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Abstract

The processing of coal in coal handling and preparation plants (CHPPs) produces a

significant amount of valuable fine coal which is then recovered using froth flotation.

As froth flotation units are regulated using simple, conventional control methods the

application of modern control methods is one option to improve the efficiency and

profitability of these units. There are various issues to consider before modern control

methods can be applied, namely: state estimation, handling model plant mismatch

(MPM) and handling measurement delays. This thesis compares the performance of

various modern control methods in the nominal case (no MPM and no measurement

delays) and in the case of MPM with no measurement delays with the aim of iden-

tifying the best control method for each scenario. State estimation methods are also

tested in the nominal case, with MPM and with measurement delays to identify the

best one for each scenario.

For state estimation, three methods are investigated: an extended Kalman filter

(EKF), moving horizon estimator (MHE) and nonlinear observer. The EKF is found

to give the best estimation performance in the nominal case. Although MHE has the

potential to give better estimates, it does not do so due to the small estimation win-

dow. The estimation window needs to be small to keep computation time reasonable

as there are a lot of system states. The nonlinear observer performs the worst be-

cause it does not use noise information. All three methods have similar performance

when there is MPM as the MPM masks noise information. All three methods also

have similar performance when measurements are delayed as the large measurements

delays in the froth flotation system mean that state prediction dominates over state

estimation. The EKF is picked as the best estimator for this system on the basis of

its estimation performance and computation time.

A multiple model (MM) based approach is proposed to obtain unbiased state es-

ii



timates in the presence of MPM caused by parameter mismatch. For a deterministic

linear system operating at steady state, it is proved that unbiased output estimates

guarantee unbiased states estimates provided certain conditions are met. This ap-

proach is successfully applied to the froth flotation system.

A model predictive controller (MPC) and economic model predictive controller

(EMPC) are tested for the nominal case of no MPM and accurate state estimates

available. Both are found to stabilize the system and give similar economic perfor-

mance. For the case of offset free control in the presence of parameter mismatch,

we present two methods: an offset free MPC using augmented models and a model

identification based method which combines the MM state estimation method we pro-

pose with a conventional MPC. The offset free MPC fails to achieve offset free control

when using an output disturbance model. Although the model ID based approach

achieves offset free control there is no guarantee that it will work in the general case.
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Chapter 1

Introduction

1.1 Motivation

The processing of coal in coal handling and preparation plants (CHPPs) produces a

significant amount of valuable fine coal which is then recovered using froth flotation

(Canright et al., 1981). Typically, froth flotation units are regulated using simple,

conventional control methods like base level control which contributes to the inef-

ficiency of the froth flotation operation (Shean and Cilliers, 2011). Improving the

efficiency of these units would improve the profitability of the entire plant. One way

to improve froth flotation efficiency is to implement modern control methods such

as model predictive control (Mayne et al., 2000; Rawlings, 2000) or economic model

predictive control (Rawlings et al., 2012; Liu et al., 2015).

These modern control methods typically require knowledge of all the system states.

As it is in general difficult or expensive to measure all the system states, state esti-

mation techniques can be used to reconstruct the entire system states using a model

of the process and measurements of a few output variables. There are many options

for state estimation with each option having advantages and disadvantages.

Inspired by the above, this thesis focuses on testing multiple state estimation

methods and control strategies for the froth flotation system. Estimation perfor-

mance will be tested under various scenarios: normal operation, delayed or miss-

ing measurements and with model plant mismatch (MPM). Control strategies will

be compared during normal operation with all the system states directly available.

Combined estimation and control performance in the presence of MPM caused by

parameter mismatch will also be investigated.
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1.2 Thesis outline and contributions

A description of the froth flotation system is provided in Chapter 2 along with a

first principles system model. The design of a sensor network that uses the minimum

number of sensors to guarantee observability of the entire system is covered. Three

state estimators (extended Kalman filter, moving horizon estimator and nonlinear

observer) are designed and the performance of these estimators is compared under

normal conditions, with delayed or missing measurements and in the presence of

MPM. It is shown that state estimates are biased when there is MPM.

In Chapter 3, the issue of obtaining unbiased state estimates in the presence

of MPM caused by parameter mismatch is investigated. An algorithm is presented

which can be used to obtain unbiased state estimates if certain conditions are met.

A flowchart of the algorithm is provided and a system consisting of two continuous

stirred tank reactors (CSTRs) is used to illustrate each stage of the algorithm. Finally,

the algorithm is applied to the froth flotation system and is shown to successfully

provide unbiased state estimates.

Chapter 4 covers the application of different controllers to the froth flotation sys-

tem. A model predictive controller (MPC) and economic model predictive controller

(EMPC) are tested on the system when there is no MPM and with all the states

directly available to the controllers. The issue of offset free control in the presence of

parameter mismatch is also investigated and two solutions are proposed: offset free

nonlinear model predictive control (Morari and Maeder, 2012) and a model identi-

fication based approach which combines the state estimation method introduced in

Chapter 3 with a conventional MPC.

Finally, Chapter 5 provides a summary of the thesis results and looks at directions

for future work.
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Chapter 2

State estimation of the froth
flotation system

2.1 Introduction

Commonly used state estimation methods for nonlinear systems include the ex-

tended Kalman filter (EKF) (Einicke, 2012), the moving horizon estimator (MHE)

(Robertson et al., 1996) and nonlinear observers (Ciccarella et al., 1993; Gauthier et

al., 1992). The EKF is an extension of the Kalman filter to nonlinear systems based

on successive linearizations of the nonlinear system. Although it is not an optimal

filter the EKF is still widely used due to its simplicity. There are variations of the

EKF that address deficiencies of the EKF but we only investigates the standard EKF.

The MHE is an optimization based state estimator that can handle nonlinear sys-

tems and system constraints (unlike the EKF which uses linear approximations of the

system and ignores constraints). As a result, the MHE can have better estimation

performance than the EKF but also has a greater computational burden. Nonlinear

observers are designed for deterministic nonlinear systems. They are capable of han-

dling nonlinear systems explicitly (like the MHE) but do not have the computational

burden associated with the MHE. The main drawbacks to nonlinear observers are

that they ignore noise information and can be difficult to design.

In this chapter, we consider the application of these three state estimation methods

to a typical froth flotation process. We first introduce a process model developed at

Oak Ridge National Laboratory (Canright et al., 1981) for the coal froth flotation

process. Based on currently available instrumentation used in froth flotation, we
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then carry out sensor network design and determine a minimum set of sensors that

provides observability of the entire froth flotation process. Subsequently, we design

the EKF, the MHE and a nonlinear observer for the froth flotation process. The

nonlinear observer is designed via an overlapping subsystem decomposition approach.

Two different scenarios are considered: estimation without measurement delays and

estimation with measurement delays. The performances of the three state estimation

methods are compared with and without MPM. It is found in both scenarios that the

EKF is better in terms of estimation precision while the nonlinear observer has the

smallest computational burden.

2.2 Process description and modeling

Figure 2.1 shows a typical froth flotation unit consisting of 5 tanks in series and

Figure 2.2 shows the cross section of an individual tank. Feed slurry consisting of coal,

ash (non-coal solids) and water enters the first tank. The maximum particle size in the

feed is controlled and the solid (coal and ash) content of the feed ranges from 0 to 30

wt%. Reagents (frother and collector) are added either at the inlet or upstream of the

first tank (Canright et al., 1981) with the optimal reagent concentration dependent

on the solid concentration and coal type. The frother promotes the formation of froth

while the collector promotes the preferential attachment of air bubbles to coal particles

which then carry the coal particles to the top of the tank (the froth). The froth is

removed using paddles and sent to a disk filter system for drying. The underflow

(also known as tailings) from each tank is sent to the next tank in the series and the

tailings from the final tank are sent to a static thickener.

Figure 2.1: Schematic diagram of a froth flotation unit. Adapted from Canright et al.,
1981.

4



Figure 2.2: Schematic diagram of an individual flotation tank.

A first order kinetic model is used to model the flotation process with each tank

modeled as a continuous stirred tank reactor (CSTR). The following assumptions are

made in this model (Canright et al., 1981):

1. The contents of each tank are well mixed, i.e, no concentration gradients within

a tank.

2. There is no intermixing between tanks.

3. The slurry level in each tank does not vary.

The dynamics of the process can be characterized by the dynamics of the solids

(coal and ash), liquids (mainly water) and ash (non-coal solids). Mass balances are

completed for the 5 tanks for a total of 15 states. The equations describing the

dynamics of tank i, where i = 1, . . . , 5, are as follows (Canright et al., 1981):

dcsti
dt

=
V̇ufi−1

Vi
(csti−1

)− V̇ufi
Vi

(csti)− ri (2.1a)

dclti
dt

=
V̇ufi−1

Vi
(clti−1

)− V̇ufi
Vi

(clti)−
βi
Vi

(2.1b)

dcati
dt

=
V̇ufi−1

Vi
(cati−1

)− V̇ufi
Vi

(cati)−
Ȧi
Vi

(2.1c)

where the subscript i = 1, . . . , 5 indicates the tank number, csti is the solids concen-

tration (kg/m3), clti is the liquids concentration (kg/m3), cati is the ash concentration

(kg/m3), V̇ufi is the volumetric rate of the underflow (m3/min) and Vi is the slurry

volume (m3). ri is the rate of solid removal as defined below, βi is the mass flow

rate of liquid to overflow (kg/min) and Ȧi is the mass flow rate of ash to overflow
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(kg/min). cst0 , clt0 , cat0 are the solids, liquids and ash concentration of the feed re-

spectively. V̇uf0 is the volumetric flow rate of the feed. On the right hand side of the

above model, the first term of each equation represents the amount entering from the

previous tank, the second term represents the amount leaving in the underflow and

the third term represents the amount leaving in the overflow.

The rate of solid removal ri is given by (Canright et al., 1981):

ri = frk(csti − c∞) (2.2)

where ri is the flotation rate (kg m−3 min−1), k is the rate constant (l/min), c∞ is the

equilibrium solids concentration (kg/m3) and fr is the correction factor for industrial

scale reactions (as k and c∞ values are obtained from lab experiments). The values

of k and c∞ depend on frother loading (g/kg dry feed), collector loading (g/kg dry

feed) and coal type.

The following equations are also defined for each tank i, where i = 1, . . . , 5

(Canright et al., 1981):

V̇ufi−1
= V̇ufi + V̇ofi (2.3)

V̇ofi =
β

ρl
+
riVi
ρc

(2.4)

Ȧi = xAi

(
i∑

j=1

Ṁsofj

)
−

i−1∑
j=1

Ȧj (2.5)

Ri =

(
csofiV̇ofi

csofiV̇ofi + cstiV̇ufi

)
(100−Ri−1) +Ri−1 (2.6)

xAi
= g(Ri) (2.7)

where ρc is the density of coal (kg/m3), ρl is the density of liquid (kg/m3), Ri is

the cumulative solid recovery (%) at tank i, xAi
is the cumulative mass fraction

of ash in the overflow solids at tank i, Ṁsofi is the mass flowrate of solids in the

overflow (kg/min), V̇ofi is the volumetric flowrate of the overflow (m3) and csofi is the

concentration of solids in the overflow (kg/m3). g(Ri) is an empirical function of Ri

for a given frother and collector loading obtained from Canright et al., 1981.

The process model can be written in the following compact form:

ẋ(t) = f(x(t), u(t), w(t)) (2.8)
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where the state vector is x =
[
xT1 , x

T
2 , x

T
3 , x

T
4 , x

T
5

]T
with xTi = [csti , clti , cati ] for i =

1, . . . , 5 and w denotes random process noise. u denotes the inputs with u = [u1, u2]
T

where u1 is the frother loading and u2 is the collector loading.

2.3 Sensor network design

The success of state estimation depends on the available measurements. The purpose

of this section is to determine which states can be measured using currently available

sensors and to determine the smallest set of measurements which will allow all the

system states to be estimated reliably.

2.3.1 Measurements

The following measurements are available for the froth flotation process:

1. Solid/liquid concentration in each tank. Slurry density can be measured using

X-ray fluorescence (XRF) analyzers or gamma density gauges. This information

can then be used to calculate the solid and liquid concentration. XRF dynamics

are in the order of 10-20 minutes but provide high accuracy (between 1% and

6%) (Shean and Cilliers, 2011). Gamma density gauges are non-intrusive but

sensitive to location as air bubbles affect measurements (Shean and Cilliers,

2011).

2. Ash concentration in each tank. XRF can be used to obtain elemental assay

data which can be used to find ash concentration. Machine vision methods

can also be used to find ash concentration. Machine vision is faster than XRF

with dynamics in the order of 1 min versus 10-20 minutes for XRF (Shean and

Cilliers, 2011) but is less accurate with up to 30% error at low ash concentrations

(Hargrave et al., 1996; Zhang et al., 2014).

While it is possible to use sensors to measure all 15 states directly, it is worthwhile

to determine if a smaller number of sensors will result in an observable system as

sensors are costly to install and replace.
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2.3.2 Observability testing

A system is said to be observable if, for a time interval [t0, t1], given the input and

output measurements over the interval it is possible to solve for the initial state x(t0)

(Bay, 1998). Using this information it is then possible to solve for x(t) over the entire

interval. We assume that the measurements from the sensors can be modeled using

the following equation:

yi(t) = hi(x(t)) + vi(t) (2.9)

where yi is the sensor measurement with corresponding measurement noise vi for

1 ≤ i ≤ s with s being the number of measurements.

For nonlinear systems, the observability test is to check if (Marino and Tomei,

1995):

rank{O} = n

with

O =

 dh(x)
...

d(Ln−1f h(x))

 (2.10)

where h(x(t)) = [h1(x), . . . , hs(x)]T , n is the size of the system and Lkfh (1 ≤ k ≤ n−1)

is the k-th Lie derivative of h with respect to f .

This observability test requires the calculation of high order Lie derivatives and

their differentials which in general is a difficult task. As a result, a different approach

has to be used to test observability. The approach we used is to test the observability

of linear approximations of the nonlinear system at different points along a typical

state trajectory. The linear approximation of the nonlinear system at a point x(t)

will have the form (assuming zero noise without loss of generality):

ẋ(t) = A(t)x(t) +B(t)u(t) (2.11a)

y(t) = C(t)x(t) (2.11b)

where A(t) and C(t) are found by taking the Jacobian of (2.8) and (2.9) respectively

at (x(t), u(t)) as shown below:

A(t) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn


x=x(t),u=u(t)

C(t) =


∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...
∂hs
∂x1

· · · ∂hs
∂xn


x=x(t)

(2.12)
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The observability of the linear approximation (2.11) at (x(t), u(t)) is tested by

checking if (Bay, 1998):

rank




C
CA

...
CAn−1


 = n (2.13)

If the linear approximation is observable at all the different points along the tra-

jectory, we claim that the nonlinear system is observable in a neighborhood of the

trajectory. Using the above approach, the froth flotation process is found to be observ-

able using only two measurements, clt5 (x14) and cat5 (x15), resulting in the following

time invariant (constant) C matrix:

C =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
(2.14)

Kalman decomposition can be carried out according to (Bay, 1998) to determine

the set of observable states associated with each measurement. It is found that

measuring clt5 allows observability of csti and clti for all i = 1, . . . , 5 (no ash states

observable) and measuring cat5 allows observability of csti and cati for all i = 1, . . . , 5

(no liquid states observable).

2.4 State estimation without measurement delays

In this section, we consider state estimation of the froth flotation process without

measurement delays. Three typical state estimation methods are considered: (1)

an extended Kalman filter (EKF), (2) moving horizon estimator (MHE) and (3) a

nonlinear observer.

2.4.1 Modeling of measurements

We assume that clt5 and cat5 measurements are available at discrete sampling times

tk = t0 + k∆ where t0 = 0 is the initial time, k denotes non-negative integers and ∆

is a fixed sampling time. The measurements at tk are modelled as follows:

y(tk) = Cx(tk) + v(tk) (2.15)
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2.4.2 Design of the EKF

EKFs are discrete time filters for nonlinear systems based on successive linearizations

of the nonlinear system (Chui and Chen, 1991). There are two steps in an EKF: a

prediction step and an update step. The EKF used in this work is designed as follows:

1. Prediction step:

x̂(tk|tk−1) = x̂(tk−1) +

∫ tk

tk−1

f(x̂(t), u(t), 0)dt (2.16a)

P (tk|tk−1) = A(tk−1)P (tk−1)A(tk−1)
T +Q (2.16b)

where x̂(tk|tk−1) denotes the prediction of the state at time tk based on the

state estimate x̂(tk−1) at tk−1, P (tk−1) is the error covariance matrix of x̂(tk−1),

P (tk|tk−1) is the error covariance matrix of x̂(tk|tk−1) and Q is the covariance

of the process noise. A(tk−1) is the discretized Jacobian of f with respect to x

at tk−1. u(t) is the known, piecewise constant input.

2. Update step:

K(tk) = P (tk|tk−1)CT [CP (tk|tk−1)CT +R]−1 (2.17a)

x̂(tk) = x̂(tk|tk−1) +K(tk)(y(tk)− Cx̂(tk|tk−1)) (2.17b)

P (tk) = (I −K(tk)C)P (tk|tk−1) (2.17c)

where R is the covariance of the measurement noise and K(tk) is the filter gain

at tk (Chui and Chen, 1991).

2.4.3 Design of the MHE

The moving horizon estimator (MHE) design for the system represented by (2.8) and

(2.9) has the following form at time tk (Rao and Rawlings, 2002):

min
x̂(tk−N+1),w(tk−N+1),...,w(tk−1)

Γ(x̂(tk−N+1)) +
k−1∑

i=k−N+1

w(ti)
TQ−1w(ti) + . . .

· · ·
k∑

i=k−N+1

v(ti)
TR−1v(ti)

(2.18a)
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s.t ˙̂x(t) = f(x̂(t), u(t), w(t)) (2.18b)

y(t) = Cx̂(t) + v(t) (2.18c)

w(t) ∈W, v(t) ∈ V, x̂(t) ∈ X (2.18d)

where N is the size of the estimation window and x̂(tk−N+1) is the MHE estimate

of the system state obtained at tk−N+1. Q and R are the covariance matrices of

the process noise (w) and the measurement noise (v) respectively. u is the known,

piecewise constant input. w and v are assumed to be piecewise constant during

a sampling period ∆. W, V, and X represent the set of all possible values of w,

v and x respectively. The MHE attempts to minimize the cost function (2.18a)

by optimizing x̂(tk−N+1), w(tk−N+1), . . . , w(tk−1) which is equivalent to optimizing

x̂(tk−N+1), . . . , x̂(tk) due to the piecewise constant noise assumption.

The Γ(x̂(tk−N+1)) term is known as the arrival cost and summarizes past informa-

tion that is not included in the estimation window, i.e. information up to tk−N . The

arrival cost has a significant impact on the performance of the MHE but is difficult

to determine exactly for constrained nonlinear systems. While the arrival cost can

be omitted if a sufficiently large N is used, this increases the computational burden

and reduces the speed of the MHE. There are a number of methods to approximate

the arrival cost with one such method based on an EKF as follows:

Γ(z) = (z − x̂(tk−N+1))
TP−1(tk−N+1|tk−N)(z − x̂(tk−N+1)) (2.19)

where z is the MHE estimate of x(tk−N+1) at the current time tk and x̂(tk−N+1) is the

MHE estimate of x(tk−N+1) obtained at tk−N+1. P (tk−N+1|tk−N) is obtained from an

EKF that is running parallel to the MHE.

2.4.4 Design of the nonlinear observer

Observer design for nonlinear systems is in general challenging. Most approaches

either require Lyanpunov functions that are difficult to find, do not guarantee con-

vergence to the actual states or are focused on single input single output (SISO)

systems (Ciccarella et al., 1993). There are only a few methods that are extensible

to multi input multi output (MIMO) systems (Ciccarella et al., 1993). In this work,

the nonlinear observer is designed based on a subsystem decomposition approach in-
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spired by results on distributed state estimation (Zeng and Liu, 2015; Zhang and

Liu, 2014; Zhang and Liu, 2013).

The system is split into two overlapping subsystems according to the observ-

able states associated with each of the two measurements. The states of the two

subsystems are xs1(t) = [cst1(t), clt1(t), cst2(t), clt2(t), ..., cst5(t), clt5(t)]
T and xs2(t) =

[cst1(t), cat1(t), cst2(t), cat2(t), ..., cst5(t), cat5(t)]
T respectively. The two subsystems have

the following forms:

ẋs1(t) = fs1(xs1(t), u(t), ws1(t)) (2.20a)

ys1(t) = Cs1xs1(t) + vs1(t) (2.20b)

ẋs2(t) = fs2(xs2(t), u(t), ws2(t)) (2.20c)

ys2(t) = Cs2xs2(t) + vs2(t) (2.20d)

where ws1 and ws2 are the process noise and vs1 and vs2 are the measurement noise

in their respective subsystems. Cs1 and Cs2 are constant matrices such that:

Cs1 = Cs2 =
[

0 0 0 0 0 0 0 0 0 1
]

(2.21)

The observer for a given subsystem is designed following Ciccarella et al., 1993. The

nonlinear observers for the two subsystems are as follows::

˙̂xs1(t) = fs1(x̂s1, u(t), 0) +
(
Os1(x̂s1(t), u(t))

)−1
Ks1(ys1(t)− Cs1x̂s1(t))

˙̂xs2(t) = fs1(x̂s2, u(t), 0) +
(
Os2(x̂s2(t), u(t))

)−1
Ks2(ys2(t)− Cs2x̂s2(t))

(2.22)

where Os1 and Os2 are the observability matrices for subsystems 1 and 2 respectively

as defined in (2.10). Ks1 and Ks2 are finite gain vectors that can be tuned to change

the speed of convergence (Ciccarella et al., 1993) and x̂s1 and x̂s2 are the estimates of

the subsystem states. fs1, fs2, Cs1 and Cs2 in (2.22) are the same as in (2.20). Due to

the difficulty of calculating Os1 and Os2 explicitly, they are approximated following the

approach in Section 2.3.2. As the csti (i = 1, . . . , 5) states appear in both subsystems,

there are two ways to obtain the state estimate for the entire system:

x̂ = [x̂s1,1, x̂s1,2, x̂s2,2, x̂s1,3, x̂s1,4, x̂s2,4, . . . , x̂s1,9, x̂s1,10, x̂s2,10, ] (2.23a)

x̂ = [x̂s2,1, x̂s1,2, x̂s2,2, x̂s2,3, x̂s1,4, x̂s2,4, . . . , x̂s2,9, x̂s1,10, x̂s2,10, ] (2.23b)

where x̂ represents the estimate of the entire system state. x̂s1,i and x̂s2,i, i = 1, . . . , 10,

represent the i-th element in xs1 and xs2 respectively. If ys1 is known to be more
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reliable than ys2, (2.23a) should be used; if ys2 is more reliable, (2.23b) should be

used.

2.4.5 Simulation results

Model parameters and simulation settings

The model parameters used in the simulations are shown in Table 2.1. Parameters

are obtained from Canright et al., 1981.

Table 2.1: Froth flotation model parameters used in simulations.

k = 3.81 l/min
c∞ = 17.91 kg/m3

fr = 0.2
ρl = 1000 kg/m3

ρs = 1299 kg/m3

β = 290.3 kg/min
V = 18 m3

cst0 = 10 wt% of feed
clt0 = 90 wt% of feed
cat0 = 24.5 wt% of solids

The volumetric flow of feed to the first tank (V̇uf0) is set to be a sinusoid (21.71 +

7.60 sin(ωt) m3/min) with ω = 2π
10

rad/min. It is assumed that the feed flow rate up

to the current time is available to all three state estimation methods; at tk, V̇uf0(0)

up to V̇uf0(tk) are known. The inputs are set to constant values with u1 = 0.125 g/kg

dry feed and u2 = 0.3125 g/kg dry feed. This results in constant values for k and c∞.

Samples of the two measured states (clt5 and cat5) are taken every 1 minute; that is,

∆ = 1 min. Both measurements are subject to measurement noise. The measurement

noise is Gaussian white noise generated as follows:

v(tk) v [N(0, 502), N(0, 62)]T (2.24)

As mentioned in Section 2.3.1 liquid concentrations can be measured with 1 − 6%

accuracy while ash measurements can have errors of up to 30% at low ash concen-

trations. Typical values of clti and cati are 1000 kg/m3 and 20 kg/m3 respectively;

the standard deviations of the noise correspond to a 5% error in liquid measurements

and a 30% error in ash measurements.
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The process is simulated by using the classical-Runge-Kutta method to inte-

grate the system model (2.8) using an integration step of h = 0.10 min. Ran-

dom noise is added to the right-hand-side of system model (2.8) to simulate process

noise/disturbances. The process noise associated with tank i, i = 1, . . . , 5, is Gaussian

white noise generated as follows:

wi(t) v [N(0, 32), N(0, 72), N(0, 0.252)]T (2.25)

The parameters used in the EKF are Q = diag([32, 72, 0.252, 32, 72, 0.252, 32, 72,

0.252, 32, 72, 0.252, 32, 72, 0.252]T ), R = diag([102, 52]T ) and P (0) = diag([100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]T ) where diag(v) represents a di-

agonal matrix whose diagonal elements are the elements of a vector v. Q, R and P (0)

are diagonal matrices with the assumption that the process noise, measurement noise

and state estimation errors are all uncorrelated.

The estimation windows size in the MHE is picked to be N = 3. A small window

size is used due to the large number of system states to reduce the complexity of

the MHE optimization problem. Q and R are the same as those used in the EKF.

The Π(0) used in the arrival cost (2.19) is equal to P (0) used in the EKF. The state

estimate at the start of the window (z from (2.19)) for tank i, i = 1, . . . , 5, has

the lower and upper bounds [0, 800, 0] and [200, 1000, 30] respectively. The process

noise wi(t) associated with tank i, i = 1, . . . , 5, has the lower and upper bounds

[−100,−100,−100] and [100, 100, 100] respectively. There are no bounds on measure-

ment noise.

The nonlinear observer parameters are as follows:

Ks1 = Ks2 =[1.500 · ε, 5.987 · ε2, 6.375 · ε3, 13.191 · ε4, 9.915 · ε5, 13.537 · ε6,

6.693 · ε7, 6.477 · ε8, 1.655 · ε9, 1.144 · ε10]T
(2.26)

where ε = 1/750, 000 for Ks1 and ε = 1/1, 750, 000 for Ks2. The nonlinear observer

we use is designed for continuous systems with continuous measurements available.

In the froth flotation system, measurements are only obtained at discrete sampling

intervals of 1 min which is too large for the measurements to be considered continuous.

Due to this lack of measurement information, the observer cannot be as aggressive

which results in the small gain values. If a smaller sampling time was used then larger
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values of ε could be used. Another reason for the small values of ε are the large values

of elements in the O−1s1 and O−1s2 matrices. The initial state used in the simulations is:

x(0) = [64.5, 956.8, 23.7, 42.0, 975.7, 21.7, 31.8, 991.6, 20.7, 24.4, 994.2, 18.4, 21.5, 983.3, 15.8]T

(2.27)

and the initial guess provided to the state estimators:

x̂(0) = [80.0, 950.0, 30.0, 35.0, 950.0, 15.0, 40.0, 990.0, 25.0, 15.0, 980.0, 15.0, 30.0, 1000.0, 24.0]T

(2.28)

All simulations are carried out with an Intel Core i5 computer at 3.30 GHz and

8.00 GB RAM. The MHE optimization problems are solved using the open source

interior point optimizer Ipopt (Wächter and Biegler, 2006).

Results without model plant mismatch

In this section, we evaluate the performance of the three state estimation methods

without considering model plant mismatch.

Figure 2.3 shows the actual state trajectory and the estimates obtained using

the EKF, MHE and nonlinear observer when there is no model plant mismatch.

From the figure, it can be seen that all the three methods track the trend of the

actual trajectories well. The normalized error is used to compare the performance of

these methods as it reduces the effects of states having different orders of magnitude.

Figure 2.4 shows the trajectories of the normalized error for the three state estimation

methods with the normalized error defined as:

e(tk) =

√√√√ 15∑
i=1

(ei(tk))2 (2.29)

where e(tk) is the normalized error at tk and ei(tk) is the normalized error in state i,

i = 1, . . . , 15, defined as follows:

ei(tk) =
x̂i(tk)− xi(tk)
max (x̂i − xi)

(2.30)

where the maximum error for a given state i is the largest error for state i between all

three estimation methods. The average normalized error is: EKF - 1.38, MHE - 1.40

and observer - 1.54. The EKF and MHE have similar performance as the system is
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Figure 2.3: Trajectories of the actual process states and estimates given by the three
estimation methods for no model mismatch and no measurement delay.
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not operating near its constraints and the MHE window size is small. The observer

performs worse than the EKF and MHE as it ignores noise information while the

EKF and MHE both use noise information. For this process, using larger values of N

in the MHE may provide slightly improved estimation performance but at the cost

of a significant increase in evaluation time.

0 2 4 6 8 10 12 14 16 18 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time (min)

N
or

m
al

iz
ed

 e
rr

or

 

 

EKF
MHE
Observer

Figure 2.4: Trajectories of the normalized estimation error of the three estimation methods
for no model mismatch and no measurement delay.

Results with model plant mismatch

In this section, the model used in the estimation methods (EKF, MHE, nonlinear

observer) is not the same as the actual plant. The mismatch is introduced by setting

ri and xAi
, i = 1, . . . , 5, from (2.2) in the estimation models to be 20% higher than

the actual (plant) values of ri and xAi
, i = 1, . . . , 5.

Figure 2.5 shows the actual state trajectory and the estimates obtained using the

EKF, MHE and nonlinear observer when there is a model plant mismatch. Figure

2.6 shows the trajectories of the normalized error for all three estimation methods.

The performance of all three state estimation methods is worse than when there is no

model plant mismatch, with the average normalized error being: EKF - 2.12, MHE -

2.14 and observer - 2.14. The observer has similar performance to the EKF and MHE

because the noise information is masked by the model plant mismatch which reduces
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Figure 2.5: Trajectories of the actual process states and estimates given by the three
estimation methods for model mismatch and no measurement delay.
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the benefits of using the noise information. All three consistently underestimate

solid and ash concentrations and usually overestimate liquid concentrations. This is

because the models suggest that more solids/ash are being removed than is actually

the case as ri and xAi
are higher in the model than the actual plant.
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Figure 2.6: Trajectories of the normalized estimation error of the three estimation methods
for model mismatch and no measurement delay.

2.5 State estimation subject to measurement de-

lays

2.5.1 Modeling of measurements

In the previous section, both measurements (ys1 and ys2) were assumed to arrive at the

EKF/MHE/observer immediately (without delay). In this section the measurements

are assumed to have random delays such that ys1(tk) arrives at tk+d1(tk) and ys2(tk)

arrives at tk+d2(tk) where d1(tk) and d2(tk) are the delays associated with ys1(tk) and

ys2(tk) respectively. It is assumed that samples are taken at each time step and the

delays are due to sample processing time and communication delays. At a given time

instant, we must rearrange the received measurements in the order they were taken

before carrying out state estimation. This step is necessary as multiple measurements

can arrive simultaneously due to the random delays. It is assumed that samples are
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tagged with the time when they are taken.

2.5.2 Design of the EKF, MHE and observer

The EKF is designed based on the filter recalculation method described in Gopalakrishnan

et al., 2011. After the rearrange step, the EKF is recalculated from when the oldest

measurement received at the current time was taken. If any measurements along the

trajectory are available they are included in the EKF calculations. If at a given time

any measurements are missing, the missing measurement is set to be the same as the

predicted value i.e., y(tk) = Cx̂(tk|tk−1). This is the equivalent of setting (2.17b) in

the original EKF design to be:

x̂(tk|tk) = x̂(tk|tk−1) (2.31)

The MHE is designed based on Valencia et al., 2011. The window size for the

MHE is set to the difference between the maximum possible delay (max(d1, d2)) and

the minimum possible delay (min(d1, d2)). The MHE cost function (2.18a) is modified

as follows: the arrival cost is omitted due to the large window size and any terms

involving missing measurements (vk terms when no measurement is available) are

omitted.

For the nonlinear observers, the estimated state trajectory is recalculated from

when the oldest measurement received at the current time was taken (similar to the

EKF). If any measurements along the trajectory are available they are included in

the observer calculations. If no measurement is available for a subsystem at a given

time then a predictor is used for that subsystem. The predictor equation is:

˙̂xl(t) = f(x̂l(t), u(t), 0); (2.32)

where l is the subsystem number (s1 or s2). The predictor is simply the first term

of the observer (2.22). If at a given time one subsystem has a measurement avail-

able while the other does not, then the state estimates from the subsystem with the

measurement are used to update the overlapping state estimates from the other sub-

system. Once the overlapping states have been updated the observer or predictor

update to the next time step continues as normal. Figure 2.7 illustrates this proce-

dure. In the figure, ys1(tk−4), ys2(tk−3) and ys1(tk−1) are available at the current time

tk.
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Figure 2.7: Outline of observer/predictor procedure

2.5.3 Simulation Results

Model parameters and simulation settings

The model parameters and simulation settings are the same as in the no delay case

(Section 2.4.5). The random delay is such that 10 ≤ d1(t), d2(t) ≤ 20. These delay

values are chosen based on the dynamics of the XRF sensors used. The EKF and

observer parameters are the same as the no delay case. All MHE parameters except

window size are the same as the no delay case. The MHE window size (N) is 10.

Results without model plant mismatch

In this section, results are presented for when there is no model plant mismatch.

Figure 2.8 shows the actual trajectory and the estimates obtained using the EKF,

MHE and nonlinear observer. Figure 2.9 shows the trajectories of the normalized

error for the three methods. The average normalized error for all estimation methods

is 1.70. It is not possible to differentiate between the three methods because: (a)

with random delay between 10 and 20, at a given sampling time the EKF, MHE and

nonlinear observer at best only receive measurements taken 10 sampling periods ago.

Thus state prediction dominates over state estimation in all three; and (b) the froth

flotation process is an open-loop stable process which makes differences in the state

estimates die out in the prediction phase if measurements are not available.

Results with model plant mismatch

In this section, the model used in the estimation methods (EKF/MHE/nonlinear

observer) is not the same as the actual plant. The mismatch is introduced the same

way as in the no measurement delay case, by setting ri and xAi
, i = 1, . . . , 5, from
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Figure 2.8: Trajectories of the actual process states and estimates given by the three
estimation methods for no model mismatch and measurement delay.

(2.2) in the estimation models to be 20% higher than the actual (plant) value of ri

and xAi
, i = 1, . . . , 5.

Figure 2.10 shows the actual trajectory and the estimates obtained using the EKF,

MHE and nonlinear observer. Figure 2.11 shows the trajectories of the normalized

22
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Figure 2.9: Trajectories of the normalized estimation error of the three estimation methods
for no model mismatch and measurement delay.

error for both estimation methods. The average normalized error for all three estima-

tion methods is 2.42. Just as in the no delay case, the estimation methods consistently

underestimate solid and ash concentrations and usually overestimate liquid concen-

trations because the models suggest that more solids/ash are being removed than is

actually the case due to higher ri and xAi
in the model than the actual plant.

2.6 Conclusions

In this chapter, three state estimation methods (EKF, MHE and nonlinear observer)

for a coal froth flotation process were compared. A typical 5 tank flotation system was

used in simulations. The performance under various conditions (with/without random

measurement delay and with/without model plant mismatch) was investigated.

The EKF gave the best estimation performance under normal conditions (no mea-

surement delay and no model plant mismatch). The MHE performed worse than the

EKF because the system was not operating near its constraints and the estimation

window size was small. The MHE also had a higher computational load than the

EKF: the runtime of the MHE was significantly longer than the sampling time. The

nonlinear observer ran the fastest but had the worst estimation performance. All three
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Figure 2.10: Trajectories of the actual process states and estimates given by the three
estimation methods for model mismatch and measurement delay.
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Figure 2.11: Trajectories of the normalized estimation error of the three estimation meth-
ods for model mismatch and measurement delay.

methods had similar estimation performance when there was model plant mismatch.

In the presence of measurement delay, all three methods gave similar performance

with or without model plant mismatch. This was because the lack of measurements

meant that state prediction dominated over state estimation. As the froth flotation

system is open-loop stable, this meant that differences between estimates by the

different methods disappeared in the prediction phase. Overall, the EKF is the best

choice of estimator for this system as it provides a good balance of speed and accuracy.
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Chapter 3

Multiple model based approach to
state estimation in the presence of
model plant mismatch (MPM)

3.1 Introduction

State estimation plays a fundamental role in the success of MPC (Muske and Badg-

well, 2002). Model based state estimation methods are sensitive to model-plant mis-

match (MPM) which is always present in real systems due to factors such as external

disturbances, parameter drift, sensor failures and others (Botelho et al., 2015). Due

to the popularity of MPC, it becomes necessary to design state estimation methods

that provide accurate results even in the presence of MPM.

Numerous approaches have been proposed in the literature to address this issue.

One approach, as described in Parlos et al., 2002, is to use a data driven model to

capture the effects of the mismatch. However, while this method can provide unbiased

state estimates it does not provide any information about the cause of the mismatch.

This is because the data driven model has no physical significance while the states

and parameters in chemical systems do.

An alternative approach, as described in Salhi and Bouani, 2016, is to reduce

model plant mismatch by updating the system parameters at each time step by solving

an optimization problem. This approach provides diagnostic information through the

updated parameter estimates but has a high computational load as an optimization

problem has to be solved at each time step. If a large number of parameters have to

be optimized then computation time can be significant.
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Similar to offset free model predictive control, it is possible to augment the system

model with constant step disturbances and use special observer designs to obtain

unbiased estimates (Lee et al., 2012; Yang and Liu, 2016). However these approaches

suffer the same downside as Parlos et al., 2002 in that they do not provide any

information about the potential cause of the mismatch.

A common approach in tracking and fault detection applications for mechanical

and electrical systems is the use of Multiple Model (MM) methods (Semerdjiev et

al., 2000; Jiao et al., 2015; Pitre et al., 2005; Amirzadeh et al., 2011; Huang and Le-

ung, 2005; Zhang and Li, 1998). These methods work by having multiple models (each

model representing one mode of the system) run in parallel. Model probabilities and

the overall estimate are obtained according to the rules of the particular method being

used. It is possible to use augmented models with MM methods to obtain updated

parameter estimates which provide diagnostic information (Semerdjiev et al., 2000).

MM methods offer the advantage of low computational cost while still providing diag-

nostic information, however there are only limited examples of their use in chemical

systems (Chetouani, 2008; Kuure-Kinsey and Bequette, 2010). Furthermore, these

works focus on unbiased output estimation and control which does not necessarily

guarantee unbiased state estimation. The design of an appropriate model set to use

with MM methods is also challenging as there needs to be enough separation between

models based on output residuals (Zhang and Li, 1998) and enough models to capture

the range of system dynamics but using too many models will decrease performance

(Li, 2002).

In this chapter, we present an algorithm for the use of a MM method for state esti-

mation in the presence of MPM caused by parameter mismatch. The model set used

in our approach includes models augmented with different parameters (augmented

models do not have the same states). Guidelines for model set design and assump-

tions on model properties are also presented. Simulations examples are included to

illustrate the effectiveness of this approach.
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3.2 Problem description

Consider a nonlinear plant whose dynamics are characterized as follows:

ẋ = f(x, θ∗, u, w) (3.1a)

y = g(x) + v (3.1b)

where θ∗ is the vector of actual plant parameters (θ∗ ∈ Rm), x is the state vector

(x ∈ Rn), u is the vector of inputs (u ∈ Rp) and y is the vector of outputs (y ∈ Rq).

w and v represent process noise and measurement noise respectively. We assume a

model of the nonlinear plant is developed and has the form:

ẋ = f(x, θ, u, 0) (3.2a)

y = g(x) (3.2b)

where θ is the vector of model parameters (θ ∈ Rm).

A common approach to deal with parameter uncertainty is to augment the uncer-

tain parameters as states and use the augmented model in estimators (Semerdjiev et

al., 2000). Parameters can be added to the state vector to obtain augmented systems

of the form:

˙̃x =

[
ẋx
ẋθ

]
=

[
f̃(x̃, θ̃, u, 0)

0

]
(3.3a)

y = g̃(x̃) (3.3b)

where x̃ represents the augmented state vector (x̃ ∈ Rñ=n+r) consisting of the original

state vector (xx ∈ Rn) and the added parameters (xθ ∈ Rr). θ̃ is the vector of

remaining parameters (θ̃ ∈ Rm−r).

The objective of this work is to outline a Multiple Model (MM) approach that

uses augmented models of the form (3.3) and is capable of providing unbiased state

estimates when the following assumptions are satisfied:

Assumption 3.2.1 There is only parametric mismatch in the model and the actual

plant parameters (θ∗) are time invariant.

Assumption 3.2.2 Each parameter has a unique effect on the output, i.e. each

unique set of parameter values results in a unique y trajectory for a given constant

input.
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Assumption 3.2.3 The effects of the parameters are distinguishable from noise.

Assumptions 3.2.2 and 3.2.3 are needed to ensure that the parameters can be dis-

tinguished from each other based on noisy output measurements which is a necessary

condition for the success of any MM method (Zhang and Li, 1998). Some additional

assumptions are also required and these are presented in Section 3.4.3.

3.3 Illustrative example - Two CSTRs

In this section, we present a plant which will be used to illustrate each step of our algo-

rithm. The plant model is obtained from Sun and El-Farra, 2008 and a schematic di-

agram is provided in Figure 3.1. The plant consists of two well-mixed, non-isothermal

continuous stirred tank reactors (CSTRs) where three parallel, irreversible, elemen-

tary, exothermic reactions take place: A
k1−→ B, A

k2−→ U and A
k3−→ R. A is the

reactant, B is the desired product and U and R are undesired byproducts. Under

standard modeling assumptions, the plant model is:

Ṫ1 =
F0

V1
(T0 − T1) +

Fr
V1

(T2 − T1) +
3∑
i=1

Gi(T1)cA1 +
Q1

ρcpV1
(3.4a)

ċA1 =
F0

V1
(cA0 − cA1) +

Fr
V1

(cA2 − cA1)−
3∑
i=1

Ri(T1)cA1 (3.4b)

Ṫ2 =
F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑
i=1

Gi(T2)cA2 +
Q2

ρcpV2
(3.4c)

ċA2 =
F1

V2
(cA1 − cA2) +

F3

V2
(cA03 − cA2)−

3∑
i=1

Ri(T2)cA2 (3.4d)

where Ri(Tj) = kiexp(−Ei/RTj), Gi(Tj) = (−∆Hi/(ρcp))Ri(Tj) for j = 1, 2. Tj, cAj,

Qj and Vj represent the temperature of the reactor, the concentration of A, the rate

of heat input to the reactor and the reactor volume respectively with the subscript

representing the CSTR number. ∆Hi, ki, Ei, i = 1, 2, 3 represent the enthalpies,

pre-exponential constants and activation energies of the three reactions respectively.

cp and ρ are the heat capacity and density of fluid in the reactor. The state vector is

x = [T1, cA1, T2, cA2]
T and the input vector is u = [Q1, Q2]

T . There are two measured

outputs, y = [x1, x3]
T . Nominal parameter values, steady states and associated inputs

are provided in Table 3.1.
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F3, T03, CA03 

F2, T2, CA2 

Fr, T2, CA2 F0, T0, CA0

F1, T1, CA1

CSTR 2

CSTR 1

Figure 3.1: Schematic diagram of 2 CSTR example

Table 3.1: Nominal parameters, steady states and steady state inputs for two CSTRs

F0 = 4.998 m3/h k1 = 3.0× 106 h−1

F1 = 39.996 m3/h k2 = 3.0× 105 h−1

F3 = 30.0 m3/h k3 = 3.0× 105 h−1

Fr = 34.998 m3/h E1 = 5.0× 104 kJ/kmol
V1 = 1.0 m3 E2 = 7.53× 104 kJ/kmol
V2 = 3.0 m3 E3 = 7.53× 104 kJ/kmol
R = 8.314 kJ/kmol K cp = 0.231 kJ/kg K
T0 = 300.0 K ρ = 1000.0 kg/m3

T03 = 300.0 K T s1 = 303.7 K
cA0 = 4.0 kmol/m3 csA1 = 2.5 kmol/m3

cA03 = 2.0 kmol/m3 T s2 = 302.9 K
∆H1 = −5.0× 104 kJ/kmol csA2 = 2.3 kmol/m3

∆H2 = −5.2× 104 kJ/kmol Qs
1 = 1.0× 105 kJ/h

∆H3 = −5.4× 104 kJ/kmol Qs
2 = 1.0× 105 kJ/h
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The objective is to estimate the four states based on the two measured outputs in

the presence of parameter uncertainty. In this example, we show that an estimator

based on augmented models may give unbiased output estimates but that this does

not guarantee unbiased state estimates. To emphasize the effects of the parameters,

process and measurement noise are not considered in this example.

Let us consider a scenario where the actual F3 = 50 m3/h (for an unidentified

reason) while the value used in the model is F3 = 30 m3/h (the nominal value).

Figure 3.2 shows the trajectories of the estimates given by an EKF using a model

augmented with T0 and T03 and a non-augmented model (where parameter uncertainty

is not considered). The initial state of the EKF is the nominal steady state (when

F3 = 30 m3/h). It can be seen from the figure that there is parameter uncertainty

as the actual outputs move away from their nominal values. It can also be seen that

if parameter uncertainty is not considered (EKF with a non-augmented model), the

EKF gives biased output estimates as well as biased state estimates. Further, it can

be seen that the EKF with the augmented model gives unbiased output estimates even

though the augmented parameters are not the ones that contain mismatch. Thus,

unbiased output estimates do not guarantee unbiased state estimates as can be seen

from the figure.

This motivates our present work to develop a procedure for the design of estimators

based on augmented models which will guarantee unbiased states estimates if unbiased

output estimates are obtained.

3.4 Proposed solution

This section provides an overview of our procedure for state estimation using a MM

approach. A flowchart of the propsed procedure is presented in Figure 3.3. The

different steps are explained in the following subsections.

3.4.1 Parameter set selection

The first stage is to determine which parameters contain or are likely to contain

mismatch. This can be carried out by using old process data or prior knowledge

about the system. For example, rate constants found by extrapolation are likely to
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Figure 3.2: Trajectory of the actual states and estimates given by an EKF using a model
augmented with T0 and T03 and a non-augmented model with model plant mismatch in F3.

contain mismatch (Canright et al., 1981). There is no restriction on the number of

parameters selected at this stage. Let S be the set of parameters selected.

For the two CSTR example, we may select S = {F0, Fr, F3, k1, V1, V2, T0, T03} as

these parameters are likely to have mismatch. Mismatch in F0, Fr and F3 can be

caused by factors such as valves sticking or pipe fouling. Mismatch in k1 may result

from improper mixing in the CSTRs or improper calculation of k1 from experiments.

Mismatch in V1 and V2 may result from valves sticking or tuning errors in the CSTR

level controllers. Mismatch in T0 and T03 can be caused by fouling in boilers, coolers

or heat exchangers used to heat or cool the feeds (F0 and F3).

3.4.2 Parameter sensitivity of outputs

The next step is to determine the sensitivity of the outputs to each parameter in S to

ensure that the parameters satisfy assumption 3.2.3. If a parameter has a negligible

effect on all the outputs it will not be possible to detect mismatch in that parameter

using the output data even if there is no noise. There are four possible results for
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Figure 3.3: A flowchart of the proposed procedure for obtaining unbiased state estimates
in the presence of parameter uncertainty.
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parameter sensitivity:

1. Outputs and unmeasured states are sensitive to the parameters.

2. Outputs are sensitive to the parameters but unmeasured states are not sensitive.

3. Outputs are not sensitive to the parameters but the unmeasured states are

sensitive.

4. Neither outputs nor unmeasured states are sensitive to the parameters.

In the first two cases the parameters should be left in S. In the last case the parameters

can be removed from S without significantly affecting estimation performance. In the

third case, state estimates will be affected by the parameters however it will not be

possible to detect mismatch in these parameters based on the outputs. Thus these

parameters can be removed from S as well. Additional measurements can be taken

if accurate estimates of the affected states are critical (such as for safety reasons).

Sensitivity is quantitative so while a sufficiently large mismatch in the parameters

from cases three and four could be detected, a sufficiently large mismatch may be

unlikely or even impossible based on the physical constraints of the system. As

a result, leaving these parameters in S will increase computation time while not

improving estimation performance as the model set will be larger due to the inclusion

of models augmented with these insensitive parameters. Two methods to calculate

parameter sensitivity are provided in the following subsections.

Step test

The step test only considers steady state information and can only handle variations

in a single parameter. However, unlike the gramian approach discussed in the next

section, it can identify the sensitivity of unmeasured states to the parameters and is

faster to calculate than a gramian. As such, it can be used as a preliminary test to

reduce the size of S before carrying out the gramian test. The procedure for the step

test is as follows:

1. Carry out simulations using the system model (3.2) and nominal parameter

values (θnom) to find the nominal steady state (ysnom).
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2. For a given non-zero input, increase (or decrease) a parameter (θi) by a fixed

percentage while holding the other parameters unchanged. Run the simulation

to find the new steady state.

3. Calculate the normalized steady state gain Kij =
(ysj − ysj,nom)/ysj,nom
(θi − θi,nom)/θi,nom

for j =

1, . . . , q (each output).

4. Repeat steps 2 and 3 for i = 1, . . . , s (each parameter in S).

For a given θi, if the sum of the absolute normalized steady state gains Ki =∑q
j=1 |Kij| is smaller than a predetermined threshold ε (i.e., Ki < ε), then the outputs

are said to be insensitive to that parameter and the parameter should be removed

from S. As step test results depend on the operating region, the parameter sensitivity

should be checked over a typical range of manipulated input values.

The reason non-zero inputs are used in step tests is based on a property of linear

systems. In general, stable non-singular linear systems of the form:

ẋ = Ax+Bu (3.5)

will converge to a zero steady state if u = 0 regardless of A. If u = 0 parameters will

have no effect on the steady state and it will not be possible to distinguish between

them based on step tests. Thus nonzero inputs are imposed for the sake of generality.

Empirical observability gramian approach

The observability gramian provides a quantitative measure of observability however

is difficult to calculate analytically for nonlinear systems. As a result, empirical ob-

servability gramians have been developed as local approximations to the analytical

gramians for nonlinear systems (Geffen, 2008). Using these gramians for sensitiv-

ity calculations provides two major advantages over the use of step tests: transient

information is used and it is possible to handle variations in multiple parameters.

However gramian calculation is more computationally intensive than the step test.

The procedure for calculating empirical gramians is as follows (Geffen, 2008):

1. Pick a nominal operating point (states and parameters). Add the parameters

under consideration to the state vector to obtain an augmented state vector

(x̃ ∈ Rñ).
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2. Define step change directions for the augmented state vector. One option is to

use two level factorial design but partial factorial designs may be used to reduce

computation time. These directions are listed in a semi-orthogonal matrix T

with each column being one direction.

3. Define nd step magnitudes (positive values) on a percentage scale denoting cd

as the magnitude for d = 1, . . . , nd and define a scaling matrix S to convert the

steps from percentage to actual values.

4. Define a number of experiments with one experiment for each combination of

step direction and magnitude. The initial condition for each experiment is

given by x̃id(0) = cdSTei + x̃nom where ei is a standard unit vector in Rñ and

the superscript id denotes the experiment.

5. Simulate the trajectory of each experiment until it reaches steady state. This

data can be used to calculate the observability gramian (WO) as follows:

WO =

nd∑
d=1

1

nd c2d

∫ tidf

0

T Ψd(t) T T dt (3.6)

where tidf is the time to steady state for experiment id and Ψd(t) is an ñ × ñ

matrix with the ij element defined as:

Ψd
ij(t) = (yid(t)− yid(tidf ))T (yjd(t)− yjd(tjdf )) (3.7)

The observability gramian has the structure

W ñ×ñ
O =

[
W n×n
X W n×m

Xθ

Wm×n
θX Wm×m

θ

]
(3.8)

where Wθ is the identifiability gramian of the parameters. The eigenvalues of Wθ pro-

vide information about the identifiability of the parameters with smaller eigenvalues

indicating lower sensitivity. Parameters with significant components along eigenvec-

tors of eigenvalues below a certain threshold will not be identifiable. This threshold

will be zero in an ideal case but in reality will always be non-zero due to numerical

errors (Geffen, 2008). The threshold can be approximated as the Frobenius-norm of

E where E is found by linearizing the system about its nominal point and taking the

difference between the empirical observability gramian and analytical observability

gramian of this linearized system.
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Two CSTR example

The results of the sensitivity tests for the two CSTR example are summarized in

Table 3.2. Step tests were carried out by increasing parameters by 20% from their

nominal values one at a time. Gramian tests were conducted by changing parameters

one at a time by ±10% and ±20% of their nominal values.

Table 3.2: Results of parameter sensitivity analysis using step tests and empirical observ-
ability gramians for two CSTRs

Step test Empirical Gramian
(Sum of absolute normalized gains) (Normalized eigenvalues)

F0 0.004 7.150× 10−9

Fr 0.002 7.507× 10−8

F3 0.014 5.810× 10−6

k1 2.578× 10−6 6.032× 10−11

V1 0.001 4.443× 10−8

V2 0.002 2.278× 10−9

T0 0.404 0.002
T03 1.964 1.000

Both empirical gramian and step test indicate that F0, Fr, F3, k1, V1 and V2 are

not sensitive and should be removed from S. Removing these parameters results in

S = {T0, T03}.

3.4.3 Augmented model creation

The first step to creating augmented models is to determine how many states can

be added to each model. For deterministic linear systems operating at steady state

with mismatch in only the A matrix, two assumptions must hold for unbiased out-

put estimates to guarantee unbiased state estimates. These assumptions are derived

below.

Consider a stable linear plant (Aplant has only negative eigenvalues):

ẋplant = Aplantxplant +Bu (3.9a)

ẋplant = (Amodel + ∆A)(xmodel + ∆x) +Bu (3.9b)

yplant = Cxplant (3.9c)

where ∆A and ∆x represent the model plant mismatch in the A matrices and states

respectively.
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As there is only mismatch in Aplant, the model of this plant is given by:

ẋmodel = Amodelxmodel +Bu (3.10a)

ymodel = Cxmodel (3.10b)

For a given constant nonzero input us, the system will converge to a nonzero

steady state. At this steady state, we can check if output estimates are unbiased

by directly comparing the values of ysplant and ysmodel. If we have unbiased output

estimates, we can derive the following:

ysplant = ysmodel (3.11a)

Cxsplant = Cxsmodel (3.11b)

C(xsmodel + ∆xs) = Cxsmodel (3.11c)

C∆xs = 0 (3.11d)

The following is also true at this steady state as the B and u are known exactly:

Aplantx
s
plant = −Bus (3.12)

Amodelx
s
model = −Bus (3.13)

From this we can derive the following:

Aplantx
s
plant = Amodelx

s
model (3.14a)

(Amodel + ∆A)(xsmodel + ∆xs) = Amodelx
s
model (3.14b)

Amodel∆x
s + ∆Axsmodel + ∆A∆xs = 0 (3.14c)

For any row where the model matches the plant perfectly, that row of ∆A will be

zero. The minimum number of zero rows in ∆A will occur when the mismatched pa-

rameter(s) and augmented parameter(s) are on different rows. This minimum (nmin)

is equal to the number of rows (n) minus the number of mismatched parameters and

augmented parameters (nmis + r), i.e. nmin = n− (nmis + r).

Let Amodel,i representing row i of Amodel for i = 1, . . . , n. In order to satisfy (3.14c),

Amodel,i∆x
s = 0 for any row of Amodel corresponding to a zero row of ∆A.

Considering (3.11d) and the above statements we obtain:[
Amodel,i
C

]
︸ ︷︷ ︸

T

∆xs = 0 (3.15)
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for i = {Rows of Amodel corresponding to zero rows of ∆A}.

If T is full column rank, the only solution is ∆xs = 0 which means we have

achieved unbiased state estimation. T can only be full column rank if the number of

rows (n− (nmis + r) + q) is greater than or equal to the number of columns (n).

This provides us with some additional assumptions needed to guarantee unbiased

state estimation if unbiased output estimates are obtained:

Assumption 3.4.1 The number of outputs must be greater than or equal to the

number of mismatched parameters plus the number of augmented parameters i.e.

q ≥ nmis + r.

Assumption 3.4.2 As the location of the mismatch is not known, T must be full

column rank for ALL possible combinations of nmin rows of Amodel.

It is important to note that these assumptions do not guarantee the mismatched

parameter has been identified correctly but only that state estimates are unbiased.

Assumption 3.4.1 can be checked for the stochastic nonlinear systems we consider

directly while assumption 3.4.2 can be checked using linearized system models. Al-

though not proven, it can be seen from simulation results that the mismatch can be

correctly identified if these two assumptions (and the ones presented in Chapter 3.2)

hold.

Once the number of parameters to augment has been decided, candidate models

can be created using combinations of parameters from S. For the two CSTR example,

there are two outputs and we assume only one parameter is mismatched thus we can

augment one parameter. This results in two augmented models: one augmented with

T0 and the other augmented with T03.

3.4.4 Model observability

Given an observable linear system (A,C), the number of constant step disturbance

states added must be less than or equal to the number of outputs to ensure that the

resulting linear augmented system (Ã, C̃) is observable (Muske and Badgwell, 2002).

In our algorithm, the added states are constant parameters thus the augmented model

will be nonlinear even if the original system is linear. As a result, the above condition

39



does not guarantee observability of the augmented model and the observability of

each augmented model must be checked before it can be added to the model set.

Model observability is checked using the methods presented in Chapter 2.3.2. Any

unobservable models should be removed from the model set.

3.4.5 State estimation

After designing the model set, state estimation should be carried out using all the

models in the model set simultaneously. Any nonlinear model based state estima-

tor can be used with common choices being the extended Kalman filter (EKF) or

the moving horizon estimator (MHE). Appropriate constraints should be set on the

augmented state vector if the estimator is capable of handling constraints.

3.4.6 Overall estimate

At each time step, the state estimates from the model with the highest probability

are used.

Model probability is found according to the formula used in the Autonomous

Multiple Model (AMM) algorithm which is as follows (Pitre, 2004):

Li,k =
exp(−0.5 · εTi,k · S−1i,k · εi,k)

|2πSi,k|1/2
(3.16a)

pi,k =
pi,k−1Li,k

t∑
j=1

pj,k−1Lj,k−1

(3.16b)

where Li,k represents the likelihood of model i at time k, pi,k represents the probability

of model i at time k and t is the number of models in the model set. εi,k represents

the one step ahead measurement prediction error of model i at time k with Si,k

representing the covariance of this error.

An artificial lower limit δ is set on model probabilities with any probability that

drops below δ set to δ. This prevents models from becoming inactive as the recursive

nature of the probability calculation means that if a model probability drops to zero

then it cannot be nonzero in future time steps (Kuure-Kinsey and Bequette, 2010).

If Si,k is not available due to the choice of estimator, an alternate option for

calculating model probabilities is to use the following equation for model likelihood
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(Kuure-Kinsey and Bequette, 2010):

Li,k = exp(−0.5 · εTi,k ·∆ · εi,k) (3.17)

where ∆ is a tuning parameter that is the same for all models in the model set.

The AMM algorithm is used over newer MM algorithms such as Generalized

Pseudo Bayesian (GPB) and Interacting Multiple Models (IMM) for the following

reasons:

1. AMM assumes the true system does not change over time while GPB/IMM

assume that the true system changes over time according to a Markov or semi-

Markov chain. In our case the true system parameters and structure are con-

stant with respect to time.

2. GPB/IMM fuse the estimates obtained from the different models which is only

possible if all the models share the same states.

If assumptions 3.2.1-3.2.3, 3.4.1 and 3.4.2 are satisfied there are two possible op-

tions when comparing model probabilities:

1. There is ONE clear winner and no output bias. This indicates that the mis-

match has been identified correctly and occurs when the number of mismatched

parameters (nmis) is equal to the number of added states (r).

2. There are MANY winners and no output bias. This occurs when the number of

mismatched parameters (nmis) is less than the number of added states (r). All

models which contain the mismatched parameters will have similar (or equal)

probabilities.

If any of the assumptions are violated, there are two possible options regardless

of the number of winning models:

1. There is output bias in the winning model(s). This indicates that there is no

augmented model that fully captures the mismatch and there will be bias in the

state estimates.
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2. There is no output bias in the winning model(s). This does not provide any

meaningful information as there is no guarantee that state estimates are not

biased or that the mismatched parameter(s) have been identified correctly.

For our two CSTR example, let us consider the case where the actual T0 = 320 K

while the value used in the model is T0 = 300 K. Figure 3.4 shows the trajectory of the

actual states and the estimates given by EKFs using a model augmented with T0 and

a model augmented with T03. The initial state for both EKFs is the nominal steady

state and nominal parameter values (T0 = 300 K). Assumptions 3.2.1-3.2.3, 3.4.1 and

3.4.2 are satisfied thus it can be seen that only the correct model (T0) removes both

output and estimation bias. Figure 3.5 shows the trajectory of the T0 and T03 model

probabilities obtained using the proposed algorithm. It can be seen that the correct

model is picked.
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Figure 3.4: Trajectory of the actual states and estimates given by an EKF using a model
augmented with T0 and a model augmented with T03 with model plant mismatch in T0.

3.5 Application to a froth flotation system

The proposed algorithm is tested on the froth flotation system presented in Chapter

2.2. Model parameters used are the same as in Chapter 2.4.5 except for the volumetric
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Figure 3.5: Trajectory of T0 and T03 model probabilities obtained using the proposed
algorithm with model plant mismatch in T0.

feed flow to the first tank (V̇uf0) which is constant instead of time varying. The

volumetric flow of feed liquid to the first tank is constant at 20 m3/min while the

volumetric flow of feed solids (and total feed) depends on the mass fraction of solids

in the feed (cst0).

We select S = {cst0 , β, k, c∞, cat0}. Mass fraction of solids in feed is selected

because it is not controlled and can vary between 0 − 30% (Canright et al., 1981).

β is selected arbitrarily and mismatch in β could arise as a results of problems with

the motors driving the froth removal paddles. k and c∞ are selected because they are

calculated by extrapolating from batch data and depend on the coal type thus are

highly likely to contain mismatch. Mass fraction of ash in the feed is selected because

it depends on the coal type and can vary between samples of the same coal type.

Sensitivity analysis was carried out on all the identified parameters and the results

are summarized in Table 3.3. Step tests were carried out by increasing parameters

by 20% from their nominal values one at a time. Gramian tests were conducted by

changing parameters one at a time by ±10% and ±20% of their nominal values.

Based on these results, we removed β from S resulting in S = {solids fraction in

feed (cst0), k, c∞, ash fraction in feed (cat0)}.

Models were augmented with one parameter resulting in four augmented models:

cst0 model, k model, c∞ model and cat0 model. Simulations were carried out to test
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Table 3.3: Results of parameter sensitivity analysis using step tests and empirical observ-
ability gramians for froth flotation

Step test Empirical Gramian
(Sum of absolute normalized gains) (Normalized eigenvalues)

cst0 0.619 0.010
β 0.059 1.105× 10−5

k 0.348 0.001
c∞ 0.324 0.003
cat0 1.478 1

the efficacy of the algorithm using these models with model plant mismatch intro-

duced by setting the actual cat0 to 31.85% of cst0 (1.3 times the nominal value of

24.5% of cst0). Gaussian measurement noise was generated as v v [N(0, 1), N(0, 1)]T .

Gaussian process noise was generated for each tank i, i = 1, . . . , 5, as wi(t) v

[N(0, 1), N(0, 1), N(0, 1)]T . Small noise values were used to avoid violating assump-

tion 3.2.3. The probability threshold δ was set as δ = 0.001.

Figure 3.6 shows the trajectory of the actual states and the estimates given by an

EKF using a k model, c∞ model and cat0 model for the last tank (tank 5) with model

plant mismatch in cat0 . Estimates from the cst0 model are not shown because the cst0

model is not observable along the entire trajectory. Figure 3.7 shows the trajectory

of the cst0 model, k model, c∞ model and cat0 model probabilities using the proposed

algorithm with model plant mismatch in cat0 . Although the wrong model (c∞ model)

is picked initially, the algorithm eventually picks the correct model (cat0 model). This

is due to the initial lack of separation between the c∞ and cat0 models based on noisy

output residuals. The separation between these two models increases as the plant

approaches steady state thus the correct model is picked when the plant is closer to

steady state. It can also be seen that only the correct model (cat0) model is capable

of removing bias in the cst estimates.

Simulations were also carried out to test the case where some of assumptions

3.2.1-3.2.3, 3.4.1 and 3.4.2 were violated. The augmented models, measurement noise

and process noise were the same as in the previous case but model plant mismatch

was introduced by setting the actual cst0 and actual cat0 to be 1.3 times their nominal

values. In this situation assumptions 3.4.1 and 3.4.2 are violated. Figure 3.8 shows

the trajectory of the actual states and the estimates given by an EKF using a k
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Figure 3.6: Trajectory of the actual states and the estimates given by an EKF using a k
model, c∞ model and cat0 model for the last tank (tank 5) with model plant mismatch in
cat0 .
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Figure 3.7: Trajectory of the cst0 model, k model, c∞ model and cat0 model probabilities
obtained using the proposed algorithm with model plant mismatch in cat0 .
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model, c∞ model and cat0 model for the last tank (tank 5) in this case. Estimates

obtained using the cst0 model are not shown as the cst0 model does not converge.

Figure 3.9 shows the trajectory of the cst0 model, k model, c∞ model and cat0 model

probabilities using the proposed algorithm in this case. It can be seen that although

one model (cat0) is the clear winner it does not remove bias in the cst estimates. As

assumptions 3.4.1 and 3.4.2 are violated, unbiased output estimates do not guarantee

unbiased state estimates.
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Figure 3.8: Trajectory of the actual states and the estimates given by an EKF using a k
model, c∞ model and cat0 model for the last tank (tank 5) with model plant mismatch in
cat0 and cst0 .

3.6 Conclusions

In this chapter, a method for obtaining unbiased state estimates in the presence

of parameter mismatch was detailed. Necessary assumptions for the success of the

method were provided. Proof was given for the simple case of deterministic linear

systems operating at steady state. The algorithm was shown to work on a two CSTR

system and the froth flotation system when the necessary assumptions were met.
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Figure 3.9: Trajectory of the cst0 model, k model, c∞ model and cat0 model probabilities
obtained using the proposed algorithm with model plant mismatch in cat0 and cst0 .
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Chapter 4

Control of the froth flotation
system

4.1 Introduction

Model predictive control (MPC) is a highly popular control strategy in industry due

to its ability to handle constraints on the control and states (Mayne et al., 2000).

In MPC, an optimization problem is solved at each time step to determine the opti-

mal input sequence over a horizon while taking into account system dynamics, state

constraints and input constraints (Mayne et al., 2000). Only the first element of this

input sequence is applied to the system. MPC tries to move the system to a target

steady state that is picked to optimize plant economics. This target is determined in

a separate layer called the real-time optimization (RTO) layer by solving an economic

optimization problem.

Recently, an alternative control strategy known as economic model predictive

control (EMPC) has been gaining attention (Liu and Liu, 2016). Like MPC, EMPC

can handle constraints on the control and states. It too solves an optimization problem

at each time step to determine the optimal input sequence over a horizon with only

the first element of this input sequence applied to the system. However unlike MPC,

EMPC does not try to move the system to a target steady state. It instead aims to

optimize plant economics by solving an economic optimization problem directly to

calculate the input sequence.

A known issue with MPC is its inability to track a reference signal without offset if

there is model plant mismatch (MPM). One approach to offset free reference tracking
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is provided in Morari and Maeder, 2012. Their approach involves augmenting the

system model with a disturbance model to capture the effects of the mismatch. The

augmented model is then used to calculate new MPC targets and input sequences.

There are many choices for the disturbance model and the disturbance model does

not need to accurately model the mismatch for this approach to succeed.

An alternate approach to offset free reference tracking is to remove the model

plant mismatch by updating the model then using the updated model to calculate

the input sequence. This approach can be considered a model identification (ID)

based approach. There are many options for model identification but in this work

we consider the MM approach presented in Chapter 3. This ID based approach

offers the potential of better transient performance than the approach in Morari and

Maeder, 2012 as the updated model should reflect the true plant dynamics better

than the arbitrary disturbance model picked in Morari and Maeder, 2012.

In this chapter, we present the details of controller design. A MPC and EMPC

are designed for use in the nominal case (no model plant mismatch and accurate

state estimates available). A nonlinear offset free MPC as proposed by Morari and

Maeder, 2012 and a model identification based approach are designed for use when

there is parameter mismatch between the model and the plant.

4.2 Preliminaries

The plant and nominal model used in this chapter are defined in Chapter 3.2 as

(3.1) and (3.2) respectively. In this chapter, the outputs are obtained at discrete

sampling intervals and inputs are piecewise constant. Plant parameters (θ∗) and

model parameters (θ) are assumed to be time invariant.

4.3 Model predictive control (MPC)

The optimization problem solved by the MPC used in this work takes the following

form (Mayne et al., 2000):

min
u(tk),...,u(tk+N )

k+N∑
i=k

(x̌(ti)− xs)TQ(x̌(ti)− xs) +
k+N∑
i=k

(u(ti)− us)TR(u(ti)− us) (4.1a)

s.t ˙̌x(t) = f(x̌(t), θ, u(t), 0) (4.1b)
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x̌(tk) = x(tk) (4.1c)

x̌(t) ∈ X, u(t) ∈ U (4.1d)

where N is the horizon length, Q and R are weighting matrices on the state and

input deviations respectively, X is the set of all possible values of x and U is the

set of all possible values of u. xs is the target for the system steady state with us

the associated input target. x̌ is the predicted state trajectory based on the initial

state x(tk) and model (4.1b). Only the first element of the calculated input sequence

(u(tk)) is applied to the system and the optimization problem is solved at the next

time step to calculate a new input sequence.

4.4 Economic model predictive control (EMPC)

The EMPC combines economic optimization and control of the system by solving an

economic cost function instead of the MPC cost function (4.1) to calculate the input

sequence (Ellis et al., 2014). The optimization problem solved by the EMPC takes

the following form (Liu et al., 2015; Liu and Liu, 2016):

min
u(tk),...,u(tk+N )

k+N∑
i=k

l(x̌(ti), u(ti)) + c(x̌(tk+N), Nh) (4.2a)

s.t ˙̌x(t) = f(x̌(t), θ, u(t), 0) (4.2b)

x̌(tk) = x(tk) (4.2c)

x̌(t) ∈ X, u(t) ∈ U (4.2d)

As with the MPC, N is the horizon length, X is the set of all possible values of x and

U is the set of all possible values of u. x̌ is the predicted state trajectory based on the

initial state x(tk) and model (4.2b). Only the first element of the calculated input

sequence (u(tk)) is applied to the system and the optimization problem is solved

at the next time step to calculate a new input sequence. The l(x̌, u) term is the

economic cost function that describes the economic cost of the system at a given time.

The c(x̌(tk), Nh) term is known as the terminal cost and summarizes the economic

performance of the system under an asymptotically stabilizing controller u = k(x)
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over the terminal horizon Nh as follows:

c(x(tk), Nh) =

k+Nh∑
i=k

l(x̌(ti), u(ti)) (4.3)

The terminal cost is used to improve closed loop stability of the EMPC (Liu et

al., 2015; Liu and Liu, 2016).

4.5 Offset free model predictive control

The offset free MPC presented in Morari and Maeder, 2012 is one approach to offset

free output tracking in the presence of MPM. While their approach is developed for

discrete systems, it is applicable to the continuous systems we consider due to our

restrictions that the inputs are piecewise constant and the outputs are obtained at

discrete sampling intervals. The procedure is described below.

The nominal model (3.2) is augmented with disturbance states to capture the

effects of the parameter mismatch. The augmented model does not need to model the

real mismatch accurately in order to achieve offset free control thus the disturbance

states do not need to be system parameters. This results in an augmented model of

the form:

˙̃x(t) =

[
ẋ(t)

ḋ(t)

]
=

[
faug(x(t), θ, u(t), 0, d(t))

0

]
(4.4a)

y(t) = gaug(x(t), d(t)) (4.4b)

where x̃ represents the augmented state vector (x̃ ∈ Rñ) consisting of the system

states (x ∈ Rn) and the disturbance states (d ∈ Rr). θ is the vector of system

parameters (θ ∈ Rm).

This model is used with a nonlinear estimator such as an extended Kalman filter

to obtain estimates of the states and disturbance at each time instant (denoted by

x̂(tk) and d̂(tk) respectively).

For a given reference signal yref , the following problem is solved at each time step:

0 = faug(x̄, θ, ū, 0, d̂(tk)) (4.5a)

yref = gaug(x̄, d̂(tk)) (4.5b)
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where x̄ ∈ X and ū ∈ U are the state and input targets used to calculate the input

sequence using a standard MPC formulation as follows:

min
u(tk),...,u(tk+N )

k+N∑
i=k

(x̌(ti)− x̄)TQ(x̌(ti)− x̄) +
k+N∑
i=k

(u(ti)− ū)TR(u(ti)− ū) (4.6a)

s.t ˙̌x(t) = faug(x̌(t), θ, u(t), 0, d̂(tk)) (4.6b)

x̌(tk) = x̂(tk) (4.6c)

x̌(t) ∈ X, u(t) ∈ U (4.6d)

The first element of the calculated input sequence (u(tk)) is applied to the system

and the procedure is repeated at the next time instant.

This method guarantees offset free reference tracking when the following assump-

tions are met:

Assumption 4.5.1 The reference signal (yref) and parameter mismatch are con-

stant.

Assumption 4.5.2 The number of disturbance states (r) is equal to the number of

inputs (p) which is equal to the number of outputs (q). r = p = q.

Assumption 4.5.3 For the augmented model (4.4) there exist a x∗ ∈ X and d∗ ∈ D

for all y ∈ Y and u ∈ U such that

x∗ = faug(x
∗, θ, u, 0, d∗) (4.7a)

y = gaug(x
∗, d∗) (4.7b)

with (x∗, d∗) a unique solution to (4.7) for a given (u, y).

Assumption 4.5.4 For the augmented model (4.4) there exist a x∗ ∈ X and u∗ ∈ U

for all yref ∈ Y and d ∈ D such that

x∗ = faug(x
∗, θ, u∗, 0, d) (4.8a)

yref = y = gaug(x
∗, d) (4.8b)

with (x∗, u∗) a unique solution to (4.8) for a given (yref , d).

Assumption 4.5.5 The observer is nominally error free at steady state.
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Assumption 4.5.6 The controller is nominally error free at steady state for all d ∈

R and yref ∈ Y which yield strictly feasible targets (x̄, ū).

The advantage of this approach over the model identification (ID) based approach

presented in the next section is that the augmented model does not need to model

the real mismatch accurately.

4.6 Model ID based approach to offset free control

This approach aims to achieve offset free reference tracking by updating the model to

accurately reflect the real plant. Model update is carried out using the MM method

outlined in Chapter 3. The updated model and estimates are used with the MPC

formulation:

min
u(tk),...,u(tk+N )

k+N∑
i=k

(y̌(ti)− yref )TQ(y̌(ti)− yref ) (4.9a)

s.t ˙̌x(t) = f̃(x̌(t), θ̃, u(t), 0) (4.9b)

y̌(t) = g̃(x̌) (4.9c)

x̌(tk) = x̃(tk) (4.9d)

x̌(t) ∈ X̃, u(t) ∈ U (4.9e)

where the model used in the MPC is the model with the highest probability according

to the MM method in Chapter 3. The success of this approach depends on the success

of the model identification stage thus assumptions 3.2.1-3.2.3,3.4.1 and 3.4.2 must be

satisfied. It is also assumed that the reference signal yref is constant. This method

offers the potential of better transient performance than the offset free MPC presented

in the previous section as the best model will accurately reflect the actual plant

dynamics. The better the model represents the true plant, the better the transient

performance (Morari and Maeder, 2012).
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4.7 Application to the froth flotation system

4.7.1 Without model plant mismatch

Simulation settings

The simulation parameters used are the same as in Chapter 2.4.5 with the exception of

the volumetric flow of feed to the first tank (V̇uf0) which is constant at 21.71 m3/min.

There is no process or measurement noise (w = v = 0) and the states are directly

available to the controllers.

In the MPC,Q = diag([1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2]) andR = diag([0.5, 0.5]T )

where diag(v) represents a diagonal matrix whose diagonal elements are the elements

of a vector v. The control horizon for the MPC and EMPC is N = 5 and terminal

window sizes of Nh = 10, 15 are used in the EMPC. As the froth flotation system

is open loop stable, the controller used in the EMPC terminal cost takes the form

u(t) = [0.125, 0.3125]T .

The economic cost function used in the EMPC takes the form l(x, u) = (Cost

of u × u) - (Price of coal × coal recovered). Input prices were obtained from ICIS

Chemical Business magazine and coal prices were obtained from the U.S. Energy

Information Administration website. This cost function was solved to obtain the

economic optimum steady state which was used as the state and input targets in the

MPC. The profit at tk is simply −l(x(tk), u(tk)).

Simulation results

Figure 4.1 shows the trajectory of states in the last tank (tank 5) with an MPC and

EMPC under these simulation settings. It can be seen that all three controllers are

stable. Figure 4.2 shows the profit at each time step tk with the three controllers. It

can be seen that the economic performance of all three is similar. This result is not

surprising as there is no guarantee that the EMPC has better economic performance

than the MPC.
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Figure 4.1: Trajectory of the states in tank 5 using an MPC with N = 5 and EMPC with
N = 5 and Nh = 10, 15 when states are directly available to the controllers and no MPM
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Figure 4.2: Profit at each step using an MPC with N = 5 and EMPC with N = 5 and
Nh = 10, 15 when states are directly available to the controllers and no MPM
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4.7.2 With model plant mismatch

Simulation settings

The simulation parameters used are the same as in Chapter 2.4.5 with the exception

of the volumetric flow of feed to the first tank (V̇uf0) which is constant instead of time

varying. MPM was introduced by setting the plant cst0 = 0.2 instead of the nominal

model value of cst0 = 0.1. This results in V̇uf0 = 23.85 m3/min. There is no process

or measurement noise (w = v = 0).

For the offset free MPC approach, Q = diag([1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2])

and R = diag([0.5, 0.5]T ). Only output disturbances were used in the augmented

model resulting in an augmented model of the form:

˙̃x(t) =

[
ẋ(t)

ḋ(t)

]
=

[
faug(x(t), θ, u(t), 0))

0

]
(4.10a)

y(t) = gaug(x(t), d(t)) (4.10b)

For the model ID based approach, the model set used contained a cst0 model and

a cat0 model. A k model and c∞ model were not used as k and c∞ depend on u thus

will not be constant during closed loop operation.

For both approaches, an EKF was used to obtain state estimates.

In order to ensure feasibility of the reference signal, yref was calculated based on

the true plant and was set to yref = [968.5, 30.5]T which corresponds to a plant input

of u = [0.08, 0.20]T .

Simulation results

Figure 4.3 shows the reference signal and the outputs obtained using the offset free

MPC approach and the model ID based approach. It can be seen that the model ID

based approach achieves offset free output tracking while the offset free MPC approach

does not. The offset free MPC approach fails as assumption 4.5.4 is violated. During

simulation, there are time steps where there is no value of x ∈ X and u ∈ U which

satisfy (4.7) for the given value of (yref , d̂). Figure 4.4 shows the associated inputs

for this case.
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Figure 4.3: Trajectory of the outputs using an offset free MPC and model ID based
approach in the presence of mismatch in cst0
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4.8 Conclusions

In this chapter, MPC and EMPC were compared to see which gave better performance

when there was no model plant mismatch and the states were directly available to the

controllers. It was found that both controllers were stable and had similar economic

performance even though the MPC does not have the explicit goal of optimizing

economic performance unlike the EMPC. As there is no guarantee that the EMPC

will have better economic performance than the MPC, this result is not surprising.

As conventional MPC does not provide offset free output tracking in the presence

of MPM, an offset free MPC formulation and a model ID based approach to offset

free control were investigated. Only MPM caused by parameter mismatch was con-

sidered. It was found that the offset free MPC could not provide offset free output

tracking when using an output disturbance model as some assumptions necessary for

the success of this method were not met. It was also found that the model ID based

approach could successfully track the reference signal without offset.
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Chapter 5

Conclusions

5.1 Summary

The goal of this thesis was to test modern control methods on a froth flotation system.

As state estimation plays a crucial role in the success of modern control methods,

various state estimators were also tested on this system. A first principles model of the

froth flotation system as developed by Canright et al., 1981 was used in simulations.

In Chapter 2, an extended Kalman filter (EKF), moving horizon estimator (MHE)

and nonlinear observer were tested on the froth flotation system. It was found that the

EKF gave the lowest estimation error in the ideal case (no model plant mismatch and

no delay in measurements). Although MHE has the potential give better performance

than the EKF, it did not do so in this case due to the small size of the estimation

window which was necessary due to the large number of states in the froth flotation

process. The nonlinear observer performed the worst as it did not use any noise

information. All three methods had similar performance when there was model plant

mismatch as the MPM masked the noise information which nullified the advantage

of the EKF and MHE over the observer. It was also found that state estimates

were biased in the presence of MPM. All three methods had similar performance

when measurement were delayed (both with and without model plant mismatch). As

measurement delays were large, state prediction dominated over state estimation in all

three estimators. As the froth flotation system is open loop stable, all three estimators

converged to the same estimates. The EKF was picked as the best estimator for this

system as it gave the best balance of estimation performance and computation time.

In Chapter 3, an approach to unbiased state estimation in the presence of param-
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eter mismatch was presented. This approach used multiple models (MM) running in

parallel and assigned probabilities to each model based on their one step ahead output

prediction error. The state estimate at each time was obtained from the model with

the highest probability. It was proved that unbiased output estimates guaranteed

unbiased state estimates for a deterministic linear system operating at steady state

provided certain conditions were met. A flowchart of the procedure was provided

and the procedure was successfully applied to the froth flotation system to obtain

unbiased state estimates.

Various controllers were tested in Chapter 4. A model predictive controller (MPC)

and economic model predictive controller (EMPC) were tested for the nominal case

of no model plant mismatch and accurate state estimates available. The economic

optimum steady state was found by solving the economic cost function used in the

EMPC and set as the state and input targets for the MPC. It was found that the

MPC and EMPC both stabilized the system and had similar economic performance.

As there is no guarantee that EMPC provides better economic performance, this

result was not surprising. To solve the issue of offset free control in the presence of

parameter mismatch, two methods were proposed: an offset free MPC as presented in

Morari and Maeder, 2012 and a model identification based method which combined

the state estimation method proposed in Chapter 3 with a conventional MPC. The

performance of the two methods was tested when parameter mismatch was introduced

to the system. The offset free MPC could not provide offset free control when using

an output disturbance model as some necessary conditions were not met. The model

ID based approach successfully provided offset free control. Although the model ID

based approach worked in this case, it is not rigorously proved thus is not guaranteed

to work in the general case even if the conditions for unbiased state estimation are

met.

5.2 Directions for future work

Potential directions for future work are listed below:

• Apply state estimation methods not covered in this work to the forth flotation

system. Some choices are unscented Kalman filters (UKF) and particle filters.
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• Apply control strategies not covered in this work to the froth flotation system.

Some choices are the zone MPC and chance constrained MPC.

• Extend the proof provided in Chapter 3 to determine conditions for which un-

biased output estimates guarantee the parameter mismatch has been identified

correctly and not just that states estimates are unbiased. The proof can also

be extended to the nonlinear case.

• Extend the multiple model approach for estimation to cases where MPM is not

only caused by parameter mismatch.

• Extend the model ID based approach for control to cases where the MPM is

not only caused by parameter mismatch.
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