnormalities that are common with some of the controller methods.

The first two figures are shown in Figure 4.31. In figure (a), the AMP causes a lot of

oscillations in the hemoglobin. In figure (b), the current AMP is unable to provide

proper doses for this patient, which would necessitate the divergence from the current

AMP leaving the physician to choose doses for the patient blindly. In both cases, the

WR-FMPC controller is able to control the hemoglobin value well.
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(a) AMP induced Hgb Oscillation
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(b) Divergence from AMP necessary

Figure 4.31: Simulation Results where the current AMP fails to control the patient Hgb
adequately

Figure 4.32a shows the importance of the recursive modeling algorithm. A com-

parison of classical MPC and R-MPC shows that without recursive modeling, the

MPC controller cannot account for changing patient health. Figure 4.32b shows the

tendency of the R-ZMPC controller to settle near the upper boundary in these simu-

lation tests. Due to the fact that all the acute disturbances are negative, the R-ZMPC

controller will often guide the hgb to the upper part of the control zone, which will

use more drug than necessary to maintain the hgb in the desired range. Less com-

monly, the reverse also happens, where the hgb settles near the bottom. It is not fair

to judge the R-ZMPC controller by its increased drug usage because of the different

control zone shape, but it highlights the fact that the hgb values will often be near the

boundaries of the zone, and small disturbances and noise can push the state outside

of the control zone more easily.
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(a) MPC fails without recursive modeling

0 50 100 150 200 250 300 350 400 450 500

H
em

og
lo

bi
n,

 y
k (g

/d
L)

7

8

9

10

11

12

13

Time (weeks)
0 50 100 150 200 250 300 350 400 450 500

E
P

O
 D

os
e,

 u
k (I

U
)

×104

0

0.5

1

1.5

2

2.5

3

AMP
R-ZMPC
WR-FMPC

(b) Zone MPC using excessive EPO

Figure 4.32: Simulation Results showing the importance of recursive modeling, and a case
where R-ZMPC uses much more drug dose than necessary

Figure 4.33 shows two cases which magnify the problem with the digital PID con-

troller, while showing the WR-FMPC controllers ability to handle the situations well.

Figure 4.33a shows the sluggishness of the PID controller during acute disturbances.

The PID controller is late to respond to a step disturbance, and overshoots the target

zone around the 375 week mark. The PID controller could be tuned individually to

better manage this patient, but it will be difficult to manage each patient individu-

ally. The WR-FMPC algorithm is a one-size-fits-all algorithm with identical tuning

settings for each patient.
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(b) MPC handles modeling without a dose

Figure 4.33: Simulation Results showing some of the failures of the PID controller
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Figure 4.33b shows a case where no EPO dose is given for almost two years. The

WR-FMPC controller is still able to counter the acute disturbance at the 400 week

mark, due to the constrained modeling technique. The PID controller performs very

poorly here due to integral wind-up. The sluggishness of the PID controller can also

been seen again in this figure in the 175 to 225 week mark, where the PID responds

slowly to the disturbances and overshoots the target zone both times.

Figure 4.34 shows two cases where the patient health changes significantly over

the course of the simulation due to the integrating disturbance. The zone MPC

controllers with the funnel constraints are able to control both of these situations

well.
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(a) Patient health changes drastically
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(b) Patient health improves over time

Figure 4.34: Simulation Results showing some patients that have a decaying/improving
health over time

Figure 4.35 shows the difficulties in obtaining a one-size-fits-all set of tuning pa-

rameters for the patients for economic MPC (WR-EFMPC). Utilizing the economic

term can offer improvements in drug savings, but the controller is difficult to tune for

the whole set of patients and results in reduced ability to manage the state effectively.

The state management should not be sacrificed to reduce the cost of ESA treatment.

Figure 4.35a shows a case where the economic controller is very aggressive, while

Figure 4.35b shows a case with the same tuning settings where the controller is not

very aggressive. Both simulations show that the economic term usually just causes a

slight offset between WR-EFMPC and WR-FMPC.
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(a) Aggressiveness is high for this patient
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(b) Aggressiveness is low for this patient

Figure 4.35: Simulation Results showing the difficulty for obtaining a one-size-fits-all set
of tuning parameters for economic R-FMPC

Figure 4.36a shows the reduced performance that the nonlinear C-ARX method

provides during control. The reduced performance might be attributed to the ro-

bustness of the fmincon function and its ability to find a proper model at each time

point. If no model is obtained, the previous model is used. The linear QP version

of the C-ARX method is far more robust than the NLP version, and it rarely ever

fails to find a minimum solution. The nonlinear method is not recommended for use

in the clinical setting. The controller decision comes down to a choice between the

linear weighted and non-weighted recursive zone MPC controllers with the funnel

constraints (WR-FMPC and R-FMPC). Figure 4.36b shows there is minimal differ-

ence between the weighted and non-weighted versions of R-FMPC. These results align

with the modeling results, as little difference is also seen between the two modeling

methods. As the state management lags slightly in the non-weighted version for all

three noise environments, the linear weighted recursive zone model predictive control

using the funnel constraints (WR-FMPC) is recommended for use.
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(a) Nonlinear modeling performs poorly
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(b) Minimal difference exhibited

Figure 4.36: Simulation Results showing the minimal difference between weighted and
non-weighted R-FMPC and the poor performance of the nonlinear C-ARX method for
recursive model estimation

4.4 Conclusion

In the simulations performed using the C-ARX models as the simulation patient,

the ZMPC controller with the funnel constraints had comparable state management

to that of the highest performing controllers utilizing chance constraint formulations.

The exception was that the ZMPC (funnel) controller also had a lower total drug

usage, as well as a far lower average rate of change as compared to the Chance Con-

strained controllers. Using the funnel constraint allows the tuning parameters to be

set to a one-size-fits-all configuration where the controller aggressively changes the

input only if the state exists outside of the zone, while remaining almost stationary, if

within the zone. Due to the large number of clinical patients, this tuning robustness

is a highly sought after feature of Zone MPC.

Due to the time-varying nature of the clinical patients and frequent disturbances

on the system, it is not enough to implement a controller without a method for updat-

ing the model. The simulation results using the PKPD model as the patient simulator,

along with the integrating process noise and random acute disturbances, tested the

controllers in the most rigorous of simulation tests. The integrating process noise
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offers unique challenges to overcome because it is possible to have an accumulation of

the disturbance over time. The controller must be able to properly account for this

added disturbance. Due to modeling inaccuracies and modeling error using a linear

model on a nonlinear system, the process models used in the controller may produce

large offset and non-optimal solutions as the hemoglobin extends beyond the models

valid range. Recursively estimating a constrained ARX model at each sampling time

produces a highly robust controller to the time-varying nature of the process model.

It is important to restrict the model parameters to a particular structure to ensure

each model attained will be appropriate for use. Without restricting the structure,

it is difficult to know whether the optimal modeling solution will produce a model of

the system that will validate well. Without the constraints, the attained model may

also be unstable, which does not match theoretical expectations.

Many different types of controllers were tested through the use of computer simu-

lations. Observing the simulation results, it is recommended to implement a Weighted

Recursive Zone Model Predictive Controller utilizing the funnel control zone (WR-

FMPC), using a longer window size in the length of 70+ weeks. It is recommended

that the weighting in weighted least squares be a value of λ=0.98 or greater. The

data should also be filtered to remove some effects of the measurement noise. The

recommended filter is an EWMA filter as presented with a filter value α=0.75. The

funnel shape should be tuned according to the equations presented using a value of

p=0.6. The controller should have the cost function tuning weights set at Q=100 and

R=1. The prediction horizon should be set to N=8.
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Chapter 5

Future Work

5.1 Introduction

This chapter outlines the future areas of research that have been identified to date.

5.1.1 Patient Simulator

Significant improvements can be made to the patient simulator. The current

simulator relies on a PKPD model estimated from data, random integrating and

measurement noise and step and ramp disturbances. A wiser choice would be to

build the patient simulator solely based on measurement noise and time-varying pa-

rameters in the PKPD model. The disturbances and changes in patient health could

then be explained by biological mechanisms, rather than random noise. One of the

current uncertainties in the controller performance assessment on the current patient

simulator design is that the PKPD model never changes. Therefore, the system gain

remains static. In actuality, the system gain would be time-varying and dependent on

ever-changing model parameters. The current simulator design may give misleading

controller performance results as a result of the static gain.

An efficient patient simulator is needed that is able to more accurately reflect the

behaviour of an actual patient. It may be necessary to have government approval

of the patient simulator to allow the controller performance simulation results to act

as an acceptable pre-clinical trial. This order of events would be similar to what

exists for Type 1 Diabetes. The UVA PADOVA Type 1 Diabetes Simulator exists

as an FDA approved simulator in the USA (C. Man, 2014), and is sufficient to test

controllers on for pre-clinical trials.
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5.1.2 Process Model Improvement

The foundation of any model predictive controller is the system model. A great

deal of time has been spent perfecting the constrained ARX modeling method but

the model structure may be able to be improved. A more complex model involving

more hemoglobin measurements or a disturbance model may offer an improved model.

Using additional inputs or outputs such as iron doses, iron levels or white blood cell

counts may offer modeling improvements. Different model types, such as a neural

network may also provide improved modeling results, resulting in better controller

performance.

5.1.3 Advanced Model Predictive Controllers using Param-
eter Uncertainty

The stochastic controllers in this work included only additive process noise as the

uncertainty. A more appropriate controller would include parameter uncertainty in

the controller formulation. It is possible that the inclusion of parameter uncertainty

or different forms of robust optimization may offer improved control results.

5.1.4 Self-tuning PID

The Digital PID controller presented in this thesis was designed empirically using

many simulations performed on several different patient models. Its performance was

not perfected as opposed to that of the model predictive controllers. Given the good

performance seen by the PID controller on most models, a self-tuning PID controller

may be able to overcome the issues seen on a small fraction of the patients, as well

as improve the performance in general.

109



Bibliography

A. Gaweda, A. Jacobs, G. Aronoff M. Brier (2008). Model predictive control of ery-

thropoietin administration in the anemia of esrd. Am J Kidney Dis 51, 71–79.

A. Gaweda, A. Jacobs, G. Aronoff S. Rai M. Brier (2014). Individualized anemia

management reduces hemoglobin variability in hemodialysis patients. Journal of

the American Society of Nephrology 25, 159–166.

A. Gaweda, M. Brier, A. Jacobs G. Aronoff B. Nathanson M. Germain (2010). De-

termining optimum hemoglobin sampling for anemia management from every-

treatment data. Clinical Journal of the American Society of Nephrology 5, 1939–

1945.

A. Levey, R. Atkins, J. Coresh (2007). Chronic kidney disease as a global public

health problem: approaches and initiatives - a position statement from kidney

disease improving global outcomes. Kidney International 72, 247–259.

A. Parisio, M. Molinari, D. Varagnolo K. Johansson (2013). A scenario-based predic-

tive control approach to building hvac management systems. IEEE International

Conference on Automation Science pp. 428–435.

Allgower, F., R. Findeisen and Z. Nagy (2004). Nonlinear model predictive control:

From theory to application. Journal of the Chinese Institute of Chemical Engi-

neers 35, 299–315.

B. Grosman, E. Dassau, H. Zisser L. Jovanovic F. Doyle (2010). Zone model predictive

control: A strategy to minimize hyper- and hypoglycemic events. Journal of

Diabetes Science and Technology 4, 961–975.

110



Bemporady, A., L. Pugliay and T. Gabbriellin (2011). A stochastic model predictive

control approach to dynamic option hedging with transaction costs. In: American

Control Conference. O’Farrell Street, San Francisco, CA, USA. pp. 3862–3867.

Bogacki, P. and L. Shampine (1989). A 3(2) pair of runge - kutta formulas. Applied

Mathematics 4, 321–325.

C. Man, F. Micheletto, D. Lv M. Breton B. Kovatchev C. Cobelli (2014). The

uva/padova type 1 diabetes simulator: New features. Journal of Diabetes and

Technology 8, 26–34.

Chait, Y., J. Horowitz, B. Nichols, R. Shrestha and M. Germain C. Hollot (2014).

Control-relevant erythropoiesis modeling in end-stage renal disease. IEEE Trans-

actions on Biomedical Engineering 61, 658–664.

Christopher, P. (2000). Designing efficient software for solving delay differential equa-

tions. Journal of Computational and Applied Mathematics 125, 287–295.

Damien, P., H. Lanham, M. Parthasarathy and N. Shah (2016). Assessing key cost

drivers associated with caring for chronic kidney disease patients. BioMed Central

Health Services Research.

Elliot, S. (2008). Erythropoiesis-stimulating agents and other methods to enhance

oxygen transport. British Journal of Pharmacology 154, 529–541.

Gondhalekar, R., E. Dassau, H. Zisser and F. Doyle III (2013). Periodic-zone model

predictive control for diurnal closed-loop operation of an artificial pancreas. Jour-

nal of Diabetes Science and Technology 7, 1446–1460.

Grosso, J., C. Ocamp-Martinex, V. Puig and B. Joseph (2014). Chance-constrained

model predictive control for drinking waternetworks. Journal of Process Control

24, 504–516.

J. Garriga, M. Soroush (2010). Model predictive control tuning methods: A review.

Ind. Eng. Chem. Res 49, 3505–3515.

111



J. Rawlings, K. Muske (1993). Model predictive control with linear models. AIChE

Journal 39, 262–287.

Jing, Z., Y. Wei-jie, Z. Nan, Z. Yi and W. Ling (2012). Hemoglobin targets for chronic

kidney disease patients with anemia: A systematic review and meta-analysis.

Journal of American Institue of Chemical Engineers 7, 1–9.

Knab, T., G. Clermont and R. Parker (2015). Zone model predictive control and

moving horizon estimation for the regulation of blood glucose in critical care

patients. In: Proceedings of The 9th International Symposium on Advanced Con-

trol of Chemical Processes, The International Federation of Automatic Control.

Whistler, British Columbia, Canada.

M. Brier, A. Gaweda, A. Dailey A. Jacobs G. Aronoff (2010). Randomized trial of

model predictive control for improved anemia management. Clinical Journal of

the American Society of Nephrology 5, 814–820.

National Kidney Foundation, NKF (2017). Global facts: About kidney disease.

https://www.kidney.org, accessed June 2017.

O’Dwyer, A. (2006). Handobok of PI and PID Controller Tuning Rules. Imperial

College Press.

Pannocchia, G. and J. Rawlings (2003). Disturbance models for offset-free model-

predictive control. Journal of the American Institute of Chemical Engineering

49, 426–437.

Park, I., S. Ahn, Y. Kim, S. Kang and S. Cho (2014). Performance evaluation of

samsung labgeo hc10 hematology analyzer. Archives of Pathology & Laboratory

Medicine.

Rawlings, J. (2000). Tutorial overview of model predictive control. IEEE Control

Systems pp. 38–52.

Ren, J., J. McAllister, Z. Li, J. Liu and U. Simonsmeier (2017). Modeling of

hemoglobin response to erythropoietin therapy through contrained optimization.

112



In: Proceedings of The 6th International Symposium on Advanced Control of In-

dustrial Processes. Taipei, Taiwan.

Rockafellar, R. and S. Uryasev (2000). Optimization of conditional value-at-risk. Jour-

nal of Risk 2, 21–42.

Rosner, M. and W. Bolton (2008). The mortality risk associated with higher

hemoglobin: Is therapy to blame?. Kidney International 74, 782–791.

S. Trevitt, S. Simpson, A. Wood (2016). Articial pancreas device systems for the

closed-loop control of type 1 diabetes: What systems are in development?. Jour-

nal of Diabetes Science and Technology 10, 714–723.

Seborg, D., T. Edgar, D. Mellichamp and F. Doyle (2011). Process Dynamics and

Control. John Wiley and Sons Inc.

Shampine, L. (2004). Error estimation and contol for odes.

Shampine, L. and S. Thompson (2001). Solving ddes in matlab. Applied Numerical

Mathematics 37, 441–458.

Singh, A. (2007). The target hemoglobin level in patients on dialysis. Dialysis and

Transplantation 36, 1–3.

Singh, A., L. Szczech, K. Tang, H. Barnhart, S. Sapp, M. Wolfson and D. Reddan

(2006). Correction of anemia with epoetin alfa in chronic kidney disease. New

England Journal of Medicine 355, 2085–2098.

Soderstrom, T. and P. Stoica (1989). System Identification. Prentice Halll.

Turksoy, K., L. Quinn, E. Littlejohn and A. Cinar (2014). Multivariable adaptive

identification and control for artificial pancreas systems. IEEE Transactions on

Biomedical Engineering 61, 883–891.

V. Batora, M. Tarnik, J. Murgas, S. Schmidt, K. Norgaard, N. Poulsen, H. Madsen,

D. Boiroux and J. Jorgensen (2015). The contribution of glucagon in an artificial

pancreas for people with type 1 diabetes. In: Proceedings of the American Control

Conference. Chicago, Illinois, USA. pp. 5097–5102.

113



V. Bobal, J. Bohm, J. Fessl J. Machacek (2005). Digital Self Tuning Controllers.

Springer-Verlag London Ltd.

V. Jha, G. Garcia-Garcia, K. Iseki (2013). Chronic kideny disease: Global dimension

and perspectives. Lancet 382, 260–272.

W. Couser, G. Remuzzi, S. Mendis M. Tonelli (2011). The contribution of chronic

kidney disease to the global burden of major noncommunicable diseases. Kidney

International 80, 1258–1270.

114


